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Abstract: The respiration rate (RR) is one of the physiological signals deserving monitoring for
assessing human health and emotional states. However, traditional devices, such as the respiration
belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device
discomfort). Recently, novel approaches have been proposed aiming at estimating RR in a less invasive
yet reliable way, requiring the acquisition and processing of contact or remote Photoplethysmography
(contact reference and remote-PPG, respectively). The aim of this paper is to address the lack of
systematic evaluation of proposed methods on publicly available datasets, which currently impedes
a fair comparison among them. In particular, we evaluate two prominent families of PPG processing
methods estimating Respiratory Induced Variations (RIVs): the first encompasses methods based on
the direct extraction of morphological features concerning the RR; and the second group includes
methods modeling respiratory artifacts adopting, in the most promising cases, single-channel blind
source separation. Extensive experiments have been carried out on the public BP4D+ dataset,
showing that the morphological estimation of RIVs is more reliable than those produced by a
single-channel blind source separation method (both in contact and remote testing phases), as well
as in comparison with a representative state-of-the-art Deep Learning-based approach for remote
respiratory information estimation.

Keywords: empirical mode decomposition; incremental merge segmentation; singular spectrum
analysis; remote photoplethysmography; pyVHR; remote respiratory rate estimation; vital signs from
video; contactless respiration monitoring

1. Introduction

Physiological signs, such as Blood Volume Pulse (BVP), Blood Pressure, Electro-Dermal
Activity, blood Oxygenation levels (SpO2) and Respiration Waveforms and Rates are of chief
importance in a variety of contexts related to health monitoring and affective computing.
Among them, Respiratory Rate (RR) is crucial to detect and assess respiratory dysfunctions,
such as apnea [1], as well as changes in breathing patterns that may be caused by stress [2].

Traditionally, reliable electrocardiography sensors or respiration belts have been
adopted to measure RR, but in some cases, these approaches are not feasible due to several
reasons, from physical discomfort, to the need of employing dedicated equipment and
expertise, up to the actual impossibility of placing the required sensors [3]. Alternative
solutions rely on the adoption of photoplethysmography (PPG) sensors, such as pulse
oximeters, being less invasive and augmenting the portability [4]. PPG sensors capture
the reflected light skin variations due to the blood volume changes. By design, their
straightforward application concerns the measurement of cardiac activity; however, due
to the tight bond between cardiac and respiratory activities, signals derived from PPG
waveforms may be employed to extract respiratory-related information [5]. Interestingly
enough, even general-purpose smartphone cameras can function as pulse oximeters [6],
thus allowing the extraction of PPG signals without the use of dedicated equipment. As a
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matter of fact, such a solution is much less invasive, only requiring to place a finger on
the smartphone’s camera. Even more attractive are contactless techniques implementing
Remote-Photoplethysmography (remote-PPG or rPPG): comfortable for the user, and suit-
able for remote monitoring. Remote-PPG measures blood flow changes by analysing the
variations of the skin-reflected light captured through a general-purpose RGB-camera
placed in front of the person [7]. While rPPG widens the scope of applications [8–10], its
utility clearly depends on its reliability. As with contact-PPG signals, remotely estimated
PPG waveforms carry respiratory-related information; there exists at least three different
kinds of Respiratory Induced Variations, RIVs that can be eventually mined from (r)PPG
signals: (cfr. Figure 1) [11–13]:

• Respiratory-Induced Intensity Variation (RIIV) refers to the modulation of the BVP
signal’s amplitude caused by changes in venous return due to variations in intra-
thoracic pressure during the respiratory cycle. As a result, the PPG signal experiences
baseline modulation. Inspiration causes a reduction in intra-thoracic pressure, leading
to a slight decrease in central venous pressure and an increase in venous return, while
expiration causes the opposite effect.

• Respiratory-Induced Amplitude Variation (RIAV) is caused by a reduction in left
ventricular stroke volume due to changes in intra-thoracic pressure, resulting in a de-
crease in cardiac output and peripheral pulse strength. During expiration, the opposite
effect occurs.

• Respiratory-Induced Frequency Variation (RIFV) refers to the periodic variation of
Heart Rate (HR) throughout the respiratory cycle, with an increase during inspiration
and a decrease during expiration. This change in pulse rate is due to an autonomic
nervous system response known as respiratory sinus arrhythmia (RSA).

The chief concern of this work is to benchmark representative approaches that allow
to extract RIVs from rPPG signals and to perform a sound statistical assessment of the
results on a publicly available dataset. Notably, although other works have attempted to
compare such methods (see, for instance, Ref. [14]); to the best of our knowledge, this is
the first attempt at analysing these methods’ performances on a publicly available dataset.
The research questions that the present work aims at addressing are the following:

1. Which kind of approach is more suitable for extracting respiratory related information
from rPPG?

2. What is the impact of using rPPG on the quality of estimation compared to contact-PPG?
3. How does this result compare to representative modern approaches relying on Deep

Learning methods?
4. Are the eventual differences statistically significant?

Two main kinds of approaches have been proposed in the literature to achieve RR
estimation via rPPG: (1) methods based on the direct extraction of morphological features
attributable to breathing (RIVs) [11,12,14–17], and (2) methods aimed at isolating the
motion trend due to heart rate (HR) and RR [18–20], implicitly related to RIVs. By and
large, the reliability of these approaches has been hitherto tested on small and/or private
datasets, thus preventing a fair comparison among them.

Specifically, in order to evaluate methods based on the direct RIV extraction, we
addressed the well-known Incremental Merge Segmenting (IMS), presented in Ref. [21],
while putting in place several solutions to fuse the produced morphological features (e.g.,
average, median or PCA). As to the second group, the most promising approaches adopt
the single-channel blind source separation to isolate the respiration from heart rate and
noise. Here, we consider the Empirical Mode Decomposition (EMD) [22] and the singular
spectrum analysis (SSA), and compare their estimates based on the different channels.

In our experimental analysis, the RR estimation is evaluated on both the contact
reference and remote-PPG to assess the reliability of the different approaches mentioned
above. In order to make the experiments reproducible and extendable, we use the publicly
available BP4D+ dataset [23] that includes the RR ground truth, the contact reference, and



Sensors 2023, 23, 3387 3 of 21

RGB videos suitable to estimate remote-PPG signals. This last step is accomplished by
exploiting the pyVHR framework [24].

In addition, an experiment involving a deep learning-based solution has been carried
out. Specifically, the aforementioned signal processing-based approaches were compared
with a representative state-of-the-art Deep Learning-based approach devised to estimate
cardio-respiratory information from RGB videos.

The remainder of this paper is organized as follows: in Section 2 the Photoplethysmog-
raphy is introduced; in Section 3, the considered RR estimation algorithms are outlined; in
Section 4, the experimental analysis is reported, and in Section 5 the results so far achieved
are discussed.

2. Photoplethysmography and Remote-Photoplethysmography

The PPG signal conveys information concerning blood volume changes in the mi-
crovascular bed of the tissue [25]. Its waveform typically displays: (1) A pulsatile compo-
nent of artery blood (AC); (2) a high-frequency component (HF), composed of a systolic
phase and a diastolic phase, which provides heart rate information; and (3) a non-pulsatile
component of artery blood (DC), which is a low-frequency component (LF), related to blood
oxygen saturation that slowly varies with respiration. It is possible to infer the respiratory
rate from a PPG signal from this slow modulation in the LF component. Contact signals in
classic PPG provide intensity change measurements of the light reflected from the finger
skin when exposed to a Light-Emitting Diode (LED) source.

Similarly, remote-PPG aims at characterizing the blood volume changes, but taking
into account reflected light skin variations as captured by an RGB camera and focusing on
a peculiar Region of Interest (ROI), such as the cheeks or the forehead. Remote-PPG can
thus be conceived as an approximation of the contact reference, while offering a notable
advantage: it is contactless and remotely controllable.

Generally speaking, the time signal produced by classical PPG sensors can be closely
approximated by the temporal traces of the RGB signal, which are generated by averaging
the skin’s light intensity at the pixel level within the ROI and concatenating them on a per-
frame basis. Several methods have been proposed to derive the remote-PPG from the RGB
traces [26]. Here, we adopt the CHROM method [27], since contrarily to most of the other
rPPG methods, it removes specular reflections at the skin surface. The implementation of
CHROM used here is part of the pyVHR framework [24,26].

The subsequent procedures involve dividing a rPPG signal or a contact reference
signal x(t) of length T into S segments or windows, each of M-sample length, with a shift
of K samples between adjacent segments, thus producing an overlapping of M−K samples.
The j-th segment, with j ∈ [0, ..., S− 1], can be expressed as

xj(t) = x(t + jK), t = 1, . . . , M, (1)

where jK is the starting element of segment j.

3. Respiratory Rate Estimation

In this section, the operational processes and algorithmic mechanisms of the three
mentioned methods, namely, Incremental Merge Segmenting (IMS), Empirical Mode De-
composition (EMD), and Singular Spectrum Analysis (SSA), are discussed in detail.

3.1. IMS Algorithm

IMS is an effective technique for analyzing PPG signals, extracting morphological
features and detecting artifacts [6]. It operates in the time domain by segmenting the signal
with sliding windows of fixed length and duration of a few tens of seconds (up to 30)
(Equation (1)). From a bare technical point of view, it is a fusion of two algorithms, namely,
the Iterative-End-Point-Fit (IEPF) [28] and the incremental algorithm [29]. Both of these
algorithms were originally designed for computer vision, mobile robotics, and ECG signal
compression applications. In a nutshell, IMS simply segments the (r)PPG signals in order to
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detect peaks, and subsequently obtain pulse amplitude, maximum and minimum intensity,
and pulse period. These features are then employed to extract RIVs. More specifically, beats
are detected at the end of a sequence of positive-gradient segments (systolic upslopes).

The IMS algorithm has been employed in Ref. [21] for the segmentation of remote-PPG
signals and subsequent extraction of respiratory waveforms, as detailed below.

For each j-th segment, the input of the IMS algorithm are the segment values xj(t)
and an integer parameter m < M (m is common to all segments). IMS uses a collection
of strided points Yj = {yk = xj(mk) : k = 1, . . . , bM/mc} to compute morphological
features. Specifically, it first computes the slope ρk of each sub-segment Line[yk, yk+1], and
then iteratively removes from the Yj set all central points of the triplets (yk, yk+1, yk+2) that
satisfy sign(ρk · ρk+1) > 0, that is, slopes with the same sign. The points stored in Yj are
finally used to obtained minima Ymin

j and maxima Ymax
j through peak detection.

The extraction of respiratory-induced variations (RIVs) can be easily accomplished by
combining and filtering the values of Ymin

j and Ymax
j to effectively reduce any artifacts.

In particular, given a generic sequence of values x, the artifact reduction is obtained
computing the first derivative of its cubic spline interpolation:

Π(x) = Deriv(Spline(x)). (2)

The three types of Respiratory Induced Variations can be mined from IMS-segmented
PPG waveforms in the following way [30]:

• The respiratory induced intensity variation (RIIV) is conveyed by the local maximum-
peak-valued time series:

RIIVj = Π(Ymax
j ). (3)

• The respiratory induced amplitude variation (RIAV) is carried by the series gener-
ated from the difference between local maximum values and local minimum values
(amplitude trend):

RIAVj = Π({ymax
i − ymin

i }∀i) (4)

where ymax
i , ymin

i ∈ Ymax
j , Ymin

j .

• The respiratory induced frequency variation (RIFV) can be calculated by creating a
tachogram composed of evenly sampled and minimum-peak-time-interspersed series,
which consists of the time intervals between consecutive local minima:

RIFVj = Π({arg(ymin
i )− arg(ymin

i+1)}∀i) (5)

where ymin
i ∈ Ymin

j and arg(ymin
i ) are the time instants associated to the i-th value

in Ymin
j .

An example of extracted RIVs, from both contact and remote PPG, is shown in Figure 1,
while Figure 2 shows at a glance the three RIVs on a sample cardiac signal from the
BP4D+ dataset.

The RIFVj, RIIVj, and RIAVj extracted from (r)PPG signals can be used individually
to generate remote RR estimations or combined to obtain more reliable estimates [14,15,31].
To this end, besides the average and the median over the three RIVs, PCA is computed
considering the RIVs as an ensemble of realizations of the respiratory trend. RIVs are
therefore projected onto their principal component, and only the first principal component
is taken into account for the RR estimation.

This process produces six estimates: RRRIFV , RRRIIV , RRRIAV , RRavg, RRmedian,
and RRPCA.
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Figure 1. Example of RIV trends. (a) RIVs extracted from the contact reference. (b) RIVs extracted
from remote-PPG. (c) Reference respiratory signal.
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Figure 2. Example of derivation of the respiratory induced variations capturing the amplitude (RIAV),
the frequency (RIFV) and the intensity (RIIV) from the pulse subdivision of the PPG waveform.

3.2. EMD: Empirical Mode Decomposition

Empirical mode decomposition (EMD) is a powerful analytical tool used to effectively
describe non-linear and non-stationary time series. This approach involves projecting the
time series onto a space basis composed of intrinsic mode functions (IMFs) [22]. Unlike
Fourier Transforms and wavelet decomposition, EMD works entirely within the time
domain to decompose the data into its constituent IMFs, and it does not require any prior
assumptions about the signal’s frequency or time-frequency characteristics. Instead, it
adaptively decomposes the signal based on its local frequency content using a a time-
domain algorithm called “sifting”, capturing the underlying dynamics of the system. In a
nutshell, EMD isolates a small number of temporally adaptive basis functions (the IMFs)
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and directly derives the frequency and amplitude dynamics from them [32]. The IMFs can
be thought of as locally changing counterparts to common frequencies. This characteristics
of IMFs make them a valuable tool for analyzing non-stationary time series with rapidly
varying frequencies, allowing for the accurate identification and extraction of frequency
and amplitude dynamics. More precisely, an IMF is defined as a function that satisfies
well-defined conditions related to its Hilbert transform, and summarized in the following
two properties:

1. The number of extrema (i.e., the maximum and minimum amplitudes of the signal)
and the number of zero-crossings must be equal, or differ by one at most. This
property ensures that the function is oscillatory in nature, with a well-defined and
localized frequency structure that can be accurately extracted using techniques such
as the Hilbert transform.

2. The function must be symmetric with respect to a local zero mean. The need for
a local time scale to calculate the mean makes it challenging to define a function
as symmetric for non-stationary processes. To solve this problem, the local mean
envelope concept is introduced, which is determined by the function’s local maximum
and minimum values. By enforcing local symmetry around this envelope, the IMF
can be accurately characterized and used to extract information about the underlying
dynamics of the system.

In formal terms, given an arbitrary non-stationary PPG signal x(t), EMD adaptively
decomposes its segments xj(t) into a number L of IMFs hk

j (t), with 1 ≤ k ≤ L, that is,

xj(t) =
L

∑
k=1

hk
j (t) + rj(t), (6)

where rj(t) represents the residual non-stationary trend. The iterative sifting process to
derive a generic k-th IMF function is summarized in the following iterative steps. As initial-
ization, we set the data to be processed as v(t) = xj(t), k = 1, i = 0.

1. Extract the local maxima and minima of v(t).
2. Form the upper and lower envelope eu(t) and el(t) by cubic spline interpolation of

the extrema, and compute the mean m(t) = (el(t) + eu(t))/2.
3. Let di(t) = v(t)−m(t).
4. When i > 1, evaluate whether di(t) is a zero-mean function. This is obtained in terms

of the standard deviation of two subsequent iteration results:

M

∑
t=1

(di(t)− di−1(t))
2

di−1(t)2 ≤ 0.1 . (7)

If the standard deviation exceeds a fixed threshold (set to 0.1, according to [32]), set
v(t) = di(t) as the new data, increment i, and repeat steps 1–4 until ending up with
the k-th IMF, that is, hk

j (t) = di(t).

Once the k-th IMF is obtained, the remaining IMFs were computed by applying the
sifting process to the residual signal defined as r(t) = v(t)− hk

j (t), repeating the steps 1–4
to compute the next IMF, until the n-th residual is a monotonic function or a function with
less than two local maxima or minima.

An example of hk
j (t) computation is shown in Figure 3. From an implementation

perspective, we adopted the solution provided by Ref. [32], limiting the number of IMFs
extracted to four components, as suggested in Ref. [21]. The output of the EMD algorithm
is shown in Figure 4.
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j (t) computation.
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Figure 4. Extracted from IMF trends. (a) IMFs extracted from the contact reference. (b) IMFs extracted
from rPPG. (c) Thoracic-impedance respiratory reference.

For the RR extraction, only the first three IMFs, among the IMFs extracted through the
EMD algorithm, were taken into account.

The RRIMFi estimate is obtained for each IMF mode by selecting the frequency in the
respiratory spectral domain with the highest power. The highest peaked frequency among
the estimates RRIMF1, RRIMF2, RRIMF3, RRIMF4 is taken as the RREMD estimate.

3.3. SSA: Singular Spectrum Analysis

Singular spectrum analysis [33] is a decorrelation technique that projects a single
mixture of zero-mean sources (time series) onto an orthonormal space basis. It involves
decomposing the time series (PPG in our case) into a set of empirical orthogonal functions
(EOFs) by constructing a trajectory matrix from the original data and applying the Singular
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Value Decomposition (SVD) to the matrix. The result is a set of principal components (PCs)
that capture the most dominant patterns in the data. These PCs are then used to reconstruct
the original time series in a way that separates the signal from the noise.

To perform the embedding, we mapped a PPG segment xj(t) of length M into a
sequence Xi

j of K = M− L + 1 lagged vectors of size L, with 1 < L ≤ M:

Xi
j = (xj(i), . . . , xj(i + L− 1))T , 1 ≤ i ≤ K. (8)

The L-trajectory matrix X associated to xj(t) is

X = (xi,j)
L,K
i,j=1


xj(1) xj(2) . . . xj(K)
xj(2) xj(3) . . . xj(K + 1)

. . . .

. . . .
xj(L) xj(L + 1) . . . xj(M),

 (9)

and the lagged vectors Xi
j represent the columns of X. Each row and column of X consists

of subseries of the original segment (or series) xj(t). It holds that the trajectory matrix X is
a Hankel matrix, where the elements along any diagonal where i + j is constant have the
same value.

The basic steps of SSA are as follows.

1. Embedding. The realization xj(t) is embedded into a trajectory matrix X using the
sliding window approach described above.

2. SVD decomposition. To obtain the principal components, apply SVD to the trajectory
matrix X, as X = U Σ VT , where U is the matrix of the eigenvectors (left singular
vectors), Σ is the diagonal matrix of the singular values (λ1, . . . , λL) and V is the
matrix of the right singular vectors of X. In this notation, the trajectory matrix X can
be written as

X = X1 + · · ·+ Xd, (10)

where Xi =
√

λiUiVT
i is the elementary matrix, and d = min{K, L} is the rank of

X (matrices Xi have rank 1). The sequence of elements of the i-th eigenvector Ui is
defined as the i-th Empirical Orthogonal Function (EOF) (see Figure 5).

3. Grouping. The principal components are grouped into sets, aiming at representing the
different patterns present in the data (e.g., noise, periodicity, trend). This corresponds
to partitions in the set of indices {1, . . . , d} into p disjoint subsets S1, . . . , Sp.

4. Reconstruction. Given a subset of indexes Si = {i1, ..., il}, an approximation of X is re-
constructed as a sum of the corresponding elementary matrix only: X̂i = Xi1 + · · ·+ Xil .
Then, applying the Hankelization of X̂i, the time series zi = (z1, . . . , zM) is obtained.
For the sake of brevity, Hankelization and averaging are not reported here; see Ref. [34]
for details.
The SSA output, for the remote and contact analysis, is reported in the Figure 6.
Here, no PC grouping procedure was employed (i.e., p = d) taking into account the
EOFs individually. In particular, only the first three EOFs were considered for the RR
extraction: RREOFi is estimated as the highest peak in the respiratory power spectral
density range of zi. Then, the highest estimate among the RREOF1, RREOF2, RREOF3
was chosen as the RRSSA value.
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Figure 6. Extracted EOF trends. (a) EOFs extracted from rPPG. (b) Thoracic-impedance respiratory
reference. (c) Thoracic-impedance respiratory reference.

4. Experimental Analysis and Results
4.1. Dataset

The study was carried out employing the BP4D+ dataset [23], since it is one of the few
available datasets that provides face video frames, contact references, and a real respiratory
ground truth for each subject. The BP4D+ dataset, an extension of the BP4D database,
is a Multimodal Spontaneous Emotion Corpus (MMSE), which collects 3D, 2D, thermal,
and physiological data sequences (e.g., heart rate, blood pressure, skin conductance (EDA),
and respiration rate), and meta-data (facial features and FACS codes). The dataset collects
data of 140 subjects, 58 males and 82 females, with ages ranging from 18 to 66 years old.
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Subjects of various ethnicities participated in the data acquisition process (including East-
Asian and Middle-East-Asian, Hispanic/Latino and Native American). For each subject,
10 tasks (eliciting different emotional states) were included in the database. Frames were
acquired at 25 fps, and physiological signals were sampled at 1000 Hz. For the aim of this
study, only the thoracic-impedance respiratory reference, the contact reference, and the
subject’s face video frames were taken into account, considering all the subjects and all
the tasks.

As stated in Ref. [31], some signals in the BP4D+ respiratory ground truth are strongly
affected by artifacts and disturbance, therefore the thoracic-impedance respiratory reference
signals were pre-processed to check their reliability as a respiratory target. For each task and
subject, the respiratory reference was filtered with a second-order Butterworth bandpass
filter, with cutoff frequencies of 0.1 Hz and 0.5 Hz, and normalized between the [−1,1]
amplitude range. Then peak and troughs detection was performed, so that the standard
deviation σ1 of the peak-to-peak time intervals and the standard deviation σ2 of the heights
of the troughs (minima) could be computed. A signal was considered "corrupted" if σ1 > 1
or σ2 > 0.2 (leading to the rejection of the related data). Additionally, each signal with a
duration shorter than 30 s was discarded. This results in 209 accepted signals.

4.2. Analysis

The single-channel blind source separation methods (EMD and SSA) and the RIV
extraction technique via (r)PPG signal segmentation (IMS) are adopted during the RR
estimation phase, processing the remote PPGs and contact references of each BP4D+ video.
The general procedure for computing RR is depicted at a glance in Figure 7, and can be
briefly recapped as follows:

1. Pre-processing: The rPPG signal associated with the i-th video is filtered using a
fourth-order Butterworth band-pass filter with cut-off frequencies of [0.18 Hz, 1.0 Hz]
for each temporal window indexed by j.

2. Methods: The filtered signal is processed by one of the analysed approaches (IMS,
EMD, SSA) in order to extract respiratory related information.

3. Post-processing: Each approach yields a number of estimates that are subsequently
post-processed with an artifact reduction technique. It basically consists of a cubic-
spline interpolation of the original estimate followed by the computation of the fist
derivative of the obtained signal (cfr. Equation (2)).

4. RR estimation: RR is obtained by choosing the most prominent peak in the Power
Spectral Density (PSD) estimated with the periodogram of the post-processed signal.
The frequency range within which RR is picked is adaptively set, based on the heart
rate extracted from the same signal.

The obtained RR-estimates are then compared to the corresponding ground truth
references via commonly used error metrics. Contact references are processed in the same
way, except for the post-processing phase, which involves only the computation of the fist
derivative of the signal.
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Figure 7. Computation pipeline. First line: steps to obtain the rPPG via pyVHR framework. Following
lines: EMD/SSA/IMS processes to derive the RR estimations either based on the individual features
(IMF, EOF, and RIV) or combining them opportunely. Pre-processing filtering and artifact reduction
are setups for all methods.

4.2.1. Error Metrics

For each estimator, the obtained RR estimate is compared to the RR extracted from the
thoracic-impedance respiratory reference using the following metrics:

• Mean Absolute Error (MAE) The Mean Absolute Error measures the average absolute
difference between the estimated ĥ and reference RR h. It is computed as:

MAE =
1
K ∑

k
|ĥk − hk|.

Smaller MAE values suggest better predictions. The MAE is a fairly interpretable
measure, as it provides the average distance in terms of breaths per minute of the
predictions with regard to the ground truth.

• Root Mean Squared Error (RMSE). The Root-Mean-Squared Error measures the dif-
ference between quantities in terms of the square root of the average of squared
differences, that is,

RMSE =
1
K

√
∑
k
(ĥk − hk)2.

RMSE represents the sample standard deviation of the absolute difference between the
reference and measurement, that is, a smaller RMSE suggests more accurate extraction.
In contrast to the MAE, few large differences increase the RMSE to a greater degree
due to the squaring of the differences.

Results for all the aforementioned estimators applied to both contact and remotely
estimated signals are reported in Table 1.
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Table 1. Error metrics: contact PPG—respiratory reference and remote PPG—respiratory reference
(evaluated over the 209 BP4D+ accepted signals).

Contact Remote

RMSE * MAE * RMSE * MAE *

RRavg 5.064 3.615 5.413 4.019

RRmedian 5.395 3.709 5.741 4.095

RRPCA 5.593 3.796 6.307 4.656

RRRIFV 6.285 4.559 6.453 4.821

RRRIIV 5.528 3.906 6.538 4.721

RRRIAV 6.052 4.130 6.287 4.586

RREMD 14.205 10.373 9.599 7.754

RRIMF1 19.773 6.775 13.568 10.084

RRIMF2 6.219 4.638 9.050 7.625

RRIMF3 12.235 11.292 13.626 12.799

RRSSA 10.441 7.243 9.406 7.894

RREOF1 19.568 14.672 9.804 8.086

RREOF2 19.350 14.301 7.994 5.456

RREOF3 17.079 13.170 21.951 20.059
* Measured in breaths

min .

4.2.2. Bland–Altman Analysis

In order to assess the level of agreement between the employed rPPG-based RR
estimation methods and the reference, Bland–Altman analysis [35] has been employed.
It allows to quantify the difference between measurements using a graphical method.
A scatter-plot (Bland–Altman plot) is produced in which the X-axis represents the average
of the two measurements, and the Y-axis represents their difference.

For every pair (RRestimator, RRtarget), the mean value (i.e., what is likely to be inter-
preted as a RR trade-off between expectation and the true value) versus the corresponding
error (i.e., how reliable the compromise is for the RR measurement) are considered:

ErrorRR = RRestimator − RRtarget (11)

The sign of this quantity allows to unveil the presence of eventual systematic bi-
ases in the estimation. Specifically, negative errors indicate that the RR is, on average,
underestimated, while positive errors suggest that the RR is typically overestimated.

Figure 8 reports Bland–Altman plots for the RRmedian and RREOF3 estimators acting
on contact and remote-PPG signals.

As can be noted, the RRmedian estimator (Figure 8a,c) is unbiased (ErrorRR ∼ 0) and
does not exhibit any linear dependency between the average of the two measurements and
their difference for both the contact and remote signals. On the contrary, an inspection of
the RREOF3 Bland–Altman plot (Figure 8b,d) depicts a biased estimator (estimates are, on
average, heavily overestimated) which presents a marked linear dependence between the
average of the two measurements and their difference. Consequently, for low-frequency ref-
erence RR, RREOF3 underestimates RR, while overestimating high-frequency reference RR.
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Figure 8. Bland–Altman plots for the RRmedian and RREOF3 estimators on contact and
remote−PPG signals. (a) Contact RRmedian. (b) Contact RREOF3. (c) Remote RRmedian. (d) Re-
mote RREOF3.

4.2.3. Significance Testing

Finally, statistical analyses have been carried out to evaluate the significance of dif-
ferences in the performance of the 14 estimators (populations) on 209 samples (paired
videos). Following Ref. [36], the populations were checked with the Shapiro–Wilk test
for normality, and with Levene’s test for homogeneity. Due to the rejection of the null
hypothesis of normality for at least one population, the non-parametric Friedman’s test
and the associated Nemenyi test were employed as the omnibus test and for post hoc
analysis, respectively.

Friedman’s test rejected the null hypothesis of equality of the medians of the popula-
tion distributions (p < 0.05); hence, a statistically significant difference exists between the
analysed estimators. The Nemenyi post hoc test was thus employed for the assessment
of the differences between each population. The output of the post hoc Nemenyi test can
be visualized through the Critical Difference (CD) diagram [36]; CD diagrams show the
average rank of each estimator (higher ranks meaning lower average errors); models whose
difference in ranks do not exceed the CDα (α = 0.05) are joined by thick lines and cannot be
considered significantly different. Results for the MAE and RMSE metrics obtained from
the remote-PPG signal are depicted at a glance in Figures 9 and 10.

Tables 2 and 3 report the results of the above procedure for the RMSE and MAE metrics,
respectively. Estimators are ranked with regard to the remote-RR estimation performances
according to the metric at hand. Moreover, the magnitude of the difference between the
estimators is reported in terms of Akinshin’s gamma effect size.
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Table 2. Significance statistical test, using RMSE as the comparison metric, on 14 estimators (popula-
tions) and 209 samples (paired videos).

RMSE

Contact Remote

R MED * CI γ Magnitude R MED * CI γ Magnitude

RRavg 1° 3.509 [2.744, 4.696] 0.000 negligible 1° 4.108 [3.350, 5.040] 0.000 negligible

RRmedian 2° 3.700 [2.828, 5.067] −0.079 negligible 2° 4.551 [3.818, 5.479] −0.204 small

RRPCA 3° 4.237 [3.169, 5.584] −0.269 small 6° 5.218 [4.637, 6.170] −0.493 small

RRRIFV 7° 4.980 [3.869, 6.016] −0.531 medium 7° 5.333 [4.627, 6.164] −0.571 medium

RRRIIV 4° 4.077 [3.266, 5.408] −0.233 small 3° 5.198 [4.361, 6.435] −0.472 small

RRRIAV 5° 4.844 [3.464, 6.000] −0.473 small 4° 5.280 [4.522, 6.267] −0.567 medium

RREMD 10° 12.318 [9.229, 15.486] −1.727 large 10° 7.950 [6.941, 9.560] −1.367 large

RRIMF1 14° 19.575 [16.125, 21.906] −2.765 large 12° 11.719 [9.613, 14.338] −1.539 large

RRIMF2 6° 5.103 [4.053, 6.289] −0.647 medium 8° 7.578 [6.154, 9.369] −1.128 large

RRIMF3 9° 11.399 [10.259, 12.435] −3.068 large 13° 12.579 [11.624, 14.000] −2.982 large

RRSSA 8° 7.754 [6.331, 9.761] −1.163 large 9° 8.300 [7.000, 9.401] −1.489 large

RREOF1 11° 18.000 [11.168, 22.527] −1.509 large 11° 8.422 [7.135, 9.677] −1.474 large

RREOF2 12° 17.300 [11.937, 23.992] −1.407 large 5° 6.074 [4.642, 7.134] −0.751 medium

RREOF3 13° 13.968 [11.478, 18.615] −1.658 large 14° 21.126 [18.924, 23.749] −3.737 large

* Measured in breaths
min .
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Table 3. Significance statistical test, using MAE as the comparison metric, on 14 estimators (popula-
tions) and 209 samples (paired videos).

MAE

Contact Remote

R MED * CI γ Magnitude R MED * CI γ Magnitude

RRavg 2° 2.904 [2.207, 3.837] 0.039 negligible 1° 3.422 [2.729, 4.178] 0.000 negligible

RRmedian 1° 2.978 [2.116, 3.973] 0.000 negligible 2° 3.556 [2.826, 4.329] −0.064 negligible

RRPCA 3° 3.244 [2.286, 4.273] −0.117 negligible 6° 4.065 [3.465, 5.188] −0.298 small

RRRIFV 7° 4.000 [3.022, 5.087] −0.442 small 7° 4.258 [3.644, 5.125] −0.392 small

RRRIIV 4° 3.244 [2.500, 4.216] −0.124 negligible 3° 4.169 [3.429, 5.176] −0.330 small

RRRIAV 5° 3.625 [2.575, 4.797] −0.270 small 4° 4.141 [3.359, 4.978] −0.352 small

RREMD 8° 9.778 [7.333, 12.021] −1.464 large 9° 6.812 [5.771, 8.400] −1.115 large

RRIMF1 14° 17.903 [14.400, 20.857] −2.448 large 12° 9.264 [7.146, 12.000] −1.342 large

RRIMF2 6° 4.178 [3.200, 5.135] −0.515 medium 8° 6.933 [5.312, 8.649] −1.117 large

RRIMF3 10° 10.960 [9.867, 12.133] −3.102 large 13° 12.323 [11.333, 13.773] −3.085 large

RRSSA 8° 6.092 [4.578, 8.090] −0.919 large 10° 7.714 [6.065, 8.711] −1.499 large

RREOF1 9° 13.111 [8.350, 19.822] −1.132 large 11° 7.689 [6.133, 9.131] −1.420 large

RREOF2 11° 13.161 [8.129, 20.000] −1.082 large 5° 4.731 [3.674, 6.000] −0.501 medium

RREOF3 12° 12.000 [8.955, 15.292] −1.503 large 14° 20.000 [17.511, 22.400] −3.345 large

* Measured in breaths
min .

4.2.4. Comparison with a Deep Learning-Based Approach

The approaches evaluated in this work so far pledge to extract respiratory-related
information by exploiting the well-known intertwining between the cardiac and respiratory
system; on such basis, the signal processing-based methods surveyed here allow to extract
the physiological signals of interest with varying levels of accuracy. It is interesting to
confront such approaches relying on domain knowledge with modern alternatives that
allow to automatically learn these relationships from data; this is usually accomplished by
employing end-to-end deep neural network (DNN) models. DNNs have gained significant
attention in many disciplines, including computer vision, in virtue of their superior per-
formance exhibited for a variety of tasks when compared to traditional approaches that
require manual feature design.

Notably, techniques for recovering physiological signals via DNN-based methods
have also emerged. The latter have become increasingly popular in the related literature,
as evidenced by recent reviews, for example, Ref. [37,38]. Despite the reported remark-
able performances, few DNN solutions have been made publicly available in terms of
both code and learned model weights. This lack of availability raises concerns about the
reproducibility of results and the ability to properly assess these methods.

Deep remote RR estimation makes no exception; in the last few years, a variety of
approaches have been proposed for predicting respiratory rates or waveforms directly
from RGB videos [39–42]. Unfortunately, to the best of our knowledge, only a handful of
them have been made available to the scientific community. One of them is represented
by MTTS-CAN, a neural architecture proposed in Ref. [40], which employs a tensor-shift
module and 2D-convolutional operations to efficiently perform spatial temporal modeling,
thus enabling real-time cardiovascular and respiratory measurements. MTTS-CAN is
end-to-end trained to predict both Blood Volume Pulse (BVP) signals and Respiratory
Waveforms (RWs) from videos displaying human faces. Model optimization is shaped as a
multi-task learning problem. At test time, BVPs as RWs can be easily obtained by feeding
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the network with a given video sequence; no pre-processing steps are required, except for
performing trivial image normalization procedures.

It is worth noting that MTTS-CAN is designed to work in an end-to-end manner and
does not estimate respiratory information from rPPG signals, as intended. Yet, the multi-
task temporal shift module employed to extract both cardiac and respiratory information is
eventually capable of leveraging both sources in order to deliver more robust estimates.
Consequently, it lends itself well to be compared with the approaches presented here.

Given a RW estimated by MTTS-CAN, RR can be eventually obtained via spectral
analysis (cfr. point 4 in Section 4.2). The Bland–Altman plot depicting the results obtained
by MTTS-CAN on the BP4D+ dataset is displayed in Figure 11.
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Figure 11. Bland–Altman plots for the RRMTTS−CAN estimator on remote signals.

As can be observed, MTTS-CAN tends, on average, to slightly overestimate the respira-
tion rates on BP4D+; on the contrary, no marked linear dependencies between the average
of the two measurements and their difference are noticeable. The standard deviation of the
errors is comparable with the best-performing signal processing-based approaches.

In addition, to compare knowledge-based signal processing techniques with DNN-
based approaches, we follow the same experimental and significance testing procedure, as
described earlier in Section 4.2.3. Specifically, we compare the RR estimates produced by
MTTS-CAN and benchmark its performance against the three best estimators from each
method examined in this study (RRavg, RREOF2, and RRIMF2). We present the results in
Table 4 and include the corresponding CD diagrams for both the MAE and RMSE metrics
in Figure 12.

Table 4. Significance testing results using RMSE and MAE as comparison metrics on four estimators
(populations) and 209 samples (paired videos).

RMSE (Remote) MAE (Remote)

R MED * CI γ Magnitude MED * CI γ Magnitude

RRavg 1° 4.108 [3.405, 4.947] 0.000 negligible 3.422 [2.756, 4.044] 0.000 negligible

RREOF2 2° 6.074 [4.813, 6.992] −0.751 medium 4.731 [3.765, 5.911] −0.501 medium

RRMTTS-CAN 3° 6.491 [5.449, 7.803] −0.673 medium 4.711 [3.700, 6.529] −0.375 small

RRIMF2 4° 7.578 [6.340, 9.242] −1.128 large 6.933 [5.521, 8.333] −1.117 large

* Measured in breaths
min .
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Figure 12. CD diagram displaying the results of the Nemenyi post hoc test on the four populations
(RRavg, RREOF2 and RRIMF2 and MTTS-CAN) of RMSE and MAE values on the BP4D+ dataset.
(a) RMSE. (b) MAE.

Surprisingly, despite a fairly acceptable ranking with regard to the signal processing-
based approaches, the RR estimates delivered by MTTS-CAN appear to be significantly
less accurate than those obtained by the RRavg estimator; the latter proves to be the most
reliable approach among those benchmarked in the present work. MTTS-CAN results are
not significantly different from those yielded by the RREOF2 estimator, while the EMD-
based estimator delivers the worst result.

5. Discussion and Conclusions

This paper has conducted a statistical evaluation of prominent methods for remotely
estimating respiratory rates through rPPG signals. Specifically, we compared the perfor-
mances of the IMS algorithm (a well-known method extracting morphological PPG features
related to respiratory information) and two single-channel BSS approaches. Experiments
have been carried out on a publicly available dataset, promoting greater comparability and
reproducibility of the findings.

The results can be best summarized by inspecting Figure 9; the RRavg and RRmedian
estimators are the best-performing. Notably, the difference with the other estimators
appears to be statistically significant. No significant differences were found between RRavg
and RRmedian; yet, these significantly outperform RRPCA (albeit with a small magnitude
effect size). Overall, according to the RMSE metric, the IMS-derived estimators delivered
the most accurate results.

The remote SSA-derived RREOF2 estimator performs fairly well in comparison to
the IMS-derived ones; this is due to the fact that the second EOF extracted by SSA is
presumably devoted to the extraction of the RIIV (cfr. Figure 6). For the same reason,
RRIMF2 performed quite well for both contact and remote methods, while on average,
the other EMD-related estimators performed worse with regard to the other estimation
methods. Interestingly enough, the third EOF and the first IMF both exhibited bad results,
as probably often associated with the cardiac information rather that the respiratory one
(crf. Figures 1 and 6). RRIMF3 strongly underestimates the RR, meaning that it is heavily
affected by low-frequency artifacts. Similar conclusions can be drawn by inspecting the
MAE-related CD diagram (Figure 10).
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Furthermore, we have conducted a comparison between the three top-performing sig-
nal processing-based methods for extracting respiratory information from rPPG waveforms
and a newly proposed, state-of-the-art deep learning-based method apt at jointly estimating
cardio-respiratory data from RGB videos. The findings indicate that the method based
on extracting and merging Respiratory-Induced Variations (RIVs) from morphological
features achieves the highest accuracy in comparison to the other signal processing or Deep
Learning-based methods adopted here, as measured by both RMSE and MAE metrics.

Based on the assessment conducted in this paper, it can be concluded that the estima-
tion of RR using morphological features of the PPG signals is the most dependable method.
Moreover, it can be observed that the three RIVs basically convey the same information,
which is mostly related to respiration, while being differently dependent on the subject’s
individual RR, gender or age [31], as well on the subject’s health. In order to attenuate this
dependency, and to make the estimation less susceptible to interference (largely when the
subject’s motion is detected in the measurement), the application of fusion methods (mean,
median or PCA) should be preferred.

For what concerns the single channel blind source separation techniques (SSA, EMD)
the main problem is that, depending on the spectral characteristics of the artifacts in the
recorded phenomena, nothing guarantees that the respiratory oscillation will be always
displayed by the same IMF or the same EOF. Results show that the second IMF or the
second EOF modes are the most suitable sources of respiration-related oscillations; yet,
this does not provide a guarantee—results might depend on the number of low-frequency
artifact sources that affect the signal and on the specific frequency subrange in which the
true RR falls (i.e., the current physiological conditions of the monitored subject). This
problem has been identified in the EMD literature with the terms “mode mixing”, when
a single source contains different oscillatory modes which actually are separated sources,
and “mode splitting”, when an actual single source is displayed in different extracted
sources [43].

Although some improved techniques (such as the complementary ensemble EMD,
the complete EEMD, the partly EEMD, the noise-assisted multivariate EMD, NA-MEMD,
and the fast multivariate EMD, FMEMD) have been proposed to deal with mode mixing and
mode splitting, the problem is still open [44]. In particular, for what concerns respiration,
mode splitting is mainly caused by the fact that respiration is a spontaneously modulated
phenomena that spreads differently in the low-frequency spectrum range, according to
physical, cognitive and emotional demands; thus, it is often “naturally” split in time-
subsequent different modes. Tracking those splits could be trickier than tracing respiration
in another way.

Lastly, upon comparing the results obtained from the use of contact and remote
PPGs, we noticed only a minor variation. To quantify this remark, it is worth noting
that the estimates achieved by the most successful method, IMS (first six rows of Table 1)
adopting either contact or remote PPGs, have an average difference of 0.47 breaths/min
and 0.53 breaths/min in RMSE and MAE, respectively. Notably, the adoption of remote
PPG only involves a negligible worsening of performance.

To summarize, the experiments reported here by and large show that, on the adopted
dataset, the approach based on the extraction of respiration-related morphological fea-
tures from (r)PPG signals should be preferred over single-channel blind source separation
techniques (either SSA or EMD). More specifically, the estimation and fusion of the three
Respiratory Induced Variations (RIVs) from (r)PPG signals (RIIV, RIFV, RIAV) allow for
the achievement of the best results in terms of both RMSE and MAE. Empirical Mode
Decomposition (EMD) performed worse on our benchmark, despite being one of the most
widely employed single-channel source separation techniques for the extraction of respira-
tory information from PPG signals. Conversely, Singular Spectrum Analysis allowed us
to separate respiratory information with higher levels of accuracy. Interestingly enough,
SSA estimates performed similarly to a state-of-the-art pre-trained Deep Learning-based
method. Notably, the difference in performances between the latter and the best-performing
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signal processing-based approach resulted to be significant with a medium effect size. Ulti-
mately, the rPPG has been shown to result in only a slight decrease in performance when
compared to contact PPG, thus enabling its dependable and extensive applicability.
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