
Journal Pre-proof

A Hawkes model with CARMA(p,q) intensity

Lorenzo Mercuri, Andrea Perchiazzo and Edit Rroji

PII: S0167-6687(24)00018-0

DOI: https://doi.org/10.1016/j.insmatheco.2024.01.007

Reference: INSUMA 3010

To appear in: Insurance: Mathematics and Economics

Received date: 30 June 2023

Revised date: 4 January 2024

Accepted date: 17 January 2024

Please cite this article as: L. Mercuri, A. Perchiazzo and E. Rroji, A Hawkes model with CARMA(p,q) intensity, Insurance: Mathematics and Economics,
doi: https://doi.org/10.1016/j.insmatheco.2024.01.007.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for
readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its
final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier.

https://doi.org/10.1016/j.insmatheco.2024.01.007
https://doi.org/10.1016/j.insmatheco.2024.01.007


A Hawkes model with CARMA(p,q) intensity

Lorenzo Mercuri

Department of Economics Management and Quantitative Methods, University of Milan, Milan, Italy

email: lorenzo.mercuri@unimi.it

Andrea Perchiazzo

Faculty of Economic and Social Sciences and Solvay Business School, Vrije Universiteit Brussel, Brussels, Belgium

email: andrea.perchiazzo@vub.be

Edit Rroji1

Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
email: edit.rroji@unimib.it

Abstract

In this paper we introduce a new model, named CARMA(p,q)-Hawkes, as the Hawkes model with

exponential kernel implies a strictly decreasing behaviour of the autocorrelation function while

empirical evidences reject its monotonicity. The proposed model is a Hawkes process where the

intensity follows a Continuous Time Autoregressive Moving Average (CARMA) process. We also

study the conditions for the stationarity and the positivity of the intensity and the strong mixing

property for the increments. Furthermore, we present two estimation case studies based respectively

on the likelihood and on the autocorrelation function.

Keywords: Point processes; Autocorrelation; CARMA; Hawkes; Infinitesimal generator; Markov
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1. Introduction

Point processes are useful mathematical models that describe the dynamics of observed event

times and have been applied in several fields of study from queueing theory to forestry statistics.

Among the family of point processes the Hawkes (1971a,b) process is widely the most established

and widespread model in different areas, especially in quantitative finance, actuarial science and

seismology (see Ogata 1988 and references therein for further details). Indeed the Hawkes process

is particularly interesting since it is a self-exciting process, which means that each arrival excites

the intensity such that the probability of the next arrival is increased for some period after the

jump, and consequently it is well-suited to investigate, for instance, natural clustering effects and
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bank default in time. To show the versatility of the Hawkes process we mention a few other

possible non-financial and non-insurance applications: a) social science area such as the modeling

of urban crime (Mohler et al. 2011) and the population dynamics (Boumezoued 2016); b) social

media sector as done in Rizoiu et al. (2017); and c) the modeling of disease spreading such as

COVID-19 transmission as discussed in Chiang et al. (2022).

Recently the Hawkes process has gained a relevant role in financial modeling, in particular in

the field of market microstructure. As a matter of fact it is used to model market activity, especially

order arrivals in the limit order book (e.g., Bacry et al., 2013; Muni Toke and Yoshida, 2017; Clinet

and Yoshida, 2017). For a complete overview of applications of the Hawkes process in finance, we

suggest the works of Bacry et al. (2015) and Hawkes (2018). The Hawkes process has aroused its

appeal among researchers and practitioners as well as in the insurance area. Indeed, as mentioned

in Lesage et al. (2022), insurance companies are interested in point processes for the quantification

of regulatory capital and in managing risks (e.g., computing ruin probabilities and measuring the

effect of cyber-attacks as discussed respectively in Cheng and Seol 2020, Bessy-Roland et al. 2021

and, recently, Hillairet et al. (2023) for cyber-insurance derivatives). Swishchuk et al. (2021) show

that the use of a Hawkes process with exponential kernel for modeling insurance claim occurrences

provides an improvement over the fit of a classical Poisson model. However, they are not able to fit

different empirical autocorrelation functions as exhibited in Swishchuk et al. (2021, Figures 3 and

5, p. 112). For recent results on Hawkes process we suggest Cattiaux et al. (2022) and references

therein.

As stated in Errais et al. (2010), the Hawkes process with exponential kernel is Markov and

shows a good level of tractability that makes it useful for real applications in the presence of large

data sets (e.g., high-frequency market data). The specification of the kernel restricts the shape

of the time dependence structure of the number of jumps observed in intervals with the same

length. Indeed, as observed in Da Fonseca and Zaatour (2014), the autocorrelation in a Hawkes

model is a decaying function of lags which is not flexible enough to represent the dependence

structure observed in many data sets (e.g., wind speed data in which the exponential autocorrelation

overshoots the empirical one for small lags and vice versa for large lags as documented in Benth and

Rohde 2019; and, as shown in Hitaj et al. 2019, mortality rates where the empirical autocorrelation

function of the shock term appears to be non-monotonic).

To overcome the aforementioned drawback, in this paper we introduce a new model named

CARMA(p,q)-Hawkes process. The proposed model is a Hawkes process where the intensity follows

a Continuous-time Autoregressive Moving Average (CARMA) process and it is able to provide

several shapes of the autocorrelation function as it removes the monotonicity constraint detected

in the standard Hawkes process. The greater flexibility relies on the CARMA(p,q) component

of our model, especially in the choice of the autoregressive and moving average parameters. The

CARMA process, introduced in Doob (1944), is the continuous-time version of the ARMA model

and has the advantage, other than to design different shapes of autocorrelation functions, to handle
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better irregular time series with respect to the ARMA process, especially for high-frequency market

data, as discussed in Marquardt and Stelzer (2007) and Tómasson (2015). As a matter of fact,

the CARMA model has found many applications in the literature. Here, we list a few of these

applications: a) Andresen et al. (2014) use a CARMA(p,q) model for short and forward interest

rates, while b) Hitaj et al. (2019) employ such a model in order to capture the dynamics of the

shock term in mortality modeling; c) Benth et al. (2014) consider a non-Gaussian CARMA process

for the dynamics of spot and derivative prices in electricity markets; and d) Mercuri et al. (2021)

provide formulas for the futures term structure and options written on futures in the framework

of a CARMA(p,q) model driven by a time-changed Brownian motion. As remarked in Iacus and

Mercuri (2015), CARMA models have manifold interests: they can be used to describe directly

the dynamics of time series and to construct the variance process in continuous time models (see

Brockwell et al. 2006 and Iacus et al. 2017, 2018 for further details). Our paper presents a different

type of application as we use CARMA(p,q) models for the intensity of a point process.

The paper is organized as follows. In Section 2, we review the Hawkes process with exponential

kernel. In Section 3, we introduce the CARMA(p,q)-Hawkes process, study the conditions of

stationarity and positivity for the intensity, and provide the likelihood function. In Section 4, we

focus on the autocorrelation function of jumps in the proposed model and prove the strong mixing

property of increments that leads to the asymptotic distribution of the empirical autocorrelation

function. In Section 5, we present two estimation case studies in which we highlight methodological

differences that may emerge from the level of data granularity and data storage since the estimation

of parameters can be affected (see Shlomovich et al. 2022 and reference therein for details). In case

of non-aggregate data, discussed in Section 5.1 with exact event times as for seismological data, we

use the maximum likelihood estimation. Whereas in Section 5.2, that deals with aggregate data

that refer to market orders with time span of one minute interval, we employ the autocorrelation

function. Section 6 concludes the paper.

2. The Hawkes Process

Point processes are useful to describe the dynamics of observed event times, i.e., a collection of

realizations {ti}∞i=0 , ti > 0 for i = 1, 2, . . . with t0 := 0 of the non-decreasing non-negative process

{Ti}i≥1 called the time arrival process. The counting process Nt, representing the number of events

up to time t, is obtained from the time arrival process as follows:

Nt :=
∑
i≥1

1{Ti≤t} (1)

for t ≥ 0 with associated filtration (Ft)t≥0 that contains the information of the counting process

Nt up to time t. An important quantity when dealing with a point process Nt is the conditional
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intensity λt defined as:

λt = lim
∆→0+

Pr[Nt+∆ −Nt = 1|Ft]
∆

.

It then follows that the counting process satisfies the following properties

Pr [Nt+∆ −Nt = η |Ft ] =


1− λt∆ + o (∆) if η = 0

λt∆ + o (∆) if η = 1

o (∆) if η > 1.

The conditional intensity λt of a general self-exciting process has the following form:

λt = µ+

∫
[0,t)

h (t− s) dNs (2)

with baseline intensity parameter µ > 0 and (excitation) kernel function h (t) : [0,+∞)→ [0,+∞)

that represents the contribution to the intensity at time t that is made by an event occurred at

a previous time Ti < t. Following the general results about the Hawkes process in Brémaud and

Massoulié (1996), the stationary condition reads:∫ +∞

0
h (t) dt < 1. (3)

The most used kernel is the exponential function and specifically h (t) = αe−βt with α, β ≥ 0. The

stationary condition in (3) implies β > α.

Exploiting the Markov property of the process Xt := (λt, Nt), it is possible to get the in-

finitesimal generator (see Errais et al. 2010 and Da Fonseca and Zaatour 2014 for further details)

associated to a function f : R+×N→ R with continuous partial derivatives with respect to the first

argument ∂f
∂λ (x). Starting from the definition of the infinitesimal operator for a Markov process

Xt, that is,

Af := lim
∆→0+

E [f (Xt+∆) |Ft ]− f (Xt)

∆
,

Errais et al. (2010) compute the infinitesimal generator for the Hawkes process with exponential

kernel that writes as

Af = β (µ− λt)
∂f

∂λ
(λt, Nt) + λt [f (λt + α,Nt + 1)− f (λt, Nt)] . (4)

For every function f in the domain of the infinitesimal generator it is possible to build a martingale

process Mt with respect to the natural filtration in the following way

Mt = f (λt, Nt)− f (λ0, N0)−
∫ t

0
Af (λs, Ns) ds,
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which leads to the well-known Dynkin’s formula

E [f (λt, Nt) |Fs ] = f (λs, Ns) + E
[∫ t

s
Af (λu, Nu) du

∣∣∣∣Fs] , ∀t > s.

The above formula for f ≡ Nt is used in Da Fonseca and Zaatour (2014) to compute the moments

and the autocovariance function of jump increments observed in intervals of length τ with lag

δ in which is shown that the Hawkes model with exponential kernel can only reproduce strictly

decreasing autocorrelation functions for varying lag values δ. An interesting extension is given in

Boswijk et al. (2018) where the self-excitation is identified through the modeling of common jumps

between the log price process and its own jump intensity.

3. CARMA(p,q)-Hawkes model

In this section, we introduce the CARMA(p,q)-Hawkes model (Section 3.1), a point process

where the intensity follows a CARMA(p,q) process, and its likelihood function (Section 3.2).

3.1. CARMA(p,q)-Hawkes: stationarity and positivity conditions for the intensity

Definition 1. A vector process [X1,t, . . . , Xp,t, Nt]
> of dimension p+ 1 is a CARMA(p,q)-Hawkes

process if the conditional intensity λt is defined as

λt = µ+ b>Xt, (5)

where µ > 0 is the baseline parameter and b is a p-dimensional column vector containing the q+ 1

moving average parameters b0, . . . , bq defined as

b =

{
[b0, . . . , bq]

> if p− q = 1

[b0, . . . , bq, bq+1 . . . , bp−1]> , with bq+1 = . . . = bp−1 = 0 if p− q ≥ 2.
(6)

The p-dimensional process Xt = [X1,t, . . . , X1,p]
> is defined as:

Xt =

∫
[0,t)

eA(t−s)edNs, (7)
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where the exponential matrix eA :=
+∞∑
h=0

1
h!A

h.

The p× p matrix A, named companion matrix, has the following form

A =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−ap −ap−1 −ap−2 . . . −a1


p×p

, (8)

where a1, . . . ap are the autoregressive parameters. The p-dimensional column vector e is defined

as:

e = [0, . . . , 1]> . (9)

Remark 1. The process Xt in (7) satisfies the following stochastic differential equation (sde)

dXt = AXtdt+ edNt with X0 = 0. (10)

The dynamics in (10) describes the state space process in a CARMA(p,q) model driven by Nt rather

than a Lévy process as done in previous literature (see Brockwell, 2001; Brockwell et al., 2011;

Tómasson, 2015, and references therein). As a result, the intensity λt in (5) is a CARMA(p,q)

model. This means that the CARMA(p,q)-Hawkes process combines the self-exciting effect in a

Hawkes process with the time-dependence structure of a CARMA(p,q) process (see Brockwell, 2004;

Benth et al., 2014, for some examples). It is worth noting that Nt is right-continuous while Xt and

λt are left-continuous.

Theorem 1. The process Xt and the (p + 1)-dimensional column vector process [Xt, Nt] in Defi-

nition 1 are Markov 2.

Proof. See Appendix D.1

To investigate the stationary regime of a CARMA(p,q)-Hawkes model, it is necessary to deter-

mine the conditions required for a non-negative kernel, i.e., h (t) := b>eAte ≥ 0, ∀t ≥ 0. In case

of a CARMA(p,q) driven by a non-negative Lévy process the conditions of a non-negative kernel

are presented in Tsai and Chan (2005, Theorem 1, p. 592). In a similar fashion such conditions

can be applied directly to our case due to the non-negative trajectories of the counting process Nt.

Indeed, as done in Brockwell et al. (2006, Theorem 5.2) for COGARCH(p,q) models, in the next

2For the Markov property we refer to Cinlar (2011, Theorem 1.2, p. 444). Let (Ω,H,P) be a probability space
with filtration F = (Ft)t∈T with T ⊆ R and let (E, E) be a measurable space. Consider a stochastic process
Z := {Zt : Ω→ E}t∈T adapted to the filtration F . The process Z is Markov relative to F if and only if for every
time t and time u > t and any positive E−measurable function g we have E [g (Zu) |Ft ] = E [g (Zu) |Zt ]. For any
indicator function g = 1A with A ∈ E , the Markov property implies that P [Zt+u ∈ A |Ft ] = P [Zt+u ∈ A |Zt ].
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proposition we rephrase the main result that can be applied in a generic CARMA(p,q)-Hawkes

process with b0 > 0.

Proposition 1. For a CARMA(p,q)-Hawkes process in which the real part of all eigenvalues of A is

negative, the kernel function h (t) := b>eAte1{t≥0} is non-negative if and only if the ratio function
b(z)
a(z) is completely monotone3 on (0,+∞) with the polyomials a(z) and b(z) defined respectively as

a (z) := zp + a1z
p−1 + . . .+ ap and b (z) := b0 + b1z + . . .+ bp−1z

p−1.

Remark 2. In the case of real negative eigenvalues the following results apply:

(a) Suppose all eigenvalues of A are negative real numbers sorted as follows λ̃p ≤, . . . ,≤ λ̃1 and

that all the roots of b (z) = 0 are negative real numbers such that γq ≤, . . . ,≤ γ1 < 0. If∑k
i=1 γi ≤

∑k
i=1 λ̃i for 1 ≤ k ≤ q, then the kernel of a CARMA(p,q)-Hawkes process is

non-negative.

(b) A necessary and sufficient condition for a non-negative h (t) in a CARMA(2,1)-Hawkes pro-

cess is that λ̃2 ≤ λ̃1 < 0 and b0 + λ̃1b1 ≥ 0 with b1 ≥ 0.

We notice that the non-negativity requirement for the kernel implies a strictly positive intensity

process λt as the baseline parameter µ is strictly positive.

Without loss of generality, we assume that matrix A is diagonalizable which corresponds to the

assumption that the eigenvalues of A are distinct. The eigenvectors of A are[
1, λ̃j , . . . , λ̃p−1

]>
, j = 1, . . . , p

used to define a p× p matrix S as

S :=



1 . . . 1

λ̃1 . . . λ̃p

λ̃2
1 . . . λ̃2

p
...

...

λ̃p−1
1 . . . λ̃p−1

p


.

It follows that S satisfies S−1AS = diag
(
λ̃1, . . . , λ̃p

)
, a result used to prove the next theorem on

the stationarity conditions for a CARMA(p,q)-Hawkes process.

Theorem 2. Let us consider a non-negative kernel function and suppose µ > 0. Then a CARMA(p,q)-

Hawkes (X1,t, . . . , Xp,t, Nt) is a stationary process if all eigenvalues of A are distinct with non-

negative real part and −b>A−1e < 1.

3A function f (x) defined on (0,+∞) is said to be completely monotone if and only it has derivatives of all orders

and (−1)n ∂nf(t)
(∂x)n

≥ 0 for n = 0, 1, 3, . . ..
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Proof. See Appendix D.2.

Assumption 1. We shall assume for the remainder of the paper that: i) the kernel is a non-

negative function and µ > 0; and ii) all eigenvalues of A are distinct with negative real part and

−b>A−1e < 1.

For practical applications, instead of checking ex-post signs of eigenvalues of matrix A, it is

possible to enforce ex-ante the negativity of the real part for eigenvalues using some transformations

on the parameters space as done, for example, in Tómasson (2015). As a CARMA(p,q)-Hawkes

process is Markov, we are able to calculate the infinitesimal operator as described in the following

theorem.

Theorem 3. Let f(x1, . . . , xp, n) : Rp × N → R be a function in which the first p derivatives
∂f
∂x1

, . . . , ∂f∂xp are required to be well defined and continuous.Under the same conditions in Assump-

tion 1, the infinitesimal generator of function f for a CARMA(p,q)-Hawkes Yt = [X1,t, . . . , Xp,t, Nt]

process is4:

Aft =

µ+

q∑
j=1

bjXj,t

 [f (X1,t, . . . , Xp,t + 1, Nt + 1)− f (X1,t, . . . , Xp,t, Nt)]

+

p−1∑
i=1

∂f

∂Xi,t
Xi+1,t +

∂f

∂Xp,t
A[p,]Xt (11)

where A[p,] is the p-th row of the companion matrix A and the intensity process λt is defined as

in (5). Alternatively, denoting with f (Xt, Nt) := f (X1,t, . . . , Xp,t, Nt), the infinitesimal generator

can be written as

Aft =
(
µ+ b>Xt

)
[f (Xt + e, Nt + 1)− f (Xt, Nt)] +∇pf>AXt (12)

where ∇pf :=
[

∂f
∂X1,t

, . . . ∂f
∂Xp,t

]>
. The quantities Xt, e and e have the same meaning as in Defini-

tion 1.

Proof. See Appendix D.3.

Under some mild conditions for the integrability of the transformation f (XT , NT ) at a generic

finite final time T < +∞ (see Errais et al., 2010; Cui et al., 2020, for instance), the conditional

4The notation Aft refers to the infinitesimal generator of f applied to Yt = [X1,t, . . . , Xp,t, Nt] i.e. Aft :=
f (X1,t, . . . , Xp,t, Nt) .
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expected value for f (XT , NT ) can be computed applying the Dynkin’s formula:

E [f (XT , NT ) |Ft0 ] = f (Xt0 , Nt0) + E
[∫ T

t0

Aftdt |Ft0
]

(13)

that has a representation of the following form

dE [f (Xt, Nt) |Ft0 ] = E [Aft |Ft0 ] dt, (14)

with initial condition f (Xt0 , Nt0). We use the infinitesimal generator (12) and the result in (13)

to obtain the following theorem for the computation of the first moment of the counting process

Nt. In the remainder of the paper, we use Et [·] := E [· |Ft ].

Theorem 4. Let Ã be a p× p companion matrix where the last row has the following structure

Ã[p,·] = [b0 − ap, b1 − ap−1, . . . , bp−1 − a1] . (15)

Under Assumption 1 and supposing that all eigenvalues of Ã are distinct with negative real part,

for any T > t0 ≥ 0, the conditional first moment of the counting process is

Et0 [NT ] = Nt0 + µ
(

1− b>Ã−1e
)

(T − t0) + b>Ã−1
[
eÃ(T−t0) − I

] [
Xt0 + Ã−1eµ

]
, (16)

while the conditional expected value of the process XT is

Et0 [XT ] = eÃ(T−t0)
[
Xt0 + Ã−1eµ

]
− Ã−1eµ. (17)

The quantities in (16) and (17) satisfy respectively the following ordinary differential equations:

dEt0 [Nt] =
[
µ
(

1− b>Ã−1e
)

+ b>eÃ(t−t0)
[
Xt0 + Ã−1eµ

]]
dt (18)

and

dEt0 [Xt] =
(
ÃEt0 [Xt] + µe

)
dt (19)

with initial conditions5 Xt0 and Nt0. The long-run value for Et0 [XT ] is obtained as follows

E [X∞] := lim
T→+∞

Et0 [XT ] = −Ãeµ. (20)

Moreover, the expected number of events that occurs in an interval with length τ , i.e., (T, T + τ ],

5For t0 = 0, then Et0 [XT ] =
(
eÃ(T−t0) − I

)
Ã−1eµ and

Et0 [NT ] = µ
(

1− b>Ã−1e
)

(T − t0) + b>Ã−1
[
eÃ(T−t0) − I

]
Ã−1eµ.

9



given the information at time t0 < T is

Et0 [(NT+τ −NT )] = µ
(

1− b>Ã−1e
)
τ + b>Ã−1eÃ(T−t0)

(
eÃτ − I

)(
Xt0 + Ã−1eµ

)
(21)

and the stationary behaviour of (21) is

E [∆τN∞] := lim
T→+∞

Et0 [NT+τ −NT ] = µ
(

1− b>Ã−1e
)
τ, ∀τ > 0. (22)

Proof. See Appendix D.4.

Using the same arguments in Brockwell et al. (2006, proof of Proposition 4.1, p. 815) , all

eigenvalues of matrix Ã have negative real parts if for some positive integer r ≥ 1 the following

inequality holds ∥∥∥S−1eb>S
∥∥∥
r
< Re

(
λ̃1

)
(23)

where, in this context, ‖·‖r denotes the natural matrix norm induced by the vector Lr-norm. This

result comes directly from an application of the Bauer-Fike Theorem (see Bauer and Fike 1960 for

further details) since Ã is obtained by perturbing matrix A as Ã = A + eb>.

A sufficient condition for (23) is

σmax (S)

σmin (S)
‖b‖2 < Re

(
λ̃1

)
(24)

where ‖b‖2 :=
√∑p

i=1 b
2
i−1 is the Euclidean norm of b, σmax (S) and σmin (S) are respectively

maximal and minimal singular values of S. In particular, we observe that∥∥∥S−1eb>S
∥∥∥

2
≤ k2 (S)

∥∥∥eb>
∥∥∥

2
(25)

and that k2 (S) := ‖S‖2
∥∥S−1

∥∥
2
, the condition number in 2-norm, can be written as

k2 (S) =
σmax (S)

σmin (S)
. (26)

Moreover, denoting with
∥∥eb>

∥∥
F

the Frobenius norm of eb>, we obtain
∥∥eb>

∥∥
2
≤
∥∥eb>

∥∥
F
.

Applying the definition of the Frobenius norm we have∥∥∥eb>
∥∥∥

2
≤ ‖b‖2 , (27)

and combining (25), (26) and (27) we get∥∥∥S−1eb>S
∥∥∥

2
≤ σmax (S)

σmin (S)
‖b‖2 . (28)
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Thus, the inequality in (24) implies (23).

3.2. Likelihood Estimation of the CARMA(p,q)-Hawkes

As follows we present the likelihood of a CARMA(p,q)-Hawkes model. Consider that θ =

(b0, . . . , bq, a1, . . . , ap), then the likelihood of a CARMA(p,q)-Hawkes model is given by

L (θ, µ) = −
∫ Tk

0
λtdt+

∫ Tk

0
ln (λt) dNt. (29)

Exploiting the fact that
∫ Tk

0 ln (λt) dNt =
∑k

i=1 ln (λTi), then (29) can be written as

L (θ, µ) = −
∫ Tk

0

[
µ+ b>Xt

]
dt+

k∑
i=1

ln (λTi) (30)

and recalling once again that Xt can be expressed by (7) and rearranging the expression we have

L (θ, µ) = −µTk − b>
∫ Tk

0

∫ t

0
eA(t−s)edNsdt+

k∑
i=1

ln (λTi) . (31)

Working on the inner integral, the likelihood becomes

L (θ, µ) = −µ (Tk)− b>
∫ Tk

0

[∫ Tk

s
eA(t−s)dt

]
dNse +

k∑
i=1

ln (λTi) , (32)

while using the results in (A.1) we get

L (θ, µ) = −µTk − b>
∫ Tk

0
A−1

[
eA(Tk−s) − I

]
dNse +

k∑
i=1

ln (λTi) . (33)

Developing the integral in (33) and recalling that S (k) :=
∑k

i=1 e
A(Tk−Ti), we finally obtain that

the likelihood of a CARMA(p,q)-Hawkes model writes

L (θ, µ) = −µTk − b>A−1S (k) e + kb>A−1e +
k∑
i=1

ln (λTi) . (34)

4. Autocovariance and Autocorrelation of a CARMA(p,q)-Hawkes process

In this section we compute the stationary autocorrelation and autocovariance functions for the
number of jumps in non-overlapping time intervals of length τ . To this aim we introduce some
quantities that are useful to compute the asymptotic covariance of a CARMA(p,q)-Hawkes process.
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The first quantity we introduce is the p(p+1)
2 × p(p+1)

2 matrix ˜̃A defined as follows

˜̃A :=



D1
[p,p] U1,2

[p,p−1] 0[p,p−2] . . . . . . . . .

L2,1
[p−1,p] D2

[p−1,p−1] U2,3
[p−1,p−2] 0[p−1,p−3] . . . . . .

...
. . .

. . .
. . .

. . . . . .

Lj,1[p−j+1,p] . . . Lj,j−1
[p−j+1,p−j+2] Dj

[p−j+1,p−j+1] U j,j+1
[p−j+1,p−j] 0[p−j+1,p−j−1]

...
. . .

. . .
. . .

. . . . . .

Lp,1[1,p] . . . . . . . . . . . . Dp
[1,1]


(35)

where the square matrices Dj
[p−j+1,p−j+1], j = 1, . . . , p− 1, have the following structure

Dj
[p−j+1,p−j+1] =



0 2 0 . . . 0

0 0 1 . . . 0
...

...
. . .

. . .
...

0 . . . . . . . . . 1

bj−1 − ap−j+1 bj − ap−j . . . . . . bp−1 − a1,


with Dp

[1,1] = 2(bp−1 − a1). Matrices Lj,i[p−j+1,p−i+1] for j = 2, . . . , p and i = 1, . . . , j − 1 are

characterized by the entries with the form

Lj,i(h, l) =


bj−2+i − ap−j+1+(i−1) if h = p− j + 1, l = j − i+ 1 and j 6= p

2
(
bj−2+i − ap−j+1+(i−1)

)
if h = p− j + 1, l = j − i+ 1 and j = p

0 otherwise

while matrices U i,i+1
[p−i+1,p−i] for i = 1, . . . , p− 1 have form

U i,i+1
[p−i+1,p−i] =

[
0[1,p−i]

I[p−i,p−i]

]
.

Here an example of the matrix ˜̃A for a CARMA(3,2)-Hawkes model

˜̃A =



0 2 0 0 0 0

0 0 1 1 0 0

b0 − a3 b1 − a2 b2 − a1 0 1 0

0 0 0 0 2 0

0 b0 − a3 0 b1 − a2 b2 − a1 1

0 0 2(b0 − a3) 0 2(b1 − a2) 2(b2 − a1)


.
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The second quantity introduced is the p× p(p+1)
2 matrix B defined as:

B :=


b0 b1 . . . bp−1 0 . . . . . . 0 . . . 0

0 b0 . . . 0 b1 . . . bp−1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . . . . . 0

0 . . . 0 b0 0 . . . b1 0 . . . bp−1

 (36)

where the generic i-th row is the result of a row concatenation of p vectors with dimensions p, p−1,

. . ., p− i, . . . 1, respectively. The first i− 1 vectors have zero entries except the element in position

i that coincides with bi−1, the vector with dimension p − i contains the elements bi, . . . , bp−i and

the remaining vectors have zero entries.

For example, in the case of a CARMA(3,2)-Hawkes model, the structure of matrix B reads

B =

 b0 b1 b2 0 0 0

0 b0 0 b1 b2 0

0 0 b0 0 b1 b2

 .
The third quantity is the p(p+1)

2 × p matrix C̃ in which the entry in the i− th row and in j− th

column has the following structure

ci,j :=


0 if i 6= j

(
p− j−1

2

)
and i 6= p(p+1)

2

µ if i = j
(
p− j−1

2

)
and i 6= p(p+1)

2

bj−1 if i = p(p+1)
2 and j 6= p

2µ+ bp−1 if i = p(p+1)
2 and j = p

. (37)

Let H be a p × 1 vector. Then we define the operator vlt (·) as a function that transforms the

p× p matrix HH> into a p(p+1)
2 vector containing the lower triangular part of the product HH>.

Specifically:

vlt
(
HH>

)
:=

H1H1, . . . ,HpH1︸ ︷︷ ︸
p entries

, H2H2, . . . ,HpH2︸ ︷︷ ︸
p-1 entries

, . . . ,HiHi, . . . ,HpHi︸ ︷︷ ︸
p-i+1 entries

, . . . ,HpHp


>

. (38)

4.1. Conditions for existence of stationary autocovariance function

In the following section we present the variance and covariance of the number of jumps that

occur in two non-overlapping time intervals of the same length for a CARMA(p,q)-Hawkes model.

We rewrite the quantity Et0
[
XTX

>
T

]
b using the vlt (·) operator defined in (38).
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Lemma 1. The following identity holds true

Et0
[
XTX

>
T

]
b = Bvlt

(
Et0
(
XTX

>
T

))
(39)

where the matrix B is defined in (36) and the operator vlt (·) is defined as in (38). Moreover:

vlt
(
Et0
(
XTX

>
T

))
= e

˜̃A(T−t0)vlt
(
Xt0X

>
t0

)
+

[
e

˜̃A(T−t0) − I

]
˜̃A−1µ

(
ẽ− C̃Ã−1e

)
+ e

˜̃AT

[∫ T

t0

e−
˜̃AtC̃eÃtdt

]
e−Ãt0

[
Xt0 + Ã−1eµ

]
. (40)

Proof. See Appendix E.1.

Theorem 5. Under Assumption 1 and supposing that all eigenvalues of Ã and ˜̃A have negative

real parts, the long-run covariance

Cov(τ, δ) := lim
t→+∞

E[(Nt+τ −Nt)(Nt+2τ+δ −Nt+τ+δ)]− E[Nt+τ −Nt]E[Nt+2τ+δ −Nt+τ+δ]

for a CARMA(p,q)-Hawkes process has the following form:

Cov (τ, δ) = b>Ã−1
[
eÃτ − I

]
eÃδg∞ (τ) (41)

where g∞ (τ) is defined as

g∞ (τ) :=
(
I− eÃτ

)
Ã−1µ

[
eb>Ã−1e− e + Ã−1eµ

(
b>Ã−1e

)
+ B ˜̃A−1

(
ẽ− C̃Ã−1e

)]
. (42)

Proof. See Appendix D.3.

Theorem 6. Under the same assumptions as in Theorem 5, the long-run variance

V ar(τ) := lim
t→+∞

E[(Nt+τ −Nt)
2]− E[Nt+τ −Nt]

2

of the number of jumps in a interval with length τ for a CARMA(p,q)-Hawkes process has the

following form:

V ar (τ) =
(

1− b>Ã−1e
)(

1− 2b>Ã−1e
)
µτ + 2b>Ã−1Ã−1eτµ2

(
b>Ã−1e

)
+ 2b>Ã−1B ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
τ − 2b>Ã−1

[
eÃτ − I

]
h∞ (0) (43)

where h∞ (0) is defined as

h∞ (0) := −Ã−1eµ
(

1− b>Ã−1e
)

+ Ã−1Ã−1eµ2b>Ã−1e + Ã−1B ˜̃A−1µ
(
ẽ− C̃Ã−1e

)
. (44)
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Proof. See Appendix E.2.

Remark 3. Combining the results in Theorems 5 and 6, we determine the asymptotic autocorre-

lation function of the number of jumps in non-overlapping time intervals of length τ , i.e., ρτ (d),

for a CARMA(p,q)-Hawkes in a closed-form formula:

ρτ (d) =
Cov (τ, d− 1)

V ar (τ)
, d = 1, 2, . . . (45)

where d denotes the lag order.

4.2. Strong mixing property for the increments of a CARMA(p,q)-Hawkes and asymptotic distri-

bution of the autocorrelation function

The asymptotic distribution of the autocorrelation function of a CARMA(p,q)-Hawkes process

can be easily obtained by showing that the increments of the process are strongly mixing.

Definition 2. Let (Ω,F ,P) be a probability space and A,B two sub σ−algebras of F . The strong-

mixing coefficient is defined as:

α (A,B) := sup {|P (A ∩B)− P (A)P (B)|A ∈ A, B ∈ B} . (46)

Following Poinas et al. (2019), the quantity in (46) can be reformulated for a point process Nt

in the following way:

αN (r) := sup
t∈R

α
(
ξt−∞, ξ

∞
t+r

)
(47)

where ξba denotes the σ−algebra generated by the cylinder sets on the interval (a, b]6. Considering

the sequence (∆1Nk)k∈Z where ∆1Nk := Nk+1−Nk is the number of jumps in the interval of length

1 and extremes k, k + 1, then the strong-mixing coefficient has the form

α∆1N (r) := sup
n∈Z

α
(
Fn−∞,F∞n+r

)
(48)

where Fba is the σ−algebra generated by the sequence (∆1Nk)a≤k≤b. If αN (r) → 0 (respectively

α∆1Nk (r)→ 0) as r → +∞, the point process Nt (respectively ∆1Nk) is said to be strongly-mixing.

Using Theorem 1 in Cheysson and Lang (2020), we obtain the following theorem.

Theorem 7. A CARMA(p,q)-Hawkes process satisfying Assumption 1 is strongly mixing with

exponential rate.

6Let N be a counting process defined as a map from a probability space (Ω,F ,P) to a measurable space (M,M)
of locally finite counting measures on Ω. Then the σ−algebra ξba is defined as:

ξba := σ ({N ∈ M : N (A) = n} ;A ∈ B ((a, b]) , n ∈ N) .
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Proof. See Appendix E.4.

As shown in Cheysson and Lang (2020), we have that α∆1N (r) ≤ αN (r) and the result in The-

orem 7 implies that the sequence (∆1Nk)k∈Z is strongly mixing. This result is useful to determine

the asymptotic distribution of the sample autocovariance and autocorrelation functions associated

to the sequence (∆1Nk)k∈Z. Following the result in Ibragimov and Linnik (1971), we obtain the

following result for the asymptotic distribution of the sample mean, the sample variance and the

sample autocovariance function.

Theorem 8. Let (Nt)t≥0 be a stationary CARMA(p,q)-Hawkes process that satisfies the assump-

tions in Theorem 7. We assume the existence of a positive constant φ such that E
[
(∆1N1)4+φ

]
<

+∞. Denoting with

Vk :=



∆1Nk

(∆1Nk − E (∆1N∞))2

(∆1Nk − E (∆1N∞)) (∆1Nk+1 − E (∆1N∞))
...

(∆1Nk − E (∆1N∞)) (∆1Nk+d − E (∆1N∞))


, with k = 1, ..., n and d < n

as n→ +∞, we have:

√
n


1

n

n∑
k=1

Vk −



E (∆1N∞)

V ar (∆1N∞)

Acv (1)
...

Acv (d)




→ Nd+2 (0,Σ) (49)

where Acv (d) := Cov(1, d− 1) and

Σ := V ar (V1) + 2
+∞∑
k=2

Cov
(
V1V

>
k

)
. (50)

Proof. See Appendix E.5.

Through the use of the Delta method, we study the asymptotic behaviour of the random

vector that contains the sample mean of the increments in the first position and the empirical

autocorrelations in the remaining entries. As a first result, we report the asymptotic distribution

of the empirical autocorrelation function. Denoting with ρ̂n,τ := [ρ̂n,τ (1) , . . . , ρ̂n,τ (m)]> where

ρ̂τ (d) is the sample estimator of ρτ (d) in (45). The asymptotic distribution of ρ̂n,τ is

√
n (ρ̂n,τ − ρτ )→ Nm (0,Σρ) , as n→ +∞. (51)
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The variance - covariance matrix Σρ has the following form:

Σρ = JρτΣ [Jρτ ]> ,

where Σ is defined in (50); Jρτ is the Jacobian matrix of the autocorrelation that can be seen as

a vector function of ϑ in (E.32). Therefore Jρτ is determined as:

Jρτ =

[
0m×1

∣∣∣∣ − ρτ
V ar (∆1N∞)

∣∣∣∣ Im×m
V ar (∆1N∞)

]
. (52)

Following the same strategy, it is possible to determine the asymptotic distribution of the column

vector χ̂n,τ :=
[
∆̂τNn, ρ̂n,τ

]>
where ∆̂τNn is the sample estimator for E [∆τN∞]. Therefore, we

have:
√
n (χ̂n,τ − χτ )→ Nm+1 (0,Σχτ ) , as n→ +∞ (53)

where χτ is a column vector containing the first moment E [∆τN∞] and the first lag m autocorre-

lations. The variance-covariance asymptotic matrix Σχτ results to be

Σχ = JχτΣ [Jχτ ]> , (54)

while the Jacobian matrix Jχτ can be written as

Jχτ =

[
e1

Jρτ

]
(55)

where the first element of row vector e1 is equal to one and the others are all zeros.

4.3. Asymptotic Distribution of the Moment Matching Estimation based on the Autocorrelation

Function

As discussed in Shlomovich et al. (2022), real event data can provide imprecision in the record-

ing of event time-stamps (e.g., network traffic data). Furthermore, we have usually the following

trade-off: expensive cost in recording event time with a high precision and poor accuracy of mea-

surements. As a matter of fact, common practice is to work with binned data (that is, without

loss of generality, the technique of aggreating data). To this aim, we propose a two-step estimation

procedure, named Moment Matching Estimation (MME), for a CARMA(p,q)-Hawkes process and

we provide the asymptotic distribution of the obtained estimators.

Consider a sequence of empirical observations for the increments of a counting process (∆τNk)k=1,...,n.

The first step is to compute the least squares estimator as

θ̂n := argmin
θ̂n,τ∈Θ⊆Rp+q+1

M (ρ̂n,τ , θ) (56)
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where Θ is a compact subset of Rp+q+1 such that the stationary condition is guaranteed, the kernel

function is non-negative, higher order moments of a CARMA(p,q)-Hawkes process exist and the

true vector parameter θ is an interior point of Θ . For a fixed m ≥ p+ q + 1, M : Rm+ ×Θ→ R+
0

is defined as:

M (ρ̂n,τ , θ) :=
m∑
d=1

(ρ̂n,τ (d)− ρτ (d))2 (57)

in which d denotes the lag order, ρ̂n,τ (d) represents the empirical autocorrelation with lag d while

ρτ (d) is its theoretical counterpart obtained in (45). The vector θ includes only the autoregressive

(a1, . . . , ap) and moving average (b0, . . . , bq) parameters.

Let θ̂n be the solution of the minimization problem in (56). As the function in (57) is smooth (i.e.,

M (ρ̂n,τ , θ) ∈ C∞ with respect to both arguments), we compute its gradient vector m̄ (ρ̂n,τ , θ) as

follows

m̄ (ρ̂n,τ , θ) =
m∑
d=1

(ρ̂n,τ (d)− ρτ,θ (d))∇θρτ,θ (d) .

θ̂n satisfies the first order condition, i.e.

m̄ (ρ̂n,τ , θ) = 0. (58)

Applying the Implicit Function Theorem, we get a differentiable function that is the solution of

the condition in (58). Specifically, that is

θ̂n = f (ρ̂n,τ ) . (59)

Its Jacobian matrix Jf (·) reads

Jf(ρ̂n,τ , θ) = − [Jθm̄ (ρ̂n,τ , θ)]
−1 Jρ̂n,τ m̄ (ρ̂n,τ , θ) , (60)

where

Jρ̂n,τ m̄ (ρ̂n,τ , θ) := [∇θρτ,θ (1) . . .∇θρτ,θ (m)] , (61)

Jθm̄ (ρ̂n,τ , θ) := −
m∑
d=1

(
∇θρτ,θ (d) [∇θρτ,θ (d)]>

)
+

m∑
d=1

(ρ̂n,τ (d)− ρτ,θ (d))Hθρτ,θ (d) (62)

while Hθρτ,θ (d) is the Hessian matrix of the function ρτ,θ (d) with respect to θ.

Observe that
√
n
(
θ̂n − θ

)
→ Np+q (0,Σθ) , as n→ +∞ (63)

where

Σθ = Jf (ρτ , θ) Σρ [Jf (ρτ , θ)]
> . (64)
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In the second step, we estimate the baseline intensity parameter µ using the analytical first moment.

Indeed, by inverting the equation in (22), we get

µ (E [∆τN∞] , θ) =
E [∆τN∞]

1− b>Ã−1e
. (65)

The quantity µ̂n is a plug-in estimator, where instead of E [∆τN∞], we consider its sample version

∆̂τNn; we also substitute θ = (a, b) with θ̂n =
(
ân, b̂n

)
.

To get the asymptotic distribution of θ̂0,n :=
[
µ̂n, θ̂n

]>
, we need to determine the asymptotic

distribution of θ̂1,n :=
[
∆̂τNn, θ̂n

]>
that results to be

√
n

[(
∆̂τNn

θ̂n

)
−

(
E [∆τN∞]

θ

)]
→ Np+q+1 (0,Σθ1) as n→ +∞ (66)

where

Σθ1 =

[
1 01×m

01×(p+q) Jf (ρτ , θ)

]
Σχ

[
1 01×m

01×(p+q) Jf (ρτ , θ)

]>
(67)

with Σχ as in (54). The asymptotic distribution of θ̂0,n can be obtained straightforwardly using

the results in (65) and in (67). Indeed

√
n
(
θ̂0,n − θ

)
→ Np+q+1 (0,Σθ0) as n→ +∞, (68)

with

Σθ0 =

[
∇µ (E [∆τN∞] , θ)>

I

]
Σθ1

[
∇µ (E [∆τN∞] , θ)>

I

]>
. (69)

All partial derivatives used for the computation of the asymptotic behavior of the parameter

estimators involve the parameters differentiation of a matrix exponential. This can be easily

done using the procedure proposed in Tsai and Chan (2003) (see Das et al., 2022, for recent

developments).

5. Empirical analysis

In this section we perform two estimation exercises using real data, showing how CARMA(p,q)-

Hawkes models may find applications in various areas. In the first case study, we consider the

occurrences of earthquake events with timestamp values accurate down to the second. Indeed an

insurance company, could be interested in an accurate modeling of time arrivals of new events

as a consequence of large-magnitude earthquakes in order to improve the forecasting of future

losses. Given exact timestamps, we estimate model parameters based on the likelihood function

(Section 3.2) in which we select optimal p and q orders for the intensity process.
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The second case study considers intra-day orders of an Italian government bond indexed to the

Italian inflation rate received during the first day of placement period (October 2, 2023) reserved

to individual investors. The security in question is the “BTP Valore Sc Oct28 Eur” with ISIN

IT0005565400, which has quarterly coupons with a “step-up” mechanism. Data are recorded in

equidistant intervals of one minute, allowing for cumulative indistinguishable events, and thus the

estimation of model parameters is based on the minimization of the squared distance between

empirical and theoretical autocorrelation as discussed in Section 4.3.

5.1. Estimation procedure using the likelihood function

For the estimation procedure based on the likelihood function (34), we use a data set composed

of earthquake events registered on the coast of Ancona (central-eastern Italian coast) in the period

January 2, 1982 to January 2, 2023.7 In Figure 1 we report the events that define the counting

process, observing that the coast of Ancona experienced two large-magnitude earthquakes in 2016

and 2022 followed respectively by subsequent events of smaller magnitude.
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Figure 1: Earthquake events on the coast of Ancona from January 2, 1985 to January 2, 2023.

The estimation procedure with the selection of optimal p and q orders for the intensity process

distinguishing for nested and non-nested models is performed as follows. The first candidate con-

sidered, which is also a natural choice of starting point, is a CARMA(1,0)-Hawkes that is compared

7For sake of clarity, an event is qualified as an earthquake if the seismograph records a movement of at least two
magnitudes in the Richter scale. Data are downloaded from https://terremoti.ingv.it/.
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Model1 Model2 LR test
Best

fitting

CH(1,0) CH(2,0)
4.94

(0.0262)
CH(2,0)

CH(2,0) CH(2,1)
112.46

(<0.0001)
CH(2,1)

CH(2,1) CH(3,1)
1.63

(0.2087)
CH(2,1)

(a) LR test and corresponding p-value for nested models.

Model AIC BIC

CARMA(2,1)-Hawkes 1666 1685
CARMA(3,0)-Hawkes 1886 1691

(b) Fitting results for non-nested models.

Table 1: Estimation procedure of CARMA(p,q)-Hawkes models applied to the sequence of earthquake events with
p ≤ 3.

with a CARMA(2,0)-Hawkes (i.e., the closest nested model in terms of the p and q orders) using

the likelihood-ratio (LR) test. In the case that null hypothesis cannot be accepted at a desired

significance level (in our case 5%), the procedure considers the next couple of models by increasing

the order of p and/or q up to a fixed autoregressive order p̄ until the null hypothesis fails to be

rejected. Following this strategy for a fixed p̄ = 3, the best fitting model in the subset of nested

CARMA(p,q)-Hawkes processes is identified (see Table 1a); i.e., the CARMA(2,1)-Hawkes.

Then the selection is carried out for the case of non-nested models through the Akaike Informa-

tion Criterion (AIC) and the Bayes Information Criterion (BIC); e.g., CARMA(2,1)-Hawkes and

CARMA(3,0)-Hawkes (see Table 1b). From the combined results we observe that a CARMA(2,1)-

Hawkes is the the most appropriate model within the CARMA(p,q)-Hawkes family up to a fixed

autoregressive order p̄ = 3 for describing earthquake-time arrivals in the geographic area un-

der investigation. Table 2 displays estimated parameters and standard errors of the best fitting

CARMA(2,1)-Hawkes model.

µ0 a1 a2 b0 b1
est. par. 6.8532E-03 4.8540 0.2643 0.1874 1.7363
s.e. 7.9593E-04 1.6762 0.1411 0.0997 0.5009

loglik. -828.03

Table 2: Estimated parameters (est. par.) and log-likelihood (loglik.) for the CARMA(2,1)-Hawkes model using
MLE for earthquake events on the coast of Ancona.

To establish if the collected data are properly described by the estimated CARMA(2,1)-Hawkes

process we implement the residual analysis discussed in Ogata (1988). In practice, the estimated

residuals {τi}i=1,...,n of a point process are defined as τ̃i :=
∫ ti

0 λ̃tdt where {ti}i=1,...,n denote ob-

served event times and λ̃t is the estimated intensity. A given model is appropriate for reproducing

the time arrivals {ti}i=1,...,n if the new counting process Ñt :=
∑

i 1τ̃i≤t results to be a homoge-

neous Poisson with intensity equal to one. Therefore, the estimated increments τ̃i− τ̃i−1 should be

modelled with an exponential random variable with rate equal to one.
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We apply two statistical tests to the increments of the fitted CARMA(2,1)-Hawkes model: the

Kolmogorov-Smirnov (KS) test, as done in Ogata (1988), and the Anderson-Darling (AD) test as

is more sensitive on the tails. In both cases we obtain a p-value greater than 5% (respectively

40% for thr KS-test and 7.23% for the AD-test), confirming the appropriateness of the fitted

CARMA(2,1)-Hawkes in modelling earthquake-time arrivals in the coast of Ancona.

5.2. Estimation procedure using the autocorrelation function

In the second estimation case study, data of orders collected during the first day of place-

ment period regarding the Italian government bond are recorded in time intervals of length one

minute, allowing for the presence of indistinguishable multiple events. In this setting, the only

viable solution for the estimation of model parameters is minimizing the squared distance between

empirical and theoretical autocorrelation functions of the number of jumps within intervals of the

same length. Furthermore, in this context, it is essential to determine the optimal p and q orders

and the number of autocorrelation lags to use in the minimization problem. Here, we use a graph-

ical approach, reporting the empirical and theoretical autocorrelation function (acf) as shown in

Figure 2. The choice of the number of lags in the acf is done applying the same rule in the acf R

function. Specifically, we consider lags that do not exceed the integer part of 10 log10

(
N̄
)

with N̄

being number of observations and, in this case, the maximum number of considered lags is equal to

26. Applying this idea, the best fitting model is the CARMA(2,1)-Hawkes (red line) which seems

to fit better the curvature of the empirical acf with respect to the Hawkes with exponential kernel

(blue line).

Using the estimation procedure discussed in Section 4.3 and the result in (68), we report in Table

3 respectively the estimated parameters and the asymptotic standard errors for the CARMA(2,1)-

Hawkes model.

µ0 a1 a2 b0 b1
est. par. 6.2347 3.9375 0.1485 0.1453 3.5309
s.e. (5.5106) (1.9336) (0.1248) (0.1155) (2.0412)

Table 3: Estimated parameters (est. par.) and asymptotic standard errors (s.e.) of a CARMA(2,1)-Hawkes fitted to
the data set composed of orders arrivals recorded on October 2, 2023 for the Italian government bond “BTP Valore
Sc Oct28 Eur”.

6. Conclusion

In this paper we introduce a Hawkes process where the intensity is a CARMA(p, q) model.

We analyze the statistical properties of this process and obtain a closed-form expression for the

autocorrelation function of the number of jumps observed in non-overlapping time intervals of the

same length. The model is a generalization of the standard Hawkes with exponential kernel but it

is able to reproduce more complex dependence structures observed in physical events or in finance.
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Figure 2: Empirical and estimated autocorrelation functions. The red line is the estimated autocorrelation function of
a CARMA(2,1)-Hawkes model and the blue line is the autocorrelation function of a standard Hawkes with exponential
kernel. Vertical lines refer to empirical values of the autocorrelation function.
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Hitaj A, Mercuri L, Rroji E. Lévy CARMA models for shocks in mortality. Decisions in Economics and Finance

2019;42(1):205–27.
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Appendix A. Integration of matrix exponentials

Let A be a square matrix and A(i) := AA · · ·A︸ ︷︷ ︸
i times

. As the exponential of the matrix A can be

computed as

exp (At) = I +
+∞∑
i=1

A(i)ti

i!
,

it is straightforward to show that∫ T

t0

eA(T−t)dt = A−1
(
eA(T−t0) − I

)
=
(
eA(T−t0) − I

)
A−1. (A.1)
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Appendix B. Solution of a general Linear Ordinary differential Equation

To solve dYt = (bt +AYt) dt, we consider the transformation Xt = e−AtYt and observe that

dXt = −Ae−AtYtdt+ e−AtdYt = e−Atbtdt,

from where we have XT = Xt0 +
∫ T
t0
e−Atbtdt that in terms of Yt reads

YT = eA(T−t0)Yt0 +

∫ T

t0

eA(T−t)btdt. (B.1)

Appendix C. Computation of integrals with matrix exponentials

Some useful results for computing integrals that involve matrix exponentials are provided in

Van Loan (1978) and Carbonell et al. (2008). In particular, we recall the result that deals with

the computation of the following two integrals:∫ t

0
eH11(t−u)H12e

H22udu (C.1)

∫ t

0

∫ u

0
eH11(t−u)H12e

H22(u−r)H23e
H33rdrdu (C.2)

where H11, H12, H22, H23 and H33 have dimension d1 × d1, d1 × d2, d2 × d2, d2 × d3 and d3 × d3,

respectively. We need to define a block triangular matrix H as follows

H :=

 H11 H12 0

0 H22 H23

0 0 H33

 . (C.3)

The integrals (C.1) and (C.2) coincide with the elements B12 (t) and B13 (t) in the matrix expo-

nential:

eHt =

 B11 (t) B12 (t) B13 (t)

0 B22 (t) B23 (t)

0 0 B33 (t)

 (C.4)

while B11 (t) := eH11t, B22 (t) := eH22t and B33 (t) := eH33t.

Remark 4. The eigenvalues of H coincide with the eigenvalues of H11, H22 and H33. If the real

part of all eigenvalues of H11, H22 and H33 is negative, the following result holds

lim
t→+∞

eHt = 0
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that implies

lim
t→+∞

B12 (t) = 0 (C.5)

and

lim
t→+∞

B13 (t) = 0. (C.6)

Appendix D. Proofs of Theorems in Section 3

Appendix D.1. Proof of Theorem 1

Proof. To show the Markov property for Xt in (7), we rewrite it as

Xt+u =

∫
[0,t)

eA(u)+A(t−s)edNs + φ(t, u)

where φ(t, u) :=
∫

[t,t+u) e
A(t+u−s)edNs. We recall that if H and K are two square matrices that

commute, i.e. HK = KH, then the following result holds eH+K = eHeK . We then consider the

quantities H = A(u) and K = A(t− s) and notice that they commute. Thus:

Xt+u = eA(u)Xt + φ(t, u). (D.1)

Now, we show that the conditional distribution of φ(t, u) given the information at time t does not

depend on history before t of the state process and counting process. Let us rewrite φ (t, u) as

φ (t, u) =

∫
[0,u)

eA(u−s)edN̂s

where for fixed t and ∀u > 0 the quantities

N̂u := Nt+u −Nt (D.2)

coincide with the increments of the counting process over time intervals with extremes t and t+u,

i.e. on a right-shifted time axis with the new origin corresponding to the current time t.

At this stage, we write the counting process Nt in terms of a Poisson random measure. Let M be

a Poisson random measure on R+ × E where R+ refers to time and E to some physical space of

events 8. From Theorem 6.11 page 302 in Cinlar (2011) a counting process Nt with predictable

intensity λt as the one defined as in (5), has the following (pathwise a.s.) form:

Nt (ω) =

∫
[0,t]×R+

1{(0,λs(ω)]} (z)M (ds, dz) .

8See Definition 6.1, p. 299 in Cinlar (2011): the Poisson random measure M asserts the independence of the
future of M from its past.
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Considering the increments N̂u in (D.2) ∀u ≥ 0, we get:

N̂u (ω) =

∫
[t,t+u]×R+

1{(0,λs(ω)]} (z)M (ds, dz) .

Now we define a shifted time axis such that [t, t+ u]→ [0, u], and notice that:

N̂u (ω) =

∫
[0,u]×R+

1{(0,λ̂s(ω)]} (z) M̂ (ds, dz) , (D.3)

where λ̂s (ω) on the new axis coincides a.s. with λt+s (ω) on the original time axis while M̂ is a

(shifted) Poisson random measure9 . The increments in (D.3) allow us to rewrite the process Xt+u

in (D.1) as a process X̂u with dynamics:

X̂u = eAuX̂0 +

∫
[0,u)

eA(u−s)dN̂s, where X̂0 = Xt a.s., (D.4)

and

λ̂u = µ+ b>X̂u

which concludes the proof for the Markov property for Xt. Notice that, on the new axis, X̂u has a

similar form as (7) and the additional term eAuX̂0 is known at time t since X̂0 = Xt almost surely.

The integral in (D.4) is controlled only by
{
λ̂s

}
0≤s≤u

:= {λt+s}0≤s≤u, it does not depend to the

past information up to t.

The Markov property for the vector process [Xt, Nt](p+1)×1 can be proved with similar steps as[
Xt+u

Nt+u

]
=

[
eAu 0p×1

01×p 1

][
Xt

Nt

]
+

∫ t+u

t

[
eA(t+u−s)e

1

]
dNs. (D.5)

Indeed, the result in (D.5) has the same structure as in (D.1) and, to compute its conditional

distribution given the information at t, we need only the column vector [Xt, Nt]. This concludes

the proof of the Markov property for [Xt, Nt] and the whole proof.

Appendix D.2. Proof of Theorem 2

Proof. For a non-negative kernel function, the stationary condition in (3) for a CARMA(p,q)-

Hawkes process becomes∫ +∞

0
b>eAtedt = lim

T→+∞

∫ T

0
b>eAtedt = lim

T→+∞
b>A−1

(
eAT − I

)
e, (D.6)

9If ∀u ≥ 0 and ∀z ∈ E we define M̂ (u, z) := M (t+ u, z), M̂ is still a Poisson random measure independent of Ft
and has the same law as M .
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where I is the identity matrix with dimension p. As A is diagonalizable,

eAT = SeΛTS−1

where Λ := diag
(
λ̃1, . . . , λ̃p

)
. Thus the limit in (D.6) is

lim
T→+∞

b>A−1
(
eAT − I

)
e = b>A−1

[
S

(
lim

T→+∞
eΛT

)
S−1 − I

]
e.

Recalling that all eigenvalues of A have negative real part, we notice that eΛT tends to a p × p
zero matrix. The integral in (D.6) becomes∫ +∞

0
b>eAtedt = −b>A−1e. (D.7)

The stationarity condition in (3) implies −b>A−1e < 1.

Appendix D.3. Proof of Theorem 3

Proof. Let us consider two cases. If NT+h − NT = 0, the vector XT = [X1,t, . . . , Xp,t]
> becomes

XT+h = XNJ
T+h where XNJ

T+h means no jump (NJ) occurred in the interval (T, T + h] and can be

written in the following way

XNJ
T+h = eA(T+h−t0)Xt0 +

∫
[t0,T )

eA(T+h−t)edNt

as the quantity
∫

[T,T+h) e
A(T+h−t)edNt is zero due to the absence of jumps in the interval (T, T + h].

From

XNJ
T+h = eAh

[
eA(T−t0)Xt0 +

∫
[t0,T )

eA(T−t)edNt

]
= eAhXT

we have that

lim
h→0

XNJ
T+h = XT . (D.8)

If NT+h −NT = 1 then XT+h := X1J
T+h is computed as

X1J
T+h = eA(T+h−t0)Xt0 +

∫
[t0,T )

eA(T+h−t)edNt +

∫
[T,T+h)

eA(T+h−t)edNt.

Defining the jump time Th in the time interval (T, T + h] we get∫
[T,T+h)

eA(T+h−t)edNt = eA(T+h−Th)e.
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As lim
h→0

Th = T , we observe that

lim
h→0

X1J
T+h =

[
eA(T−t0)Xt0 +

∫
[t0,T )

eA(T−t)edNt

]
+ e = XT + e. (D.9)

Note that Xt + e = [Xt,1, . . . , Xt,p + 1]> and consider the following quantity:

E [f (X1,t+h, . . . , Xp,t+h, Nt+h) |Ft ] = f
(
XNJ

1,t+h, . . . , X
NJ
p,t+h, Nt

)
(1− λth)

+ f
(
X1J

1,t+h, . . . , X
1J
p,t+h, Nt + 1

)
λth+ o (h) .

The infinitesimal generator is:

Aft := lim
h→0

E [f (X1,t+h, . . . , Xp,t+h, Nt+h) |Ft ]− f (X1,t, . . . , Xp,t, Nt)

h

= lim
h→0

λt
[
f
(
X1J

1,t+h, . . . , X
1J
p,t+h, Nt + 1

)
− f

(
XNJ

1,t+h, . . . , X
NJ
p,t+h, Nt

)]
+ lim

h→0

f
(
XNJ

1,t+h, . . . , X
NJ
p,t+h, Nt

)
− f (X1,t, . . . , Xp,t, Nt)

h
.

From (D.8) and (D.9) we obtain

Aft := λt [f (X1,t, . . . , Xp,t + 1, Nt + 1)− f (X1,t, . . . , Xp,t, Nt)]

+ lim
h→0

f
(
XNJ

1,t+h, . . . , X
NJ
p,t+h, Nt

)
− f (X1,t, . . . , Xp,t, Nt)

h
. (D.10)

To compute the limit (D.10) we use De l’Hôpital’s rule

lim
h→0

p∑
i=1

∂f

∂XNJ
i,t+h

∂XNJ
i,t+h

∂h
= lim

h→0

[
∂f

∂XNJ
1,t+h

, . . .
∂f

∂XNJ
p,t+h

]
AeAhXt

=

p−1∑
i=1

∂f

∂Xi,t
Xi+1,t +

∂f

∂Xp,t
A[p,]Xt, (D.11)

and substituting (D.11) in (D.10), we finally obtain the result in (12).

Appendix D.4. Proof of Theorem 4.

Proof. Proof of Theorem 4. To determine the expected number of jumps in (16) we obtain first

the infinitesimal generator of the function f (X1,t, . . . , Xp,t, Nt) = Nt, that is Aft = λt where the

conditional intensity λt is defined in (7). Applying the Dynkin’s formula in (14) we obtain the
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following ODE

dEt0 [Nt] =
[
µ+ b>Et0 (Xt)

]
dt. (D.12)

Then, we compute Et0 [Xt] that requires a system of infinitesimal generators. In particular, for

i = 1, . . . , p− 1, we have

AXt,i = Xt,i+1

and

AXt,p =
(
µ+ b>Xt

)
+ A[p,·]Xt = µ+

p∑
i=1

(bi−1 − ap+1−i)Xt,i.

Applying (14), we get

dEt0 [Xt] =
(
ÃEt0 [Xt] + µe

)
dt (D.13)

where Ã is defined in (15). With the initial condition Xt0 , the solution of the system in (D.13) is

(17). Substituting (17) in (D.12) we obtain the following ODE for the expected number of jumps

dEt0 [Nt] =
[
µ
(

1− b>Ã−1e
)

+ b>eÃ(t−t0)
[
Xt0 + Ã−1eµ

]]
dt

whose solution is in (16) with initial condition Nt0 . Using the result in (16) we observe by straight-

forward calculations that the expected number of jumps in an interval of length τ reads as in (21).

Due to the negativity assumption for the real part of the eigenvalues of matrix Ã, we obtain the

asymptotic behaviour in (20) and (22) as limT→+∞ e
ÃT = 0 where 0 is a p × p zero matrix (see

(C.5)).

Appendix E. Proofs of Theorems in Section 4

Appendix E.1. Proof of Lemma 1

Proof. Using the definition of matrix B in (36), the identity in (39) is straightforward. To show

the result in (40), we need first to compute the infinitesimal generator for each component of

vlt
(
XtX

>
t

)
. From the definition in (38) we identify p blocks where the dimension of each block

decreases by one unit. More precisely, the j−th block has p − j + 1 elements. Considering the

first block (i.e., j = 1) we have p infinitesimal generators obtained applying the result in (11) of

Theorem 3. For the first element in the first block, we have AX2
t,1 = 2Xt,2Xt,1. While for the i−th

element in the first block with i = 2, . . . , p− 1 we get AXt,iXt,1 = Xt,iXt,2 +Xt,i+1Xt,1 and finally

AXt,pXt,1 = λt [(Xt,p + 1)Xt,1 −Xt,pXt,1] +Xt,pXt,2 +A[p,·]XtXt,1

= µXt,1 +Xt,pXt,2 +
(
b> +A[p,·]

)
XtXt,1.

31



For a generic j−th block, we get p− j + 1 infinitesimal generators. In particular for i = j we have

AX2
t,j = 2Xt,jXt,j+1. For i = j + 1, . . . , p− 1 we have AXt,iXt,j = Xt,iXt,j+1 +Xt,jXt,i+1 and

AXt,pXt,j = λt [(Xt,p + 1)Xt,j −Xt,pXt,j ] +Xt,pXt,j+1 +A[p,·]XtXt,j

= µXt,j +Xt,pXt,j+1 +
(
b> +A[p,·]

)
XtXt,j .

The last block contains only one infinitesimal generator of the form

AX2
t,p = λt

[
(Xt,p + 1)2 −X2

t,p

]
+ 2A[p,·]XtXt,p

= µ+ b>Xt + 2µXt,p + 2
(
b> +A[p,·]

)
XtXt,p.

Using the Dynkin’s formula in (14) we obtain the following system of linear ODE’s:

dvlt
(
Et0
(
XtX

>
t

))
=
[
µẽ + C̃Et0 (Xt) + ˜̃Avlt

(
Et0
(
XtX

>
t

))]
dt (E.1)

where the p(p+1)
2 vector ẽ is composed of zero entries except the last position where the element is

one; ˜̃A and C̃ are defined in (35) and (37) respectively.

The first step is to solve the ODE defined in (E.1) whose solution has the following form

vlt
(
Et0
(
XTX

>
T

))
= e

˜̃A(T−t0)vlt
(
Xt0X

>
t0

)
+ e

˜̃AT

∫ T

t0

e−
˜̃At
[
µẽ + C̃Et0 (Xt)

]
dt

= e
˜̃A(T−t0)vlt

(
Xt0X

>
t0

)
+

[
e

˜̃A(T−t0) − I

]
˜̃A−1µẽ

+ e
˜̃AT

∫ T

t0

e−
˜̃AtC̃Et0 (Xt) dt. (E.2)

We also observe that

e
˜̃AT

∫ T

t0

e−
˜̃AtC̃Et0 (Xt) dt = e

˜̃AT

∫ T

t0

e−
˜̃AtC̃

[
eÃ(t−t0)

[
Xt0 + Ã−1eµ

]
− Ã−1eµ

]
dt

= e
˜̃AT

∫ T

t0

e−
˜̃AtC̃eÃtdte−Ãt0

[
Xt0 + Ã−1eµ

]
−

[
e

˜̃A(T−t0) − I

]
˜̃A−1C̃Ã−1eµ. (E.3)

Substituting (E.3) into (E.2) we obtain the result in (40).

Appendix E.2. Proof of Theorem 5

We provide below the proof of Theorem 5 on the long-run covariance of the number of jumps

in a CARMA(p,q)-Hawkes model.
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Proof. We first determine the covariance of number of jumps in two non-overlapping time intervals

given the information at time t0. This quantity is formally defined as

Covt0 (τ, δ) := Et0 [(Nt+τ −Nt) (Nt+2τ+δ −Nt+τ+δ)]

− Et0 [(Nt+τ −Nt)]Et0 [(Nt+2τ+δ −Nt+τ+δ)] . (E.4)

Using the iteration property of the conditional expected value, (E.4) becomes

Covt0 (τ, δ) = Et0 [(Nt+τ −Nt)Et+τ [(Nt+2τ+δ −Nt+τ+δ)]]

− Et0 [(Nt+τ −Nt)]Et0 [(Nt+2τ+δ −Nt+τ+δ)] .

Applying the result (21) in Theorem 4, we get

Covt0 (τ, δ) = b>Ã−1
[
eÃ(τ+δ) − eÃδ

]
gt0 (t, τ) (E.5)

where

gt0 (t, τ) = Et0 [(Nt+τ −Nt)Xt+τ ]− eÃ(t+τ−t0)Et0 [Nt+τ −Nt]Xt0

+
(
I− eÃ(t+τ−t0)

)
Ã−1eµEt0 [Nt+τ −Nt]

= Et0 [Nt+τXt+τ ] + Ã−1eµEt0 [Nt]− eÃτ
[
Et0 (NtXt) + Ã−1eµEt0 [Nt]

]
− eÃ(t+τ−t0)Et0 [Nt+τ −Nt]Xt0 +

(
I− eÃ(t+τ−t0)

)
Ã−1eµEt0 [Nt+τ −Nt] . (E.6)

In the rhs of (E.6), the last two terms are stationary due to the result in (22) and to the negativity

of the real part for the eigenvalues of Ã; the third term converges to zero as t → +∞ while the

fourth term has the following limit behaviour(
I− eÃ(t+τ−t0)

)
Ã−1eµEt0 [Nt+τ −Nt]→ Ã−1eµ2

(
1− b>Ã−1e

)
τ a.s. t→ +∞. (E.7)

For the first two terms in the rhs (E.6) consider the quantity:

ht0 (t, τ) := Et0 [Nt+τXt+τ ] + Ã−1eµEt0 [Nt] , ∀τ ≥ 0, t > t0 (E.8)

as t → +∞. In (E.8) the vector Et0 [NtXt] requires the calculation of p infinitesimal generators.

We then observe that for i = 1, . . . , p− 1, the infinitesimal generator of the function NtXt,i is:

ANtXt,i =
(
µ+ b>Xt

)
[(Nt + 1)Xt,i −NtXt,i] +NtXt,i+1

=
(
µXt,i +Xt,iX

>
t b
)

+NtXt,i+1
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while for i = p

ANtXt,p =
(
µ+ b>Xt

)
[(Nt + 1) (Xt,p + 1)−NtXt,p] +NtA[p,·]Xt

=
(
µ+ b>Xt + µNt

)
+
(
µXt,p +Xt,pX

>
t b
)

+
(
b> +A[p,·]

)
NtXt,

that implies

dEt0 [XtNt] =
[(
µ+ b>Et0 [Xt] + µEt0 [Nt]

)
e + µEt0 [Xt] + Et0

[
XtX

>
t

]
b + ÃEt0 [XtNt]

]
dt

(E.9)

from where we get

Et0 [XTNT ] = eÃ(T−t0)Xt0Nt0 +

∫ T

t0

eÃ(T−t)
(
µ+ b>Et0 [Xt] + µEt0 [Nt]

)
edt

+

∫ T

t0

eÃ(T−t)
[
µEt0 [Xt] + Et0

[
XtX

>
t

]
b
]

dt. (E.10)

The quantity Et0 [XTNT ] is not stationary but it is useful as it appears in the rhs of the function

ht0 (t, τ) introduced in (E.8) that can be rewritten as

ht0 (t, τ) = eÃ(t+τ−t0)Xt0Nt0 +

∫ t+τ

t0

eÃ(t+τ−u)µedu+

∫ t+τ

t0

eÃ(t+τ−u)b>Et0 [Xu] edu

+

∫ t+τ

t0

eÃ(t+τ−u) (µEt0 [Nu]) edu+ Ã−1eµEt0 [Nt]

+

∫ t+τ

t0

eÃ(t+τ−u)
[
µEt0 [Xu] + Et0

[
XuX

>
u

]
b
]

du. (E.11)

We analyze the long-run behaviour of each term in the rhs of (E.11). We first observe that∫ t+τ

t0

eÃ(t+τ−u)duµe =
(
eÃ(t+τ−t0) − I

)
Ã−1µe

with

lim
t→+∞

(
eÃ(t+τ−t0) − I

)
Ã−1µe = −Ã−1µe. (E.12)

The formula for the conditional expected value of the process in (17) allows us to rewrite the third
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term in the rhs of (E.11) as follows∫ t+τ

t0

eÃ(t+τ−u)eb>Et0 [Xu] du = eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0
[
Xt0 + Ã−1eµ

]
−

∫ t+τ

t0

eÃ(t+τ−u)dueb>Ã−1eµ

= eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0
[
Xt0 + Ã−1eµ

]
−

(
eÃ(t+τ−t0) − I

)
Ã−1eb>Ã−1eµ. (E.13)

To compute the integral eÃ(t+τ)
∫ t+τ
t0

e−Ãueb>eÃudue−Ãt0 we use the result in (C.4) and exploiting

its limit behaviour (C.5), the long-run behaviour of (E.13) becomes

lim
t→+∞

∫ t+τ

t0

eÃ(t+τ−u)eb>Et0 [Xu] du = Ã−1eb>Ã−1eµ. (E.14)

The fourth term in the rhs of (E.11) can be written as∫ t+τ

t0

eÃ(t+τ−u)dueµNt0 +

∫ t+τ

t0

eÃ(t+τ−u) (u− t0) dueµ2
(

1− b>Ã−1e
)

+

∫ t+τ

t0

eÃ(t+τ−u)eµb>Ã−1
[
eÃ(u−t0) − I

]
du
(
Xt0 + Ã−1eµ

)
+ Ã−1eµEt0 [Nt]

=
(
eÃ(t+τ−t0) − I

)
Ã−1eµNt0 +

[∫ t+τ

t0

eÃ(t+τ−u) (u− t0) du

]
eµ2

(
1− b>Ã−1e

)
+ eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0Ã−1
[
Xt0 + Ã−1eµ

]
µ

− Ã−1
(
eÃ(t+τ−t0) − I

)
eb>Ã−1

[
Xt0 + Ã−1eµ

]
µ+ Ã−1eµEt0 [Nt] . (E.15)

Integrating by parts we get∫ t+τ

t0

eÃ(t+τ−u) (u− t0) du = Ã−1
[(
eÃ(t+τ−t0) − I

)
Ã−1 − I (t+ τ − t0)

]
.

Thus (E.15) becomes(
eÃ(t+τ−t0) − I

)
Ã−1eµNt0 + Ã−1

[(
eÃ(t+τ−t0) − I

)
Ã−1 − I (t+ τ − t0)

]
eµ2

(
1− b>Ã−1e

)
+ eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0Ã−1
[
Xt0 + Ã−1eµ

]
µ

− Ã−1
(
eÃ(t+τ−t0) − I

)
eb>Ã−1

[
Xt0 + Ã−1eµ

]
µ+ Ã−1eµEt0 [Nt] .
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Using the formula for the conditional expected value of the counting process in (16) we get(
eÃ(t+τ−t0) − I

)
Ã−1eµNt0 + Ã−1

[(
eÃ(t+τ−t0) − I

)
Ã−1 − I (t+ τ − t0)

]
eµ2

(
1− b>Ã−1e

)
+ eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0Ã−1
[
Xt0 + Ã−1eµ

]
µ

− Ã−1
(
eÃ(t+τ−t0) − I

)
eb>Ã−1

[
Xt0 + Ã−1eµ

]
µ

+ Ã−1eµ
[
Nt0 + µ

(
1− b>Ã−1e

)
(t− t0) + b>Ã−1

(
eÃ(t1−t0) − I

) [
Xt0 + Ã−1eµ

]]
= eÃ(t+τ−t0)Ã−1eµNt0 + Ã−1

[(
eÃ(t+τ−t0) − I

)
Ã−1 − Iτ

]
eµ2

(
1− b>Ã−1e

)
+ eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0Ã−1
[
Xt0 + Ã−1eµ

]
µ

− Ã−1eÃ(t+τ−t0)eb>Ã−1
[
Xt0 + Ã−1eµ

]
µ+ Ã−1eµb>Ã−1eÃ(t−t0)

[
Xt0 + Ã−1eµ

]
and its long-run behaviour is established considering t→ +∞, that is

−Ã−1
[
Ã−1 + Iτ

]
eµ2

(
1− b>Ã−1e

)
. (E.16)

The fifth term in the right-hand side of (E.11) can be rewritten as∫ t+τ

t0

eÃ(t+τ−u)Et0 [Xu] duµ =

∫ t+τ

t0

eÃ(t+τ−u)eÃ(u−t0)du
[
Xt0 + Ã−1eµ

]
µ

−
∫ t+τ

t0

eÃ(t+τ−u)duÃ−1eµ2

= eÃ(t+τ−t0) (t+ τ − t0)
[
Xt0 + Ã−1eµ

]
µ

− Ã−1
(
eÃ(t+τ−t0) − I

)
Ã−1eµ2,

that has the following long-run behaviour

lim
t→+∞

∫ t+τ

t0

eÃ(t+τ−u)Et0 [Xu] duµ = Ã−1Ã−1eµ2. (E.17)
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Lemma 1 suggests that the last term in the rhs of (E.11) can be written as∫ t+τ

t0

eÃ(t+τ−u)Et0
[
XuX

>
u

]
bdu =

∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃A(u−t0)duvlt

(
Xt0X

>
t0

)
+

∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃A(u−t0)du ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
−

∫ t+τ

t0

eÃ(t+τ−u)duB ˜̃A−1µ
(
ẽ− C̃Ã−1e

)
+

∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃Au

[∫ u

t0

e−
˜̃AhC̃eÃhdh

]
e−Ãt0

[
Xt0 + Ã−1eµ

]
du.

The result in (A.1) implies that∫ t+τ

t0

eÃ(t+τ−u)Et0
[
XuX

>
u

]
bdu =

[∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃A(u−t0)du

]
vlt
(
Xt0X

>
t0

)
+

[∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃A(u−t0)du

]
˜̃A−1µ

(
ẽ− C̃Ã−1e

)
−

(
eÃ(t+τ−t0) − I

)
Ã−1B ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
+

∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃Au

[∫ u

t0

e−
˜̃AhC̃eÃhdh

]
e−Ãt0du

[
Xt0 + Ã−1eµ

]
.

To determine the asymptotic behaviour of this term, we analyze the long-run behaviour of the

integral
∫ t+τ
t0

eÃ(t+τ−u)Be
˜̃A(u−t0)du. Exploiting the result in Appendix C, we have

lim
t→+∞

∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃A(u−t0)du = 0

as all eigenvalues of Ã and ˜̃A have negative real part. Using the Fubini-Tonelli’s Theorem the last

integral becomes∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃Au

[∫ u

t0

e−
˜̃AhC̃eÃhdh

]
e−Ãt0du =

∫ t+τ

t0

∫ u

t0

eÃ(t+τ−u)Be
˜̃A(u−h)C̃eÃ(h−t0)dhdu.

Its long-run behaviour is obtained using the result in (C.6), that is

lim
t→+∞

∫ t+τ

t0

∫ u

t0

eÃ(t+τ−u)Be
˜̃A(u−h)C̃eÃ(h−t0)dhdu = 0. (E.18)

Finally, we have

lim
t→+∞

∫ t+τ

t0

eÃ(t+τ−u)Et0
[
XuX

>
u

]
bdu = Ã−1B ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
. (E.19)
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From (E.12), (E.14), (E.16), (E.17) and (E.19) we obtain the limit behaviour for the quantity in

(E.11)

h∞ (τ) := lim
t→+∞

ht0 (t, τ)

= −Ã−1µe + Ã−1eb>Ã−1eµ− Ã−1
[
Ã−1 + Iτ

]
eµ2

(
1− b>Ã−1e

)
+ Ã−1Ã−1eµ2Ã−1B ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
. (E.20)

Using (E.20) we can determine the asymptotic behaviour of (E.6) and we get

g∞ (τ) := lim
t→+∞

gt0 (t, τ)

= lim
t→+∞

ht0 (t, τ)− eÃτ
[

lim
t→+∞

ht0 (t, 0)

]
+ Ã−1eµ2

(
1− b>Ã−1e

)
τ

= h∞ (τ)− eÃτh∞ (0) + Ã−1eµ2
(

1− b>Ã−1e
)
τ. (E.21)

By straightforward calculations (E.21) becomes (42) and the covariance reads as in (41).

Appendix E.3. Proof of Theorem 6.

Here we provide the proof of Theorem 6.

Proof. For the asymptotic variance we need to compute the conditional variance of the number of

jumps in an interval with length τ . First we observe that

σ2
t0 (t, τ) := Vart0 (Nt+τ −Nt) = Et0

[
(Nt+τ −Nt)

2
]
− E2

t0 [Nt+τ −Nt] .

We then compute the second moment of the increments

Et0
[
(Nt+τ −Nt)

2
]

= Et0
[
N2
t+τ

]
+ Et0

[
N2
t

]
− 2Et0 [NtEt [Nt+τ ]]

= Et0
[
N2
t+τ

]
− Et0

[
N2
t

]
− 2Et0 [Nt]µ

(
1− b>Ã−1e

)
τ

− 2b>Ã−1
[
eÃτ − I

] [
Et0 [NtXt] + Ã−1eµEt0 [Nt]

]
.

For Et0
[
N2
t

]
it is useful to compute the infinitesimal operator for the function f (X1,t, . . . , Xp,t, Nt, ) =

N2
t , that reads

Aft = µ (2Nt + 1) + 2b>NtXt + b>Xt.

Applying the Dynkin’s formula, we have

Et0
[
N2
t

]
= N2

t0 + 2µ

∫ t

t0

Et0 [Nu] du+ µ (t− t0) + 2b>
∫ t

t0

Et0 [NuXu] du+ b>
∫ t

t0

Et0 [Xu] dt.
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Therefore

Et0
[
(Nt+τ −Nt)

2
]

= 2µ

∫ t+τ

t
Et0 [Nu] du+ µτ + 2b>

∫ t+τ

t
Et0 [NuXu] du+ b>

∫ t+τ

t
Et0 [Xu] du

− 2Et0 [Nt]µ
(

1− b>Ã−1e
)
τ − 2b>Ã−1

[
eÃτ − I

] [
Et0 [NtXt] + Ã−1eµEt0 [Nt]

]
= 2µ

∫ t+τ

t
Et0 [Nu −Nt] du+ µτ + b>

∫ t+τ

t
Et0 [Xu] du

+ 2b>
∫ t+τ

t

[
Et0 [NuXu] + Ã−1eµEt0 [Nt]

]
du

− 2b>Ã−1
[
eÃτ − I

] [
Et0 [NtXt] + Ã−1eµEt0 [Nt]

]
. (E.22)

We study the asymptotic behaviour of the terms in (E.22). Denoting with at0 (t, τ) :=
∫ t+τ
t Et0 [Nu −Nt] du,

we obtain

at0 (t, τ) =

∫ t+τ

t
µ
(

1− b>Ã−1e
)

(u− t) du+

∫ t+τ

t
b>Ã−1

[
eÃ(u−t0) − eÃ(t−t0)

]
du
[
Xt0 + Ã−1e

]
= µ

(
1− b>Ã−1e

) τ2

2
+

∫ t+τ

t
b>Ã−1

[
eÃ(u−t) − I

]
dueÃ(t−t0)

[
Xt0 + Ã−1e

]
.

We observe that the following integral is finite∫ t+τ

t
b>Ã−1

[
eÃ(u−t) − I

]
du < +∞

from where we deduce that

a∞ (τ) := lim
t→+∞

at0 (t, τ) = µ
(

1− b>Ã−1e
) τ2

2
. (E.23)

We then focus on the quantity bt0 (t, τ) := µτ + b>
∫ t+τ
t Et0 [Xu] du that through straightforward

computations can be written as

bt0 (t, τ) = µτ + b>
∫ t+τ

t

[
eÃ(u−t0)

(
Xt0 + Ã−1eµ

)
− Ã−1eµ

]
du

=
(

1− b>Ã−1e
)
µτ + b>eÃ(t−t0)

∫ t+τ

t
eÃ(u−t)

(
Xt0 + Ã−1eµ

)
du.

Since we have a continuous integrand in a compact support∫ t+τ

t
eÃ(u−t)du < +∞,
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we have

b∞ (τ) := lim
t→+∞

bt0 (t, τ) =
(

1− b>Ã−1e
)
µτ. (E.24)

Denoting with ct0 (t, τ) :=
∫ t+τ
t

[
Et0 [NuXu] + Ã−1eµEt0 [Nt]

]
du, we obtain

ct0 (t, τ) = I0,t0 (t, τ) + I1,t0 (t, τ) + I2,t0 (t, τ) + I3,t0 (t, τ) + I4,t0 (t, τ) + I5,t0 (t, τ)

where I0,t0 (t, τ) :=
∫ t+τ
t eÃ(u−t0)Xt0Nt0du is rewritten as

I0,t0 (t, τ) = e
˜A(t−t0)τ

∫ t+τ

t
eÃ(u−t)Xt0Nt0du

and using the same arguments as above, we get

I0,∞ (t, τ) := lim
t→+∞

I0,t0 (t, τ) = 0.

The quantity I1,t0 (t, τ) :=
∫ t+τ
t

(
eÃ(u−t0) − I

)
Ã−1eµdu can be rewritten as

I1,t0 (t, τ) =

∫ t+τ

t
eÃ(u−t0)Ã−1eµdu− Ã−1eµτ

while taking the limit as t→ +∞, we have

I1,∞ (t, τ) := lim
t→+∞

I1,t0 (t, τ) = −Ã−1eµτ. (E.25)

The quantity

I2,t0 (t, τ) :=

∫ t+τ

t

∫ u

t0

eÃ(u−s)eb>eÃ(s−t0)dsdu
[
Xt0 + Ã−1eµ

]
−

∫ t+τ

t

(
eÃ(u−t0) − I

)
duÃ−1eb>Ã−1eµ (E.26)

depends on the integral
∫ t+τ
t

∫ u
t0
eÃ(u−s)eb>eÃ(s−t0)dsdu where from the substitutions s − t0 = h

and r = u− t we get ∫ τ

0

∫ t+r−t0

0
eÃ(t−t0+r−h)eb>eÃhdhdr. (E.27)

Defining

Ä :=

[
Ã eb>

0p,p Ã

]
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and applying the result in Appendix C, the inner integral in (E.27) becomes

[Ip,p; 0p,p] e
Ä(t−t0+r)

[
0p,p

Ip,p

]
. (E.28)

Thus the integral in (E.27) can be computed as follows

[Ip,p; 0p,p] e
Ä(t−t0)

∫ τ

0
eÄrdr

[
0p,p

Ip,p

]
. (E.29)

We notice that as
∫ τ

0 e
Ärdr < +∞ and all eigenvalues of Ä have negative real part, then

I2,∞ (τ) := lim
t→+∞

I2,t0 (t, τ) = Ã−1eb>Ã−1eµτ.

Similarly, we get the limit for the term I3,t0 (t, τ) :=
∫ t+τ
t

[∫ u
t0
eÃ(u−s)µEt0 (Ns) eds+ Ã−1eµEt0 (Nu)

]
du

as t→ +∞:

I3,∞ (t, τ) := lim
t→+∞

I3,t0 (t, τ) = −Ã−1

[
I
τ2

2
+ Ã−1τ

]
eµ2

(
1− b>Ã−1e

)
.

We define the following quantity

I4,t0 (t, τ) :=

[∫ t+τ

t
eÃ(u−t0) (u− t0) du

] [
Xt0 + Ã−1eµ

]
µ+ Ã−1Ã−1eµ2τ

− Ã−1

∫ t+τ

t
eÃ(u−t0)duÃ−1eµ2

and observe that the first integral can be rewritten as∫ t+τ

t
eÃ(u−t0) (u− t0) du = eÃ(t−t0)

∫ t+τ

t
eÃ(u−t) (u− t) du+ eÃ(t−t0) (t− t0)

∫ t+τ

t
eÃ(u−t)du

where both terms in the rhs tend to be zero as t→ +∞ thus

I4,∞ (τ) = lim
t→+∞

I4,t0 (t, τ) = Ã−1Ã−1eµ2τ.

Similar arguments are used to determine the limit as t → +∞ for the quantity I5,t0 (τ) :=∫ t+τ
t

∫ u
t0
eÃ(u−s)Et0

[
Xs, X

>
s

]
bdsdu as follows

I5,∞ (τ) = lim
t→+∞

I5,t0 (t, τ) = Ã−1B ˜̃A−1µ
(
ẽ− C̃Ã−1e

)
τ.
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Combining all results, we get the stationary behaviour for the quantity c∞ (τ) := limt→+∞ ct0 (t, τ)

that reads

c∞ (τ) = −Ã−1eµτ
(

1− b>Ã−1e
)
− Ã−1

[
I
τ2

2
+ Ã−1τ

]
eµ2

(
1− b>Ã−1e

)
+ Ã−1Ã−1eµ2τ

+ Ã−1B ˜̃A−1µ
(
ẽ− C̃Ã−1e

)
τ. (E.30)

Furthermore,

lim
t→+∞

Et0
[
(Nt+τ −Nt)

2
]

= 2µa∞ (τ) + b∞ (τ) + 2b>c∞ (τ)− 2b>Ã−1
[
eÃτ − I

]
h∞ (0)

= µ2
(

1− b>Ã−1e
)2
τ2 +

(
1− b>Ã−1e

)(
1− 2b>Ã−1e

)
µτ

+ 2b>Ã−1Ã−1eτµ2
(
b>Ã−1e

)
+ 2b>Ã−1B ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
τ

− 2b>Ã−1
[
eÃτ − I

]
h∞ (0) .

By straightforward calculations, we obtain the result in (43) for the asymptotic variance.

Appendix E.4. Proof of Theorem 7.

Proof. Proof of Theorem 7. We first prove the existence of a positive constant a0 > 0 such that

the kernel function satisfies the condition∫
R
ea0|t|h (t) dt < +∞. (E.31)

We notice that Assumption 1 implies that∫
R
ea0|t|h (t) dt = b>

∫ +∞

0
ea0teAtdte = b>S

∫ +∞

0
ea0teΛtdtS−1e.

Choosing a0 ∈ (0, |Re (λ1)|) the condition in (E.31) is ensured and thus we can apply the result in

Theorem 1 proved by Cheysson and Lang (2020), and the strong-mixing coefficient results to be

αN (r) = O (e−ar) where a ∈ (0, a0).

Appendix E.5. Proof of Theorem 8.

Proof. Proof of Theorem 8. The proof is quite standard and is an application of Theorem 18.5.3

in Ibragimov and Linnik (1971) and Cramér-Wold device. Denoting with

ϑ := [E (∆1N∞) , V ar (∆1N∞) , Acv (1) , . . . , Acv (d)]> (E.32)

we apply Theorem 18.5.3 in Ibragimov and Linnik (1971) to the linear combination
(
c>Vk

)
k=1,2,...n

where c is a generic d + 2 real vector such that c>Σc > 0. Since the strong mixing property is
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preserved under linear transformations as well as the rate we have

√
n

(
1

n

n∑
k=1

c>Vk − c>ϑ

)
→ N

(
0, c>V ar (V1) c+ 2

+∞∑
k=1

c>Cov
(
V1V

>
k

)
c

)
, as n→ +∞

that is
√
n

(
1

n

n∑
k=1

c>Vk − c>ϑ

)
→ N (0, c>Σc) , as n→ +∞.

Applying Cramér-Wold device we obtain the asymptotic behavior in (49).
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