
What we talk about when we talk about programs
Violetta Lonati

Università degli Studi di Milano
Italy

violetta.lonati@unimi.it

Andrej Brodnik
University of Primorska / University of Ljubljana

Slovenia
andrej.brodnik@upr.si

ABSTRACT
Programming plays a paramount role in many educational policies
and initiatives. However, the current focus on coding skills poses a
risk of giving pupils an over simplistic and impoverished idea of
what programming means and involves. Their experiences would
be much more significant if learning were aimed at understanding
the richness of the nature of programs.

In fact, programs are strange creatures that escape simple def-
initions. They are real, in that they affect our real lives; they are
abstract, in that they process abstract entities; and they are concrete,
in that they take up space in digital devices memory, and can be
copied, transferred, corrupted. Thus, understanding the multifac-
eted nature of programs is crucial knowledge for all citizens of the
digital era, and a fundamental component of such an understanding
is getting a sense of how programs are created and work (i.e., the
programming process).

To the best of our knowledge, there is no Nature of Programs
framework (e.g., a set of statements that describe what the nature
of programs is), that teachers and policy makers can use to shape
their practice and targets. The goal of the WG is developing such a
framework, by collecting and organizing contributions from CER,
CS experts, and educators.

Work plan:
• analysis of literature (including textbooks);
• identification of the fundamental tenets of the Nature of
Programs;

• collection of feedback from the CSE community through
surveys or other appropriate research instruments;

• revision according to feedback.

BACKGROUND AND RELATEDWORK
The focus on programs. Computer programs are part of our daily

life, we use them, we provide them with data, they support our deci-
sions, they help us remember, they control machines, etc. Programs
are made by people, but in most cases we are not their authors, so
we have to decide if we can trust them. Programs enable computers
and computer-controlled machines to behave in a large variety of
ways. They bring the intrinsic power of computers to life. Programs
have a variety of properties that all citizens must be aware of; due
to the intangible nature of programs, most of these properties are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

unusual and peculiar, but fundamental for understanding the digital
world. In other terms, understanding the Nature of Programs (NoP)
is a key component of the computing literacy: it is crucial to enable
a creative and conscious use of computing devices, and should be
one of the main outcomes of computing education — alongside
with, e.g., the development of problem solving and computational
thinking skills. Moreover it should be part of any effort aimed at
bringing digital competences to the general public. An attempt
in this direction has been carried out by the WG proponents in
the occasion of the revision of DigComp 2.1 framework [3]; the
outcome of this work is a preliminary list of knowledge statements
and examples about the nature of programs1, as reported in [2].

However, the full understanding of NoP might not be a natural
learning outcome of CS activities. For instance, using visual pro-
gramming environments does not imply that students are able to
recognize that the programs they write have the same nature of
the “apps” they use on their mobile phones. Similarly, unplugged
activities aimed at developing computational thinking skills might
be perceived as disconnected from the use of digital devices and
programs in everyday life [9, 13]. To overcome these limited per-
spectives, teachers need to be aware of what NoP is, and use this
knowledge to inform their teaching practice.

Programs, programming, and computational thinking. The cen-
trality of programming in CS is reflected in most computing edu-
cation initiatives 2, which indeed often include some type of pro-
gramming activity, mainly under the term ‘coding’. One can even
argue that, for many teachers, computer science is just a synonym
for coding [16].

Another fundamental component of computing education re-
volves around the Computational Thinking (CT) idea [18]. Even if
there is no ultimate definition for it, this idea concerns the ability
to address “problems in a way that enables us to use a computer
and other tools to help solve them” [7]. This encompasses a variety
of creative cognitive processes and activities, like modeling real-life
situations, representing information in digital form, organizing data,
analyzing and generalizing computational solutions, assessing their
social impact, and so on. In other terms, CT goes far beyond coding
and tries to represent and value the greater richness of computing.

Since the above mentioned activities play a fundamental role
also in the process of designing programs, our WG approach shares
a similar scope as CT. A fundamental difference is that CT-based
frameworks mostly focus on CT practical and cognitive skills, while
here we chose to reflect about the underlying knowledge about the
nature of programs, that CT activities should both promote and
stem from.

1See Section “3.4 Programming” in https://ec.europa.eu/eusurvey/files/b3537dde-9921-
4045-8b29-209610af7990/3e97420f-b810-42cf-9ef3-6d2e8e62e16a.
2See for instance ALL (https://www.csforall.org/) and Informatics for All Coalition
(https://www.informaticsforall.org).

https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://ec.europa.eu/eusurvey/files/b3537dde-9921-4045-8b29-209610af7990/3e97420f-b810-42cf-9ef3-6d2e8e62e16a
https://ec.europa.eu/eusurvey/files/b3537dde-9921-4045-8b29-209610af7990/3e97420f-b810-42cf-9ef3-6d2e8e62e16a
https://www.csforall.org/
https://www.informaticsforall.org

Historical and philosophical perspective. As one can expect, the
nature of programs has had a relevant role in the broader discus-
sion about the Nature of Computer Science. Some very significant
contributions on the issue appeared in the ’80–90s [4, 12, 17], one
of the triggering question being “Is CS a science?”. CS and its im-
pact in society has greatly evolved since; more recent contributions
about the nature of CS can be found in [5, 6, 11]; the book [14]
provides an articulate presentations of the topic from an historical
perspective. Such a discussion, however, has been conducted by
and for CS, philosophy, and history matter experts, and has rarely
reached a wider audience. Notable exceptions are [1, 5, 15].

Focusing on programs, the ongoing project “PROGRAMme” starts
with the premises that the seeminingly simple question “What is a
computer program?” has no simple answer today3. It thus aims at
developing “a coherent analysis and pluralistic understanding of
‘computer program’ and its implications to theory and practice”, by
taking a historical and philosophical approach. The project plans to
consider the various characterizations of programs that derive from
different viewpoints and pertain to different historical phases of
the development of the discipline (either in academia or industry).

While considering wonderful sources both “PROGRAMme” and
the references mentioned above about the nature of CS, in the
current WG proposal we take a different perspective. We don’t aim
at analyzing and contrasting the different points of view about the
nature of programs; instead we want to identify the fundamental
tenets that bring together all different views, to target specifically
the educational arena. Our goal is developing a Nature of Program
framework that teachers and educational policy makers can make
use of to frame CS teaching practice and curricula.

The Nature of Programs and the Nature of Science. The expres-
sion “Nature of Programs” draws inspiration from “Nature of Sci-
ence” (NoS), a similar expression born in the ’70s that refers to the
fundamental characteristics of science knowledge and scientific
inquiry, as derived from how it is produced: a necessary knowledge
to make informed decisions with respect to the ever-increasing
scientifically-based personal and societal issues [10]. NoS is a sig-
nificant component of scientific literacy and it is argued that NoS
cannot be learned simply by studying science concepts or attend-
ing science labs, but it must be addressed explicitly with active
reflective practice and discussions among students in their learning
contexts [8]. This also implies that teachers should have a “shared
accurate view of NoS” and agree that NoS needs to be taught and
assessed explicitly [10].

CS education would benefit as well from a similar approach, in
order to boost its contribute in creating a CS-literate society that is
able to make informed decisions on CS-based issues. This working
group proposes a first step in this direction, focusing on the Nature
of Programs (including the way that they are created and built),
due to the role that programs play in CS and all society.

REFERENCES
[1] Tim Bell, Paul Tymann, and Amiram Yehudai. 2018. The Big Ideas in Computer

Science for K-12 Curricula. Bull. EATCS 124 (2018).
[2] Andrej Brodnik, Andrew Csizmadia, Gerald Futschek, Lidija Kralj, Violetta Lonati,

Peter Micheuz, and Mattia Monga. 2021. Programming for All: Understanding
the Nature of Programs. CoRR abs/2111.04887 (2021). arXiv:2111.04887

3See the project website https://programme.hypotheses.org

[3] Stephanie Carretero, Riina Vuorikari, and Yves Punie. 2017. DigComp 2.1: The Dig-
ital Competence Framework for Citizens with eight proficiency levels and examples
of use. Joint Research Centre (European Commission), European Union.

[4] Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker,
A. Joe Turner, and Paul R Young. 1989. Computing as a discipline. Computer 22,
2 (1989), 63–70.

[5] Peter J. Denning and Craig H. Martell. 2015. Great Principles of Computing. The
MIT Press.

[6] Amnon H. Eden. 2007. Three Paradigms of Computer Science. Minds Mach. 17, 2
(jul 2007), 135–167. https://doi.org/10.1007/s11023-007-9060-8

[7] International Society for Technology in Education(ISTE) and Computer Science
Teachers Association (CSTA). 2011. Operational Definition of Computational
Thinking for K12 Education. https://cdn.iste.org/www-root/Computational_
Thinking_Operational_Definition_ISTE.pdf

[8] Norman G. Lederman. 2013. Nature of science: Past, present, and future. In
Handbook of research on science education. Routledge, 845–894.

[9] Violetta Lonati, Dario Malchiodi, Mattia Monga, and Anna Morpurgo. 2015.
Is coding the way to go?. In 8th ISSEP (Ljubljana, Slovenia) (LNCS, Vol. 9378),
Andrej Brodnik and Jan Vahrenhold (Eds.). Springer International Publishing,
Switzerland, 165–174. https://doi.org/10.1007/978-3-319-25396-1_15

[10] National Science Teachers Association. 2020. Nature of Science. https://www.
nsta.org/nstas-official-positions/nature-science

[11] William J. Rapaport. 2005. Philosophy of Computer Science: An Introductory
Course. Teaching Philosophy 4 (2005), 319–341. Issue 28.

[12] Mary Shaw. 1985. The Nature of Computer Science. In The Carnegie-Mellon
Curriculum for Undergraduate Computer Science. Springer, 7–12.

[13] Rivka Taub, Michal Armoni, and Mordechai Ben-Ari. 2012. CS Unplugged and
Middle-School Students’ Views, Attitudes, and Intentions Regarding CS. ACM
Trans. Comput. Educ. 12, 2, Article 8 (April 2012), 29 pages.

[14] Matti Tedre. 2014. The Science of Computing: Shaping a Discipline. CRC Press.
[15] Matti Tedre. 2018. The Nature of Computing as a Discipline. In Computer Science

Education. Perspectives on Teaching and Learning in School, Sue Sentance, Erik
Barendsen, and Carsten Schulte (Eds.). Bloomsbury Publishing, Chapter 1.

[16] Mike Tissenbaum and Anne Ottenbreit-Leftwich. 2020. A Vision of K-12 Com-
puter Science Education for 2030. Commun. ACM 63, 5 (April 2020), 42–44.

[17] Peter Wegner. 1976. Research Paradigms in Computer Science. In Proceedings
of the 2nd International Conference on Software Engineering (San Francisco, Cal-
ifornia, USA) (ICSE ’76). IEEE Computer Society Press, Washington, DC, USA,
322–330.

[18] Jeannette M Wing. 2006. Computational thinking. CACM 49, 3 (2006), 33–35.

https://arxiv.org/abs/2111.04887
https://programme.hypotheses.org
https://doi.org/10.1007/s11023-007-9060-8
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
https://doi.org/10.1007/978-3-319-25396-1_15
https://www.nsta.org/nstas-official-positions/nature-science
https://www.nsta.org/nstas-official-positions/nature-science

	References

