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Abstract

The COVID-19 pandemic wreaks havoc in supply chains by reducing the
production capacity of some essential suppliers, closure of production
facilities or the absence of infected workers. In this paper, we present three
decision support models for a plant manager to help in deciding on (a)
the level of protection of the workforce against the spread of the virus in
the absence of regional protection measures, (b) on the duration of the
protection, and (c) the level of protection of the workforce with regional
protection measures enforced by health authorities. These decision models
are based on a SIS epidemiological model which takes into account the
possibility that a worker can infect others but also that even when recovered
can be infected again. The first and third models prescribe how, in time,
the protection effort in terms of prophylactic measures must be deployed.
The second model extends the first one as it also determines the length the
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protection effort must be deployed.
The proposed models have been applied to the case of a meat process-

ing plant that must satisfy the demand of a large-scale retailer. Clearly, to
achieve production targets and satisfy customers’ demand, plants in this
labor-intensive industry rely on the number of healthy workers and the
service level of suppliers. Our results indicate that these models provide
managers with the tools to understand and measure the impact of an infec-
tion on production and the corresponding cost. Along the way, this work
illustrates the ripple effect as suppliers affected by the pandemic are unable
to fulfill the processing plant requirements and so the retailer’s orders. Our
findings provide normative guidance for supply chain decision support
systems under risk of pandemic induced disruptions using a quantitative
model-based approach.
Keywords: COVID-19, decision support, supply chain, production
optimization

1. Introduction

COVID-19 is a highly contagious virus-induced communicable disease,
transmitted via droplets and contaminated objects during close unpro-
tected contact between an infector and infectee (World Health Organization,
2020c). As workers in a facility get infected, production level drops and
demand from customers downstream goes unfulfilled (Singh et al., 2020).
The effects of infection spread on production and operations can be severe,
particularly in those sectors where large pools of workers are mandated or
intensive contacts are required (Hille, 2021). Supply chains and the indus-
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tries linked to them also feeling the impact (Alvarez et al., 2020; Ivanov and
Dolgui, 2020b; Ivanov, 2020). The infection spread can be curbed through
the implementation of prophylactic measures such as social distancing and
the use of protection equipment (Paul and Chowdhury, 2020). Therefore,
such measures, in addition to protecting workers, represent an important
lever to ensure production continuity and demand satisfaction (van Hoek ,
2020; Ivanov and Dolgui, 2020b).

We consider a production facility manager who must ensure that the
facility (hereafter called a plant) is able to deliver the products or services
required by her customers according to their demand over a given planning
horizon in the context of a pandemic. In a labour-intensive plant, the
production level is directly function of the number of workers present, and
dependent upon the provision by suppliers of the necessary inputs and
raw materials. If suppliers are also affected by the pandemic, their ability
to provide the necessary inputs may be jeopardised in a ripple effect as
illustrated in Dolgui et al. (2017); Hosseini and Ivanov (2019); Ivanov and
Dolgui (2020b); Ivanov (2020) and Ivanov and Dolgui (2021). To provide
guidance to managers, and following the approach taken in various works
(Paul and Chowdhury, 2020; Craighead et al., 2020), we adopt a modeling
approach of how infection spreads among workers in time in a single closed
environment. The proposed decision support models are applied to the
case of ameat supply chain including a livestock supplier, a meat processing
plant and a large-scale retailer. In Europe, the meat industry employs a
million workers and is highly labor intensive. Many processing disruptions
occur in the meat supply chain because of labour shortage in the sequel
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of absenteeism entailed by sickness (Fabris, 2020). For instance, labour
availability was reduced by up to 30% in French meat processing facilities in
the regions of the country worst hit by COVID-19 (OECD, 2020). As such,
the meat industry is one of the most prominent applications of our models.

The infected workers are absent and hence cannot contribute to the
production level (there is no teleworking possibility). In this context, the
plant manager has two decisions to make. She must decide on the amount
of effort she must dedicate to the protection of workers, and also decide
when to stop such effort. We present first the plant manager’s decision
model on the protection effort to deploy so that there are enough workers
to satisfy as much as possible the demand. She must, in particular, balance
the penalty cost for not matching the supply with the demand with the cost
incurred by the effort for implementing prophylactic measures. Although
we do not detail the prophylactic measures available, we consider that there
is a wide range of measures from which the plant manager can choose
(Haug et al., 2020, presents a comprehensive list of such measures coded
according to the Complexity Science Hub COVID-19 Control Strategies
List). The cost corresponding to these measures can be evaluated ex ante

and the corresponding deployment and enforcement is under themanager’s
responsibility.

How the infection spreads in a closed environment, how someone who
recovers can be infected again is not well known and the debate as to how
best to limit the spread of infection is still ongoing (Morawska et al., 2020;
Rothan and Byrareddy, 2020). We start from the premises that a manager
can, through proper effort in prophylactic measures, limit the propagation
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of infection among her workers (Courtemanche et al., 2020). Even if not yet
sick, workers who commute from their communities to their place of work
can bring the virus to the manufacturing facility (as a “contact”) and con-
taminate co-workers (West et al., 2020). To model how such contamination
spreads, most of the recent research (Acemoglu et al., 2020a,b; Gaeta, 2020)
is based on a SIR (Susceptible-Infected-Recovered) setup, yet evidence
that “people who have recovered from COVID-19 and have antibodies are
protected from a second infection” is not only lacking (World Health Orga-
nization, 2020b), but there are indications to the contrary (World Health
Organization, 2020a). Hence, it seems more reasonable and realistic to
rely on a SIS framework (susceptible-Infected-Susceptible) in which, after
recovery, people are susceptible to being infected again (Bailey et al., 1975).

The considered decision problems are formulated using optimal control
models in continuous time (Gersovitz and Hammer, 2004; La Torre et al.,
2020). The optimality conditions give rise to a system of forward-backward
ordinary differential equations (ODE) in the state and co-state variables,
with the addition of an algebraic equation describing the maximum princi-
ple. More specifically, the state variable has an initial condition while the
co-state variable has a final condition. The sweep algorithm, one of the
most widely used algorithms to deal with this forward-backward setting
(McAsey et al., 2012), is then used to solve the proposed models.

Even though based on theoretical grounds and a stylised model, this
study provides indications for managers and scholars as to the interactions
between a manager’s decisions related to the effort to invest in implement-
ing prophylactic measures and a facility’s production level in a pandemic
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context.
The study refines and advances the one presented in (Brusset et al.,

2022). The differences can be summarized as follows:

• We model the spread of the disease by means of a nonlinear SIS
model. We do not perform any linearisation but, instead, we consider
the whole dynamics of the epidemics. The resulting optimal control
model is nonlinear by construction, and so does not admit a closed-
form solution. We proceed by simulating the optimality conditions
which, in this context, read as a systemof backward-forwardODEwith
initial and terminal conditions. We implement an ad-hoc numerical
procedure based on the sweep algorithm;

• We introduce an exogenous service level which represents the ability
of the suppliers to provide the plant with enough inputs and raw
materials for production. The latter is 100% initially and can evolve in
time with the propensity of suppliers to see their own production be
affected by the pandemic. This might affect the amount of produced
goods by the plant (see Ivanov, 2020, for a numerical study of the
ripple effect of a pandemic on a supply chain);

• We present an extension of the first proposed nonlinear model to
identify the endogenous optimal lockdown time T . By means of a
numerical algorithm, we generate the cost curve as function of T and
determine a numerical approximation of the global minimiser;

• We present a second extension of the first proposed nonlinear model
in which we consider the regional protection measures enforced by
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health authorities.

The remainder of this paper is organized as follows. After presenting
the epidemiological setup in section 2, we present in section 3 a first model
in which the optimal effort in terms of social distancing and prophylactic
measures is evaluated. The next section (section 4), is the model to obtain
the optimal effort and the optimal time during which the prophylactic effort
must be kept up. We then report computational experiments and results in
section 5. Thereafter, in section 6, we present a third extension of the model
and its results where the impact of regional authorities’ effort in controlling
the epidemic is taken into account. We provide some managerial insights
based on the findings derived from the computational results in section 7
before concluding.

2. The Epidemiological setup

To understand how a pandemic works and how a single infected worker
who comes in to work can generate in time a measurable and quantifiable
impact on the production level of a plant, it is necessary to introduce here
some elements of the results achieved in the science of epidemiology as
applied to epidemics and pandemics.

A generic Susceptible-Infected (SI) epidemic model takes the form (Bai-
ley et al., 1975): 

İ(t) = f(I(t), S(t)),

Ṡ(t) = g(I(t), S(t)),

I(0) = I0, S(0) = S0,

(1)
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where I(t) is the number of infected people and S(t) is the number of sus-
ceptible people at time t. As N is the total population on the homogeneous
geographical site1, S(t) = N − I(t). In the sequel of this paper we model the
evolution of the epidemic by means of a classical SIS model where both pri-
vate and public actors strive to control infection in the population. Regional
authorities are the public actors which have the responsibility for protecting
the population in a specific region against infection. Such authorities will
deploy general prophylactic measures, while private actors such as plant
managers will deploy an effort within the premises of their plants. Such a
model reads as:

İ(t) = γ(1− βL(t)− βG(t))S(t)I(t)− αI(t),

Ṡ(t) = −γ(1− βL(t)− βG(t))S(t)I(t) + αI(t),

I(0) = I0, S(0) = S0,

(2)

where γ is the infection rate at the regional level, βL(t) is the time dependent
amount of effort in implementing prophylactic measures at the plant level,
βG(t) is the time dependent amount of effort in implementing prophylactic
measures at the regional level and α is the recovery rate. Note that if there
is no effort in implementing prophylactic measures at the regional level
and the plant, that is βL = 0 and βG = 0, then the disease infection rate
coincides with γ. Note also that the greater the effort βL the smaller will
be the infection rate, γ(1 − βL(t) − βG(t)). By assuming that βG = 0 and
using the substitution S(t) = N − I(t), the model (2) can be rewritten as it

1Workers on site move around without limits in random ways thus coming across all
other workers on the premises.
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follows: İ(t) = γ(1− βL(t))(N − I(t))I(t)− αI(t),

I(0) = I0.

(3)

This equation can be solved in closed-form and its expression depends
on the integrals over time of βL. When βL is supposed to be constant, the
expression of I reads as:

I(t) =
I0(γ(1− βL)N − α)

γ(1− βL)I0 + e−(γ(1−βL)N−α)t ((γ(1− βL)N − α)− I0γ(1− βL))

3. Decision support model for optimal effort

The proposed model aims at investigating how to maintain production
in a labor-intensive plant in an epidemic context through the optimal effort
in implementing prophylactic measures. Indeed, in such a context, the
plant manager, as decision maker, tries to control epidemic spread among
workers within the plant through the deployment and enforcement of pro-
phylactic measures at plant level at time t, βL(t) in an effort to minimize the
number of workers getting infected so that the plant can meet the demand
addressed to it. The plant manager strives to balance the cost incurred
by the implementation of prophylactic measures with the penalty for not
matching the demand and epidemic social cost.

Markedly, the plant manager has no power to influence the effort βG in
general prophylactic measures decided at the regional level and, therefore,
such an effort, βG, is assumed to be exogenous. The number of infected
workers is time-dependent and relies on the efforts in implementing pro-
phylactic measures invested at time t, βL(t) and βG(t). In order to account
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for the dynamics of the control effort and the number of infected workers,
the decision support problem is formulated using control theory.

To facilitate the reading of this paper, we group in Table 1 the notation
used.

It is worth noting, at this level, that in this first decision support model
(also referred to as first optimal control model), we consider the case where
there is no regional protection effort enforced by the health authorities. An
extension of this model that incorporates regional protection effort will be
presented and discussed in section 6.

The objective function of the proposed model can be spelled as follows:

TC = min
I(t),β(t)

∫ T

0

[
cx(t) +

cA
2

(x(t)− a)2 +
cβ
2
β2
L(t) +

c̄β
2
I2(t)

]
dt+

φ

2
I2(T )

= min
I(t),β(t)

A+B + C +D + E, (4)

where
A =

∫ T
0
cx(t)dt is the total production and shipping cost,

B =
∫ T

0
cA
2

(x(t)− a)2 dt is the total penalty cost for not matching
the demand and the supply,

C =
∫ T

0

cβ
2
β2
L(t)dt is the total cost incurred by the effort for

implementing prophylactic measures,
D =

∫ T
0

c̄β
2
I2(t)dt reflects the social cost of the epidemics

over the planning horizon,
E = φ

2
I2(T ) reflects a penalty cost of having infected

workers at the end of the considered plan-
ning horizon. Hence this term favors
the continuity of production in the subse-
quent planning horizon.

10



Table 1: Table of notations

N total number of workers in the plant
T length of the planning horizon
α recovery rate from infection
γ infection rate in absence of effort for implementing prophylacticmeasures

at the regional level
c production and shipping cost per unit
a demand in units which has to be met per period
cA per unit penalty cost for not matching the supply with the demand per

period
cβ total cost of implementing prophylactic measures per period
c̄β social cost of the epidemic per period
φ penalty cost of still having infected workers at the end of the planning

horizon
θ per-capita productivity (0 < θ ≤ 1)
I0 number of infected workers at the beginning of the planning horizon
L(t) delivery reliability (percentage of the ordered quantity delivered on

time) in period t from uptstream suppliers (L(t) ∈ [0, 1]), also named
service level

βL(t) control variable expressing the effort for implementing prophylactic
measures at time t (βL(t) ∈ [0, 1])

βG(t) exogenous time dependent parameter expressing the effort for imple-
menting prophylactic measures at the regional level (βG ∈ [0, 1])

I(t) number of infected workers in period t
S(t) number of susceptible (healthy and so available) workers at time t

(S(t) = N − I(t))
x(t) produced and shipped quantity in period t
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While assuming that βG = 0, the constraint system of this first model is
described as follows:

İ(t) = γ(1− βL(t))I(t)(N − I(t))− αI(t),

I(0) = I0,

0 ≤ I(t) ≤ N,

0 ≤ βL(t) ≤ 1,

x(t) = θL(t)(N − I(t)),

(5)

Note that the produced and shipped quantity at time t, x(t), depends on
the number of healthyworkers at time t,N−I(t), the per-capita productivity,
θ, and the delivery reliability of the upstream suppliers at time t, L(t).

Theorem 1. Let (I(t), βL(t), λ(t)) be the optimal solution to the above optimal

control model Eqs. (4)-(5). Then a necessary and sufficient optimality condition

is expressed by the following system of FOCs:



λ̇(t) = cL(t)θ + cAθL(t)[θL(t)(N − I(t))− a]− c̄βI(t)

−λ(t)
[
γ(N − 2I(t))− γ2

cβ
λ(t)I(t)(N − I(t))(N − 2I(t))− α

]
İ(t) = γI(t)(N − I(t))− γ2λ(t)

cβ
I2(t)(N − I(t))2 − αI(t)

βL(t) = λ(t)γI(t)(N−I(t))
cβ

I(0) = I0

λ(T ) = φI(T ),

where λ(t) is the co-state variable used in the Hamiltonian associated with the

formulated problem.
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The proof of the above Theorem can be found in the Appendix. To find
the optimal control effort we apply one of the most widely used algorithms
to deal with this forward-backward setting, namely the sweep algorithm.
A detailed version of the sweep algorithm is presented in McAsey et al.
(2012). The implemented forward-backward sweep method is presented in
the appendix.

4. The optimal effort and protection duration

In this section, we wish to understand how long the plant manager must
keep up the prophylactic measures. To do so, we investigate an extension
of the first optimal control model in which the finite planning horizon T is
no longer exogenously chosen but, instead, is optimally and endogenously
determined by the model itself. That is, we evaluate the optimal length of
time over which the effort in terms of prophylactic measures must be kept
up. In addition, we suppose that φ, the penalty for infected workers at the
end of the finite horizon T is a function of T and takes the form φ = φ̄

T
where

φ̄ is an exogenous parameter that serves as a proxy for the plant manager’s
concern for long run health outcomes tied to the epidemic outbreak. If
T → 0 the short and long run coincide and thus an infinitely large weight
is attached to the final damage, if T → +∞ the long run is infinitely far
away and thus the weight attached to the final damage is null. For positive
but finite values of T , instead, a positive and finite value is attached to
the final level giving rise to a clear trade off between the discounted sum
of the instantaneous losses (which are minimised with T → 0) and the
discounted final number of infected people (which is minimised when
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T → +∞) ensuring thus that optimality will require that the plant manager
will enforce epidemic mitigation policies for a positive and finite amount of
time. For any fixed T > 0, the optimal control model to be solved reads as:

C(T ) = min
I(t),β(t),T

θc

∫ T

0

L(t)(N − I(t))dt+
cA
2

∫ T

0

(θL(t)(N − I(t))− a)2 dt

+
cβ
2

∫ T

0

β2
L(t)dt+

c̄β
2

∫ T

0

I2(t)dt+
φ̄

T

I2(T )

2

(6)

subject to 

İ(t) = γ(1− βL(t))(N − I(t))I(t)− αI(t),

I(0) = I0,

0 ≤ I(t) ≤ N,

0 ≤ βL(t) ≤ 1,

x(t) = θL(t)(N − I(t)).

(7)

The model determines the control effort and the protection duration that
optimally balance the production and shipping cost, the penalty cost for not
matching the demand, the cost for implementing prophylactic measures,
and the epidemic social cost. An extended version of the sweep algorithm
has been used to solve the proposed model as detailed in the appendix. It
is easy to notice that

lim
T→0+

C(T ) = +∞

due to the fact the first four terms in the expression of C tend to zero when
T → 0+ while the fifth one diverges to +∞. Furthermore, one can easily
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observe that
lim

T→+∞

φ̄

T

I2(T )

2
= 0

due to the fact that I(T ) is bounded by N for any T and that the first order
derivative of the first four terms in the expression of C(T ) is positive. This
is enough to conclude that there exists a Tmin > 0 where C attains its global
minimum. This result is discussed in more details using the numerical
simulations presented in the next section.

5. Experimentation and numerical results

We illustrate our first optimal control model and solution approach
with the synthetic case of a three-stage localised meat supply chain so as to
be able to infer descriptive and normative results in the sense of Bertrand
and Fransoo (2002). This chain includes a livestock supplier and a meat
processing plant serving a large-scale retailer.

To do so, we focus in sub-section 5.2 on investigating the optimal effort
for implementing prophylactic measures in the meat processing plant and
its impact on demand satisfaction and the total cost over a planning horizon
of 30 days and compare it to the case where the plant manager decides not
to do anything in terms of protecting the workers against the possibility of
infection, named the “doing nothing case”.

In a second step, in sub-section 5.2.2, we conduct a sensitivity analysis in
order to investigate the effect of some parameters of the model, namely the
penalty cost for not matching the supply with the demand cA, the cost of
implementing prophylactic measures cβ , the social cost of the epidemics cβ ,
and the penalty cost for having infected workers at the end of the planning
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horizon φ, on the protection effort policy that should be adopted by the
plant manager. We do so under two scenarios:

• Scenario 1: the livestock supplier is not impacted by the pandemic; he
is able at any time t to deliver the required quantity on time and in
full which translates into L(t) = 1,∀t ∈ [0, 1]

• Scenario 2: the livestock supplier is also within a zone of infection; his
service level drops to 50% which translates into L(t) = 0.5,∀t ∈ [0, 1]

In sub-section 5.3, we look at the case where the plant manager will
jointly determine the optimal protection effort to deploy and the duration of
this protection effort in time to still achieve the demand satisfaction targets.

Based on the conducted experimentation, we draw conclusions which
can be generalised for managers and decision makers in similar settings.
We now specify the data that we have used throughout this study.

5.1. Data description

Most of the data used for the meat supply chain is based on the case
study presented inMohebalizadehgashti et al. (2020) and updated data pre-
sented in Novek et al. (1990). As far as the SIS epidemic model parameters
are concerned, they have been extracted from the model of the second wave
of COVID-19 outbreak presented in Faranda and Alberti (2020). The daily
demand of the large-scale supplier is equal to 15 tonnes. 80 productionwork-
ers are employed in the meat processing plant. The per-capita productivity
is assumed equal to 0.187 tonne per day per worker. The production cost of
one tonne of meat is estimated based on the purchasing cost of livestock,
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the meat yield of livestock, and the labor cost. The shipping cost per tonne
is estimated based on a transportation distance of 60 km between the meat
processing plant and the central warehouse of the large-scale retailer using a
reefer trailer. The per unit penalty cost for not matching the supply with the
demand is assumed equal to the per unit production and shipping cost. The
cost for implementing prophylactic measures is roughly evaluated based
on the quantity of hydroalcoholic gel, masks, social distancing measures,
and training required to protect the workers in the plant over the planning
horizon.

The livestock supplier is considered through his reliability to deliver the
required quantity of livestock on time . Such reliability will also be named
in what follows the service level.

Indeed, if the meat processing plant holds a livestock risk mitigation
inventory, the latter will serve to satisfy the plant’s requirement on time
and in full but only for a limited time, after which the supplier’s lack of
service will impact the plant’s production (Ivanov, 2020). So, without loss
of generality, we consider here that the meat processing plant uses a just-in-
time ordering policy, and that lead time for delivery to the meat processing
plant is null.

The parameters of the meat supply chain case are summarised below:

N = 80, a = 15, T = 30, θ = 0.187, α = 0.37, γ = 0.5,

c = 4000, cA = 4000, cβ = 75, cβ = 300, φ = 300.

5.2. Results from the first optimal control model
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We study here the optimal effort model over the planning horizon. In
subsection 5.3, we study the model where the manager evaluates also the
length of time during which the prophylactic effort has to be maintained
within this planning horizon.

5.2.1. The importance of adopting an optimal protection effort policy

In order to assess the importance of adopting an optimal protection
effort policy, we compare it with the doing-nothing case, in which the plant
manager decides to forfeit protection effort, that is βL(t) = 0, ∀t ∈ [0, T ].

In the doing-nothing case, the number of infected workers can be deter-
mined using the following expression:

I(t) =
I0(γN − α)

γI0 + e−(γN−α)t ((γN − α)− I0γ)
. (8)

The corresponding expression of x(t) is then provided by:

x(t) = θL(t)(N − I(t)). (9)

We then plug these two expressions into the objective function (4), in
order to get an estimate of the total cost (TC) and different cost terms,
namely A, B, C and D (as defined earlier in Section 3).

Figure 1 presents the optimal protection effort, the resulting share of
infected workers, and the share of infected workers obtained for the doing-
nothing case, when I0/N = 0.1, I0/N = 0.2 and I0/N = 0.3 for both,
scenario 1 and 2.

First, we observe that, in both scenarios, regardless of the initial number
of infective workers, the effort in implementing prophylactic measures is
monotonically decreasing over time. Moreover, as expected, one can see that
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the higher the initial number of infected workers, the higher the protection
effort to contain the epidemic outbreak.

Noticeably, the protection effort is lower in scenario 1 than in scenario
2. Hence, the optimal protection effort is not only affected by the initial
number of infected workers in the plant but also by the reliability of the
supplier to deliver the ordered quantity on time and in full. If the supplier’s
service level is affected, the effort for implementing prophylactic measures
in the plant must then be intensified in order to counterbalance the impact
of this supply disruption on production and hence the meat processing
plant’s ability to match the supply and the demand.

The share of infective workers resulting from an optimal protection effort
policy goes through a minimum. Remarkably, the share of infective workers
at the end of the planning horizon is independent of the the initial share of
infective workers. Obviously, the higher is the protection effort, the lower is
the share of infective workers.

Moreover, we can see that the three curves portraying the share of in-
fective workers in the doing-nothing case are also converging towards the
end of the planning horizon. Indeed, according to (8), the share of infec-
tive workers should converge very rapidly to 0.26 as t increases. This also
explains why, over the planning horizon, the share of infective workers is
increasing when the initial share of infective workers is 0.1 and 0.2 while it
is decreasing when the initial share of infective workers is 0.3.

Table 2 compares the cost terms A, B, C, D and the total cost (TC) ob-
tained for each scenario under optimal protection effort policy with those
obtained in the doing-nothing case while assuming that the initial share of
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infective workers is 0.1. Expectedly, the produced quantity of meat is always
higher in scenario 1, where the supplier is able to deliver the required live-
stock on time and in full. Moreover, note that the demand is better satisfied
in scenario 1 than in scenario 2, even though scenario 1 involved a lower
effort for implementing prophylactic measures than scenario 2.

Clearly, when the effort for implementing the prophylactic measures
increases, the incurred cost increases while the social cost of epidemics
decreases. Also, it is worth mentioning that the total penalty cost for hav-
ing infected workers at the end of the planning horizon is very low with
comparison to the other cost terms.

As the share of infective workers is obviously higher when no protection
is afforded, the total cost of such a policy is higher than the one suggested
by our model (in scenario 1, it is reduced by 23% while in scenario 2, it
is reduced by 30%, see Table 2). This is due to the demand being better
satisfied when optimal effort for implementing prophylactic measures is
adopted (notice the lower total penalty cost for not matching the supply
with the demand, B, under protection effort policy).

5.2.2. Sensitivity analysis

Figure 2a shows that an increase in the penalty cost for not matching the
supply with the demand, cA, entails an increase in the optimal protection
effort. Again, as delineated by Figure 2b, this increase in protection effort is
followed by a decrease in the share of infective workers. Moreover, we can
note that, regardless of the penalty cost, cA, the protection effort is relaxed
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(a) Scenario 1 (b) Scenario 2

Figure 1: Share of infectiveworkers: the optimal protection effort case vs. the doing-nothing
case, for both scenario 1 and scenario 2.
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Table 2: Cost distribution in hundred of thousands for scenario 1 and 2 and I0 = 0.1: the
optimal protection effort case vs. the doing-nothing case

Scenario Protection effort A B C D TC

1
yes 16.406 1.071 2.588 2.163 22.234
no 14.390 5.711 0 11.942 32.064

2
yes 8.432 38.139 4.456 1.097 52.128
no 7.195 48.716 0 11.943 67.873

at the end of the planning horizon.
The inverse effect can be observedwhen cβ varies in Figure 3. Expectedly,

the protection effort decreases as the associated cost increases.
Figure 4 presents the effect of a change in the social cost of the epidemics,

cβ , on the protection effort. Noticeably, the protection effort varies, in this
case, in the same way as when the penalty cost for not matching the supply
with the demand, cA, varies. However, one notes that when cβ decreases
(increases) the effort starts at only a slightly higher (lower) level with
comparison to a similar change of cA.

We finally present the case when the cost φ evolves in Figure 5: all
the curves overlap each other which means that only the last one appears
(yellow curve). Therefore, a 50% decrease or increase in φ does not have
any measurable effect on the protection effort. This can be explained by
the fact that - all other parameters being equal - the penalty cost for having
infected workers at the end of the planning horizon, remains, although after
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(a) Optimal effort (b) Optimal Share of Infective Workers

Figure 2: Optimal protection effort and share of infective workers when cA is either 50%
above (yellow curve) or 50% below (blue curve) the central value (red curve).

(a) Optimal effort (b) Optimal share of infective workers.

Figure 3: Optimal protection effort and share of infective workers when cβ is either 50%
above (yellow curve) or 50% below (blue curve) the central value (red curve).
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(a) Optimal effort (b) Optimal Infective Workers.

Figure 4: Optimal protection effort and share of infective workers when when cβ is either
50% above (yellow curve) or 50% below (blue curve) the central value (red curve).

(a) Optimal Share of effort (b) Optimal infective workers.

Figure 5: Optimal protection effort and share of infective workers when when φ varies: no
change can be detected in either the optimal effort or the number of infectives.
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an increase of φ by 50%, much lower than the other cost terms .
It is worth noting, at this level, that the results of the sensitivity analysis

presented above are pertaining to scenario 1. The same sensitivity analysis
has been also conducted for scenario 2 (where L(t) = 0.5). Conspicuously,
the results are very similar, in general trends, to those obtained for scenario 1,
and only vary in terms of starting values (See Figure C.12 in Appendix C for
a quick comparison with scenario 2). Therefore, a change in the considered
cost parameters triggers the same type of effect on the protection effort
whatever is the service level of the supplier (100% or 50%).
5.3. Estimating the protection duration for optimal control effort over the planning

horizon

We build upon the second decision support model where we want to
evaluate the optimal duration for the protection effort. The corresponding
function to be optimised is presented in (6) to jointly determine the optimal
protection effort and the optimal protection duration, TOpt. Figures 3 and
5 present how the optimal total cost varies as a function of the length of
the optimal duration TOpt for scenarios 1 and 2, the minima are TOpt = 14.5

days in scenario 1 and 10 days in scenario 2. The shorter optimal protection
duration in scenario 2 still generates a higher overall cost to the plant as
reported in Table 3 because the lower service level of the supplier means
that the plant cannot produce (column A) as can be understood by the
penalty paid due to the unsatisfied demand (column B).

Figures 6 and 7 portray the optimal share of infective workers and the
optimal protection effort during the optimal protection duration for scenar-
ios 1 and 2, respectively. Again the effort for implementing prophylactic
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measures during the optimal protection duration is more intense in scenario
2 than in scenario 1. One can see from table 3 that the cost of the effort for
implementing prophylactic measures is slightly higher by 5% in scenario
1 than in scenario 2, even though the duration is extended from 10 to 14.5
days, that is 45% longer.

Therefore, the optimal protection effort, the optimal share of infective
workers and optimal protection time are impacted by the supplier’s service
level. Interestingly, the optimal protection time is longer when the supplier
fully supplies the plant.

Figure 6: Total cost and endogenously determined optimal protection duration in scenario
1
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(a) Optimal Protection Effort, (b) Optimal Share of Infective Workers

Figure 7: Optimal share of infective workers and optimal protection effort within the
optimal protection duration TOpt for scenario 1

Table 3: Results obtained for scenario 1 and scenario 2 with optimal T and I0/N = 0.1

A B C D E ′ TC I(T )/N T

Scenario 1 7.815 0.678 0.909 1.376 9.454 20.233 0.1198 14.5
Scenario 2 2.713 13.498 0.859 0.832 10.698 28.601 0.1056 10

Figure 8: Total cost and endogenously determined optimal protection time in scenario 2
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(a) Optimal Share of Infective Workers. (b) Optimal Protection Effort.

Figure 9: Optimal share of infective workers and optimal protection effort within the
optimal protection duration TOpt in scenario 2
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Observe in Table 3, that the share of infective workers at TOpt at the end
of Run 1 is slightly higher than the initial one. Assuming that the epidemic
outbreak continues to spread with the same infection rate, we perform a
second run of the decision support model for optimal effort and protection
duration in order to decide on the protection strategy to adopt beyond TOpt.
In this second run, the value of the initial share of infective workers is set to
the value of the share of infective workers at TOpt obtained at the end of the
first run. Hereafter, let us denote by T1Opt and T2Opt the optimal protection
time obtained in the first and the second run of the model, respectively.

Table 4 depicts the results of the two successive runs of the decision
support model for optimal effort and protection time obtained for scenario
1. The protection effort and the length obtained in the second run of the
model are slightly higher than the ones of the first run.

If we suppose that the manager’s planning horizon extends over 30 days,
shemight consider that the pandemic will extend over all this planning hori-
zon, so we run the decision support model for optimal effort and protection
time while enforcing the value of T to T1Opt +T2Opt (so the model has been
used only to determine the optimal protection effort). The obtained results
are reported in table 5 and confirm that a better performance in terms of
demand satisfaction and total cost would be achieved if the decision maker
adopts a planning horizon of length T1Opt + T2Opt.

Hence, the manager’s choice of policy depends upon her anticipation
about the intensity of the pandemic. If she anticipates that the pandemic
will extend beyond the 14.5 days of calculated optimal duration, it would be
wiser to plan the optimal protection effort over a fixed longer period, based
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Table 4: Results of two successive runs of the decision support model for optimal effort
and protection time

Run A B C D A+B + C +D I(T )/N TOpt

1: I0/N = 0.1 7.815 0.678 0.909 1.376 10.778 0.1198 14.5
2: I0/N = 0.1198 8.292 0.820 1.236 1.674 12.022 0.1222 15.5

Table 5: Results with T = T1Opt + T2Opt

A B C D A+B + C +D I(T )/N T

I0/N = 0.1 16.406 1.071 2.588 2.163 22.228 0.1198 30

on an estimate of the intensity of the epidemic outbreak. This will result
in an overall lesser cost than renewing the effort in consecutive periods to
ensure that the workforce remains in optimal health to be able to meet the
demand from downstream customers once social cost beyond the end of
the protection duration.

6. An extended model with regional protection effort

In this section we consider the case where the plant is embedded in a
region in which the health authorities, once a pandemic is detected, decide
to engage in prophylactic measures to protect the general population. Such
measures include social distancing, wearing a face mask in public places,
and others as depicted in (Haug et al., 2020). The optimal control model
with consideration of regional protection effort is as follows:
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Figure 10: Optimal share of infective workers and optimal protection effort for two succes-
sive runs of the decision support model for optimal effort and protection time

TC = min
I(t),β(t)

∫ T

0

[
cx(t) +

cA
2

(x(t)− a)2 +
cβ
2
β2
L(t) +

c̄β
2
I2(t)

]
dt+

φ

2
I2(T )

, (10)

subject to 

İ(t) = γ(1− βL(t)− βG(t))I(t)(N − I(t))− αI(t),

I(0) = I0,

0 ≤ I(t) ≤ N,

0 ≤ βL(t) ≤ 1− βG(t),

x(t) = θL(t)(N − I(t)),

(11)

Recall that βG(t) is the time dependent amount of effort in implement-
ing prophylactic measures at the regional level. The exogenous time de-
pendent βG(t) is chosen by the regional authorities by putting in place

31



epidemiological-macroeconomic policies of public health as presented in
La Torre et al. (2021) and La Torre et al. (2022). The optimality conditions
are presented in the following Theorem 2.

Theorem 2. Let (I(t), βL(t), λ(t)) be the optimal solution to the above optimal

control model Eqs. (10)-(11). Then a necessary and sufficient optimality condition

is expressed by the following system of FOCs:

λ̇(t) = cL(t)θ + cAθL(t)[θL(t)(N − I(t))− a]− c̄βI(t)

−λ(t)
[
γ(1− βG(t))(N − 2I(t))− γ2

cβ
λ(t)I(t)(N − I(t))(N − 2I(t))− α

]
İ(t) = γ(1− βG(t))I(t)(N − I(t))− γ2λ(t)

cβ
I2(t)(N − I(t))2 − αI(t)

βL(t) = λ(t)γI(t)(N−I(t))
cβ

I(0) = I0

λ(T ) = φI(T )

In the extreme scenario in which βG(t) is maximum then the derivative
of I is negative and therefore the total number of infected workers is de-
creasing no matter what is the manager’s prophylactic effort βL(t). This is
the situation witnessed in Europe. Let us point out here that if the regional
authorities only engage in themaximum social distancingmeasure available
which is a regional lockdown (case of Shanghai in April and May 2022),
then our model does not make sense anymore as there are no workers in
the plant and production drops to nil.

For further guidance as to the effect of the prophylactic effort provided
by the regional authorities, we present in Figure 11 the impact of various
intensities of effort βG on the optimal effort and number of infectives inside
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the plant in scenario 1. As would be expected, as the intensity of regional
authorities’ effort in containing the epidemic increases, the manager will
reduce her effort inside the plant. There is a substantial difference when
regional authorities only engage in “token” prophylactic effort (βG = 0.1)
which leads the manager to maintain a substantial prophylactic effort and
yet leaves the proportion of infectives at a comparatively high level at the
end of the planning period. Note that similar optimal effort patterns have
been observed for scenario 2 (See Figure C.13 in Appendix C for a quick
comparison with scenario 2). Once again, under the same conditions, the
optimal protection effort is higher in scenario 2 than in scenario 1.

(a) Optimal effort (b) Optimal share of infectives.

Figure 11: Optimal protection effort and share of infective workers when βG varies

7. Some managerial insights

Somemanagerial insights can be derived from the experimentation using
plausible parameters in a three-stage supply chain involving a livestock
supplier, a meat processing plant and a large-scale retailer.
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First, the effort for implementing prophylactic measures at the meat
processing plant to protect the workforce helps in maintaining satisfactory
production level during an epidemic outbreak. As would be expected, we
confirm that under an optimal protection effort policy, the demand is better
satisfied. Because of the penalty cost incurred for not matching the supply
with the demand, the total cost is lower than the one incurred by the doing-
nothing case (that is, the cost of implementing prophylactic measures is
lower than the penalty).

Second, the effort in implementing prophylactic measures is higher (all
hands must be on deck) when the reliability of the supplier to deliver the
required quantity on time and in full is affected by the epidemic context.
This reduces the impact of supply disruption on demand satisfaction. How-
ever, clearly, even when an optimal protection effort is deployed the loss in
production is not completely recovered because of the supply disruption.
This highlights, in particular, the importance of multi-sourcing and holding
risk mitigation stock as they can be used as levers to overcome, reduce or
postpone the drop in supply during an epidemic outbreak.

Third, the plant manager should deploy the fullest protection effort
possible strategy at the onset of the epidemic outbreak. The effect of an
epidemic outbreak on production level is indeed lessened if prophylactic
measures are implemented when the number of infective workers in the
plant is still small. Surprisingly, our analyses shows that this effort will
then be slightly reduced up, even if the pandemic is not over. In all cases, it
is counter-productive to go without any prophylactic measures to protect
workers against infection, whatever the proportion of workers infected
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when the pandemic is first observed in the plant.
Fourth, the supply chain’s overall output is reduced if the supplier is

also subject to pandemic induced disruptions (the ripple effect studied in
Li et al., 2020; Ivanov and Dolgui, 2020a; Queiroz et al., 2020) but can still
mitigate part of it by increasing prophylactic measures’ effort at the level of
the production plant according to our analysis.

Fifth, an increase either in the penalty cost for not matching the supply
with the demand or, in the social cost of the epidemics, entails an increase
of the protection effort. Therefore, a higher protection effort should be
invested in plants producing more essential and vital products.

Sixth, protection measures enforced by health authorities help in sus-
taining production with less protection effort deployed in the plant.
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8. Conclusion

We show in this paper how a plant manager can effectively address the
risk of a loss in production incurred during a pandemic. The setting we
consider here is that of a human labour intensive production facility so
that any sick and hence absent worker directly impacts production. This
plant receives its raw material from a supplier which may also be affected
by the pandemic. The plant in turn supplies a market and any mismatch
between the supply and the demand carries a penalty. The plant’s manager,
as decision maker, must decide on the effort in prophylactic measures to
deploy in the plant so as to protect the workforce during the pandemic and
so maintain production and ensure demand satisfaction.

First, we present a decision support model which not only takes into
account the possibility that the workforce may be infected in various pro-
portions as the pandemic starts but also considers that during the whole
pandemic more workers could become ill. As time goes by, and based on a
SIS model to represent the spread of the pandemic, the optimal protection
effort is determined while trying to minimise the total cost, including the
production and shipping cost, the penalty cost for not matching the supply
with the demand, the cost of the effort for implementing prophylactic mea-
sures, the social cost of pandemics, and the penalty cost of having workers
infected at the end of the planning horizon. To provide a backdrop, we
compare the outcomes for two policies: when the decision maker imme-
diately implements prophylactic measures to protect the workers inside
her plant or when she does nothing. This first decision support model has
been extended in two ways. First, it has been extended in order to jointly
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determine the optimal protection effort and the period of time over which
the optimal protection policy should be implemented. Then, it has been
extended to incorporate the regional protection effort enforced by health
authorities.

To provide better insights and context, we have applied the proposed
decision support models on the case of a meat processing plant which is
supplied by a livestock breeder and has to satisfy the demand of a large-scale
retailer. This case has been particularly motivated by the several examples
of slaughterhouses not being able to comply with downstream demand
during the pandemic because of infected workers and also because, in some
cases, the workers complained from a lack of proper prophylactic measures
to protect their health on the plant premises (Fabris, 2020).

Our work complements the stream of publications covering the impacts
of the pandemic on supply chains. Most this literature considers the rippling
effect of the pandemic on supply chains or the loss in terms of production in
one node of the network. We provide here the plant manager with decision
support models that can guide her to the best course of action during the
pandemic period.
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Appendix A. Proofs

In this Appendix we present the proof of Theorem 2. The one for Theo-
rem 1 can be obtained by simply setting βG(t) = 0.

The Hamiltonian associated with this problem is given below.

H(I(t), βL(t), λ(t), t) = cL(t)θ(N − I(t)) +
cA
2

[θL(t)(N − I(t))− a]2

+
cβ
2
β2
L(t) +

c̄β
2
I2(t)

+λ(t) [γ(1− βG(t)− βL(t))I(t)(N − I(t))− αI(t)]

and the maximum principle leads to

−λ̇(t) = ∂H
∂I

= −cL(t)θ − cAθL(t)[θL(t)(N − I(t))− a]

+c̄βI(t) + λ(t)[γ(1− βG(t)− βL(t))(N − 2I(t))− α],

∂H
∂βL

= 0 = cββL(t)− λ(t)γI(t)(N − I(t)),

İ(t) = γ(1− βG(t)− βL(t))I(t)(N − I(t))− αI(t),

I(0) = I0,

λ(T ) = φI(T ),

(A.1)

which, after simple algebra and using the expression

βL(t) =
λ(t)γI(t)(N − I(t))

cβ
(A.2)

leads to the system of backward-forward ODEs in the FOCs. Sufficiency
follows by noticing that the objective functional is convex.
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Appendix B. Numerical Algorithm

The system (6) states the first order optimality conditions for problem
(4). This system has an initial condition for the state variable I(t) while
a final condition for the costate variable λ(t). It is therefore a system of
forward-backward ODE in the state and costate variables, with the addition
of an algebraic equationwhich describes themaximumprinciple (A.2). One
of most widely used algorithm to deal with this forward-backward setting
is the so-called sweep algorithm. The detailed implementation of the sweep
algorithm is presented in McAsey et al. (2012). We have implemented the
forward-backward sweep method for our system of first order optimality
conditions which reads as follows:

1. Starting from the second equation of (6), we make an initial guess
λ0 = λ0

t .
2. Let us iterated over j ≥ 0: by using the spectral method, we solve:

d Ij+1
t

dt
= γIj+1

t (N − Ij+1
t )− γλjt

cβ
(Ij+1
t )2(N − Ij+1

t )2 − αIj+1
t

with the initial condition given by:

Ij+1
0 = I0

The first equation in (6) is reversed in time by means of the change
of variable t̄ = T − t. This turns the problem into a forward problem,
with initial condition given by the fourth equation in (6). Notably the
initial condition in the time-reversed equation depends on T .
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3. We then solve:

d λj+1
t̄

dt̄
= −cLt̄θ − cAθLt̄[θLt̄(N − Ij+1

t̄ )− a] + c̄βI
j+1
t )

+ λj+1
t̄

[
γ(N − 2Ij+1

t̄ )− γ

cβ
λj+1
t̄ Ij+1

t̄ (N − Ij+1
t̄ )(N − 2Ij+1

t̄ )− α
]

with initial condition in t̄ given by:

λj+1
0 = φIj+1

T

4. Finally we check for convergence by computing the difference between
the values of It and λt in two subsequent iterations (i.e. j + 1 and j).
If the L2-norm of the difference is negligibly small, we display the
current function as solution, otherwise we continue iterating.

Points 1 and 2 are enough to numerically define the solutions to the con-
sidered problem. The optimal protection time is endogenously determined,
and it requires an additional numerical step: Once we get a satisfactory
numerical approximation of It and λt and hence of βt, we evaluate the
cost function for different values of T . We then select the cost-function
minimizing value of T , as shown in Figure 3.

Appendix C. Complementary pictures regarding Scenario 2.
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Figure C.12: From top to bottom sensitivity analysis on x ∈ [cA, cβ , cβ̄ , φ]. Everywhere
the red curve represents the central value x, the blue curve represents 0.5x and the yellow
curve represents 1.5x.
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Figure C.13: Optimal protection effort and share of infective workers when βG varies: same
values and colour code as in the main text.
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