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Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disease associated with sudden 
cardiac death and cardiac fibro-fatty replacement. Over the last years, several works 
have demonstrated that different epigenetic enzymes can affect not only gene ex-
pression changes in cardiac diseases but also cellular metabolism. Specifically, the his-
tone acetyltransferase GCN5 is known to facilitate adipogenesis and modulate cardiac 
metabolism in heart failure. Our group previously demonstrated that human primary 
cardiac stromal cells (CStCs) contribute to adipogenesis in the ACM pathology. Thus, 
this study aims to evaluate the role of GCN5 in ACM intracellular lipid accumulation. 
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1  |  INTRODUC TION

The normal human adult heart is composed by cardiomyocytes and 
non-cardiomyocyte cells. The latter represent the major part in terms of 
total cell number, and, among them, cardiac mesenchymal stromal cells 
(CStCs, including cardiac fibroblasts) are the vast majority.1 CStCs play a 
crucial role in multiple aspects of myocardial function, including synthe-
sis and deposition of extracellular matrix (ECM), and cell–cell communi-
cation.2 However, during pathological changes, CStCs impede optimal 
electrical conduction and prompt to deposition of fibrotic tissue.3

Arrhythmogenic cardiomyopathy (ACM, OMIM: 609040) is a 
genetic cardiac disease characterized by structural and functional 
alterations, mainly in the right ventricle.4 The progressive loss of 
cardiomyocytes, associated with fibro-fatty replacement of the 
myocardium,5 results in the alteration of the normal electrical im-
pulse conduction and in a consequent increased risk of ventricular 
arrhythmias and sudden cardiac death (SCD).6 For years, ACM has 
been considered a cardiomyocyte disease; however, we have re-
cently demonstrated that CStCs contribute to the disease patho-
physiology.7 In fact, CStCs from ACM patients accumulate more lipid 
droplets than CStCs isolated from healthy control specimens, when 
exposed to a trigger medium (adipogenic medium).7

Of note, a key issue in ACM pathogenesis remains the fibro-fatty 
myocardial replacement that can contribute to different disease 
prognosis.8 To date, ACM treatments involve the management and 
prevention of symptoms, based on anti-arrhythmic drugs, implant-
able cardioverter defibrillator (ICD) insertion and, for worst cases, 
heart transplantation.9 There is no available therapy that directly 
targets the fibro-fatty substitution.

Over the last ten years, several works have demonstrated that 
different epigenetics enzymes such as histone acetyltransferases 
(HATs) play an important role in governing gene expression changes 
underlying cardiac diseases.10 Importantly, it has been reported that 
HATs can modulate the function of many proteins involved in the 
regulation of cellular signalling and energy metabolism, including en-
zymes of glycolysis, glucose oxidation, electron transport chain and 
fatty acid β-oxidation.11 General control non-repressed 5 protein 

(GCN5), encoded by the KAT2A/GCN5 gene, is a histone acetyltrans-
ferase belonging to the GNAT superfamily12,13 that plays a role in cell 
proliferation, differentiation and DNA repair.14,15 GCN5 also regu-
lates cell energetic state and lipid metabolism.16

In this paper, we evaluated the possible involvement of GCN5 in 
the intracellular lipid accumulation observed in ACM CStCs. Our data 
indicate that GCN5 inhibition results in a reduced fat accumulation, 
modulated in part by the action on intracellular redox processes.

2  |  METHODS

2.1  |  Ethics statement

The present study was conducted in accordance with the Declaration 
of Helsinki and approved by the ethical committee of the Centro 
Cardiologico Monzino IRCCS (07/06/2012) and the South Tyrol 
Azienda Sanitaria (13/03/2014, N.1/2014). Written informed con-
sent was obtained from all participants.

2.2  |  Study patient characteristics

Right ventricle samples were obtained from 16 patients affected by 
ACM undergoing catheter biopsies for diagnostic purposes, as previ-
ously described.17,18 Table 1 summarizes the main clinical and geneti-
cal characteristics of the patients enrolled in this study. Ventricular 
samples from individuals not affected by ACM (CTR) were obtained 
from 7 cadaveric donors (accidental death), provided by ‘Fondazione 
Banca dei Tessuti di Treviso’.

2.3  |  Genetics of ACM-associated genes

Variants in DSC2, DSG2, DSP, PKP2, JUP, TMEM43, DES, RYR2, PLN, 
SCN5A and LMNA were analysed as previously described8 and the 
pathogenicity classified according to Richards et al.19

the Joint Project SüdTyrol- FWF (Italy-
Austria), grant number 23623 to AR, JT, 
RP and AM.

To do so, CStCs were obtained from right ventricle biopsies of ACM patients and from 
samples of healthy cadaveric donors (CTR). GCN5 expression was increased both in 
ex vivo and in vitro ACM samples compared to CTR. When GCN5 expression was si-
lenced or pharmacologically inhibited by the administration of MB-3, we observed 
a reduction in lipid accumulation and a mitigation of reactive oxygen species (ROS) 
production in ACM CStCs. In agreement, transcriptome analysis revealed that the 
presence of MB-3 modified the expression of pathways related to cellular redox bal-
ance. Altogether, our findings suggest that GCN5 inhibition reduces fat accumulation 
in ACM CStCs, partially by modulating intracellular redox balance pathways.

K E Y W O R D S
Arrhythmogenic cardiomyopathy, cellular redox mechanisms, histone acetyltransferase GCN5, 
human cardiac stromal cells, intracellular lipid accumulation, reactive oxygen species
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2.4  |  Cardiac stromal cells culture and adipogenic 
differentiation

Cardiac stromal cells (CStCs) from ACM patients and CTR indi-
viduals were obtained as previously reported.7,20 Cells were cul-
tured in basal medium composed of IMDM (Lonza), supplemented 
with 20% FBS (Hyclone, Italy), penicillin-streptomycin 1% (Thermo 
Fisher Scientific) and 20 mM L-Glutamine (Thermo Fisher Scientific). 
Adipogenic differentiation was performed by culturing the cells for 
7 days in adipogenic medium (ADIPO) composed of IMDM, supple-
mented with 10% FBS (Gibco), 0.5 mM IBMX (Sigma-Aldrich), 0.1 mM 
indomethacin (Sigma–Aldrich), 0.1  µM hydrocortisone (Sigma–
Aldrich), penicillin-streptomycin 1% (Thermo Fisher Scientific) and 
20  mM L-Glutamine (Thermo Fisher Scientific).7 CStC treatment 
with the specific GCN5 inhibitor MB-3 (200 µM, Sigma-Aldrich)21,22 
was performed in ADIPO medium for 7 days.

2.5  |  Lentiviral transduction for GCN5 knockdown

Lentiviral particles expressing hairpin RNA (shRNA) targeting GCN5 
and Green Fluorescent Protein (GFP) (ORIGENE) were used to induce 
GCN5 knockdown in ACM CStCs. 7500 cells/cm2 were plated and 
cultured for 72 h in basal medium. ACM CStCs were transduced with 
100 MOI (Multiplicity of Infection) of lentiviral particles in ADIPO 
supplemented with 10 µg/ml polybrene (Merck). Transduction me-
dium was refreshed after 72 h, and cells were cultured in ADIPO for 
additional 4 days. A scramble shRNA with a C-terminal monomeric 
GFP was used as a control. After 7  days, cells were collected for 
protein analysis to confirm GCN5 knockdown and fixed to evaluate 
the effect of GCN5 knockdown on lipid accumulation.

2.6  |  Western Blot analysis

Cells were washed in phosphate-buffered saline (PBS, Thermo Fisher 
Scientific) and lysed using protein extraction buffer (10 mM Tris-HCl 
pH 7.4, 150 mM NaCl, 1% sodium deoxycholate (NaDoc), 0.1% sodium 
dodecyl sulphate (SDS) and 1% glycerol) supplemented with protease 
and phosphatase inhibitor mix (Roche). Total lysates were quantified 
using BCA Protein Assay Kit (Life Technologies). 15 µg of proteins was 
separated by SDS-PAGE on precast gradient (4–12%) gels (Invitrogen) 
and transferred onto nitrocellulose membrane in Transfer buffer 
(Invitrogen) supplemented with 10% (vol/vol) methanol. Membranes 
were blocked in PBS 0.05% Tween 5% non-fat dry milk for 1 h at room 
temperature (RT) and then incubated overnight at 4°C with anti-GCN5 
(1:1000, Cell Signaling, #3305, rabbit) and anti-GAPDH (1:5000, Santa 
Cruz, Sc-32233, mouse). After washing, membranes were incubated 
with the appropriate HRP-conjugated secondary antibody for 1 h at 
RT. Detection was performed using the enhanced chemiluminescence 
system (ECL, Pierce™ ECL Western Blotting Substrate kit). Images 
were acquired with the ChemiDoc MP Imaging System (Bio-rad) and 
quantified using Image Lab software 5.2.1 (Bio-Rad).

2.7  |  Intracellular Lipid Staining analysis

After 7 days of adipogenic differentiation, cells were fixed with 4% 
(vol/vol) paraformaldehyde (PFA) for 15 min at RT and then incubated 
with 0.5  µM BODIPY® 493/503 (Thermo Fisher Scientific) diluted 
in PBS or HCS LipidTOX™ Deep Red Neutral Lipid Stain (Thermo 
Fisher Scientific) 1X diluted in PBS for 20 min at room temperature 
(RT) in the dark. HCS LipidTOX™ Deep Red Neutral Lipid Stain was 
used only for GCN5  knockdown experiment in ACM CStCs trans-
duced with GFP-tagged lentiviral particles, in order to avoid spectral 
overlap between GFP and BODIPY® 493/503. Nuclei were counter-
stained with DAPI (Thermo Fisher Scientific). Immunofluorescence 
images were acquired using a Leica SP8-X confocal microscope, and 
the fluorescence integrated intensity quantified using Fiji/Image J 
Software.

2.8  |  Mitochondrial Reactive Oxygen Species 
(ROS) analysis

After 7  days of adipogenic differentiation, live cells were stained 
with 5  µM of Mitochondrial Superoxide Indicator, MitoSOX™ Red 
(Thermo Fisher Scientific) diluted in HBSS (Thermo Fisher Scientific) 
for 10 min at 37°C. Cells were then washed in HBSS for 10 min and 
fixed in 4% (vol/vol) PFA for 15 min at RT. Nuclei were stained with 
DAPI (Thermo Fisher Scientific). Immunofluorescence images were 
acquired and quantified as reported above.

2.9  |  Transmission Electron Microscopy analysis

Cells were detached with Trypsin 0.05% (Thermo Fisher) and resus-
pended in the Karnovsky fixative. After washing with 0.1 M phos-
phate buffer (pH 7.2), cells were post-fixed in 1% osmium tetroxide 
(OsO4) for 90 min at RT, dehydrated by increasing concentration of 
alcohol and embedded in epoxy resin. 0.5 μm thick sections were 
stained with methylene blue and safranin. Subsequently, ultrathin 
60–80 nm thick sections were collected on a 300-mesh copper grid 
and, after staining with uranyl acetate and lead citrate, were quali-
tatively examined under a transmission electron microscope Philips 
EM 208S (Fei Electron Optics BV). All chemicals were purchased by 
Sigma-Aldrich. High power micrographs collected at 5600× magnifi-
cation were employed to evaluate the volume fraction occupied by 
lipid droplets. All morphometric data were blindly collected.

2.10  |  Immunofluorescence analysis of human 
heart tissue

Human ventricular samples were processed as previously de-
scribed.23,24 Briefly, they were fixed in 4% PFA (Santa-Cruz) in PBS 
(Lonza) and processed for paraffin embedding. 6 μm thick sections 
were de-waxed and rehydrated. Antigen retrieval was performed 
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with Dako target retrieval solution citrate pH6 at 90°C. Human sec-
tions were incubated with anti-GCN5 (1:100; Cell Signaling, #3305, 
rabbit), anti-4HNE (1:200; Abcam, ab46545, rabbit) and anti-cardiac 
Troponin T (1:300; ThermoFisher Scientific, #MA5-12960, mouse) at 
4°C overnight. After washing, sections were incubated with the ap-
propriate fluorochrome-conjugated secondary antibody Alexa 488 
(A11034, 1:200) or Alexa 633 (A221126, 1:200) (AlexaFluor) for 1h 
at room temperature in the dark. Nuclear staining was performed 
by incubating sections with Hoechst 33342 (1:1000, ThermoFisher 
Scientific). Images were acquired with a confocal microscope (Zeiss 
LSM710—ConfoCor3 LSM, Zeiss) using the software Zen 2008 
(Zeiss) and quantified with the software AxioVision Rel. 4.8.

2.11  |  Transcriptome analysis

Total RNA was extracted using Direct-zol RNA Kit (Zymo Research), 
according to manufacturer's instructions. The concentration and pu-
rity of the isolated total RNA were assessed by Nanodrop and Qubit, 
while the integrity was evaluated using the Experion RNA StdSens 
Analysis Kit (Bio-Rad). High-quality RNA, with A260/A280 > 1.8, 
A260/A230 ranging from 1.8 up to 2.02 and RQI > 9.5, was used for sub-
sequent library preparation. 500 ng of RNA for each sample was used 
for the preparations of the libraries, using the QuantSeq 3’ mRNA-Seq 
Library Prep FWD (Lexogen). Samples were sequenced using the plat-
form HiSeq2500, following the protocol SR1000. The results of the 
sequencing were collected in fastq files, using the software CASAVA, 
FastQC (Version 0.11.3). The reference genome was aligned to the 
Homo Sapiens assembly GRCh38 using STAR with recommended op-
tions and thresholds (version 2.5).25 HTSeq-count was used to gener-
ate raw gene counts (version 0.9.). Subsequent analysis was performed 
in R (version 4.1.2). The data set was first pre-filtered removing genes 
with an average read count per study group being lower than 64, 
which reduced the data set from 58,302 to 9284 genes. Annotation 
of genes was performed using the ensembldb26 package version 
2.18.2 based on Ensembl release 90. Differential expression analysis 
was conducted using the DESeq2 package version 1.34.027 employ-
ing a sex-adjusted linear model. Resulting p-values were adjusted for 
multiple hypothesis testing using the method from Benjamini and 
Hochberg. Genes with an adjusted p-value smaller than 0.05 and an 
absolute log2 fold change larger than 0.7 (equivalent to a fold change 
of 1.62) were considered significant. Pathway enrichment analysis was 
performed using the EnrichmentBrowser Bioconductor package (ver-
sion 2.24.0, method ‘ora’, p-values adjusted using the method from 
Benjamini and Hochberg). The transcriptome data were deposited at 
the Gene Expression Omnibus (accession number GSE18​9657).

2.12  |  Droplet Digital PCR (ddPCR)

The validation of a subset of genes resulting differentially expressed 
from the transcriptome analysis was performed by ddPCR assays. 
A panel of 8 genes (NAMPT, G6PD, GSR, ALDH2, ENO2, PGD, GYS1 

and ALDB1H1) was selected among the genes with an adjusted p-
value < 0.05 and a log2FoldChange > |1|. Total RNA was extracted 
using Direct-zol RNA Kit (Zymo Research) and reverse transcribed to 
cDNA using the SuperScript VILO cDNA Synthesis Kit (Invitrogen). 
The reaction mixture for the ddPCR (20 μl/reaction) contained 2× 
ddPCR Supermix for Probe (no dUTP) (Bio-Rad), 20× primer/probe 
assay for each target (Table S1), 1 ng of cDNA and water up to the 
final volume. 20 μl of reaction was transferred with 70 μl of Droplet 
Generation oil for Probes (Bio-Rad) in a DG8 Cartridge (Bio-Rad). 
The cartridges were inserted into the QX200™ Droplet Generator 
(Bio-Rad) to generate 40 μl droplet suspension then transferred into 
a 96-well PCR plate (Bio-Rad). The PCR reaction was performed 
using a GeneAmp™ PCR System 9700 (Applied Biosystems). The 
protocol conditions consisted of 95°C for 10  min, (94°C for 30  s, 
60°C for 1 min) × 40 cycles, 98°C for 10 min and 4 °C for the storage. 
Amplification signals were read using the QX200™ Droplet Reader 
and analysed using the QuantaSoft software (Bio-Rad).

2.13  |  Glutathione measurements

Reduced (GSH) and oxidized glutathione (GSSG) quantitation was 
performed as previously described.28 Cell pellet was resuspended 
in 50 µl of PBS, proteins were precipitated with 50 µl of 10% trichlo-
roacetic acid plus 1  mM EDTA and, after a further dilution 1:5 
with formic acid 0.1%, samples were analysed by LC-MS/MS. The 
LC-MS/MS analysis was performed using an Accela HPLC System 
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) coupled 
to a triple quadrupole mass spectrometer TSQ Quantum Access 
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) outfit-
ted with electrospray ionization source operating in positive mode. 
The chromatographic separation was conducted on a Luna PFP col-
umn (2.0  ×  100  mm, particle size 3.0  µm, Phenomenex, Torrance, 
California, USA) maintained at 35°C. Analytes were eluted under 
isocratic conditions at 200 µl/min by 1% methanol in 0.75 mM am-
monium formate adjusted to pH 3.5 with formic acid. The analytes 
were detected by multiple reaction monitoring, and the transitions 
monitored (precursor ion > product-fragment ions) were m/z 308.1 
→ m/z 76.2, 84.2, 161.9 (GSH) and m/z 613.2 → m/z 230.5, 234.6, 
354.8 (GSSG). A linear 6-point calibration curve (range 0.25–8 µM for 
GSH and 0.008–0.25 µM for GSSG) was used for the quantification.

2.14  |  Statistical analysis

Cells from a minimum of 3 independent individuals were included in 
each experiment. Cells obtained from different patients or from the 
same patient but in different amplification steps were considered as 
biological replicates. Details are given in the figure legend. Western 
Blot and ddPCR data are reported as median with interquartile range 
(IQR), and significance was assessed by non-parametric Mann–
Whitney test, setting alpha = 0.05, therefore considering evidence 
of significance if p-value ˂ 0.05 (GraphPad Prism software 8.2.0). 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189657
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Quantification of immunostaining, visually described using median 
and interquartile range (IQR), was analysed fitting random intercept 
models (mixed or multilevel models), that account for the experi-
mental hierarchical structure and the dependency between techni-
cal replicates, using the ‘mixed’ command implemented in Stata 16 
(2019. Stata Statistical Software: Release 16. College Station, TX: 
StataCorp LLC. StataCorp.). The details on statistics and experimen-
tal N are reported in the figure legend of each specific experiment.

3  |  RESULTS

3.1  |  GCN5 protein expression is increased in ACM 
samples

Tissue distribution of GCN5 was investigated on endomyocardial biop-
sies of ACM patients and correspondent samples from cardiac tissue 
donors (CTR). Immunofluorescence analysis revealed that GCN5 was 
abundantly present in non-cardiomyocyte cells in ACM samples, while 
its expression was barely detectable in CTR heart tissue (Figure 1A). 
Considering this finding and our prior evidence that CStCs are a source 
of adipocytes in ACM hearts,7 we next evaluated the expression of 
GCN5 in vitro in CStCs. Western blot analysis showed higher GCN5 
protein level in ACM compared to CTR CStCs (Figure 1B).

3.2  |  Intracellular lipid accumulation is reduced 
upon cellular GCN5-knockdown in ACM CStCs

Lipid substitution is one of the major phenotypical manifestations 
of ACM. To model adipogenesis in vitro, CStCs isolated from CTR 

and ACM individuals were exposed to ADIPO medium for 7 days, 
as previously described.7 We next investigated lipid accumulation 
in treated cells. As expected,7 ACM CStCs exposed to adipogenic 
medium (ADIPO) exhibited higher intracellular lipid accumulation 
than CTR cells as revealed by BODIPY 493/503 staining (Figure 2A).

To investigate the possible connection between the higher GCN5 
expression and the increased lipid accumulation, we knocked down 
GCN5 in ACM CStCs. These cells were cultured in ADIPO medium 
and transduced with lentiviral particles encoding both shRNA GCN5 
and GFP. As experimental controls, some cells did not get trans-
duced (NT) and others were transduced with a scramble construct 
(SCR). After 7 days, transduction efficiency was estimated around 
80% of the GFP-positive cells over the total number of cells (Figure 
S1A). Western blot analysis confirmed approximatively a 50% reduc-
tion of GCN5 protein level in ACM CStCs exposed to shRNA GCN5 
compared to not transduced and SCR transduced cells (Figure S1B). 
Importantly, GCN5 knockdown corresponded with a significant de-
crease in intracellular lipid accumulation in shRNA GCN5 compared 
with SCR and NT groups (Figure 2B). No difference was observed 
between NT and SCR samples.

3.3  |  Pharmacological GCN5 specific inhibition 
decreases intracellular lipid accumulation

As we demonstrated above, GCN5 downregulation leads to reduced 
lipid accumulation in ACM CStCs. We further investigated the effect 
of GCN5 pharmacological inhibition on intracellular lipid accumula-
tion by exposing ACM CStCs to the specific GCN5 inhibitor MB-3.29 
Cells were cultured in ADIPO medium, and a second group was sup-
plemented with 200 μM MB-3 for 7 days. MB-3 administration did not 

F I G U R E  1  GCN5 expression in human 
right ventricle tissue sections and CStCs. 
(A) Representative immunofluorescence 
images of GCN5 expression (green) in 
human endomyocardial biopsies from 
one healthy control (CTR) and one ACM 
subject. Nuclei are counterstained with 
HOECHST (blue), myocardial tissue with 
troponin T (cTNT, magenta). Original 
Magnification 40×; scale bar 50 µm. (B) 
Western blot panels and densitometric 
analysis showing the GCN5 protein 
expression in CTR (black) and ACM 
(orange) CStCs cultured in basal medium. 
Mann–Whitney test, p = 0.0056 vs. CTR. 
Results are based on N = 7 independent 
CTR individuals with 12 replicates and 
N = 6 ACM patients with 11 replicates

(A)
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affect cell viability (Figure S2). Of note, the treatment with MB-3 sig-
nificantly reduced the lipid accumulation in ACM CStCs (Figure 3A). 
An independent evaluation of intracellular lipid accumulation in the 
presence or absence of MB-3 was also performed by TEM analysis. 
ACM CStCs exposed to ADIPO supplemented with MB-3 showed a 
significant reduction of the ratio between the area occupied by lipid 
droplets and the total area of the analysed cells (Figure 3B).

3.4  |  Transcriptome analysis of GCN5 inhibition 
reveals its role in the cellular oxidative pathways

We next performed a transcriptome analysis on ACM CStCs ex-
posed to ADIPO medium for 7 days in presence or absence of MB-3 
to evaluate whether reduced lipid accumulation after GCN5 inhibi-
tion is mediated by cell metabolism regulation. In total, 502 genes 
were found to be regulated by MB-3 treatment (Figure S3). These 
were enriched in 8 biological pathways (Table S2). Notably, the 
glutathione metabolism pathway resulted significantly affected by 
the MB-3 treatment (Figure  4A). This prompted us to specifically 
investigate pathways related to cell metabolism and redox signal-
ling. Table 2 shows the total size and the number of significant genes 
for each selected process. The differential expression of the single 
genes listed in Table 2 is reported in the supplementary file (Figures 
S4–S11; Tables S3–S10).

To confirm the changes seen in the transcriptome analysis, the 
expression of eight genes with statistical evidence of differential 

expression was validated by ddPCR (Figure 4B). Among them, the 
genes NAMPT, G6DP, GSR and ALDH2 were confirmed to be up-
regulated after MB-3 treatment, while ALDH1B1 was confirmed as 
downmodulated.

3.5  |  GCN5 decreased oxidative stress and acts 
on the glutathione metabolism

Considering the impact of MB-3 treatment on cellular redox path-
ways proven by transcriptome analysis, we next evaluated the accu-
mulation of reactive oxygen species (ROS) in the cells. We compared 
fluorescence intensity of MitoSOX™, a specific mitochondrial super-
oxide indicator, between ACM CStCs exposed to ADIPO medium 
and ACM CStCs exposed to ADIPO medium supplemented with 
MB-3 for 7 days. MB-3 treatment led to a reduction in mitochon-
drial ROS production (Figure 5A). In addition, MitoSOX fluorescence 
intensity was higher in ACM compared to CTR CStCs in ADIPO me-
dium (Figure 5B). In agreement, oxidative stress measured by 4HNE 
staining resulted higher in heart tissues from ACM patients com-
pared to CTR donors, and particularly evident in non-cardiomyocyte 
cells (Figure 5C). Of note, the treatment of ACM CStCs with the mi-
tochondrial scavenger MitoTempo was able not only to reduce mi-
tochondrial oxidative stress but also the intracellular accumulation 
of lipid droplets (Figure S12). However, mitochondrial ultrastructure 
and mitochondrial network (Figure S13) showed no difference in 
ACM vs CTR CStCs cultured for 7 days in ADIPO medium.

F I G U R E  2  Analysis of intracellular lipid accumulation in CTR, ACM and GCN5-knocked down ACM CStCs. (A) Representative 
immunofluorescence images of intracellular lipid droplets stained with BODIPY 493/503 (green) in CTR and ACM CStCs cultured in ADIPO 
for 7 days. Nuclei are counterstained with DAPI (blue). Original Magnification 40×; scale bar 100 µm. The scatter plot (right panel) shows 
the quantification of BODIPY 493/503 integrated intensity normalized on the total number of nuclei per field in CTR and ACM CStCs. 
Results are based on N = 5 independent CTR and N = 6 independent ACM with 5–15 available microscopy fields for each individual. Random 
intercept model, p = 0.0004 vs. CTR. (B) Representative immunofluorescence images showing intracellular lipid droplets stained with HCS 
LipidTOX™ (red) in not transduced (NT), transduced with scramble (SCR) or shRNA GCN5 ACM CStCs. Nuclei are counterstained with DAPI 
(blue). Original Magnification 40×, scale bar 100 µm. The scatter plot (right panel) shows the quantification of HCS LipidTOX™ integrated 
intensity normalized on the total number of nuclei. Results are based on N = 3 ACM-independent patients with 8 available microscopy fields 
for each treatment group. Random intercept model, shRNA p = 4.6 × 10−10 vs NT; shRNA p = 1.8 × 10−14 vs SCR. Int. intensity: integrated 
intensity
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Finally, to confirm the link between the modulation of ROS and 
GCN5 inhibition highlighted by the transcriptome analysis, we as-
sessed cellular levels of both reduced (GSH) and oxidized glutathi-
one (GSSG). MB-3-treated ACM CStCS presented an upregulated 
glutathione metabolism increasing both GSH and GSSG (Figure 5D), 
suggesting a role for MB-3 in the induction of detoxifying processes.

4  |  DISCUSSION

Arrhythmogenic cardiomyopathy (ACM) is a cardiac genetic dis-
ease hallmarked by ventricular arrhythmias, progressive myocar-
dial fibro-adipose replacement, heart failure and sudden death.30 

ACM is mainly caused by pathogenic variants in genes encoding 
desmosomal proteins, with PKP2 being the most common causal 
gene (7–51%), followed by DSP (1–16%) and DSG2 (5–25%), whereas 
causal variants in DSC2 and JUP are rarer.31 Although its genetic 
basis32 has been thoroughly studied and the disease diagnosis has 
advanced, ACM appears as a multifaceted disease in which the 
pathogenic molecular mechanisms are still poorly understood. 
Environmental factors,33 as in particular intense exercise,34 have 
been shown to play a role as phenotypic modulators, while much 
less is known about the relevance of epigenetic regulators in ACM 
pathophysiology.35

Over the last ten years, several works have demonstrated that 
different epigenetics enzymes such as histone acetyltransferases 

F I G U R E  3  Effect of GCN5 inhibitor MB-3 on intracellular lipid accumulation evaluated in ACM CStCs. (A) Representative 
immunofluorescence images of intracellular lipid droplets stained with BODIPY 493/503 (green) in ACM CStCs cultured in ADIPO medium 
for 7 days either in absence or in presence of MB-3 (blue). Nuclei are counterstained with DAPI. Original Magnification 40×; scale bar 
100 µm. The scatter plot (right panel) shows the quantification of BODIPY 493/503 integrated intensity normalized on the total number 
of nuclei per field in ACM CStCs either in absence or in presence of MB3. Results are based on N = 6 ACM-independent patients with 
5–15 microscopy fields available for the two treatment groups. Random intercept model, p = 5.5 × 10−17 vs ADIPO. (B) Representative 
transmission electron microscopy (TEM) images showing intracellular lipid droplets in ACM CStCs cultured in ADIPO medium, (original 
magnification 11,000×, 500 nm) and ADIPO in presence of MB-3 (original magnification 5600×, 1000 nm). Red asterisks indicate lipid 
droplets, while the ‘N’ indicates cell nuclei. The scatter plot (right panel) shows the lipid fractional areas in the two different conditions 
tested in ACM patients. Results are based on N = 3 ACM-independent patients with 5–9 microscopy fields available for the two treatment 
groups. Random intercept model, p = 0.002 vs ADIPO. Int. intensity: integrated intensity

(A)
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F I G U R E  4  Gene expression analysis reveals that GCN5 inhibition implicates changes in the glutathione metabolism (A) Graphical 
representation of the genes related to the glutathione metabolism upregulated (red) and downregulated (blue) in ACM cells treated with MB-
3 and compared to ACM. (B) Validation by ddPCR of gene transcripts emerging from the transcriptome analysis. Scatter plots show copies 
per microliter of gene transcripts calculated by ddPCR analysis on ACM CStCs in absence or in presence of MB-3. Results are based on N = 4 
ACM-independent patients, Mann–Whitney test, NAMPT, p = 0.0317; ENO2, ns, p = 0.685; G6PD, p = 0.0286; PGD, ns, p = 0.3095; GSR, 
p = 0.0079; GYS1, ns, p = 0.8413; ALDH2, p = 0.0286; ALDHB1, p = 0.0286 vs. CTR
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(HATs) and deacetylase (HDAC) play an important role not only in 
governing gene expression changes underlying cardiac diseases,10 
but also in regulating cell energy metabolism, affecting enzymes 
of glycolysis, glucose oxidation, electron transport chain and fatty 
acid β-oxidation.11 In the present work, we observed abundant 
expression of the acetyltransferase GCN5 in non-cardiomyocyte 
cells from endomyocardial biopsies of ACM patients compared to 
healthy control donors. We then used human cardiac stromal cells 
(CStCs) obtained from ACM heart biopsies as in vitro model, since 
we previously demonstrated they represent a reliable cell model to 
study ACM pathogenesis.7,8 In agreement with the increased lev-
els of GCN5 found in pathological human heart specimens, ACM 
CStCs showed higher GCN5 protein level compared to CTR CStCs. 
In addition, when exposed to the adipogenic (ADIPO) medium, 
ACM cells showed higher lipid accumulation compared to CTR cells. 
Interestingly, when GCN5 was knocked down in ACM CStCs ex-
posed to ADIPO medium, a significant decrease in intracellular lipid 
accumulation was observed in comparison with scramble cells.

Of note, a link between adipogenesis and the acetyltransferase 
GCN5  has already been reported.36,37 The HAT family, to which 
GCN5 belongs, is known to be involved in adipogenesis regulation, 
increasing mRNA level of adipogenic markers, such as adiponectin, 

FABP4, C/EBPα and PPARγ.38 Wiper-Bergeron and colleagues iden-
tified GCN5 as a crucial effector of C/EBPβ acetylation in NIH 3T3 
and 3T3 L1 cells, enhancing C/EBPβ-directed transcription and 
potentiating C/EBPβ-dependent preadipocyte differentiation.36 
Further, our findings also agree with the report of Jin and collab-
orators showing that immortalized brown preadipocytes double 
knocked out for GCN5/PCAF and exposed to an external adipogenic 
stimulus had a reduced expression of adipogenic genes and lipid 
droplet accumulation.37

Current treatment options for ACM are based on symptom man-
agement and prevention, such as anti-arrhythmic drugs, ICD implan-
tation and, ultimately, heart transplantation, but no pharmacological 
approaches are available in the clinical practice to counteract cardiac 
adipogenic substitution. As such, GCN5 appears as an interesting 
pharmacologically target to possibly reduce lipid accumulation and 
disease severity. Academic and pharmaceutical companies have 
started to work on the development of new therapeutic options 
termed ‘epigenetic therapy’, because many human diseases display 
an epigenetic aetiology. Indeed, several small molecule that inhibit 
GCN5 (i.e. MB-3) have been discovered and already taken into con-
sideration for the treatment of different pathologies associated 
with GCN5 dysregulation like type 2 diabetes, insulin resistance, 

TA B L E  2  List of manually selected KEGG pathways from the transcriptome analysis. Columns Size and Count contain the total number of 
genes of the selected pathway and the number of genes differentially expressed after MB-3 treatment in ACM CStCs, respectively

ID Name Size Count Genes

hsa00480 Glutathione metabolism 34 8 G6PD, GCLC, GCLM, GSR, GSTM3, IDH1, 
PGD, CHAC1

hsa00600 Sphingolipid metabolism 28 5 GLA, SMPD1, PLPP3, SPHK1, SPTLC2

hsa00010 Glycolysis/Gluconeogenesis 40 6 ADH1B, ENO2, ALDH2, ALDH1B1, ALDH3A2, 
PFKM

hsa00071 Fatty acid degradation 28 4 ADH1B, ALDH2, ALDH1B1, ALDH3A2

hsa00030 Pentose phosphate pathway 18 3 G6PD, PFKM, PGD

hsa03320 PPAR signalling pathway 31 3 ILK, ME1, PPARA

hsa00760 Nicotinate and nicotinamide metabolism 23 1 NAMPT

F I G U R E  5  Effect of MB-3 on mitochondrial ROS accumulation. (A) Representative immunofluorescence images of mitochondrial ROS 
stained with MitoSOX™ (red) in ACM CStCs after 7-day exposure to ADIPO in absence or in presence of MB-3. Nuclei are counterstained 
with DAPI (blue). Original Magnification 40×; scale bar 100 µm. The scatter plot (right panel) shows the quantification of MitoSOX™ 
integrated intensity normalized on the total number of nuclei per field in ACM CStCs in the absence or presence of MB-3. Results are 
based on N = 4 ACM-independent patients, with 5–9 microscopy fields available for the two treatment groups. Random intercept model, 
p = 3.0 × 10−8 vs ADIPO. (B) Representative immunofluorescence images of mitochondrial ROS stained with MitoSOX™ in CTR CStCs and 
ACM CStCs exposed to ADIPO for 7 days. Nuclei are counterstained with DAPI. Original Magnification 40×; scale bar 100 µm. On the right 
panel, scatter plot showing the quantification of MitoSOX™ integrated density normalized on the total number of nuclei. Results are based 
on N = 6 CTR individuals and N = 5 ACM patients, with 5–14 microscopy field per sample. Random intercept model p = 0.024 vs CTR. (C) 
Representative immunofluorescence images of human cardiac tissue stained with 4HNE (green) from one healthy control (CTR) and one 
ACM subject. Nuclei are counterstained with HOECHST (blue), myocardial tissue with troponin T (cTNT, magenta). The densitometric analysis 
(right panel) shows the quantification of the 4HNE normalized on the nuclei number. Results are based on N = 3 ACM patients and N = 4 
CTR, with 4–5 microscopy field for each individual. Random intercept model p = 2.27 × 10−7 (D) Effect of MB-3 on cellular glutathione 
system. Levels of reduced (GSH) and oxidized glutathione (GSSG) were assessed on cell lysates. Results are based on N = 8 ACM patients. 
Mann–Whitney test, GSH, ns p = 0.08; GSSG p = 0.0207 vs. ADIPO. Int. intensity: integrated intensity; dens. Sum: densitometric sum
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metabolic disease and syndrome, dyslipidaemia, obesity or over-
weight, neurodegenerative diseases, heart failure, muscle diseases 
and improvement of exercise endurance capacity.39,40

Therefore, the MB-3 compound was tested in the ACM con-
text. ACM CStCs supplemented with MB-3 showed a significant 
reduction in lipid accumulation, demonstrated both by IF and 
TEM analysis. A subsequent transcriptome analysis revealed the 
modulation of different genes linked to energetic metabolism 

and to redox pathways in MB-3-treated CStCs. Interestingly, we 
observed that the expression level of integrin-linked kinase (ILK), 
a novel gene recently linked to ACM, was lower in ACM CStCs 
after exposure to MB-3. ILK is a serine/threonine protein kinase 
associated with various pathways of cardiac remodelling41 and 
intracellular signalling as adipogenic differentiation.42 Muscle-
specific Ilk transgenic mice showed the development of an ACM 
phenotype.43 Of note, transgenic zebrafish with a cardiac-specific 
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overexpression of human ILK variants found in ACM patients de-
veloped cardiac dysfunction and severe epicardial fat tissue,41 
thus highlighting the potential role of MB-3 in rescuing the adi-
pogenic phenotype. This is also in line with a recent work show-
ing that ILK knockout in mice and 3T3-L1 cells decreased lipid 
accumulation and CD36  gene expression during adipogenesis.42 
Specifically, nicotinamide phosphoribosyltransferase (NAMPT), 
the rate-limiting enzyme that allows the biosynthesis of NAD+,44 
was upregulated. It has been suggested that increased levels of 
NAD+ via NAMPT could represent a protective strategy against 
the effects of metabolic disease.44 The exposure of ACM CStCs 
to MB-3  led to the upregulation of other genes also related to 
the redox balance, such as glucose-6-phosphate dehydrogenase 
(G6PD), glutathione reductase (GSR) and aldehyde dehydrogenase 
(ALDH2). G6PD is an enzyme involved in the reduction of NADP 
to NADPH via the pentose phosphate pathway (PPP).45 NADPH 
is an important metabolite implicated in the maintenance of cel-
lular antioxidant capacities.45 Along with that, GSR is responsible 
for keeping the glutathione (GSH) pool in the reduced form.46 
As such, GSH can ensure cellular control of the ROS. Altogether, 
MB-3 treatment upregulates glutathione metabolism to respond 
to alteration of redox balance. Similarly, ALDH2 plays an im-
portant protective role at mitochondrial level in several human 
diseases (neurodegenerative diseases, stroke, cancer), including 
heart failure and cardiac dysfunction triggered by ischaemic in-
jury, hypertension, alcohol and diabetes.47 ALDH2 also plays a 
key role in improving detoxification of reactive aldehydic prod-
ucts arising from lipid peroxidation under oxidative stress, such 
as 4-hydroxy-2-nonenal (4HNE) and malondialdehyde (MDA), thus 
exerting a protective effect against acute (ischaemia) and chronic 
(heart failure) cardiovascular diseases.48,49 Of note, the upregu-
lation of ALDH2 mediated by MB-3 treatment and following re-
duction of lipid peroxidation is particularly intriguing, considering 
the higher 4HNE expression observed in heart tissues from ACM 
patients compared to CTR donors. Along with that, ACM CStCs 
exposed to ADIPO medium also showed increased mitochondrial 
ROS compared to CTR CStCs.

In summary, our results indicate that GCN5 pharmacological inhi-
bition brings to reduced intracellular lipid accumulation by acting on 
different targets associated not only with lipid metabolism but also 
to redox processes. This observation agrees with recent literature 
highlighting the contribution of ROS to adipocyte differentiation in 
mesenchymal stromal cells.50-52 Also, our recent report showed that 
ACM patients are characterized by high plasma levels of oxLDL and 
by cardiac lipid peroxidation, suggesting that the oxidative environ-
ment is a strong determinant of the ACM adipogenic phenotype and 
severity.8 The key role of oxidative stress in ACM pathophysiology 
is confirmed in the present study by the fact that ACM patient bi-
opsies demonstrate higher amount of oxidative stress measured by 
4HNE staining compared to CTR donors. Of note, it has been re-
cently demonstrated that lipid peroxidation metabolites, as 4HNE, 
may activate a robust intracellular Ca2+ influx through transient 

receptor potential A1 (TRPA1) channels in the endothelium of ce-
rebral arteries,53,54 thus suggesting that oxidative stress acting on 
Ca2+ signalling trough TRP channels might represent an intriguing 
mechanism involved in the dysfunction of ACM tissues and differ-
entiation of CStCs.

Further, MB-3 treatment of ACM CStCs seemed to protect 
from mitochondrial ROS production, as demonstrated by decreased 
MitoSOX fluorescence intensity, thus highlighting a possible specific 
functional role for mitochondria in the disease.55 Notably, MB-3 also 
boosted cellular detoxification systems by acting on glutathione ho-
meostasis slightly increasing reduced glutathione (GSH) and signifi-
cantly increasing oxidized glutathione (GSSG) levels. In agreement, 
Costantino et al. reported that GCN5 can epigenetically regulate 
oxidant and ROS scavenger enzymes, though its inhibition might 
prevent the increase in oxygen radicals in human endothelial cells.56 
In addition, it has been already reported a link between acetylation 
mediated by GCN5 and the modulation of the cellular response to 
oxidative stress in yeast.57

Of note, GCN5 has many molecular targets; for instance, it has 
been shown that GCN5 directly acetylates and inhibits the activ-
ity of proliferator-activated receptor gamma coactivator 1-alpha 
(PGC1-α), a master regulator of mitochondrial biogenesis, mitoph-
agy and cellular energy metabolism.16,58 Further, GCN5 promotes 
the acetylation of mitochondrial fatty acid oxidation enzymes 
thus regulating cardiac59 and hepatic60  metabolic homeostasis. 
In Drosophila and mammalian cells, GCN5 inhibits autophagy and 
lysosome biogenesis by targeting TFEB, the master transcription 
factor for autophagy- and lysosome-related gene expression.61 
Several studies also reported GCN5 as negative regulator of in-
flammatory and immunity response by suppressing NF-κB tran-
scriptional activity62 and interferon-β production,63 respectively. 
Therefore, considering the complex and pleiotropic role of GCN5, 
we can conceive that the reduced lipid accumulation observed 
after its inhibition may partly depend on other mechanisms than 
the cellular redox. However, the investigation of these other 
mechanisms is beyond the scope of this manuscript and other 
studies are needed to further investigate the issue.

In conclusion, the present work describes a link between ACM 
pathophysiology and the histone acetyltransferase GCN5, demon-
strating its contribution to lipid accumulation and oxidative stress. 
GCN5  silencing or pharmacological inhibition results in a reduced 
intracellular fat accumulation, and a modulation of the cellular redox 
processes. Our findings provide a novel pharmacological target and 
could potentially open new therapeutic perspectives to mitigate the 
adipogenic phenotype associated with ACM.
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