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Abstract

Nutrition science requires more science-based evidences for the development of effective

functional diets. To reduce animals for experimental purposes innovative reliable and infor-

mative models, simulating the complex intestinal physiology, are needed. The aim of this

study was to develop a swine duodenum segment perfusion model for the evaluation of

nutrient bioaccessibility and functionality across time. At the slaughterhouse, one sow intes-

tine was harvested following Maastricht criteria for organ donation after circulatory death

(DCD) for transplantation purposes. Duodenum tract was isolated and perfused in sub-nor-

mothermic conditions with heterologous blood after cold ischemia induction. Duodenum

segment perfusion model was maintained under controlled pressure conditions through

extracorporeal circulation for 3 hours. Blood samples from extracorporeal circulation and

luminal content samples were collected at regular intervals for the evaluation of glucose

concentration by glucometer, minerals (Na+, Ca2+, Mg2+, K+) by ICP-OES, lactate-dehydro-

genase and nitrite oxide by spectrophotometric methods. Dacroscopic observation showed

peristaltic activity caused by intrinsic nerves. Glycemia decreased over time (from 44.00

±1.20 mg/dL to 27.50±0.41; p < 0.01), suggesting glucose utilization by the tissue confirming

the organ viability in line with histological examinations. At the end of the experimental

period, intestinal mineral concentrations were lower than their level in blood plasma sug-

gesting their bioaccessibility (p < 0.001). A progressive increase of LDH concentration over

time was observed in the luminal content probably related to a loss of viability (from 0.32

±0.02 to 1.36±0.02 OD; p < 0.05) confirmed by histological findings that revealed a de-epi-

thelization of the distal portion of duodenum. Isolated swine duodenum perfusion model sat-

isfied the criteria for studying bioaccessibility of nutrients, offering a variety of experimental

possibilities in line with 3Rs principle.

1 Introduction

Nowadays, nutrition plays a pivotal role for both human and animal health, related not only to

simply to satisfy nutritional requirements, it also plays a key role in the health and welfare also

through its functionality [1–4]. The literature offers an heterogenous panorama of nutritional
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studies, and several studies are contradictory on the argument. The prediction of the nutri-

tional quality of food and feed products requires more knowledge related to the individual

digestibility of dietary compounds [5].

Currently, the request to reduce animals for experimental purposes is continuously grow-

ing. European policies on animal experimentation are intensely aiming to increase the protec-

tion of experimental animals, thus various alternative methods have being developed to

achieve this purpose [6]. Even the most advanced in vitro and in silico systems cannot fully

simulate complex phenomena such as inflammation, digestion, pathologies, and metabolism.

However, the introduction of innovative non-animal models is fundamental as complemen-

tary to animal experimentation [7]. Thus, reliable science-based models are required in order

to reduce and replace animals for experimental purposes. The gastrointestinal physiology is a

complex field that involves different tissues and systems (epithelium, muscles, nerves, connec-

tive, hormones and glandule), and the use of animals for studying nutrient digestion is still

considered essential.

Though remarkable results achieved with in vitro models, organ architecture, epithelium

integrity and nutrient absorption are not, at present, efficiently simulated. In vitro studies

range in their level of complexity from simple monocultures to complex 3-D structures con-

taining several cell types that are organized into a structure that retains (ex vivo tissue explants)

or mimics (tissue engineered in vitro models) different in vivo elements [8]. The ex vivo diges-

tion models are supposed to mimic the in vivo processes better than the in vitro technology,

thanks to a manufacturing process of digestive fluids, and the presence of the complete array

of proteases and substances that in vivo concur to the digestive process [9]. Several ex vivo
studies have been conducted on pigs due to the similar characteristics of swine species in

terms of similar morphology, structure, composition and enzymatic activity to humans and

the low cost of this technology.

Organ explants efficiently simulate the entire animal complexity, offering the possibility to

perform ex vivo experiments under standardized conditions and harvest several tissues from a

single animal in line with the 3R principle (replace, reduce, refine). In addition, the possibility

to perform more tests involving the same donor, improves the robustness of the ex vivo models

[10]. It has been demonstrated that the mucosal epithelium is extremely susceptible to ische-

mia [11] and although ex vivo models can better reproduce the complexity of the in vivo situa-

tion when compared to in vitro models, deterioration of the explanted tissue and lack of

hemodynamics can cause differences between ex vivo and in vivo data [12]. The perfusion of

ex vivo tissue allow to the conservation of organ viability and structure for a longer period

compared to classic ex vivo models [13]. Recent studies, showed encouraging results of swine

intestinal perfused model suggesting it as a cost-effective, practical and reliable strategy for the

study of intestinal physiology, pharmacology and transplantation [14]. In this scenario, the

aim of this study was to develop and assess an innovative swine intestinal segment perfusion

model for the evaluation of nutrient bioaccessibility and organ functionality across time

for further applications to study the effect of feed ingredients and additives on nutrients

bioavailability.

2 Materials and methods

2.1 Organ harvesting and extracorporeal circulation

One gastrointestinal tract was harvested at the slaughterhouse from a 100kg Large White

sow, following the Maastricht criteria for organ donation after circulatory death (DCD) for

transplantation purposes [15]. Heterologous blood was collected at the slaughterhouse

and 25 IU of heparin and 1 g of Cefazolin were added to avoid coagulation and bacterial
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contaminations. The blood was stored at 4 ˚C until organ perfusion. During the period of

the “warm ischemia”, that lasted from the animal exsanguination until the duodenum isola-

tion, the mesenteric artery was cannulated [16]. The “cold ischemia” started with arterial

infusion of 2 L of Belzer UW Cold Storage solution (S.A.L.F. Spa, Bergamo, Italy) [17] within

9 minutes for organ structure preservation. The descendant part of duodenum was isolated,

and an intraluminal access was set-up by fixing a luer-lock connector on the pylorus side.

The intestinal segment was intraluminal perfused with 360 mL of sterile Krebs-Ringer buffer

(NaCl 115 mmol/L, K2HPO4 2.4 mmol/L, KH2PO4 0.4 mmol/L, CaCl2 1.2 mmol/L, MgCl2

1.2 mmol/L, NaHCO3
- 25 mmol/L, glucose 10 mmol/L) according to Biolley et al. [18] for

favoring the epithelial structure conservation. The organ was transported to the laboratory

submerged in a Ringer’s lactate solution at 4˚C. Duodenum tract was maintained in con-

trolled pressure conditions (flux pump 1.48 L/min, O2 2 L/min, artery pressure 76/55

mmHg) through extracorporeal circulation with heterologous blood at sub-normothermic

perfusion condition for 3 hours starting by the addition of warm blood at 37 ˚C. The circuit

was composed by a peristaltic pump (as a beating heart), venous reservoir and blood oxygen-

ator (as lungs) [19]. Organ temperature was monitored using a thermometer for the entire

experimental period.

2.2 Sample collection and analyses

During the first hour of extracorporeal circulation blood samples were collected from the

line at 7 minutes interval (T0, T1, T2, T3, T4, T5, T6, T7, T8). Throughout the second hour,

hematic samples were collected each 15 minutes (T9, T10, T11, T12) and at the third hour the

collection was performed at 30 minutes intervals (T13, T14). Plasma was obtained by centrifu-

gation at 3000 rpm for 15 min at 4 ˚C. In addition, the intestinal content was collected from

T0 to T14 every 30 minutes from the luer-lock connector. All biological samples were evalu-

ated for mineral and metabolites concentrations.

Glucose concentration was evaluated immediately after blood and intestinal lumen solution

sampling from extracorporeal circulation line and the luer-lock connector using a glucometer

(U-Right 4278, Biochemical Systems International S.p.A, Arezzo, Italy). The content of main

macro-elements (Na+, K+, Mg2+, Ca2+) was assessed using Inductively Coupled Plasma Optical

Emission Spectroscopy (ICP-OES, Optima 3300 XL, Perkin Elmer Inc., USA). First, calibra-

tion curves for each element considered were obtained using certified reference materials.

Blood and intestinal content samples were then diluted 1:100 (v/v) with sterile MilliQ water,

filtered with 0.45 um syringe filters and injected. The pH of intestinal lumen content was

evaluated with pHmeter. Lactate dehydrogenase (LDH) and nitrite ion (NO2
-) concentrations

were evaluated through colorimetric kits (CytoTox 961Non-Radioactive Cytotoxicity Assay

and Griess Reagent System, Promega Italia S.r.l, Milan, Italy) following the manufacturer

instructions. In particular, absorbances were read at 490 nm for LDH and 540 nm for NO2
-

using a spectrophotometer (Model 680 Microplate Reader; Bio-Rad Laboratories, Inc., Hercu-

les, CA, USA).

2.3 Histology, immunohistochemistry, and digital image analysis

After 3 hours of continuous perfusion, the intestinal segment was subdivided in three portions

(proximal A, medial B, and distal C; Fig 1) and tissue samples were fixed in 10% neutral buff-

ered formalin, embedded in paraffin, sectioned at 4 μm, and stained with hematoxylin and

eosin (H&E).

To assess the extent of epithelial cells proliferation in the intestinal mucosa, immunohis-

tochemistry with anti-ki67 (SP6, RM-9106-S, Labvision) primary antibody was performed.
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Four μm sections were deparaffinized and underwent heat-induced epitope retrieval at pH 9,

for 40 min at 95˚C (Dewax and HIER Buffer H, TA-999-DHBH, Thermo Scientific, UK).

Endogenous peroxidase activity was blocked by incubating sections in 3% H2O2 for 10 min.

Slides were rinsed and treated with PBS containing 10% normal serum for 30 min to reduce

nonspecific background staining and then incubated for 1 hour at room temperature with the

primary antibodies. Sections were incubated for 30 min with appropriate biotinylated second-

ary antibodies (Vector Laboratories, Burlingame, CA, USA), and then labelled by the avidin-

biotin-peroxidase (ABC) procedure with a commercial immunoperoxidase kit (VECTAS-

TAIN Elite ABC HRP Kit Standard, PK-6100, Vector Laboratories, Burlingame, CA, USA).

The immunoreaction was visualized with 3,3’-diaminobenzidine substrates (Peroxidase DAB

Substrate Kit, VC-SK-4100-KI01, Vector Laboratories, Burlingame, CA, USA) for 5 min and

sections were counterstained with Mayer’s hematoxylin. Digital slides were obtained from

H&E, and immunostained sections by using the NanoZoomer-S60 Digital slide scanner

(Hamamatsu, C13210-01), and images were captured by using theNDP.view2 Viewing soft-

ware (Hamamatsu, U12388-01).

Fig 1. Representative image of the intestinal segment perfusion model, ideally subdivided in proximal (A), medial (B) and distal (C)

portions for tissue sampling. The outlined lines indicate the incision points.

https://doi.org/10.1371/journal.pone.0283825.g001
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To assess the proliferation of the intestinal mucosa, the % of ki67-positive epithelial cells

(number of ki67 positive nuclei/number of total nuclei x 100) was evaluated using the ImageJ

analysis program [20].

2.4 Statistical analysis

The results of blood and intestinal content glucose, minerals and metabolites were analyzed

using a one-way ANOVA using JMP1 Pro 15 (SAS Inst. Inc., Cary, NC, USA). Multiple com-

parisons among timepoints were evaluated by performing Tukey’s Honestly Significant Differ-

ence test (Tukey’s HSD). The results were presented as least squares means ± standard error

(SE). The means were considered different when p� 0.05.

3 Results

During the extracorporeal circulation, pressure and oxygenation conditions were maintained

stable showing no alterations for three hours. Organ temperature was progressively increasing

over time, maintaining the sub-normothermic perfusion throughout the experimental period

(T0 = 15.2 ˚C, T1 = 17.5 ˚C, T2 = 18.8 ˚C, T3 = 19.2 ˚C, T4 = 20.5 ˚C, T5 = 21.0 ˚C, T6 = 22.0

˚C, T7 = 23.0 ˚C, T8 = 23.6 ˚C, T9 = 24.5 ˚C, T10 = 25.0 ˚C, T11 = 25.0 ˚C, T12 = 25.6 ˚C,

T13 = 25.6 ˚C, T14 = 25.8 ˚C). In general, the intestinal segment showed redness due to blood

vessels reperfusion, except in the distal portion C that appeared pale and bloodless, and the

peristaltic activity was observed after pinching stimulation. Reaching 25.3 ˚C the peristaltic

contraction was noted without any external stimulation.

3.1 Glucose, mineral concentrations, organ temperature and intestinal pH

The glucose level measured in Krebs-Ringer solution was 123.67±2.31 mg/dL. The glycemia

revealed a constant decreasing trend from an initial concentration of 44.00±1.20 to 27.50±0.41

mg/dL after 3 hours of extracorporeal circulation (Fig 2).

Considering the sampling intervals, during the first hour (T0-T8) statistically significant

different concentrations were registered when comparing T0 to T5, T6, T7 and T8 (44.00

±1.20, 36.50±1.20, 41.50±1.20, 38.25±1.20, 38.50±1.20 mg/dL respectively; (p< 0.001). In

the course of the second (T8-T12) and third hour (T12-T14) glucose concentration gradually

decreased until the end of experiment (p< 0.01). The glucose concentrations of intestinal

lumen did not significantly differ from the beginning to the end of extracorporeal circulation

(T0: 94.00±6.43 mg/dL; T4: 99.50±6.43 mg/dL; T8: 97.50±6.43; T12: 90.50±4.55 mg/dL; T14:

84.00±5.25).

Considering the mineral concentrations, Ca2+, Mg2+, K+ and Na+ showed significant differ-

ences over the experimental time (Fig 3). In particular, Na+ blood levels raised from T0 to T4

and decreased slightly at T14, while its concentration in intestinal content was constantly

reducing over time (p< 0.01). Ca2+, Mg2+, K+ blood concentrations increased significantly

over time, and co-currently their concentrations in the intestinal lumen significantly dropped

from T0 to T14 (p< 0.01).

Intestinal pH showed a constant value of 7 registered for T0, T4, T8, T12 and T14.

3.2 Lactate dehydrogenase and nitrite concentrations

LDH blood concentrations revealed a persistent trend over time even if statistically significant

differences were observed only in T3 and T4 compared to T14 (T3: 0.77±0.05 OD, T4: 0.85

±0.05 OD and T14: 1.08±0.05 OD; p< 0.05; Table 1). Intestinal lumen content registered rais-

ing concentrations of LDH from T4 to T14 (p< 0.0001).
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Nitrite ion concentrations were below the detection level of the assay for the entire experi-

mental period (< 1.56 μM).

3.3 Histological evaluation of the intestinal segment

In all examined portions (A, B, C), the intestinal architecture was preserved. A diffuse moder-

ate infiltration of lymphocytes, plasma cells and lesser numbers of neutrophils was present in

the intestinal mucosa, consistent with a diffuse moderate subacute enteritis. Moderate hyper-

emia was present in portions A and B (Fig 4). The intestinal epithelium of A and B portions

were similar in terms of a slight de-epithelialization in the apical part of villi (Fig 4A and 4B).

On the contrary, the intestinal portion C showed absence of erythrocytes within blood vessels

(impaired perfusion) and a diffuse necrosis of villi was visible (Fig 4C). Immunohistochemistry

analysis revealed 47.58% of proliferating epithelial cells in portion A, 35.01% in portion B and

33.72% in portion C (Fig 5).

4 Discussion

This study aimed to investigate the possibility to develop an alternative perfused intestinal seg-

ment model to study the nutrient bioaccessibility and bioavailability targeting to provide more

Fig 2. Glycemic levels measured for 3 hours from the extracorporeal circulation of perfused intestinal segment. Data are expressed as least squared

means and standard errors. Different lowercase letters indicate statistically significant differences (p� 0.01). First hour: hematic glucose concentrations of

the first hour measured at 7 minutes intervals; Second hour: hematic glucose concentrations of the second hour measured at 30 minutes intervals; Third

hour: hematic glucose concentrations of the third hour measured at 30 minutes intervals. Asterisk indicates statistically significant different values.

https://doi.org/10.1371/journal.pone.0283825.g002
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complete data compared to in vitro models. It is important to consider that this model is

more advanced if compared to a classic ex vivo model which do not provide extracorporeal

circulation. This model was obtained following the surgery techniques used for in vivo organ

transplantations in order to preserve the organ viability and architecture during the entire

experimental period [13].

Glucose bioaccessibility was evaluated due to its relevance in vivo as energetic marker

derived from starch and sugar digestion. The glucose level is considered a marker of cell prolif-

eration, viability [21, 22] and functionality for the metabolic activity [23]. The initial glycemic

level (44.00±1.20 mg/dL) could be considered low if compared to the normal range of swine

species (from 80 to 120 mg/dL) [24, 25]. The observed initial hypoglycaemia could be due to

the animal fasting before slaughtering procedures. The glycemic trend showed a decreasing

curve suggesting the utilization of glucose by erythrocytes and intestinal cells and the impossi-

bility to store sugars in the intestinal tissue after blood perfusion. We observed a peak of glu-

cose absorption at 7 minutes of extracorporeal circulation, and after the first hour a drop of

Fig 3. Mineral concentrations measured over time in blood plasma and intestinal lumen content. Data are expressed as least squared means and

standard errors. Different lowercase letters indicate statistically significant differences (p� 0.05). a) Calcium (Ca2+) concentrations measured at T0-T7-T14

in blood and T0-T14 in intestinal lumen content; b) Magnesium (Mg2+) concentrations measured at T0-T7-T14 in blood and T0-T14 in intestinal lumen

content; c) Potassium (K+) concentrations measured at T0-T7-T14 in blood and T0-T14 in intestinal lumen content; d) Sodium (Na+) concentrations

measured at T0-T7-T14 in blood and T0-T14 in intestinal lumen content.

https://doi.org/10.1371/journal.pone.0283825.g003
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18% was registered. Even without registering significant differences, endoluminal content of

glucose showed decreasing concentrations probably due to the low amount of glucose con-

sumed by erythrocytes for their metabolism [26]. However, the observed results suggested that

glucose was transported through its traditional mechanism. Glucose uptake is mediated via

the Sodium-Glucose Cotransporter 1 (SGLT1) localized on the enterocytes membrane and its

basolateral transport to the blood circulation is mediated primarily by the Glucose Transporter

2 (GLUT2) [27]. Glucose absorption is a complex mechanism also mediated by pancreas and

renin-angiotensin-aldosterone [28]. In this study, the glucose absorption could not be medi-

ated by hormonal asset [29] since it can be fully assessed only in vivo. The glucose concentra-

tion used was based on the defined level for the Krebs-Ringer solution as intraluminal nutrient

medium. The low intraluminal glucose concentration [30] confirmed the organ metabolism

without registering osmotic damage [31], even if it was not possible to evaluate a kinetic curve

Table 1. Lactate dehydrogenase concentrations measured over time in blood and intestinal lumen content.

Timepoint Blood (OD) Lumen (OD)

T0 0.93±0.05ab 0.32±0.02a

T1 0.99±0.05ab

T2 0.81±0.05ab

T3 0.77±0.05a

T4 0.84±0.05a 0.34±0.02a

T5 0.87±0.05ab

T6 0.82±0.05ab

T7 0.89±0.05ab

T8 0.89±0.05ab 0.50±0.02b

T9 0.86±0.05ab

T10 0.92±0.05ab

T11 0.83±0.05ab

T12 0.92±0.05ab 0.80±0.02c

T13 1.01±0.05ab

T14 1.08±0.05b 1.36±0.02d

p-value 0.0256 < 0.0001

Data are expressed as least squared means and standard errors.

Different lowercase letters indicate statistically significant differences (p� 0.05).

OD: optical densities measured at 490 nm of wavelength.

https://doi.org/10.1371/journal.pone.0283825.t001

Fig 4. Histology of the perfused intestinal tract at the end of the 3 hours of extracorporeal circulation (H&E stain, 100x, scale

bar = 200 μm). Portions A and B were overall well preserved and perfused, as demonstrated by blood vessels engorged with erythrocytes

(arrowheads). In portion C, blood vessels are not evident (impaired perfusion) and necrosis of villi (*) was present. Hematoxylin eosin of

intestinal A, B and C portions.

https://doi.org/10.1371/journal.pone.0283825.g004
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of its uptake [14]. Observed results suggest that glucose could be considered an interesting

marker for further application of this perfusion model for the evaluation of functional feed

additives which are meant to improve gut health and nutrient utilization [32, 33].

Minerals are essential inorganic nutrients that have to be exclusively acquired from the diet

[34]. Minerals concentration was evaluated as indirect indicator of intestinal function as they

do not require digestion to be absorbed. Na+ concentration in blood displayed a significant

increase from T0 to T7 and decreased from T7 to T14. In the meantime, the intestinal lumen

content of Na+ dropped significantly from T0 to T14. The observed increase in osmolarity sug-

gested that Na+ uptake and utilization was maintained during the extracorporeal circulation.

The absorption of Na+ is associated with glucose uptake from Sodium-Glucose Transporters

(SGLT1) [35]. In this model, the physiologic separation of vascular, interstitial, and intracellu-

lar sections was conserved, and the blood concentration of Na+ required to maintain a correct

balance of its level in the interstitial matrix.

K+ is one of the most important minerals for the acid-base and osmotic pressure balance

[36]. K+ is the most abundant intracellular cation and its plasma level is lower than sodium

abundance [37]. Similar to what observed for Na+, K+ levels increased in blood and decreased

in lumen content from T0 to T14.

Mg2+ is one of widely abundant minerals in the animal body, and it is involved in several

pivotal processes such as energy production, muscular contraction and nervous impulses

transferring [38]. The observed increased Mg2+ plasma concentration suggests its absorption

from intestinal lumen. In our study, Mg2+ blood level showed a drop from T0 to T7 probably

due to epithelial utilization of this mineral. Subsequently, the Mg2+ concentration increased

from T7 to T14 indicating its absorption from the lumen content. The intestinal lumen levels

of Mg2+ significantly dropped from T0 to T14 indicating a duodenal uptake through passive

and facilitated diffusion processes [39]. Ca2+ absorption is achieved through the active trans-

port and passive diffusion [40]. Its absorption is related to the Mg2+ presence, involving the

ATP-dependent ionic pumps that transfer Ca2+ in the extracellular space exchanging calcium

with Na+ [41]. Mg2+ could be also indirectly influenced by Na+ and K+ concentrations since it

is involved in the activity of the sodium-potassium pump [42]. Gastrointestinal system and

kidneys closely regulate Mg2+ absorption and elimination [43], and its intestinal active and

passive uptake mechanisms seem to do not be under hormonal control [44]. For this reason,

Mg2+ concentration could be considered a translational parameter to in vivo, that indicates the

nutrients’ bioaccessibility in the following perfusion model.

In line with the registered trend of Mg2+, Ca2+ levels significantly raised in blood and

dropped in the intestinal lumen content. Ca2+, Mg2+ and K+ plasma concentrations showed a

decrease in case of enteritis in vivo which can impair the absorption functionality of the gut

Fig 5. Proliferation of intestinal crypt epithelial cells. Immunoperoxidase staining for ki67, 400x, scale bar = 20 μm in portions A, B,

and C.

https://doi.org/10.1371/journal.pone.0283825.g005
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epithelium [45, 46]. In our duodenum perfusion segment model, luminal and plasma mineral

concentrations demonstrated that the bioaccessibility of these nutrients was maintained over

three hours of extracorporeal circulation.

The lactate dehydrogenase is a cytosolic enzyme that catalyzes the conversion of lactate to

pyruvate. LDH measurements offer a non-invasive and objective indication of mucosal cellular

integrity since the extracellular localization of LDH is associated with an epithelial tissue injury

[47]. LDH blood concentrations did not show any difference over time even if higher numeri-

cal values were registered after 3 hours. During an organ injury LDH is released from dead

cells and its concentration increases both in plasma and intestinal content [48]. In addition,

LDH is strongly correlated with hemoglobin release in blood vessels due to hemolysis [49].

The registered levels of LDH in plasma suggests that peristaltic pump and pressure conditions

used for extracorporeal circulation were suitable in terms of erythrocytes integrity [50]. The

perfused intestinal segment model showed a progressive increase of luminal concentration of

LDH suggesting a progressive damage of epithelial mucosa, consistent with the intestinal de-

epithelialization and necrosis observed during the histological evaluation.

In this model, LDH concentrations in plasma and intestinal lumen content could be con-

sidered as reliable indirect marker to assess organ viability over time.

In line with Sundaram et al. [51], nitric oxide was not detectable, probably due to the lim-

ited ability of swine enterocytes to produce NO2
-.

The preservation of tissue integrity before and during the experimentation is pivotal to

ensure the accuracy and reproducibility of data [52]. Histological evaluation revealed that the

overall intestinal architecture was preserved after 3 hours, with a visible blood perfusion and

only a slight de-epithelialization of villi in portions A and B, while in portion C perfusion was

absent and a diffuse loss of intestinal villi was observed. In this distal portion the nutrient

absorption was likely impaired. Intestinal proliferation was highest in proximal portion A with

a progressive decrease in B and C, supporting a reduced vitality in particular in the distal por-

tion C. In the examined portions of duodenum, the observed enteritis was considered a spon-

taneous finding not unexpected in a farming pig. The progressive impairment of section C

structure and tissue death could lead to a gradual necrosis that could involve the entire intesti-

nal segment if the perfusion time had been extended. Preservation of epithelial structures for 3

hours was proposed as the optimal period to optimize organ viability in ex vivo studies [53].

The observed increase in LDH was likely due to the de-epithelization of the intestinal mucosa.

Hyperemia observed in the portions A and B was probably due to high pressure conditions,

even if the selected parameters were in accordance with previous studies. Future development

of the following model will target to ensure a complete perfusion by shortening the segment

and perfection the surgery technique in order to store the complete vessels’ architecture that

could have influenced the blood perfusion in distal section. In this model, pressure conditions

require to be adapted in accordance with the size of the considered intestinal segment, and this

aspect will require further adaptations in order to perfection this model. Literature studies

demonstrated that UW solution provides better conservation of patches through prolonged

ischemia compared to other solutions [54]. Further studies are needed to assess the glucose

absorption trough perfusion of higher glucose concentrations through the intraluminal line.

In addition, more data are required to investigate and optimize the luminal nutrition in order

to maximize the organ viability and the conservation of intestinal structure for longer periods.

5 Conclusions

The developed swine perfused intestinal segment model showed characteristics of organ viabil-

ity and functionality over three hours of extracorporeal circulation. The duodenum segment
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preserved the principal nutrients bioaccessibility, cellular metabolism, and, at histological

evaluation, showed a preserved intestinal epithelial lining in the perfused portions. This study

offered encouraging results for the development of a novel swine intestinal segment perfusion

model for the evaluation of nutrients bioaccessibility in line with the 3R principle. Future

studies will be useful to improve the organ viability and structures conservation, considering

the potential of this model also for application to translational medicine for intestinal

transplantations.
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