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Abstract

In [F81] Furstenberg introduced the notion of central set and
established his famous Central Sets Theorem. Since then, several
improved versions of Furstenberg’s result have been found. The
strongest generalization has been published by De, Hindman and
Strauss in [DHS08], whilst a polynomial extension by Bergelson,
Johnson and Moreira appeared in [BJM17].

In this article, we will establish a polynomial extension of the
stronger version of the central sets theorem, and we will discuss
properties of the families of sets that this result leads to consider.

1 Introduction

A core problem in Ramsey Theory over the naturals is the characterization of
which families F of subsets of N are partition regular, i.e. which families have
the property that whenever N =

⋃r
i=1Ai is a finite partition of N, at least one

of the Ai’s belongs to F . When the family F has the property that whenever
any A ∈ F is finitely partitioned one of the pieces in the partition belongs to
F , the family is said to be strongly partition regular.

Two fundamental and classical results in Ramsey theory state, respectively,
that the family of sets that contain arbitrarily long arithmetic progressions
(called AP-rich sets) and the family of sets that contain an infinite subset X
and all the finite sums of distinct elements of X, called IP-sets, are partition
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regular1. The first result is called van der Waerden’s theorem [vdW27], the
latter is called Hindman’s theorem [H74].

In his seminal work [F81], Furstenberg used methods and notions from topo-
logical dynamics to define the notion of the central set and provided a joint
extension of both van der Waerden’s and Hindman’s theorems, known as the
Central Sets Theorem.

Theorem 1.1. [Central Sets Theorem] Let l ∈ N, and A ⊆ N be a central set.
For each i ∈ {1, 2, . . . , l} let 〈xi,m〉∞m=1 be a sequence in N. Then there exists a
sequence 〈bm〉∞m=1 in N and 〈Km〉∞m=1 in ℘fin (N) \ {∅} such that

1. For each m, maxKm < minKm+1 and

2. For each i ∈ {1, 2, . . . , l} and H ∈ ℘fin (N)\{∅},
∑
m∈H(bm+

∑
t∈Km xi,t) ∈

A.

The original definition of the notion of central set was dynamical; how-
ever, the following equivalent simpler ultrafilters2 characterization was found in
[BH90].

Definition 1.2. A ⊆ N is central if A belongs to a minimal idempotent U ∈ βN.

Several generalizations of Theorem 1.1 to semigroups have been found in
the literature; for details, we refer to [H20]. As we are interested to provide a
new general version of Theorem 1.1 for3 N, we will recall the specification to N
of some of these generalizations. At the best of our knowledge, the following
result of De, Hindman and Strauss, published in [DHS08], is the most general
commutative version of the Central Sets theorem till date.

Theorem 1.3. [Stronger Central Sets Theorem] Let τ = NN and let C ⊆ S be
central. There exists functions α : ℘fin(τ) → N and H : ℘fin(τ) → ℘fin (N) \
{∅} such that

1. if F,G ∈ ℘fin(τ) and F $ G then maxH(F ) < minH(G), and

2. whenever m ∈ N, G1, G2, . . . , Gm ∈ ℘fin(τ), G1 ( G2 ( · · · ( Gm and
for each i ∈ {1, 2, . . . ,m}, fi ∈ Gi, one has

m∑
i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ C.

We are interested to arrive to a nonlinear version of Theorem 1.3. Nonlinear
versions of linear statements in combinatorics are usually much harder to obtain.
They usually involve the set of polynomials with integer coefficients that vanish
at 0 and send N into N; we will denote this set by P from now onwards.

1It has been proven that they are indeed strongly partition regular.
2In this paper we assume the reader to know the basics of the algebra of βN.
3Most of our proofs could easily be generalized to the case of countable abelian semigroups.
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The nonlinear version of van der Waerden’s theorem, known as the Polyno-
mial van der Waerden’s Theorem4 was established by Bergelson and Liebman
in [BL96], using the methods of topological dynamics and PET induction.

Theorem 1.4. [Polynomial van der Waerden theorem] [BL96] Let r ∈ N, and
N =

⋃r
i=1 Ci be a r-coloring of N. Then for any F ∈ ℘fin(P), there exist

a, d ∈ N such that for all p ∈ F , a+ p (d) ∈ Cj, for some 1 ≤ j ≤ r.

A natural question arises whether one can provide a joint extension of Poly-
nomial van der Waerden’s and Hindman’s theorems. This was established by
Bergelson, Johnson and Moreira in [BJM17], and it is now known as the Poly-
nomial Central Sets Theorem. Whilst their version of the Theorem involves
arbitrary countable groups, we will specialize it here to N; before stating it, we
need to recall some definitions from [BJM17].

Definition 1.5. Let p ∈ βN be an ultrafilter and let Γ ⊆ NN.

1. (R-family) We say that Γ is an R-family with respect to p if for every
finite set F ⊆ Γ, every A ∈ p and every IP-set 〈yα〉α∈℘fin(N), there exist

x ∈ N and α ∈ F such that x+ f (yα) ∈ A, ∀f ∈ F .

2. (Licit) We say that Γ is licit if for any f ∈ Γ and any z ∈ N, there exists
a function φz ∈ Γ such that f (y + z) = φz (y) + f (z).

3. An endomorphism c ∈ N → N is called IP -regular if for every IP -set
〈xα〉α∈℘fin(N) there exists an IP-set 〈yα〉α∈℘fin(N) such that 〈c (yα)〉α∈℘fin(N)
is a sub-IP-set of 〈xα〉α∈℘fin(N).

Specialized to N, the Polynomial Central Sets Theorem reads as follows.

Theorem 1.6. [Polynomial Central Sets Theorem] Let p ∈ βN be an idempotent
ultrafilter, let Γ ⊆ NN be an R-family with respect to p which is licit. Then for
any finite set F ⊆ Γ, any A ∈ p and any IP -set 〈yα〉α∈℘fin(N), there exist a
sub-IP -set 〈zβ〉β∈℘fin(N) of 〈yα〉α∈℘fin(N) and an IP -set 〈xβ〉β∈℘fin(N) such that
for all f ∈ F and for all β ∈ ℘fin (N),

xβ + f (yβ) ∈ A.

Inspired by the above result, our goal in this paper is to provide a polynomial
extension, in the flavour of Theorem 1.6, of the Stronger Central Sets Theorem
1.3. This will be done in Section 2, where new special classes of sets related to
our result, called Jp− and Cp−sets, will be introduced. In Section 3, we will
provide equivalent characterizations of the notions of Jp−, Cp−sets in terms of
nonstandard analysis. Finally, in Section 4 we will discuss some open problems
that arise as consequences of our main result.

4Actually, the authors proved a generalized version of the much stronger Szémeredi’s The-
orem, but we are not going to discuss it in this paper.
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2 Polynomial extension of the stronger Central
Sets Theorem

Since for any j ∈ N, Nj is piecewise syndetic in Zj , it follows from [GJ21,
Corollary 2.3] that any set A ⊆ N which is piecewise syndetic in N, is also
piecewise syndetic in Z. Hence the following version of the IP-Polynomial Van
der Waerden’s theorem (that we specialize here to N) is a special case of [BJM17,
Corollary 2.12].

Theorem 2.1. (Abstract IP-Polynomial van der Waerden theorem) Let j ∈ N
and A ⊆ N be a piecewise syndetic set. Then for any finite set of polynomials
F from Nj to N 5 and any IP-set (xα)α∈℘fin(N), there exists a ∈ N and β ∈
℘fin (N) \ {∅} such that

a+ f(xβ) ∈ A

for all β ∈ ℘fin (N) \ {∅}, f ∈ F .

The following simple consequence of the above theorem will motivate us to
introduce the notion of Jp set.

Theorem 2.2. Let l ∈ N and A ⊂ N be a piecewise syndetic set. For i =
1, 2, . . . , l, let

(
xiα
)
α∈℘fin(N)\{∅}

be an IP-set. Then for all finite F ∈ ℘fin(P),

there exist a ∈ N, β ∈ ℘fin (N) \ {∅} such that

a+ P (xiβ) ∈ A

for all i ∈ {1, 2, . . . , l} and P ∈ F .

Proof. Consider the IP set
(
x1α, x

2
α, . . . , x

l
α

)
α

in Nl. For i ∈ {1, 2, . . . , l}, P ∈ F
define f iP (x1, . . . , xl) := P (xi), and let Fi = {f iP (x1, . . . , xl) | P ∈ F}. Finally,
let G =

⋃
i Fi. Then G is a finite set of polynomials from Nl to N that vanish

at 0. Applying Theorem 2.1 we find a ∈ N and β ∈ ℘fin (N) \ {∅} such that

a+ f iP
(
x1β , x

2
β , . . . , x

l
β

)
= a+ P

(
xiβ
)
∈ A

for all i ∈ {1, 2, . . . , l} and P ∈ F , as desired.

Theorem 2.2 leads to strengthen polynomially the notion of J-set (that we
recall) and to introduce that of Jp-set.

Definition 2.3. A set A ⊆ N is called a J-set if for all l ∈ N and for all IP-sets
(xiα)α∈℘fin(N)\{∅}, i = 1, . . . , l, there exist a ∈ N ∪ {0} and β ∈ ℘fin (N) \ {∅}
such that

a+
(
xiβ
)
∈ A

for all i ∈ {1, 2, . . . , l}.
5Polynomials from Nj to N are multidimensional polynomials.

4



A set A ⊆ N is called a Jp-set if for all finite F ⊂ P, for all l ∈ N and for all IP-
sets (xiα)α∈℘fin(N)\{∅}, i = 1, . . . , l, there exist a ∈ N∪{0} and β ∈ ℘fin (N)\{∅}
such that

a+ P
(
xiβ
)
∈ A

for all P ∈ F and i ∈ {1, 2, . . . , l}.

By the definition, it trivially holds that a Jp set is a J set. We discuss the
converse in Section 4.

The family of Jp set is actually quite rich. To prove this, let us recall the
notion of (upper) Banach density:

Definition 2.4. A set A ⊆ N has positive (upper) Banach density if

lim sup
n→+∞

max
m∈N

|A ∩ [m+ 1, . . . ,m+ n]|
|n|

> 0.

The following result, known as the Multidimensional IP polynomial Sze-
merédi theorem (which, once again, we state only for N), will entail that sets
with positive Banach density are Jp-sets.

Theorem 2.5. Let B ⊆ N have positive upper Banach density. Let 〈yα〉α∈℘fin(N)\{∅}
be an IP-set. For any finite family F ⊂ P there exists x ∈ Nn and α ∈
℘fin (N) \ {∅} such that x+ f(yα) ∈ B for all f ∈ F.

The proof of the following corollary is verbatim the proof of theorem 2.2,
where one has to apply theorem 2.5 instead of theorem 2.1 with j = l. Hence
we omit the proof.

Corollary 2.6. Let l ∈ N and A ⊂ Z have positive upper banach density.
For each i = 1, 2, . . . , l, let

(
xiα
)
α∈℘fin(N)\{∅}

be an IP-set. Then for all finite

F ∈ ℘fin(P), there exist a ∈ N, β ∈ ℘fin (N) \ {∅} such that

a+ P (xiβ) ∈ A

for all i ∈ {1, 2, . . . , l} and P ∈ F .

In particular, Corollary 2.2 proves that any set with a positive Banach den-
sity is a Jp-set. However, the converse does not hold. This can be proven using
the same example that Hindman produced in [H09, Theorem 2.1] to show the
existence of J-sets of density 0. Let us recall the construction of his example
(we refer to [H09, Theorem 2.1] for details). For n ∈ N, let

an = min

{
t ∈ N |

(
2n − 1

2n

)t
≤ 1

2

}
,

and let Sn =
∑n
i=1 ai. Let b0 = 0, let b1 = 1, and for n ∈ N and t ∈

{Sn, Sn+1, . . . , Sn+1 − 1}, let bt+1 = bt + n+ 1.
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For k ∈ N, let Bk = {bk, bk + 1, bk + 2, . . . bk+1 − 1}. Finally, let

A = {x ∈ N | (∀k ∈ N) (Bk \ Supp(x) 6= φ)}

and let A′ = A ∪ {0}.
From [H09, Theorem 2.1], the upper Banach density of A is 0.
The proof that A is a Jp-set is verbatim that of [H09, Theorem 2.1]. For the

sake of completeness, here we give the proof.
For k ∈ ω, let Bk = {bk, bk + 1, bk + 2, . . . bk+1 − 1}. Let A = {x ∈ N :

(∀k ∈ ω)(Bk \ supp(x) 6= φ)}, A′ = {x ∈ ω : (∀k ∈ ω)(Bk \ supp(x) 6= φ)}
and so, A′ = A ∪ {0}. From [H09, Theorem 2.1], d̄(A) = 0. Now assume
S ∈ ℘fin(N), F be finite collection of IP sets, and r = |F |. Pick k such that
bk+1 − bk > r and bk > n. Pick H ∈ Pf (N) such that minH > m and for all
f ∈ F , P (

∑
t∈H f(t)) ∈ Z2bk ∀P ∈ S, this is possible as all P has zero constant

term.
Now pick c ∈ N2bk such that ∀f ∈ F, P ∈ S, c + P (

∑
t∈H f(t)) > 0,∀f ∈

F,∀P ∈ S. Let l = max(
⋃
{supp(c+ P (

∑
t∈H f(t)) : f ∈ F, P ∈ S}) and pick j

such that l < bj . Pick r0 ∈ Bk such that Bk\supp
(
2r0 + c+ P (

∑
t∈H f(t))

)
6= ∅

for each f ∈ F and P ∈ S. Inductively for i ∈ {1, 2, . . . j − k}, pick ri ∈ Bk+i
such that Bk+i \ supp

(
2ri +

∑i−1
t=0 2rt + c+ P (

∑
t∈H f(t))

)
for each f ∈ F and

P ∈ S. Let d = c+
∑j−k
i=0 2ri .

As every set with positive Banach density is a Jp set, the family of Jp-sets is
partition regular. Henceforth, it makes sense to study the family of ultrafilters
it contains.

Definition 2.7. We set Jp = {p ∈ βN | ∀A ∈ p A ∈ Jp}.

As all piecewise syndetic sets are Jp sets, it immediately follows thatK (βN,+) ⊆
Jp. More in general, the following routine result (that we will prove by non-
standard means in Section 3) holds.

Theorem 2.8. Jp is a two sided ideal of (βN,+).

Less routine are some multiplicative properties of Jp that we will discuss at
the end of this Section.

By Ellis’ theorem [HS12, Corollary 2.39], a straightforward consequence of
Theorem 2.8 is that there are idempotent ultrafilters, and even minimal idem-
potent ultrafilters, in Jp. We denote the set of all idempotents in Jp by E (Jp).

A long studied family of sets in the literature are C-sets, namely J-sets that
belongs to some idempotent made of J-sets. In complete analogy, in our setting
it makes sense to introduce the following polynomial version of C-sets.

Definition 2.9. A ⊆ N is a Cp-set if A ∈ p for some idempotent ultrafilter
p ∈ E (Jp) 6.

6E (Jp) is the set of idempotent ultrafilters in Jp.
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By the definition we see immediately that all central and all C-sets are Cp-
sets. Cp sets play a fundamental role in the following theorem, which is the
main result of our article. This result establishes the polynomial extension of
the stronger Central Sets Theorem of De, Hindman and Strauss.

To simplify notations, from now we will denote the set of all sequences over
the naturals N by τ .

Theorem 2.10. Let A be a Cp-set and S ∈ ℘fin (P) be finite. Then there exists
α : ℘fin(τ)→ N, H : ℘fin(τ)→ ℘fin(N) such that

1. if F,G ∈ ℘fin(τ), F ⊂ G, then maxH(F ) < minH(G);

2. if n ∈ N and G1, G2, . . . , Gn ∈ ℘fin(τ), G1 ( G2 ( · · · ( Gn and fi ∈
Gi, i = 1, 2, ..., n, then

∑
i∈β

α(Gi) + P

∑
i∈β

∑
t∈H(Gi)

fi(t)

 ∈ A.
for all β ⊆ {1, 2, . . . , n}

Proof. Choose an idempotent p ∈ Jp with A ∈ p. For F ∈ ℘fin(τ) \ {∅}, we
define α(F ) ∈ N and H(F ) ∈ ℘fin (N) \ {∅} witnessing (1), (2) by induction on
|F |.

For the base case of induction, let F = {f}. As p is idempotent, the set
A? = {x : −x + A ∈ p} belongs to p, hence it is a Jp set. So there exist
β ∈ ℘fin (N) \ {∅} and a ∈ N such that

∀P ∈ S, a+ P

∑
t∈β

f(t)

 ∈ A?.
By setting α({f}) = a and H({f}) = β, conditions (1), (2) are satisfied.
Now assume that |F | > 1 and α(G) and H(G) have been defined for all

proper subsets G of F . Let K =
⋃
{H(G) : ∅ 6= G ⊂ F} ∈ ℘fin(N), m = maxK

and

M = {
n∑
i=1

α(Gi)+P

 n∑
i=1

∑
t∈H(Gi)

fi(t)

 | n ∈ N, ∅ 6= G1 ( G2 ( · · · ( Gn ⊂ F,

fi ∈ Gi,∀i = 1, 2, .., n, P ∈ S}.

Let
B = A? ∩ (

⋂
x∈M

(−x+A∗)) ∈ p.

For any a ∈ N , ∅ 6= G1 ( G2 ( · · · ( Gn ( F , fi ∈ Gi, for all i = 1, 2, .., n,
and P ∈ S, let us define the polynomial
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φP,n〈fi〉ni=1,,y
(y) = P

y +

n∑
i=1

∑
t∈H(Gi)

fi(t)

− P
 n∑
i=1

∑
t∈H(Gi)

fi(t)

 .

Let S′ = S ∪
{
φP,n〈fi〉ni=1,,y

| n < |F |,J = ∅ 6= G1 ( G2 ( · · · ( Gn ( F
}

and,

for f ∈ F and γ ∈ ℘fin (N) \ {∅}, define f (γ) =
∑
i∈γ f (i).

From Theorem 2.2, there exists γ ∈ ℘fin (N) \ {∅} with min(γ) > m and
a ∈ N such that

∀P ∈ S, f ∈ F a+ P (f(γ)) ∈ B.

We set α(F ) = a and H(F ) = γ. Now define H(F ) = γ and α(F ) = a.
Now, choosing x =

∑n
i=1(α(Gi) + P (

∑n
i=1

∑
t∈H(Gi)

fi(t)) we have,

a+ φP,n〈fi〉ni=1,,y
(f(γ)) =

a+ P

f(γ) +

n∑
i=1

∑
t∈H(Gi)

fi(t)

− P
 n∑
i=1

∑
t∈H(Gi)

fi(t)

 ∈ −x+A?,

and so

x+ a+ P

f(γ) +

n∑
i=1

∑
t∈H(Gi)

fi(t)

− P
 n∑
i=1

∑
t∈H(Gi)

fi(t)

 =

=

(
n+1∑
i=1

α(Gi)

)
+ P

n+1∑
i=1

∑
t∈H(Gi)

fi(t)

 ∈ A∗,
where in the last line we let F = Gn+1.
This completes the induction argument, hence the proof.

Notice that now Theorem 1.3 can be seen as a particular case of the above
theorem obtained by taking P (x) = x.

By observing that any β ∈ ℘fin (N) \ {∅} is a subset of {1, . . . , n} for some
large enough n ∈ N, we deduce the following seemingly stronger version of
Theorem 2.10.

Corollary 2.11. Let A be a Cp-set and S ∈ ℘fin(P). Then there exist α :
℘fin(τ)→ N, H : ℘fin(τ)→ ℘fin(N) such that

1. if F,G ∈ ℘fin(τ), F ⊂ G, then maxH(F ) < minH(G);

2. if 〈Gn〉n∈N is a sequence in ℘fin(τ) such that G1 ( G2 ( · · · ( Gn ( · · ·
and fi ∈ Gi, i ∈ N, then
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∑
i∈β

α(Gi) + P

∑
i∈β

∑
t∈H(Gi)

fi(t)

 ∈ A.
for all β ∈ ℘fin (N) \ {∅}.

Finally, we want to show that Theorem 2.10 can be extended to polynomials
with rational coefficients, which has some interesting consequences regarding
the multiplicative structure of Jp.

Theorem 2.12. Let l ∈ N and A ⊂ N be a JP set. For each i = 1, 2, . . . , l, let(
xiα
)
α∈℘fin(N)\{∅}

be an IP-set. Then for any F ∈ ℘fin (P) there exist a ∈ Z,

β ∈ ℘fin (N) \ {∅} such that

a+ P (xiβ) ∈ A

for all i ∈ {1, 2, . . . , l} and P ∈ F .

Proof. Let M ∈ N be the smallest common multiple of all denominators that
appear among the coefficients of the polynomials in F . For each P ∈ F and
n ∈ N, let bn be the coefficient of xn in P . We let P ′ be the polynomial
obtained from P by multiplying each bn by Mn. With this construction, P ′ is
a polynomial with integer coefficients. We let

F ′ = {P ′ | P ∈ F} .

Given an IP-set
(
x1α
)
α∈℘fin(N)\{∅}

, one can use the pigeonhole principle to

choose a sequence 〈H1
n〉n∈N in ℘fin (N)\{∅} so that x1α is a multiple of M for each

α ∈ 〈H1
n〉n∈N and n ∈ N. Now again applying the pigeonhole principle over the

IP set FU(〈H1
n〉n∈N), we obtain an another sequence 〈H2

n〉n∈N in FU
(
〈H1

n〉n∈N
)

such that M |x2α for each α ∈ 〈H2
n〉n∈N and n ∈ N. As there are l sequences,

after l steps, this process will terminate. Then we end up with an IP set I =
FU (〈Kn〉n∈N) in ℘fin (N)\{∅} such that M |xiβ for all β ∈ I and i ∈ {1, 2, . . . , l}.

Now fix this IP set I and for each
(
xiα
)
α∈℘fin(N)\{∅}

, consider the subsystems(
yiβ

)
β∈℘fin(N)\{∅}

, where yin =
∑
t∈Kn x

i
t. Hence M |yiβ for all i = 1, 2, . . . , l and

β ∈ ℘fin (N) \ {∅}. Now for each i ∈ {1, 2, . . . , l}, let x̃iα =
yiα
M . Take the finite

set of IP sets
(
x̃iα
)
α∈℘fin(N)\{∅}

for all i ∈ {1, 2, . . . , l}.
For this new finite set of IP sets

(
x̃iα
)
α∈℘fin(N)\{∅}

, and finite set of poly-

nomials F ′, by Theorem 2.10 there exists a ∈ Z and β ∈ ℘fin (N) \ {∅} such
that a + P ′(x̃iβ) ∈ A for all i ∈ {1, 2, . . . , l} and P ′ ∈ F ′. As for each n ∈ N,

i ∈ {1, 2, . . . , l} , the nth monomial is of the form

anM
n
(
x̃iβ
)n

= anM
n

(
yiα
M

)n
= an

(
yiα
)n

= an

 ∑
t∈∪n∈αKn

xit

n

,
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so it is the n-th monomial of P . Hence for β =
⋃
n∈αKn and a ∈ Z we have

that
a+ P

(
xiβ
)
∈ A

for all i ∈ {1, 2, . . . , l} and P ∈ F , as desired.

The aforementioned theorem gives us the following multiplicative property
of Jp sets.

Corollary 2.13. If A ⊂ N is a JP set and n (6= 0) ∈ Z, then n ·A is a JP set.

Proof. Let F ∈ ℘fin(P) and
(
xiα
)
α∈℘fin(N)\{∅}

be IP-sets for all i = 1, 2, . . . , l.

Let

F ′ =

{
1

n
P | P ∈ F

}
. As A is a JP set, by Theorem 2.12 we find a ∈ Z, β ∈ ℘fin (N) \ {∅} such
that a + 1

nP (xiβ) ∈ A for all i ∈ {1, 2, . . . , l} and P ∈ F , which implies that

na+ P
(
xiβ

)
∈ n ·A.

Corollary 2.14. If A ⊂ N is a Cp-set, then n−1 ·A are CP -sets.

Proof. Let A ⊂ Z be a CP set and let A ∈ q for some q ∈ E (Jp). First of all,
observe that nq, n−1q are idempotent.

nA is a Cp-set as it belongs to nq, which is an idempotent made of Jp-sets.
In fact, by definition B ∈ nq if and only if B ⊇ nB′ for some B′ ∈ q, and since
B′ is a Jp-set also B is by Corollary 2.13.

As n−1A ∈ n−1q and n−1q is an idempotent, if we can show that each
element of n−1q is a Jp set, we will have n−1A is a Cp set.

Suppose B ∈ n−1q, then we have n·B ∈ q. So, for any finite F ∈ ℘fin(P) and
for any l (l ≥ 1) IP sets,

(
xiα
)
α∈F , we have from theorem 2.12, a+ n · P (xiβ) ∈

n ·B for some a ∈ Z, β ∈ F for all P ∈ F ∪{0}, where the polynomial 0 vanishes
over N. Hence a ∈ n ·B. This implies a

n + P (xiβ) ∈ B and so B is a Jp set.
This completes the proof.

As a trivial consequence, we obtain the following multiplicative property of
Jp.

Corollary 2.15. Jp is a left ideal of (βN, ·).

3 Nonstandard versions

In the past few years, nonstandard analysis has played an important role in
many developments to Ramsey theory. We refer to [DiNGL19] for an intro-
duction to nonstandard methods tailored for applications in Ramsey theory.
Fundamental for these developments are the nonstandard translations of com-
binatorial definitions of sets and ultrafilters, which often end up simplifying the
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development of several applications. A nonstandard take on central, J− and C-
sets, as well as a nonstandard proof of the Central Sets Theorem of Furstenberg
can be found in [G22]. In the same veins, we want to find similar nonstandard
characterization of Jp- and Cp-sets here, as well as prove some properties of Jp.

Solely in this section, we assume the reader to be familiar with the basics of
nonstandard analysis. For our purposes, it is sufficient to recall that, given p
ultrafilter on N, the set

µ(p) := {α ∈ ∗N | ∀A ∈ p α ∈ ∗A}

is called the monad of p; as shown in detail in [LB19], many combinatorial
properties of p correspond to combinatorial properties of its monad.

Conversely, given α ∈ ∗N, we let

pα := {A ⊆ N | α ∈ ∗A} .

It is immediate to prove that for all α ∈∗ N pα ∈ βN; conversely, if ∗N is at
least |℘(N)|+-saturated7, µ(p) 6= ∅ for all p ∈ βN filters on N.

The nonstandard characterization of operations between ultrafilters is more
complicated, and it is often done in a setting that allows for iterated hyperex-
tensions (see e.g. [DiNGL19]). As here we will make a very limited use of these
nonstandard characterization of operations, we will just recall that, in general,
it is not true that pα ⊕ pβ = pα+β . When this happens, we will say that (α, β)
is a tensor pair. Notably, for any p, q ∈ βN there exists α ∈ µ(p), β ∈ µ(q) such
that (α, β) is a tensor pair. We refer to [LB19] for a detailed study of tensor
pair, monads and their combinatorial applications.

The nonstandard characterization of Jp sets can be obtained via a routine
enlargement argument.

Proposition 1. Let A ⊆ N and IP = {A ⊆ N | A is IP-rich}. The following
facts are equivalent:

1. A is a Jp-set;

2. there exists η ∈ ∗N, β ∈ ∗℘fin (N)\{∅} such that for all IP-sets (xα)α∈℘fin(N)\{∅}

∀P ∈ P η + P (xβ) ∈ ∗A;

3. there exists η ∈ ∗N, β ∈ ∗℘fin (N) \ {∅}, I ∈ ∗℘fin(IP), H ∈ ∗℘fin(P)
such that IP ⊂ I,P ⊆ H and

∀(xα)α∈ ∗℘fin(N)\{∅} ∈ I, ∀P ∈ H η + P (xβ) ∈ ∗A.

Proof. In the proof, for all F ∈ ℘fin(P), G ∈ ℘fin(IP) we let

AF,G :=
{

(a, β) ∈ N× ℘fin (N) \ {∅} | ∀P ∈ F, (xα)α∈℘fin(N)\{∅} a+ P (xβ) ∈ A
}
.

7We will assume this from now on.
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(1) ⇒ (2) Assume that A is a Jp-set. As A ∈ Jp, AF,G 6= ∅; moreover, the
family {AF,G}F,G has trivially the finite intersection property. By enlargement,⋂
F,G

∗AF,G 6= ∅, and any pair (η, β) in this intersection satisfies our conclusion.
(2) ⇒ (3) This is a routine argument: for all F,G ∈ ℘fin(P) × ℘fin(IP),

the set

SF,G := {
(
F̃ , G̃

)
∈ ∗ (℘fin(P)× ℘fin(IP)) | F ⊆ F̃ , G ⊆ G̃ and

∃η ∈ ∗N ∃β ∈ ∗℘fin (N)\{∅} ∀(xα)α∈ ∗℘fin(N)\{∅} ∈ G̃ ∀P ∈ F̃ η+P (xβ) ∈ ∗A}
(1)

is non empty. As the family {SF,G}F,G has the finite intersection property, by
saturation

⋂
F,G SF,G 6= ∅. Any (H, I) in this intersection proves our thesis.

(3) ⇒ (1) As P ⊆ H, IP ⊆ I, the hypothesis ensures that, for all F ⊆ P
and G finite family of IP sets, ∗AF,G 6= ∅. Hence, AF,G 6= ∅ by transfer. Any
(a, β) ∈ AF,G proves that A ∈ Jp.

Similarly, we can obtain a characterization for ultrafilters in Jp.

Proposition 2. Let p ∈ βN. The following facts are equivalent:

1. p ∈ Jp;

2. there exists η ∈ ∗N, β ∈ ∗℘fin (N)\{∅} such that for all IP-sets (xα)α∈℘fin(N)\{∅}

∀P ∈ P η + P (xβ) ∈ µ(p);

3. there exists η ∈ ∗N, β ∈ ∗℘fin (N) \ {∅}, I ∈ ∗℘fin(IP), H ∈ ∗℘fin(P)
such that IP ⊂ I,P ⊆ H and

∀P ∈ H η + P (xβ) ∈ µ(p).

Proof. (1) ⇒ (3) By Proposition 1, for all A ∈ p, for all F,G ∈ ℘fin(IP) ×
℘fin(P) the set

IA,F,G = {(η, β, I,H) ∈ ∗ (N× ℘fin (N) \ {∅} × ℘fin(IP)× ℘fin(P)) |
∗F ⊆ I, ∗G ⊆ H and ∀(xα)α∈ ∗℘fin(N)\{∅} ∈ I, ∀P ∈ H η+P (xβ) ∈ ∗A} 6= ∅.

(2)

All IA,F,G are internal and the family

{IA,F,G | A ∈ p, F,G ∈ ℘fin(IP)× ℘fin(P)}

has the finite intersection property hence, by saturation,
⋂
A,F,G IA,F,G 6= ∅.

Any (η, β, I,H) witnesses the validity of (3).
(3)⇒ (2) This is immediate.
(2)⇒ (1) As µ(p) ⊂ ∗A for any A ∈ p, we conclude by Proposition 1.

12



As a trivial consequence, we can give a nonstandard proof of Theorem 2.8.

Proof. Let p ∈ Jp, q ∈ βN. Let (η, β, I,H) be given as in condition (3) of
Proposition 2. If σ ∈ µ(q) is such that (η + P (xβ) , σ) is a tensor pair for all
P ∈ H, (xα) ∈ I, we just have to observe that (η + σ, β, I,H) is such that
IP ⊂ I,P ⊆ H and

∀P ∈ H η + σ + P (xβ) ∈ µ(p⊕ q).

Similarly, if σ ∈ µ(q) is such that (σ, η + P (xβ)) is a tensor pair for all
P ∈ H, (xα) ∈ I, we just have to observe that (σ + η, β, I,H) is such that
IP ⊂ I,P ⊆ H and

∀P ∈ H σ + η + P (xβ) ∈ µ(p⊕ q).

As in the case of J and C sets, the characterizations of Jp sets and Jp
ultrafilters can be extended to Cp sets and idempotent ultrafilters in Jp just
by recalling that p ∈ βN is idempotent if and only if there are α, β ∈ µ(p)
with (α, β) tensor pair and α + β ∈ µ(p), so that a set A ∈ ℘(N) is contained
in an idempotent if and only if it contains α, β ∈ µ(p) with (α, β) tensor pair
and α + β ∈ µ(p). Henceforth, a set A is a Cp set if it satisfies any of the
equivalent properties listed in Proposition 1 and it contains α that generates an
idempotent.

4 Discussions and further possibilities

The introduction of Jp and Cp sets rises many questions. We want to list some
of them here, providing some comments on why we believe these are relevant.

Question 4.1. Is the family of Jp-sets strongly partition regular?

We have not been able to prove this fact; simple modifications of the proof
of the same result for J-sets seems not to work. Anyhow, we do believe that
the answer to the above question is positive, a reason being that it is possible to
prove that the related family of PP-rich sets is strongly partition regular. Let
us first recall its definition.

Definition 4.2. A ⊆ N is PP-rich if for each F ∈ ℘fin(P) there exist a, x ∈ N
such that a+ P (x) ∈ A for all P ∈ F .

Theorem 4.3. The family of PP-rich sets is strongly partition regular.

Proof. Let A be a PP-rich set, and let A = A1 ∪A2. By contrast, let us assume
that A1 and A2 are not PP-rich sets. Let A1 does not contain the polynomial
progression of the finite set of polynomials F1 ∈ ℘fin(P), and A2 does not
contain polynomial progression of the finite set of polynomials F2 ∈ ℘fin(P).
Let F = F1 ∪ F2, and

n = max{degP : P ∈ F}, l = max{Coef(P ) : P ∈ F},

13



where Coef(P ) is the maximum coefficient of polynomial P .
By polynomial van der Wearden’s Theorem and compactness argument,

there exists a sufficiently large N ∈ N such that if [1, N ]n is 2-colored, then
one of the color classes contain a monochromatic structure of the form

(z1 + j1w, z2 + j2w
2, . . . , zn + jnw

n), 0 ≤ jk ≤ l for 1 ≤ k ≤ n.

For ~a = (a1, a2, . . . , an) ∈ ωn, let us define the polynomoial P~a(y) = a1y +
a2y

2 + . . .+ any
n, where ω = N ∪ {0}. Let us define

G = {P~a : ~a = (a1, a2, . . . , an) ∈ ωn with 0 ≤ ai ≤ N and 1 ≤ i ≤ n}.

Now choose x, y ∈ N such that {x + P (y) : a ∈ G} ⊆ A. Color the set
[1, N ]n = C1 ∪ C2 as ~a ∈ Ci if and only if x + P~a(y) ∈ Ai. So there exist,
i ∈ {1, 2} and z1, z2, . . . , zn ∈ N, w ∈ N such that

(z1 + j1w, z2 + j2w
2, . . . , zn + jnw

n) ∈ Ci, 0 ≤ jk ≤ l.

Hence, x + P~aj (y) ∈ Ai, where ~aj = (z1 + j1w, z2 + j2w
2, . . . , zn + jnw

n),
0 ≤ jk ≤ l for 1 ≤ k ≤ n. So,

x+(z1+j1w)y+(z2+j2w
2)y2+. . .+(zn+jnw

n)yn ∈ Ai, for0 ≤ jk ≤ l, 1 ≤ k ≤ n

and thus

(x+ z1y + z2y
2 + . . .+ zny

n) + j1(wy) + j2(wy)2 + . . .+ jn(wy)n ∈ Ai,

for 0 ≤ jk ≤ l, 1 ≤ k ≤ n.
In particular, a + P (wy) ∈ Ai, where a = x + z1y + z2y

2 + . . . + zny
n.

Therefore, PP-rich sets are strongly partition regular.

A related important question is the following one:

Question 4.4. Does it exists a J set that is not a Jp set?

Again, we don’t have an answer to the above question. The reason is that
this question is much harder to answer than it seems. In fact, the following is a
similar question that has now been open for some years:

Question 4.5. Are J sets PP-rich?

Notice that Jp sets are PP-rich, so if we would be able to prove that all J
sets are Jp sets, the above question would be solved affirmatively. On the other
end, the precise relationship between PP-rich sets and Jp-sets is still unknow,
as the following question remains open.

Question 4.6. Are PP-rich sets also Jp-sets?
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We believe that the answer to the previous question should be no. In fact,
the similar linear question relating AP-rich sets and J-sets has been solved in
[HJ12, Lemma 4.3], where the authors have demonstrated that there exists an
AP-rich set which is not a J set. However, it seems that the argument can not
be easily lifted from the linear to the polynomial case.

Finally, maybe the most relevant open question that has to be mentioned is
the following:

Question 4.7. Is our polynomial extension of the Stronger Central Sets The-
orem actually more general than Theorem 1.6?

It has been shown in [DHS08, Theorem 4.4] that the stronger Central Sets
Theorem for arbitrary semigroups is indeed stronger than the original Central
Sets Theorem for semigroups by considering a special free semigroup. However,
it is still an open question if this is true or not on N, or on any countable Abelian
group.
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cation: Theory and Applications, second edition, de Gruyter, Berlin,
2012.

[H20] N. Hindman: A history of central sets, Ergodic Theory and Dynamical
Systems 40 (2020), 1-33.

[HJ12] N. Hindman and J.H. Jhonson Jr.: Images of C sets and related large
sets under nonhomogeneous spectra, Integers 12B (2012), Article 2,
1-25.

[LB19] L. Luperi Baglini, Nonstandard characterisations of tensor products
and monads in the theory of ultrafilters, Math. Log. Quart. 65 (2019),
347–369.

[S16] I.Schur: Über die kongruenz xm + ym ≡ zm(modp), Jahresber. Dtsch.
Math.-Ver. 25 (1916) 114–117.

[vdW27] van der Waerden: Beweis einer Baudetschen Vermutung, NieuwArch.
Wiskunde 19 (1927), 212-216.

16


	Introduction
	Polynomial extension of the stronger Central Sets Theorem
	Nonstandard versions
	Discussions and further possibilities

