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Abstract

A Calabi-Yau n-fold Y is a compact, complex, Kähler n-fold with trivial canonical bundle
and hi,0(Y ) = 0 for 1 ≤ i ≤ n− 1. Calabi-Yau manifolds represent a fascinating objects
of study due to the richness of their geometry. There exists a multitude of examples of
these manifolds, but still nowadays their classification is an open problem in dimension
higher than two. Among the different constructions of Calabi-Yau manifolds, we consider
those given as free quotients of abelian varieties by actions of a finite group that contains
no translations. These latter manifolds are called Calabi-Yau manifolds of type A. More
in general, free quotients A/G of an abelian variety A by the action of a finite group G

that does no contain any translation are called hyperelliptic varieties. The goal of this
thesis is to investigate problems on Calabi-Yau manifolds of type A and hyperelliptic
varieties.

The first part is dedicated to the study of Calabi-Yau n-folds A/G of type A. These
manifolds exist only in odd dimension n > 1 and Oguiso and Sakurai classified them
in dimension 3. In this thesis we provide higher dimensional examples that ensure the
existence of Calabi-Yau manifolds of type A in all odd dimension. After that, we study
the geometry of Calabi-Yau 3-folds of type A. Thanks to Oguiso and Sakurai, we know
that there exist only two families FAG of Calabi-Yau 3-folds A/G of type A and each of
them corresponds uniquely to a group G which acts freely on A and does not contain any
translations. More in details, the family FAD4

is constructed by Catanese and Demleitner
and the family FA(Z/2Z)2 is constructed here. In particular, these families are irreducible
and each X ∈ FAG admits a finite étale cover A which splits into the product of three
elliptic curves. Our main results include the full classification of the automorphisms
group and the possible quotients of manifolds in FAG for both choices of G. We prove
that Aut(X) is finite for X ∈ FAG . Furthermore, if X ∈ FAD4

then X/Υ is birational to a
Calabi-Yau 3-folds for every Υ ≤ Aut(X), while if X ∈ FA(Z/2Z)2 then X/Υ is birational
either to a Calabi-Yau 3-fold or to a 3-fold with negative Kodaira dimension or to a
3-fold Y with trivial Kodaira dimension and KY ̸= 0. In particular, we compute the
Hodge numbers and the fundamental groups of Calabi-Yau 3-folds Y birational to the
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quotient X/Υ where X ∈ FAG and Υ ≤ Aut(X).
In the second part, we establish the Morrison-Kawamata cone conjecture for hyper-

elliptic varieties. The cone conjecture, an open problem in birational geometry, predicts
that the nef and movable cones, of projective varieties Y with KY ≡ 0, admit a rational
polyhedral structure under the action of automorphism and birational automorphism
groups, respectively. The conjecture provides insights into both the geometry and bira-
tional geometry of varieties, specially from the point of view of Minimal Model Program.
To prove the conjecture for hyperelliptic varieties, we generalize the techniques esta-
blished by Prendergast-Smith for abelian varieties. Additionally, we investigate whether
hyperelliptic varieties A/G have a rational polyhedral nef cones. We obtain a result
in relation to the representation of G, in particular we deduce that all the Calabi-Yau
manifolds of type A studied in this thesis have rational polyhedral nef cones. Finally,
we study the extremal rays of the nef cones of these latter manifolds. We prove that the
extremal rays are semi-ample divisors, by generalizing a proof of Oguiso and Sakurai.
Thereby, we deduce that all nef divisors are semi-ample divisors.

Keywords: Fibrations (mathematics), Calabi-Yau manifolds, Abelian varieties, Au-
tomorphisms groups, Cone
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Résumé

Une variété de Calabi-Yau Y de dimension n est une variété compacte, complexe, kählé-
rienne et lisse avec un fibré canonique trivial et hi,0(Y ) = 0 pour 1 ≤ i ≤ n − 1.
Les variétés de Calabi-Yau représentent des objets d’étude fascinants en raison de la
richesse de leur géométrie. La classification est encore un problème ouvert en dimension
supérieure à deux. Parmi les différentes constructions de variétés de Calabi-Yau, nous
considérons celles obtenues comme quotients libres de variétés abéliennes par l’action
d’un groupe fini qui ne contient pas de translations. Ces dernières variétés sont appelées
variétés de Calabi-Yau de type A. Plus généralement, les quotients libres de variétés
abéliennes A par l’action d’un groupe fini G, qui ne contient pas de translations, sont
appelés variétés hyperelliptiques. L’objectif de cette thèse est d’étudier la géométrie et
les problèmes des variétés de Calabi-Yau de type A et des variétés hyperelliptiques.

La première partie est dédiée à l’étude des variétés de Calabi-Yau de type A. Elles
existent dans toutes les dimensions impaires n > 1 et ont été classifiées en dimension
3 par Oguiso et Sakurai. Dans cette thèse, nous donnons des exemples en dimension
supérieure qui garantissent l’existence de variétés de Calabi-Yau de type A dans toutes
les dimensions impaires. Ensuite, nous étudions la géométrie des 3-folds de Calabi-Yau
de type A. Oguiso et Sakurai ont montré qu’il existe deux familles FAG des 3-folds de
Calabi-Yau A/G de type A et que chacune correspond de manière unique à un groupe
fini G qui agit librement sur A et ne contient pas de translations. La famille FAD4

est construite par Catanese et Demleitner, et la famille FA(Z/2Z)2 est construite dans
cette thèse. En particulier, ces familles sont irréductibles et chaque X ∈ FAG admet un
revêtement étale fini A qui se décompose en un produit de trois courbes elliptiques. Nos
principaux résultats incluent la classification complète des groupes des automorphismes
et des quotients possibles des variétés dans FAG pour les deux choix de G. Nous prouvons
que Aut(X) est fini pour X ∈ FAG . De plus, si X ∈ FAD4

alors X/Υ est birationnel à une
3-fold de Calabi-Yau pour tout Υ ≤ Aut(X); si X ∈ FA(Z/2Z)2 , alors X/Υ est birationnel
soit à un 3-fold de Calabi-Yau, soit à un 3-fold de dimension de Kodaira négative, soit
à un 3-fold Y avec dimension de Kodaira triviale et KY ̸= 0. En particulier, nous

3



calculons les nombres de Hodge et les groupes fondamentaux pour les 3-folds de Calabi-
Yau Y birationelles à X/Υ avec X ∈ FAG et Υ ≤ Aut(X).

Le but de la deuxième partie est d’établir la conjecture du cône de Morrison-Kawamata
pour les variétés hyperelliptiques. La conjecture du cône, un problème ouvert en géométrie
birationnelle, prédit que les cônes nef et mobile, des variétés projectives Y avec KY ≡ 0,
admettent une structure polyédrale rationnelle sous l’action des groupes d’automorphismes
et d’automorphismes birationnels, respectivement. Cette conjecture fournit des infor-
mations sur la géométrie et la géométrie birationnelle des variétés, en particulier en
relation avec le Minimal Model Program. Pour prouver la conjecture pour les variétés
hyperelliptiques, nous généralisons les techniques établies par Prendergast-Smith pour
les variétés abéliennes. De plus, nous étudions quand les variétés hyperelliptiques A/G
possèdent des cônes nef polyédriques rationnels. Nous obtenons un résultat relatif à la
représentation de G, en particulier nous déduisons que toutes les variétés de Calabi-Yau
de type A étudiées dans cette thèse ont des cônes nef polyédriques rationnels. Enfin,
nous étudions les rayons extrémaux des cônes nef de ces dernières variétés. Nous prou-
vons que les rayons extrémaux sont des diviseurs semi-amples. Ainsi, nous déduisons
que tous les diviseurs nef sont semi-amples, en généralisant une preuve de Oguiso et
Sakurai.

Mots-clés: Fibrations (mathématiques), Calabi-Yau, Variétés de, Variétés abéli-
ennes, Groupes d’automorphismes, Cône
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Introduction

Complex algebraic manifolds with trivial canonical divisor are of great importance in
algebraic geometry. For instance, they don’t have a canonical model due to the triviality
of their canonical divisors. Therefore one needs to investigate and find other projective
models to describe their geometry. Furthermore, they appear as possible minimal models
in Minimal Model Program, an algorithm whose ultimate goal is to classify algebraic
varieties up to birational morphisms.

The famous Beauville-Bogomolov decomposition theorem (see Theorem 1.5.6) cha-
racterizes the manifolds with numerically trivial canonical bundle. It asserts that these
manifolds decompose, up to a finite étale covering, into the product of three building
blocks: complex tori, simply-connected Calabi-Yau manifolds and irreducible holomor-
phic symplectic manifolds.

A Calabi-Yau manifold Y is a compact, complex, Kähler manifold with trivial canoni-
cal bundle and no (i, 0)-forms for 1 ≤ i ≤ dim(Y ) − 1. Calabi-Yau manifolds represent
fascinating objects of study in algebraic geometry due to the richness of their geometry.
Moreover, they have various applications in other branches of science, such as physics
(e.g., Mirror Symmetry, F-theory, M-theory). In dimension 1, the only topological class
of such manifolds consists of genus one curves and they have a 1-dimensional moduli
space [56, Chapter 8]. In dimension 2, there is again a single topological class of Calabi-
Yau surfaces and all the Calabi-Yau surfaces are called K3 surfaces. However, the
moduli space in this case has dimension 20 [5, Chapters VI and VIII]. In dimension
3, the classification of Calabi-Yau threefolds remains an open problem. There is no
known method for constructing an infinite number of topologically distinct Calabi-Yau
manifolds: there is a vast but finite list of known families of Calabi-Yau threefolds.

In this thesis we focus in the relation between complex tori and (non necessarily
simply-connected) Calabi-Yau manifolds. One way to relate these manifolds is by con-
sider quotient maps. Specifically, we consider the Calabi-Yau manifolds which admit a
complex torus as étale Galois cover. In dimension 1, complex tori and Calabi-Yau curves
coincide. It is well-known that the only free action are given by translations and they
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produce quotients that are again Calabi-Yau curves. In higher dimension the situation
is more interesting, since complex tori and Calabi-Yau manifolds are topologically differ-
ent. In dimension 2, there exist finite groups G acting on complex tori T such that T/G,
up to desingularization, is a Calabi-Yau surface. It is worth noting that since Calabi-Yau
surfaces are simply-connected then the previous construction produces always singular
quotients, i.e. to relate complex tori and Calabi-Yau surfaces via the action of finite
groups one needs to consider singular surfaces. In dimension 3, the situation is more
curious. There still exist finite groups G acting on complex tori T such that T/G, up
to desingularization, is a Calabi-Yau 3-folds; but moreover we can find free actions of G
on T such that T/G is a Calabi-Yau 3-folds. We are particularly interested in this last
situation and its generalization in higher dimension.

The quotients T/G of complex tori T by free actions of finite group G, such that
T/G is not again a complex torus, are called (generalized) hyperelliptic manifolds. In
particular, we can assume that G does not contain any translations, see Remark 4.1.2. In
fact, a hyperelliptic manifold T/G is topological determined by the group G which does
not contain any translation, see Remark 4.1.9, and so we called it hyperelliptic manifold
with the group G. In the last years they have gained significant attention as they are
natural generalizations of the bi-elliptic surfaces. The hyperelliptic manifolds were first
introduced by H. Lange in [55] and if they are projective, i.e. the complex torus is
an abelian variety, they are called (generalized) hyperelliptic varieties. Later, several
mathematicians have made contributions to the study of such manifolds, for instance
see [23], [25], [73], [44], [42], [29], [22]. By definition hyperelliptic manifolds exist only
in dimension n > 1 and among them one can find Calabi-Yau manifolds. Hyperelliptic
manifolds that are also Calabi-Yau manifolds exist only in odd dimension and they are
always projective, see Lemma 5.6.1. They are commonly called Calabi-Yau manifolds of
type A and they were first introduced by Oguiso and Sakurai in [73].

The goals of this thesis are to investigate problems concerning both Calabi-Yau
manifolds of type A and hyperelliptic manifolds. Chapters 1 and 2 provide common
preliminaries to the parts of the thesis, given the different nature of the problems inves-
tigated. In Chapter 1, we collect some basic notions and results in algebraic geometry
that we will need throughout the thesis. In Chapter 2 we recall the main results and
techniques on abelian varieties, which will be useful later. Then, we divide the thesis in
three parts. Part I is devoted to the study of the geometry of Calabi-Yau manifolds of
type A, with a focus on the three-dimensional case. Part of this study is enclosed in the
article [66]. In Part II, we establish the Morrison-Kawamata cone conjecture for hyper-
elliptic varieties. This second work is a joint project with Ana Quedo and it is available
as preprint in [65]. Finally, part III is devoted to further remarks and questions. Let us
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explain and motivate more in details the results of Part I and part II.

Part I: The Calabi-Yau manifolds of type A.
Calabi-Yau manifolds of type A exist only in odd dimension n > 1 (see Lemma 5.6.6) and
in [73] the authors have completely classified these manifolds in dimension 3, providing
also explicit examples. It is worth noting that, to the best of the author’s knowledge,
there are not yet any higher-dimensional examples of Calabi-Yau manifolds of type A.
Therefore, a first question we aim to answer is the following:

Question 1. Do Calabi-Yau manifolds of type A exist in all dimensions?

Calabi-Yau manifolds of type A are in particular hyperelliptic manifolds. These latter
are guaranteed to exist in all dimension through explicit examples, see [55, Section 4]
and [1]. Looking at these examples enclosed in [1], we prove that they yield to Calabi-
Yau quotients only in dimension 3, finding the same example enclosed in [73, Theorem
0.1]. Therefore, we construct, properly, free actions G on abelian varieties A to obtain,
by quotient, Calabi-Yau manifolds of type A in higher dimension. More precisely, we
obtain the following result.

Theorem A (see Theorem 5.6.6). Calabi-Yau (2n + 1)-folds of type A exist for every
n ∈ N≥1. In particular,

(i) For every n, there exists a Calabi-Yau manifold Y = A/G with G ≃ (Z/2Z)2n

and A = E1 × . . .×E2n+1 is the product of 2n+ 1 elliptic curves (non necessarily
isomorphic to each other).

(ii) For n = 1, there exists a Calabi-Yau threefolds Y = A/G with G ≃ D4 the dihedral
group of order 8 and A = E × E × E′ with E,E′ elliptic curves.

Furthermore, for every odd n there exists a free quotient Y = A/G with G ≃ D4n with
KY ≃ OY and h1,0(Y ) = h2,0(Y ) = 0.

After ensuring the existence of Calabi-Yau manifolds of type A in all dimensions,
we aim to study their geometry. As observed by Oguiso and Sakurai, the first interest
in the Calabi-Yau manifolds of type A is motivated by the fact that they don’t contain
rational curves, while most of the Calabi-Yau manifolds contains rational curves. To
study the geometry of these manifolds, we mainly consider the first dimension case in
which these manifolds appear, i.e. the Calabi-Yau threefolds of type A. In [73, Theorem
0.1] the authors have proven that there exist only two families of Calabi-Yau 3-folds A/G
of type A and that each of them uniquely corresponds to a finite group G which acts
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freely and does not contain any translation. The possible groups are: the abelian group
(Z/2Z)2 and the dihedral group D4 of order 8. Independently from [73], Catanese and
Demleitner have constructed the whole family FAD4

of hyperelliptic threefolds with the
group D4: this family is irreducible and 2 dimensional. In particular, these threefolds
admit a 16-étale cover isomorphic to A′ = E × E × E′ which splits into the product
of three elliptic curves (two isomorphic). Furthermore, it coincides with the family of
Calabi-Yau threefolds of type A with the group D4, see Lemma 6.1.2. By using similar
techniques, we construct the family FA(Z/2Z)2 of Calabi-Yau threefolds of type A with the
group (Z/2Z)2: it is irreducible and 3 dimensional; every X ∈ FA(Z/2Z)2 admits a 4-étale
cover A = E1 ×E2 ×E3 which splits into the product of three (non-isomorphic) elliptic
curves, see Theorem 7.1.2. We consider these two families, mainly FAD4

, and we aim to
describe the geometry of X ∈ FAG for both the groups G. In Chapter 6 we study FAD4

and in Chapter 7 the family FA(Z/2Z)2 . The main results concern the full classification of
the automorphisms group and of the quotients of such X. More in details.

Theorem B (see Theorem 6.4.1 and Theorem 7.3.1). Let X ∈ FAG with X = A/G.

(i) Let G ≃ (Z/2Z)2 and so A = E1 × E2 × E3 product of elliptic curves. Let us
assume that Ei’s are not isogenous to each other. Then the automorphism group
of X = A/G is isomorphic to (Z/2Z)7. Specifically, the automorphisms on X

are induced by those on A whose linear part belong to ⟨diag(−1, 1, 1)⟩ and the
translation part is given by any point of order 2.

(ii) Let G ≃ D4 and so A is isogenous to A′ = E × E × E′ product of elliptic curves.
Let us assume that EndQ(E′) ̸≃ Q(ζ6) then the automorphism group of X is iso-
morphic to (Z/2Z)4. Specifically, the automorphisms on X are induced by order
two translations by the points (t1, t2, t3) on A′ such that t1 + t2 ∈ {0, 1

2}, t1 ∈ E[2]
and t3 ∈ E′[2].

We immediately see a difference between automorphisms of X ∈ FA(Z/2Z)2 and those
of X ∈ FAD4

. Indeed in the first case there exist automorphisms that do not preserve the
volume form of X, while in the second case all automorphisms preserve the volume form
of X. The different properties of automorphisms of X ∈ FAG for the case G ≃ (Z/2Z)2

and G ≃ D4, yield to different situations for the quotients of X. More precisely,

Theorem C (see Theorem 6.5.1 and Theorem 7.4.1). Let X ∈ FAG and Υ ≤ Aut(X).
Let β : Y → X/Υ be a resolution of singularities that blows up once each irreducible
component in Sing(X/Υ).

(i) If G ≃ (Z/2Z)2, the followings hold.
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1. If Υ preserves the volume form of X then β is a crepant resolution and Y

is a Calabi-Yau 3-fold. In particular, there are exactly 33 − 1 automorphisms
(αj)X which act freely on X and the quotients X/(αj)X belong to FA(Z/2Z)2.
There are 37 involutions with non-trivial fixed locus which preserve the volume
forms of X.

2. If Υ does not preserve the volume form of X, we have the following cases.

a. If there exists at least one αX ∈ Υ which fixes surfaces on X then Y has
negative Kodaira dimension. In particular, there are 24 of those involu-
tions αX , see Remark 7.3.2.

b. Otherwise, Y has trivial Kodaira dimension and KY is not trivial. In
particular, there are 48 involutions αX that do no fix surfaces, see Remark
7.3.2.

(ii) If G ≃ D4. Then for each Υ we have that β is a crepant resolution and Y is a
Calabi-Yau 3-fold. Moreover, there exist exactly 2 automorphisms (α1)X and (α2)X
acting freely on X. In particular, X

(αj)X
’s belong to FAD4

.

Furthermore, we completely classify these quotients by computing their Hodge num-
ber and their fundamental groups: for G ≃ D4 see Tables 6.2, 6.3, 6.4 and 6.5; and for
G ≃ (Z/2Z)2 see Proposition 7.5.1 and [32]. Additionally, to these studies we investigate
more on the geometry of X ∈ FAG , mainly for G ≃ D4. For instance, we completely the
describe the Picard group of X ∈ FAG : for G ≃ D4 see Section 6.2 and for G = (Z/2Z)2

see Section 7.2. In particular, we prove that one can choose as generators of PicQ(X)
divisors that define fibrations on X that are related with the natural projections on the
cover of X. As final remark, we recall that Calabi-Yau manifolds of type A by con-
struction have infinite fundamental group. In dimension 3 there exist other Calabi-Yau
threefolds with infinite fundamental group. These latter threefolds are called Calabi-Yau
threefolds of type K since they are covered by the product of an elliptic curve and a K3
surface. They are first introduced in [73] and later they appeared in different contexts
also related with the Mirror Symmetry, see [44] and [45]. In Section 6.9, we highlight
other relations between Calabi-Yau threefolds of type A and K. More in details, we
prove that there exist quotients of X ∈ FAD4

which are Calabi-Yau threefolds of type K
and we present each X ∈ FAD4

as finite cover of a certain Calabi-Yau threefolds of type
K.
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Part II: The Morrison-Kawamata cone conjecture for hyperel-
liptic varieties
Starting from the 1980s with the work of Mori, the Minimal Model Program (for short
MMP) has become a powerful tool for understanding and classifying the (birational)
geometry of projective varieties. The MMP can be considered a generalization of the
Enriques-Kodaira classification for surfaces to higher dimensional varieties. More pre-
cisely, it is an algorithm that starting from a projective variety Y it (eventually) ends
up with either a variety Y ′ birational to Y and with KY ′ nef, namely minimal model
of Y , or a Mori fiber space, i.e. a variety Y ′ birational to Y together with a fibration
ϕ : Y ′ −→ Z whose fibers are Fano varieties. One of the core insights of the Minimal
Model Program is that much information about the maps from a projective variety Y

to projective space is contained in the nef cone Nef(Y ) which lies in a finite dimensional
vector space N1(Y )R = NS(Y )⊗R. Indeed, the study of this cone can give insight into
the study of the minimal model of Y . Moreover, the nef cone contains all base-point free
divisors (semi-ample divisors), thus understanding the structure of this cone allows us
to understand the morphisms from Y to projective spaces. Additionally, in dimension
higher than 2 the minimal models are not necessarily unique and it is not even known if
the number of such minimal models is finite. Therefore, it is important to study maps
between different minimal models: such maps are in fact associated with movable divi-
sors. Therefore, the study of the movable cone Mov(Y ) is important in relation to this
problem.

The important relation between the nef cone of Y and the MMP is captured by
the Cone Theorem and the Contraction Theorem, see Theorems 9.1.6 and 9.1.8. They
assert that theKY -negative part of Mori cone (dual to the nef cone) is rational polyhedral
away from the KY -trivial hyperplane and that the extremal rays of the polyhedral part
correspond to some morphisms on Y , involved in MMP.

Figure 0.1: The Mori cone of a variety Y
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Fano varieties represent a simplicity in that since their nef cone is rational polyhedral
(finitely generated) and its extremal rays are generated by semi-ample classes. However,
in general, it is difficult to describe the whole cone. For instance, the nef cone of varieties
with ample canonical divisor can have infinitely many extremal rays and very little can
be said in general about its structure. It remains to study the intermediate case: the
nef cone of projective K-trivial manifolds. For such varieties, the nef cone ranges from
polyhedral structures to round cones. The Morrison-Kawamata cone conjecture aims to
explain and unify the different behaviours of the nef cone for K-trivial manifolds. Indeed
it predicts the existence of a fundamental domain for the action of automorphisms group
of the nef cone. In addition to study projective models of Y , we would also like to
understand the birational geometry of Y by understanding the birational maps from Y

and by studying the movable cone Mov(Y ). More in details, let Nef(Y )+ and Mov(Y )+

be the convex hulls of rational points (see Definition 9.2.2) of the nef and movable
cone, respectively, of projective K-trivial manifold Y . Morrison proposed the following
conjecture:

Conjecture 0.0.1 (Morrison’s version, [69]). Let Y be a smooth projective K-trivial
variety. Then

(i) There exists a rational polyhedral cone Π which is a fundamental domain for the
action of the automorphism group Aut(Y ) on the cone Nef(Y )+ in the following
sense:

a. Nef(Y )+ = Aut(Y ) ·Π, i.e. Nef(Y )+ =
⋃

φ∈Aut(Y )
φ∗Π,

b. It holds (IntΠ) ∩ φ∗(IntΠ) = ∅ for every φ∗ ̸= id in GL(N1(Y )).

(ii) There exists a rational polyhedral cone Π′ which is a fundamental domain (in the
sense above) for the action of the birational automorphism group Bir(Y ) on the
cone Mov(Y )+.

Figure 0.2: Slice of a round cone with a fundamental domain
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Historically, Morrison formulated the conjecture in [69] taking inspiration from the
Mirror Symmetry. Then, Kawamata [50] refined the conjecture by replacing the con-
vex hulls in the Morrison’s version with Nef(Y )e := Nef(Y ) ∩ Eff(Y ) and Mov(Y )e :=
Mov(Y ) ∩ Eff(Y ) which are more natural objects in MMP, see Conjecture 9.4.3. It is
worth to observe that the two versions are not in general equivalent and the only known
relation is that Nef(Y )e ⊆ Nef(Y )+, see Lemma 9.4.4. We also mention that there exists
an extended version of the cone conjecture in the singular setting due to Totaro [85].

The cone conjecture, in particular, has twofolds consequences. It allows to study
these cones by considering just their "polyhedral part" whose study is strongly related
with linear algebra. It gives insight into the geometry and birational geometry of the
variety. For instance: the cone conjecture for the nef cone implies that there are finitely
many contractions or fiber spaces up to automorphisms, see [85, Section 1]; while the one
for the movable cone would imply, modulo standard conjectures of the Minimal Model
Program, the finiteness of minimal models, up to birational automorphisms, see [20,
Theorem 2.14].

The cone conjecture is one of the open and challenging problems in algebraic geom-
etry. Over the years, the conjecture has spurred a flurry of research activity, leading to
significant advancements and conjectural extensions. It has been verified for numerous
cases: surfaces ([83], [71],[50] and [85]), abelian varieties ([77]), irreducible holomorphic
symplectic manifolds ([3], [2]). For Calabi-Yau manifolds the landscape is more compli-
cated, indeed the conjecture is known for very specific cases ([61], [72], [75], and [58]).
Since the main thread of this thesis is to study K-trivial manifolds given as free quotients
of other K-trivial manifolds, in relation to the cone conjecture we aim to investigate the
following problem.

Question 2. Let π : X −→ Y = X/G be a finite étale cover where X is a K-trivial
manifold. Assume that the cone conjecture holds for X, does it hold also for Y ?

Pacienza and Sarti in [76] have given a positive answer whenever X is of IHS type and
G is of prime order, the resulting manifolds are called Enriques manifolds. We explore
the scenario where the cover X is an abelian variety, i.e. Y is a hyperelliptic variety.
Specifically, our main result is the following.

Theorem D. Let Y = X/G be a hyperelliptic variety. Then, the Morrison-Kawamata
cone conjecture holds in both its formulations and both for the nef and movable cone. In
particular, Mov(Y ) = Mov(Y )+ = Mov(Y )e = Nef(Y )e = Nef(Y )+ = Nef(Y ).

The proof of the Theorem D is enclosed in Chapter 11. A core idea underlying its
proof lies in the possibility to describe the nef cone of Y in terms of the G-invariant nef
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cone of X and to establish a connection between the automorphisms of Y and the ones
in the normalizer NAut(X)(G). Specifically, we prove that if the cone conjecture holds
for a variety X, it suffices to provide a rational polyhedral cone Π ⊂

(
Nef(X)G

)+ such
that Amp(X)G ⊂

⋃
h∈H

h(Π) for some H ≤ NAut(X)(G) to obtain a rational fundamental

domain for Nef(Y ) under the action of H/G, see Proposition 11.1.1. In our setting: to
reach this goal we translate our problem into a well-known problem of convex geometry
about the existence of a rational fundamental domain for the action of arithmetic groups
on homogeneous self-dual cones, as Prendergast-Smith did for abelian varieties [77]. It
is worth noting that for hyperelliptic varieties, as for abelian varieties, the nef cone
coincides with the closure of the movable cone; therefore the cone conjecture for the nef
cone is equivalent to the one for movable cone.

We conclude this part of the thesis with a further investigation, which is connected
to the first part. In part I we have studied the Calabi-Yau threefolds X ∈ FAG and since
they are hyperelliptic varieties, they satisfy the cone conjecture. In fact, this result was
already proven in [73, Theorem 01. (IV)] where, specifically, the authors proved that
the nef cone for these threefolds is rational polyhedral. It is, therefore, natural to ask
the following question:

Question 3. Given a Calabi-Yau manifold of type A, under which conditions the nef
cone is rational polyhedral? Or, more generally, under which conditions the nef cone of
a hyperelliptic variety Y = A/G is rational polyhedral?

In Section 12.1, we provide an answer in relation to the representation of the group
G. More precisely,

Theorem E (see Theorem 12.1.2 and Corollary 12.1.4). Let Y = A/G be a hyperelliptic
variety and η be the representation of G. We assume that A is not of CM-type. If G
contains a normal abelian group H such that η|H does not contain two equals irreducible
sub-representations, then the nef cone of Y is a polyhedral cone. In addition, if Y has
h1,0(Y ) = 0 then Aut(Y ) is finite.

Furthermore, we deduce that all Calabi-Yau manifolds of type A in Theorem A have a
rational polyhedral nef cone. We also observed that Oguiso and Sakurai, by proving that
the Calabi-Yau threefolds of type A have rational polyhedral nef cones, have described
the extremal rays of these cones. They showed that the extremal rays are the divisors
generating PicQ(X) which define fibrations on X; in particular they deduced that all
nef divisors are semi-ample. Thus, we investigate on the extremal rays of the nef cone
of the higher dimensional examples of Calabi-Yau manifolds that we have constructed
in Theorem A and we obtain the following result.
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Theorem F. Let Y be the Calabi-Yau manifold of type A as in Theorem A. Then
extremal rays of the nef cone are given by divisors which define fibrations on X induced
by natural projections on A. In particular all nef divisors are semi-ample.

We emphasize in Part III that Theorem F is related with one of the main open con-
jecture in MMP. As we have briefly mentioned, one of the possible outcome of the MMP
is a variety Y ′ with KY ′ nef. The Abundance conjecture predicts that actually KY ′ is
semi-ample. For K-trivial varieties with no (1, 0)-forms the abundance conjecture pre-
dicts that if D is a nef divisor then D is semi-ample. Therefore Theorem F together with
[73, Theorem 0.1 (IV)] imply that all the Calabi-Yau manifolds of type A in Theorem A
satisfy the Abundance conjecture (for K-trivial varieties)
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1 Preliminaries from Algebraic
Geometry

We assume that all algebraic varieties are irreducible, reduced and defined over C. We
mainly consider smooth and projective varieties.

1.1 | Divisors and line bundles
Let Y be a smooth, projective variety.

Definition 1.1.1. A prime divisor is a codimension 1 subvariety of Y . A Weil
divisor on Y is a formal finite linear combination D =

∑
i
niYi with Yi’s prime divisors

and ni ∈ Z. A Weil divisor is called effective if all the coefficients ni are non-negative.

Let (MY )× and (OY )× be the sheaves of invertible meromorphic and holomorphic
functions, respectively.

Definition 1.1.2. A Cartier divisor is a global section of the sheaf (MY )×/(OY )×,
i.e. a collection {(Ui, fi)} such that {Ui} is a cover of Y , fi is a section of (MY )× on Ui
and fi = fj on Ui ∩ Uj up to a multiplication by a section of (OY )×.

We recall that since Y is smooth, there is a one-to-one correspondence between Weil
and Cartier divisors, see [49, Proposition 2.3.9]. Thus we simply use the term divisor.
We denote by Div(Y ) the group of (Cartier) divisors endowed with the natural group
structure.

Let f : X −→ Y be a dominant morphism of smooth algebraic varieties, i.e. f(X) is
dense in Y . The degree of f is defined by

deg(f) =

[C(X) : C(Y )] dim(X) = dim(Y )

0 dim(X) > dim(Y ).
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1.1. Divisors and line bundles

We recall the relation between divisors on X and Y under the morphism f .

Definition 1.1.3. Let D ∈ Div(Y ) be a prime divisor. The the pull-back divisor of
D is defined by f∗D = f−1(D) ∈ Div(X).

We extend by linearity the definition above and obtain the following morphism of
groups:

f∗ : Div(Y ) Div(X)

D =
∑
i
niYi f∗D =

∑
i
nif

−1(Yi)

Definition 1.1.4. Let f : X −→ Y be generically of finite degree and D ∈ Div(X) be a
prime divisor. The the push-down divisor of D is defined by f∗D = deg(f)f(D) .

We extend by linearity the definition above and obtain the following morphism of
groups:

f∗ : Div(X) Div(Y )

D =
∑
niYi f∗D =

∑
nif∗Yi

If f : X −→ Y is generically of finite degree, the following relation holds:

f∗f
∗D = deg(f)D for every D ∈ Div(Y ). (1.1.1)

Any meromorphic function h on Y defines a divisor D = div(h) =
∑
Z

ordZ(h)Z where

Z is a prime divisor on Y and ordZ(h) is the order of h along Z.

Definition 1.1.5. A divisors D is called principal divisor if D = div(h) for some
meromorphic function h.

Definition 1.1.6. Two divisors D1 and D2 are linearly equivalent if D1 − D2 is
principal. In this case we write D1 ∼lin D2.

The relation of linear equivalence on the divisor group defines an equivalence relation
on Div(Y ).

Definition 1.1.7. We define the Picard group Pic(Y ) the group of line bundle up to
isomorphism under the tensor product ⊗.
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Chapter 1. Preliminaries from Algebraic Geometry

Given f : X −→ Y dominant morphism and L ∈ Pic(Y ) defined by {(Uj , ψij)}, we define
the pull back line bundle f∗L to be the line bundle determined by {(f−1(Uj), ψij◦f)}.

It turns out that, under smoothness and projective assumption, divisors modulo
linear equivalence correspond to line bundles. More precisely, we have the following
homomorphism of groups:

ϑ : Div(Y ) Pic(Y )

D OY (D)

(1.1.2)

where if D = {(Ui, fi)} is a (Cartier) divisor we define OY (D) to be the line bundle
whose transiction functions are fjf−1

i on Uj ∩ Ui which satisfy the cocycle conditions,
see [49, Section 2.3]. The kernel of ϑ is given by the group of principal divisors [49,
Lemma 2.3.14], i.e. ϑ factorizes through Div(Y )/ ∼lin. Furthermore, whenever Y

is a projective manifolds then ϑ is surjective, [49, corollary 5.3.7]. This provides the
isomorphism Div(Y )/ ∼lin≃ Pic(Y ) for any smooth projective variety Y . We recall
that ϑ is compatible with pull-back maps, [49, Corollary 2.3.13]. Moreover, it is easy
to see that the push down map is well-defined on linear equivalent divisors classes thus
it induces the pushforward map f∗ : Pic(X) −→ Pic(Y ) which maps L = OX(D) to
f∗L = OX(f∗D).

An important machinery that allows us to study the Picard group is given by the
exponential sequence:

0→ Z→ OY
exp−−→ (OY )× → 0 (1.1.3)

where Z is the sheaf of locally constant functions, OY is the sheaf of holomorphic func-
tions. According to [49, Corollary 2.2.10], we have the following natural isomorphism
H1(Y, (OY )×) ≃ Pic(Y ). By considering the long exact sequence in cohomology induced
by (1.1.3) we obtain the following map, namely the first Chern map

c1 : Pic(Y ) H2(Y,Z)

L c1(L).

We denote by Pic0(Y ) = ker(c1).

Definition 1.1.8. We denote NS(Y ) = Im(c1) ≃ Pic(Y )
Pic0(Y )

and we call it the Néron-

Severi group of Y .
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1.1. Divisors and line bundles

Definition 1.1.9. Let D ∈ Div(Y ). The homological class of D is defined by
[D]hom := c1(OX(D)).
Let D1, D2 ∈ Div(Y ). We say that D1 is homogical equivalent to D2, denoted by
D1 ∼hom D2, if their homological class are the same.

Remark 1.1.10. The homological equivalence is an equivalence relation on Div(Y ).

Remark 1.1.11. When Y is projective and smooth we have that Pic0(Y ) can be defined
as the group of divisors homological equivalent to zero. Hence NS(Y ) = Div(Y )/ ∼hom.

By the Néron-Severi’s Theorem, NS(Y ) is a finitely generated abelian group: we
denote by ρ(Y ) = rk(Pic(Y )) = rk(NS(Y )) its rank, namely the Picard rank of Y .

Assume that Y is projective (or Kähler), it holds the Hodge decomposition:

Hn(Y,C) =
⊕

p+q=n
Hq(Y,Ωp

Y ) :=
⊕

Hp,q(Y ) (1.1.4)

where Ωp
Y is the sheaf of p-forms. We denote by hp,q = dim(Hp,q(Y )), namely the Hodge

numbers. We also recall the following symmetries:

Hp,q(Y ) = Hq,p(Y ) (Hodge symmetry) Hp,q(Y ) = Hn−p,n−q(Y ) (Serre duality).

Theorem 1.1.12 (Lefschetz theorem on (1, 1) classes). [49, Section 3.3] Let Y be a com-
pact complex Kähler manifold. then any element in H1,1(Y )∩H2(Y,Z) is the cohomology
class of a divisor on Y .

Theorem 1.1.12 says that c1 : Pic(Y ) → H1,1(Y,Z) := H1,1(Y ) ∩H2(Y,Z) is surjec-
tive, and so that the Néron-Severi group lies in the H1,1(Y ).

Definition 1.1.13. The holomorphic characteristic of Y by χ(Y ) =
∑
i

(−)ihj,0(Y ).

Definition 1.1.14. The Euler characteristic of Y by e(Y ) =
∑
i

(−)ibi(Y ) where

bi = dim(H i(Y,Z)) are called Betti numbers.

Remark 1.1.15. By (1.1.4), bk(Y ) =
∑

i+j=k
hi,j(Y ).

Lemma 1.1.16. [57, Proposition 1.1.28] Let f : X −→ Y be a finite étale covering of
Kähler manifolds. Then χ(X) = deg(f)χ(Y ) and e(Y ) = deg(f)e(Y ).
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Chapter 1. Preliminaries from Algebraic Geometry

1.2 | Intersection of divisors
Let Y be a projective smooth variety over C. There are different way to introduce in-
tersection theory on Y . Since we are interested only in intersection between divisors we
use a more simply approach, refer to [57, Chapter 1]. For more general one, we refer for
example to [43, Section A].

Let D1, . . . , Dk be Cartier divisors on Y : since Y is smooth they are in bijection
with the line bundles OY (Di) ∈ Pic(Y ). We consider their cohomology class given by
c1(OY (Di)) ∈ H2(Y,Z). By using the cup product ⌣ on H2(Y,Z) we can define the
intersection of divisors as follows:

c1(OY (D1)) ⌣ . . . ⌣ c1(OY (Dk)) ∈ H2k(Y,Z).

We generally use the following notation D1 · . . . ·Dk to indicate the product above.
By the Poincaré duality we have H2n(Y,Z) ≃ H0(Y,Z) ≃ Z where dim(Y ) = n, hence
we obtain an intersection number by considering the product of exactly n divisors:

Div(Y )× . . .×Div(Y ) Z

(D1, . . . , Dn) D1 · . . . ·Dn

(1.2.1)

The important properties of this product are the following, see [57, Remark 1.1.13]:

1. It is symmetric and multi-linear,

2. The integer D1 · . . . ·Dn depends only on the linear equivalence class of Di.

3. If Di’s are effective divisors meeting transversely then D1·. . .·Dn = ♯(D1∩. . .∩Dn).

4. The projection formula: let f : X −→ Y be a dominant morphism of varieties,
then for every D1, D2 ∈ Div(Y )

f∗(D1 · f∗D2) = f∗(D1) ·D2 (1.2.2)

If D1 = . . . = Dn we write the product by Dn, called self-intersection.

Lemma 1.2.1. Let f : X −→ Y be a generically finite surjective morphism of smooth
varieties and dim(X) = dim(Y ) = n, then

f∗D1 · . . . · f∗Dn = deg(f)(D1 · . . . ·Dn) (1.2.3)

for every Di ∈ Div(Y ).
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1.2. Intersection of divisors

Proof. Since the product of n divisors is an integer number, we have the following equa-
lity

f∗D1 · . . . · f∗Dn = f∗(f∗D1 · . . . · f∗Dn).

We apply, subsequently, property 4. (1.2.2):

f∗D1 · . . . · f∗Dn = f∗(f∗D1 · . . . · f∗Dn) = f∗(f∗D1 · . . . ·Dn−1) ·Dn

= . . . = f∗f
∗D1 ·D2 · . . . ·Dn

(1.1.1)= deg(f)(D1 · . . . ·Dn).

The intersection defined in 1.2.1, allows also to define intersection of divisors and
1-cycle.

Definition 1.2.2. A k-cycle on Y is a finite (formal) linear combination
∑
i
niVi with

Vi’s subvarieties of dimension k and ni ∈ N. We denote by Zk(Y ) the group generated
by k-cycles.

Let D ∈ Div(Y ) and V a subvariety of dimension 1. We have:

D · V = c1(OY (D1)) ∩ [V ] ∈ H0(Y,Z) ≃ Z

where [V ] is the class of V in H2(n−1)(Y,Z). The intersection above can be linearly
extended to an intersection of divisors and 1-cycle. Hence we obtain the so-called in-
tersection pairing

Φ1 : Div(Y )× Z1(Y ) Z

(D,V ) D · V

(1.2.4)

The intersection pairing above allows us to define an equivalence relation, namely
numerical equivalence, on both Div(Y ) and Z1(Y ).

Definition 1.2.3. Let D1 and D2 in Div(Y ). They are say to be numerically equiv-
alent divisor if D1 ·C = D2 ·C for every C ∈ Z1(Y ). In this case we denote D1 ≡ D2.
We denote N1(Y )= (Div(Y )/ ≡).

Definition 1.2.4. We denote by N1(Y )R = N1(Y )⊗R, namely the real Néron-Severi
vector space.

We have N1(Y )R a vector space of dimension ρ(Y ) with its standard Euclidean
topology. The group of divisors of Y defines a structure of a lattice in N1(Y )R. When
an element of N1(Y )R is in this lattice we refer to it simply as a divisor, otherwise as
R-divisor.
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Remark 1.2.5. We observe that the name Néron Severi vector space is actually related
to the Néron Severi group. By Remark 1.1.11:

NS(Y ) = Pic(Y )/Pic0(Y ) = Div(Y )/ ∼hom .

According to [57, Remark 1.1.20] we have for any D ∈ Div(Y ):

D ≡ 0⇔ ∃m ∈ N>0 such that c1(mD) ∈ Pic0(Y )⇔ [mD]hom = 0.

In other words, homological and numerical equivalence coincide up to torsion. Conse-
quently, N1(Y )R ≃ NS(Y )⊗ R and so it has dimension ρ(Y ).

Definition 1.2.6. Let C1 and C2 in Z1(Y ). They are said to be numerically equiv-
alent 1-cycle if C1 ·D = C2 ·D for every C ∈ Div(Y ). In this case we denote C1 ≡ C2.
We denote N1(Y )= (Z1(Y )/ ≡).

Definition 1.2.7. We denote by N1(Y )R = N1(Y )⊗ R.

The intersection pairing 1.2.4 extends to a non-degenerate pairing between the vector
spaces N1(Y )R and N1(Y )R:

N1(Y )R ×N1(Y )R R

(D,C) D · C

In particular, by construction it is a perfect pairing hence we obtain that N1(Y )R and
N1(Y )R are dual vector spaces. Therefore N1(Y )R is a finite dimensional vector space
with standard Euclidean topology.

1.3 | Maps to projective space
Let Y be a smooth algebraic variety. Divisors play a central role in the understanding
of the geometry of varieties. Indeed, one way of understanding the geometry of Y is
to understand the maps on Y and much information about these maps is captured by
the divisors on Y . We recall that using ϑ in (1.1.2) we can associated to D ∈ Div(Y )
a line bundle OY (D). Assume Y to be compact, then H0(Y,OY (D)) is either trivial or
finitely generated by ⟨s1, . . . , sN ⟩. We assume to be in the last case, hence it is a finite
dimensional vector space and we can use its global sections to define a rational map on
Y as follows:
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1.3. Maps to projective space

φ|D| : Y P(H0(Y,OY (D))∨)

y (s1(y) : . . . : sN (y)).

The above map is well-defined outside the set Bs(D):= {y ∈ Y | si(y) = 0 ∀i = 1, . . . , n}
which is called base locus of D. The properties of the map φ|D| are clearly related
with properties of D. Here we recall some of them.

Definition 1.3.1. Let D ∈ Div(Y ). Then

• D is movable if there exists m > 0 such that mD is effective and Bs(|mD|) has
no component of codimension 1;

• D is nef (or numerically effective) if D ·C ≥ 0 for every irreducible curve C on Y ;

• D is ample if φ|mD| defines an embedding of Y in PN for some m >> 0.

We make some easy observations:

1. Any ample divisor is nef. Indeed by the Nakai-Moshezan criterior [57, Theorem
1.2.23] a divisor D on Y is ample if and only if Ddim(Y ) ·Y > 0 for every subvariety
Y ⊂ X. Thus for a curve Y we have D · Y > 0, hence D is nef.

2. Any ample divisor is movable. Indeed if D is ample there exists m > 0 such that
|mD| defines and embedding, in particular mD is effective and Bs(|mD|) = ∅.
Thus D is movable.

We also remark that D is effective if H0(X,OX(D)) is not trivial since there exists a
bijection between effective divisors D and non-trivial global sections of OX(D), see [49,
Proposition 2.3.18].
It is useful to know which morphisms preserve the properties mentioned above.

Lemma 1.3.2. Let f : X −→ Y be a morphism of projective manifolds. Let D ∈ Div(Y ).

(i) Then D is effective if and only if f∗D is effective.

(ii) If f is finite and D ample then f∗D is ample on X. If moreover f is surjective we
have the viceversa. [57, Proposition 1.2.13 and Corollary 1.2.28].

(iii) If f is proper and D is a nef on Y then f∗D is a nef divisor on X. If moreover f
is surjective it holds the viceversa. [57, Example 1.4.4 (i)-(ii)].
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Definition 1.3.3. A rational map f is said birational map if f is a rational map with
and it has an inverse which is a rational map. A birational morphism f : X −→ Y is
a morphism of varieties which is also a birational map.

Lemma 1.3.4. Let f : X −→ Y be a birational morphism of projective varieties. If D
is movable then f∗D is movable.

Proof. It follows since according to [51, Theorem 1] any birational morphism is an iso-
morphism in codimension 1.

1.4 | The canonical divisor
Let Y be a compact, projective, smooth variety. We can associate a canonical sheaf to
Y as follows. Let ΩY be the cotangent sheaf on Y .

Definition 1.4.1. We define the canonical sheaf of Y by KY =
∧n ΩY .

Since Y is non singular, the ΩY is locally free of rank n, so KY is a line bundle, hence
isomorphic to OX(KY ) for some (Cartier) divisor KY called canonical divisor.

Definition 1.4.2. The Kodaira dimension of Y is

k(Y ) =


−∞ H0(Y,K⊗m

Y ) = 0 for every m ∈ N

max
m∈N

dim φ|mKY |(Y ) otherwise.

Proposition 1.4.3 (Adjunction formula for hypersurfaces,). [49, Proposition 2.2.17]
Let Y be a smooth variety and X ⊂ Y be an hypersurface. Then KX = (KY +X)|X .

Proposition 1.4.4 (Riemann-Hurwitz Formula). [5, Chapter I.Section 16, equation
(20)] Let us consider f : X → Y a generically finite morphism between smooth projective
varieties. Then KX = f∗KY + R where R is a divisor supported on the ramification
locus of f .

1.5 | Beauville-Bogomolov decomposition theorem
Definition 1.5.1. We define the first Chern class of Y by c1(Y ) = c1(KY ).

Definition 1.5.2. A K-trivial manifold is a manifold whose canonical divisor is nu-
merically trivial.
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As we have recalled in the previous section the map associated to (multiple of)
the canonical divisor can produce projective models. This is not the case of K-trivial
manifolds. Let Y be a K-trivial n-fold. We recall that having trivial canonical bundle
is equivalent to have a holomorphic nowhere vanishing volume form ωY . Whenever Y is
compact the volume form defines the section (up to scalar) of the sheaf Ωn

Y of n-form,
i.e. H0(Y,Ωn

Y ) = ⟨ωY ⟩ ≃ C, see [49, Chapter 1]. It is clear that for K-trivial manifolds
the map associated to KY is just a map onto a point.
The K-trivial manifolds are characterized by a decomposition theorem.

Definition 1.5.3. A Calabi-Yau manifold Y is compact, complex, Kähler n-fold with
trivial canonical bundle and hj,0(Y ) = 0 for 1 ≤ j ≤ n− 1.

Definition 1.5.4. A Irreducible Holomorphic Symplectic (IHS) n-fold is simply
connected, complex, Kähler n-fold with a non-degenerate holomorphic symplectic 2-form
σY such that H0(Y,Ω2

Y ) = CσY .

Remark 1.5.5. Let Y be a IHS n-fold: it follows by the existence of σY that

H2j,0(Y ) = ⟨(σY )∧j⟩ j = 1, . . . , n2 .

In particular, n is even and Y is compact.

Theorem 1.5.6 (Beauville-Bogomolov decomposition). [10, Theorem 2] Let Y be a
Kähler compact K-trivial manifold. There exists a finite étale cover Y ′ is Y isomorphic
to the product T ×

∏
i
Vi ×

∏
j
Xj where T is a complex torus, Vi’s are simply connected

Calabi-Yau manifolds and Xj’s are IHS manifolds. Moreover the covering is unique up
to isomorphisms.

Definition 1.5.7. Let V be a n-dimensional vector space over k. We denote the group of
isometries of V by Iso(V ) = O(n)⋉kn where O(n) is the orthogonal group of dimension
n.

Remark 1.5.8. As remarked in [9], the finite covering in Theorem 1.5.6 can be assumed
to be of Galois. In particular, π1(Y ) is a finite extension of Z2k ≃ π1(T ) by a finite
group G. In fact G = G1 ×G2 ≤ Iso(Ck)×Aut(M) with M =

∏
i
Vi ×

∏
j
Xj .

Corollary 1.5.9. Let Y = (T ×S)/G be a free finite quotient with T is a complex torus
and S is compact Kähler manifold with b1(S) = 0. Assume that G does not contain any
element of type (t, idS) where t is a translation on T .

(i) The automorphism group Aut(Y ) can be identified with the normalizer of G in
Aut(T )×Aut(S), [9, pag. 10 (a)].
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(ii) For S =
∏
i
Si with Si’s non-isomorphic irreducible manifolds. Then Aut(S) =∏

i
Aut(Si), [9, pag. 10 (b)].

1.6 | Action of finite groups of varieties
Let Y be an algebraic variety of dimension n with an action of a finite group G. Then
Y/G is an algebraic variety. We are mainly interested in the case when Y is a mani-
fold. Despite this assumption, Y/G is not necessarily smooth: this heavily depends on
properties of the action of G.

Definition 1.6.1. The fixed locus of G on Y is Fix(G)= {y ∈ Y | g(y) = y for every g ∈
G}. The stabilizer of G at y ∈ Y is Staby(G)= {g ∈ G | g(y) = y}.

Definition 1.6.2. Let Γ ≤ GL(n,C) be a finite group. An element g ∈ Γ is called
quasi-reflection or pseudo-reflection if rank(g − I) = 1.

Proposition 1.6.3 (Chevalley-Shephard-Todd theorem). [82, Theorem 5.1 and Section
8] Let G be a finite group acting on V = Cn. Then ring of invariant of V G is a polynomial
ring if and only if is generate by pseudo-reflections.

In other word the Chevalley-Shephard-Todd theorem states that given a linear finite
group G acting on Cn, Cn/G is smooth at the origin if and only if G is generated by
pseudo-reflections. This can be generalized to arbitrary complex varieties Y saying that
given G ≤ Aut(Y ) finite group, Y/G is smooth if and only if for every y ∈ Y the stabilizer
of G at y is generated by pseudo-reflections. It is easy to observe that if g stabilizes only
codimension 1 submanifolds then it is a pseudo-reflection (use the diagonal action of g
near a fixed point given by [19, lemma 1]). Hence we summarize the result as follow.

Corollary 1.6.4. Let Y be a complex manifolds and G be a finite group on Y which
stabilizes only codimension 1 submanifolds. Then Y/G is smooth.

When the fixed locus of G on Y contains an irreducible component which has codi-
mension more than 1 then Y/G is no longer smooth. Therefore, we can consider a
resolution of singularities.

Definition 1.6.5. Let Y be a normal variety such that a KY is Q-Cartier, i.e. there
exists m ∈ Q such that mKY is a Cartier divisor. A resolution of singularities is a
proper birational morphism Y ′ −→ Y with Y ′ smooth algebraic variety. The manifold
Y ′ is called desingularization of Y .
A subvariety Z ⊂ Y is called exceptional divisor if dim(Z) = 1 and codimf(Z) ≥ 2.
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According to the following result, any variety admits a resolution of singularities.

Theorem 1.6.6 (Hironaka [47]). Every variety over a field of characteristic zero admits
a resolution of singularities.

Let Y be a complex algebraic variety and f : Y ′ −→ Y it resolution. The following
formula holds:

f∗KY +
∑
i

aiEi = KY ′ (1.6.1)

where ai ∈ Q and Ei’s exceptional prime divisors introduce by f . The rational numbers
ai’s are called discrepancy of f with respect Ei and ∆ :=

∑
i
aiEi is a Q-divisors

called discrepancy of f . The numbers ai’s depend only on Ei’s, but not on the choice
of f , see [54, Reamrk 2.23]. Depending on properties of the rational numbers ai we
can classified the type of singularities of Y and so deduce properties on their resolution.
Here we are interested in the so-called canonical and terminal singularities introduced
M. Reid in [78].

Definition 1.6.7. Let Y be a normal variety and f : Y ′ −→ Y be a resolution of
singularities, so it holds (1.6.1). Let p ∈ Sing(Y ), then:

• p is said to be a canonical singularities if ai ≥ 0 in (1.6.1),

• p is said to be a terminal singularities if ai > 0 in (1.6.1).

Definition 1.6.8. Let f : Y ′ −→ Y be a resolution of singularities. It is called crepant
resolution if KY ′ = f∗KY , i.e. f preserves the canonical class of Y .

Remark 1.6.9. Let Y be a normal variety and f : Y ′ −→ Y be a resolution of singularities,
so it holds (1.6.1). Then f is a crepant resolution if and only if in (1.6.1) ∆ = 0 if and
only if ai = 0 for all i, i.e. Y has only canonical singularities.

Let X be a K-trivial manifold and G ≤ Aut(X) be a finite group that preserves
the volume form ωX on X. The smooth part of X/G admits a nowhere vanishing n-
holomorphic form induced by ωX . If X/G admits a crepant resolution we can construct
a manifold Y , birational to X/G, which has trivial canonical bundle. Here we collect
some of the known result concerning the 2 and 3-dimensional cases. We first recall that
resolutions of singularities are local transformations, thus the study of existence of a
crepant resolution of X/G is related to the one of Cn/G with G ≤ SL(n,C).

In dimension 2, quotient singularities of C2/G with G ≤ SL(2,C) were first classified
by Klein in 1884 [52], which are also known as Du Val singularities (sometimes we
refer as A-D-E type singularities). In our setting they play a central role since they
admit a crepant resolution, see [5, Chapter III].
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Proposition 1.6.10. [5, Chapter III] The quotients C2/G with G ≤ SL(2,C) a finite
group admits a crepant resolution.

Definition 1.6.11. A quotient singularity on a surface is called of type An−1 if locally
it is given by C2/(Z/nZ).

When n = 3, the quotient singularities are classified by Blichfeldt in 1917 [14] and
only in the early 1990 Roan proved the existence of crepant resolution with arguments
case by case.

Proposition 1.6.12. [79, Theorem 1] The quotients C3/G with G ≤ SL(3,C) a finite
group admits a crepant resolution.

Therefore one has the following result.

Proposition 1.6.13. [6] and [90] Let Y be a n-fold with trivial canonical bundle and
G ≤ SL(n,C) be a finite group with n = 2, 3. Then Y/G admits a crepant resolution.
Moreover, the Hodge numbers of any such a resolution do not depend on the crepant
resolution we are considering.

Remark 1.6.14. The last statement is crucial specifically in dimension 3. While in di-
mension 2 minimal models are unique, in dimension 3 this is not true: in fact Kawamata
showed that any two birational minimal models of 3-folds can be connected by a sequence
of flops, see [51, Theorem 1].

We give another characterization of canonical and terminal singularities.

Definition 1.6.15. A finite group Γ ≤ GL(n,C) is said to be small if the subgroup of
Γ generated by pseudo-reflection is trivial.

The condition above is equivalent to ask the fixed locus of Γ has codimension ≥ 2.
Let g be an order m automorphism of Cn. According to [19, Lemma 1], near a fixed
point y ∈ Cn, g can be diagonalized as diag(ζa1 , . . . , ζan) where ζ is a primitive m-th
root of unity and 0 ≤ ai ≤ m− 1.

Definition 1.6.16. We define the age of g at y as agey(g, ζ) =

n∑
i=1

ai

m

Theorem 1.6.17. [68, Theorem 2.3] Let Γ ≤ GL(n,C) be a small group. Then:

(i) Cn/Γ has canonical singularities if and only if agey(g, ζ) ≥ 1 for all primitive root
ζ, for all g ̸= id and for all singular point y.
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(ii) Cn/Γ has terminal singularities if and only if agey(g, ζ) > 1 for all primitive root
ζ, for all g ̸= id and for all singular point y.

In particular, Cn/Γ admits a crepant resolution if and only if agey(g, ζ) = 1 for all
primitive root ζ, for all g ̸= id and for all singular point y.

When n ≥ 4 quotients singularities are not only canonical, they can be terminal. Thus, it
fails to generalized the Proposition 1.6.13 in higher dimension, without other assumption.

Example 1. Let C4 together with the action of g = diag(−z1,−z2,−z3,−z4). An
easy computation show that the age at 0 is equal to 2. Therefore C4/g has terminal
singularities and so does not admit a crepant resolution.

1.7 | Blowing up of a submanifolds
Let X be a smooth variety and Y ⊂ X. The blowing-up of X along Y is a geometric
construction that replace Y with the projectivization of Y in X. More in details, X ≃ Cn

with local coordinates z1, . . . , zn. Let Y be the locus of the equation x1 = · · · = xk = 0.
The blow up of X along Y is a birational map:

β : X̃ −→ X

such that:

• X̃ = V (xiyj − xjyi | i, j = 1, . . . , k) ⊆ Y × Pk−1
(y1:...:yk) is a smooth variety;

• β is proper and surjective;

• the inverse image of Y is a divisor E = β−1(Y ) ≃ Y × Pk;

• β is an isomorphism outside E and β|E : E −→ Y is the projectivization of the
normal bundle of Y in X.

Let Z, Y ⊂ X be two submanifolds and assume that Z that intersects Y . We consider
β : X̃ −→ Y be the blow-up of X along Y . Then the closure of β−1(Z \ Y ) is called
strict transformation of Z under β.

Proposition 1.7.1. [43, Exercise II.8.5] Let X be a non singular variety and Y a sub-
variety of codimension r ≥ 2. Let β : X̃ −→ X be the blowing up of X along Y and let
E = β−1(Y ). Then

K
X̃

= β∗KX + (r − 1)E.
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The following result, tell us how cohomology groups change under blowing up.

Proposition 1.7.2. [89, Theorem 7.31] Let X be a non singular variety and Y a sub-
variety of codimension r. We denote β : X̃ −→ X be the blowing up of X along Y ,
E = β−1(Y ) and j : E ↪→ Ỹ . Let h = c1(OE(1)) ∈ H2(E,Z), ∀k = 0, . . .dim(Y ) we
have an isomorphism of Hodge structures:

Hk(X,Z)⊕
r−2⊕
i=0

Hk−2i−2(Y,Z)
β∗+

∑
i

j∗◦hi◦β∗
E

−→ Hk(X̃,Z) (1.7.1)

where hi is the morphism of Hodge structures given by the cup-product by hi ∈ H2i(E,Z).

We also note that on the summands Hk−2i−2(Y,Z) the Hodge structure of Y is shifted
by (i+ 1, i+ 1) in bidegree, so ∀k = p+ q:

Hp,q(X)⊕
r−2⊕
i=0

Hp−i−1,q−i−1(Y ) ≃ Hp,q(X̃). (1.7.2)

1.8 | A crash into representation theory
In this section we recall briefly some results of the representation theory of finite groups
which will be useful trough out the thesis. For a complete discussion we refer to [34].

1.8.1 | Representation of finite groups
In the following, G is a finite group and V is a n-dimensional complex vector space.

Definition 1.8.1. A group homomorphism ρ : G −→ GL(V ) ≃ GL(n,C) is called rep-
resentation of G over V . We denote it by (ρ, V ). The dimension of V is called the
degree of ρ.

The trivial representation of G is 1G : G −→ C∗ such that g 7→ 1 for every g ∈ G.

Definition 1.8.2. A subrepresentation of (ρ, V ) is a vector subspace W ⊆ V which
is G-invariant, i.e. ∀w ∈W, g ∈ G ρ(g)w ∈W .

A trivial subrepresentation of ρ is the vector space V G ⊆ V , namely G-fixed point set,
is defined by:

V G = {v ∈ V | ρ(g)v = v ∀g ∈ G}.

29



1.8. A crash into representation theory

Definition 1.8.3. A representation (ρ, V ) is called irreducible if there is no proper
non-zero invariant subspace W ⊆ V . Otherwise it’s called reducible.

Remark 1.8.4. We remark that every one-dimensional representation of G is irreducible.

Definition 1.8.5. A morphism of G-representations (ρV , V ) and (ρW ,W ), also
called G-equivariant map, is a linear map φ : V −→ W that is compatible with the
group action, i.e. for every g ∈ G the following diagram is commutative:

V W

V W.

φ

ρV (g) ρW (g)

φ

Given two G-representations (ρ, V ) and (ρ′,W ), we can define the following G-
representations:

1. Direct sum (ρ ⊕ ρ′, V ⊕W ) such that ρ ⊕ ρ′(g)(v ⊕ w) = ρ(g)(v) ⊕ ρ′(g)(w) for
every g ∈ G, v ∈ V , w ∈W .

2. Tensor product (ρ1⊗ρ2, V ⊗W ) such that ρ⊕ρ′(g)(v⊗w) = ρ(g)(v)⊗ρ′(g)(w)
for every g ∈ G, v ∈ V , w ∈W

3. n-th tensor product (ρ⊗n, V ⊗n)

4. Wedge product (∧nρ,
∧n V )

Definition 1.8.6. A representation which can be expressed as direct sum of other
representations is called decomposable, otherwise indecomposable.

There is a connection between irreducible and indecomposable representations: if ρ
is irreducible then it’s indecomposable, but the converse may fail. Under the hypothesis
that G is finite and V is a vector space over a field k with Char(k) = 0, the following
results guarantees the converse.

Theorem 1.8.7 (of Maschke). [34, Proposition 1.5] Let W be a subrepresentation of
(ρ, V ) of the finite group G. Then there exists a subrepresentation W ′ of V , which is
called complementary invariant, such that V = W ⊕W ′.

Corollary 1.8.8. [34, Corollary 1.6] Any representation of a finite group is the direct
sum of irreducible representations.

This property is called complete reducibility. The uniqueness of the decomposi-
tion is guaranteed by the following result.
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Lemma 1.8.9 (Schur’s Lemma). [34, Lemma 1.7] If (ρV , V ) and (ρW ,W ) are irreducible
representations of G and φ : V →W is a G-equivariant map.

(i) Either φ is an isomorphism or φ = 0.

(ii) If V = W then φ = λ · I for some λ ∈ C∗ and I the identity.

We can summarize the results above as follow.

Proposition 1.8.10. [34, Proposition 1.8] Every representation (ρ, V ) of a finite group
G can be decomposed as:

V ≃ V ⊕a1
1 ⊕ · · · ⊕ V ⊕ak

k

where Vi are irreducible representations such that Vi ̸≃ Vj for i ̸= j and ai’s are the
multiplicities of the factors Vi. The decomposition is unique up to isomorphisms.

Lemma 1.8.11. Let G be a finite abelian group. Then every irreducible representation
is 1-dimensional.

Proof. Let (ρ, V ) be an irreducible G-representation. For every g ∈ G, ρ(g) : V −→ V

is a G-equivariant map, since G is abelian. According to Lemma 1.8.9, ρ(g) = λgI for
some λg ∈ C∗. Thus every subspace of V is G-invariant and since V is irreducible we
must have that V is one dimensional.

We also recall the following well-known isomorphisms of vector space:

k∧
V ⊕W =

⊕
i+j=k

i∧
V ⊗

j∧
W. (1.8.1)

1.8.2 | Character theory
The character theory is an effective tool to study the representations of a finite group.

Definition 1.8.12. Let (ρ, V ) be a representation of G. We define the character of ρ,
denoted by χρ, as the complex value function:

χρ : G −−−−−−−→ C

g 7−−−−−−−→ Tr(ρ(g))

which associates to g the trace of ρ(g) on V . We define the degree of χρ as the degree
of ρ.
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In particular we observe that χρ is constant on the conjugacy classes of G, namely the
class functions of G, and that χρ(1G) = dim(V ).

Lemma 1.8.13. [34, Proposition 2.1] Let (ρ, V ) and (ρ′,W ) be representations of G,
the followings formulas hold:

1. χρ⊕ρ′ = χρ + χρ′,

2. χρ⊗ρ′ = χρχρ′,

3. χ∧n
ρ(g) = 1

n

j∑
m=1

χρ(gm)χ∧j−m(g).

The set of the class functions of G, denoted by Cclasses(G), is a C-vector space over
whose dimension is the number of the conjugacy classes of G. Let Irr(G) be the set of
irreducible characters of G, i.e. characters associated to an irreducible representation;
they are class functions.

Lemma 1.8.14. [34, Propsition 2.30] The set of Irr(G) defines a basis of Cclasses(G).

For every α, β ∈ Cclasses(G), we define the following hermitian inner product:

⟨α, β⟩ = 1
|G|

∑
g∈G

α(g)β(g) (1.8.2)

where α(g) is the conjugation in C. The irreducible characters are orthonormal with
respect to (1.8.2), see [34, Thoerem 2.12].

Lemma 1.8.15. Let G be a finite group and Ci for i = 1, . . . , k be the conjugacy classes
of G and hi = |Ci|, Irr(G) = {χ1, . . . , χr}. Let us choose gi ∈ Ci for every i, the
following relations hold:

k∑
i=1

hiχm(gi)χn(gi) = δmn |G| ,

r∑
i=1

χi(gm)χi(gn) = δmn |Cm| .

It follows that any representation is determined by its characters, see [34, Corollary 2.14].
Indeed if we decompose V ≃ V ⊕a1

1 ⊕ · · · ⊕ V ⊕ak
k with Vi as in Proposition 1.8.10, then

χρ =
∑
i
aiχρi where χρi are linearly independent. Moreover, by [34, Corollary 2.16], the

datum ai can be computed by the following equality:

ai = ⟨χV , χVi⟩, (1.8.3)
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The inner product (1.8.2) is useful to compute the dimension of the space of invariants
under the action of a group. More in details, given a finite group G and a complex
representation (ρ, V ), then the dimension of V G coincides with the multiplicity of the
trivial representation, namely (ρ1, V1), in the decomposition of V given by Proposition
1.8.10, i.e.

dim(V G) = ⟨χρ, χρ1⟩ = a1.

Example 2. Let Dm = ⟨a, b | am = bs = (ab)2 = id⟩ for m ≡2 0. We also recall that
(abk)2 = id for every k = 0, . . . ,m− 1.

• There are j = 1, . . . , 4 irreducible 1-dimensional representations given by ρj de-
scribed by the following characters:

for k = 0, . . . ,m− 1 ak bak

χ1 1 1
χ2 1 1
χ3 (−1)k (−1)k
χ4 (−1)k (−1)k+1

Table 1.1: 1-dimensional irreducible characters of Dm

• There are 0 < h < m
2 − 1 irreducible 2-dimensional representations given by ρ̃h

described by the following characters:

for k = 0, . . . ,m− 1 ak bak

χρ̃h
2 cos

(2πhk
m

)
0

Table 1.2: 2-dimensional irreducible characters of Dm
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2 Preliminaries on abelianvarieties

In this chapter we recall the main proprieties of abelian varieties that will be useful
throughout this thesis. Good references are [56] and [70].

2.1 | Homomorphisms of complex tori

Let π : V −→ T = V/Λ be a complex torus with V ≃ Cn and Λ ≃ Z2n be a lattice. The
addition on V induces a structure of a group on T as follows. Given ti = π(vi) ∈ T for
i = 1, 2, we let

t1 + t2 := π(v1 + v2). (2.1.1)

Let T ′ = V ′/Λ′ be another complex torus.

Definition 2.1.1. A homomorphism of complex tori f : T −→ T ′ is a holomorphic
map which is compatible with the group structure. A translation by x0 ∈ T is the
holomorphic map defined by tx0 : T −→ T such that tx0(t) = t+ x0 for every t ∈ T .

According to [56, Proposition 1.2.1] every holomorphic map f : T −→ T ′ between
two complex tori is a composition of a homomorphism and a translation, i.e. it is an
affine transformation. Moreover, there exist an unique C-linear map F : V −→ V ′ such
that F (Λ) ⊆ Λ′ and y ∈ V ′ such that for every z ∈ T

f(z) = F (z) + ty (2.1.2)

where ty denoted the translation by y. We call F the linear part of f and ty the
translation part of f .
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We denote by Hom(T, T ′) the group of homomorphisms from T to T ′. We get the
following injective homomorphism of abelian groups:

ρa : Hom(T, T ′) HomC(V, V ′)

f F

(2.1.3)

which is called the analytic representation. The restriction FΛ of F to Λ is Z-linear
and determines completely F and f . We get an injective homomorphism:

ρr : Hom(T, T ′) HomZ(Λ,Λ′)

f FΛ

(2.1.4)

which is called the rational representation.

Remark 2.1.2. There is a one-to-one correspondence

{f ∈ Hom(T, T ′)} ←→ {α ∈ HomC(V, V ′) | α(Λ) ⊂ Λ′}.

Let T = V/Λ be a complex torus. The Hodge decomposition on Λ ⊗Z C = V ⊕ V
implies that ρa and ρr are related via the equation ρr⊗C = ρa⊕ρa, see [56, Proposition
1.2.3].

Definition 2.1.3. An isogeny φ : T → T ′ of complex tori is a surjective homomorphism
with finite kernel. If such φ exists then T and T ′ are said to be isogenous.

The group Hom(T, T ′) is a subgroup of HomQ(T, T ′) = Hom(T, T ′)⊗Q, in particular
it defines a lattice in HomQ(T, T ′). We observe that f ∈ Hom(T, T ′) is an isogeny if
and only if f is surjective and dim(T ) = dim(T ′). We also recall that an isogeny
id ̸= φ ∈ Hom(T, T ′) is invertible only in HomQ(T, T ′), see [56, Proposition 1.2.6].

Definition 2.1.4. An endomorphism of a complex torus T is a homomorphism of T .
An automorphism of a complex torus T is a biholomorphic map of T .

We denote by Aut(T ) the group of automorphisms of T . Let us denote by End(T )
the ring of endomorphisms of T and by EndQ(T )= End(T )⊗Q its extension on Q. By
[56, Proposition 1.2.2]: End(T ) is a free abelian group of finite rank and so EndQ(T ) is
a finite dimension Q-algebra.

Lemma 2.1.5. The Q-algebra EndQ(T ) depends only on the isogeny class of T .
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Proof. Let φ : T −→ T ′ be an isogeny. According to [56, Propositoin 1.2.6] there exists
an unique isogeny, up to isomorphisms, ψ : T ′ −→ T such that

deg(φ) = deg(ψ) = n φ ◦ ψ = [n]T ′ ψ ◦ φ = [n]T

where [n]T and [n]T ′ are the multiplication maps respectively on T and T ′, i.e. [n]T (t) =
nt for every t ∈ T and similar for [n]T ′ . We define the following Q-algebras homomor-
phism

EndQ(T ) EndQ(T ′)

f 1
nφ ◦ f ◦ ψ

which is in fact injective. It has an inverse given by g 7→ 1
nψ◦g◦φ for every g ∈ EndQ(T ′).

Thus we have an isomorphism of Q-algebras.

2.2 | Cohomology of complex tori
Let T = Cn/Λ be a complex torus with universal covering π : Cn −→ T whose kernel
is Λ. Via the monodrony action, we can identify the fundamental group π1(T ) with Λ.
In particular since Λ is abelian, by the Hurewicz theorem [46, Theorem 2A.1], π1(T ) is
canonically isomorphic to H1(T,Z). We recall that T , as real manifold, is the product of
2n copies of the circle S1. By the Künneth formula we deduce that the groups Hj(T,Z)
and Hj(T,Z) are free abelian groups of finite rank for j = 1, . . . , 2n. The main result
about cohomology of complex tori is that the higher cohomology groups can be computed
out of H1(T,Z). More precisely:

Lemma 2.2.1. [56, Lemma 1.3.1] Let T be a complex torus. The cup product induces
the following isomorphism of abelian groups

∧nH1(T,Z) ≃−−−−−→ Hn(T,Z) for every
n ≥ 1.

Let z = (z1, . . . , zn) be the local coordinates on T , |I| = i and |J | = j be two
multi-index with i, j = 0, . . . n such that i+ j ≤ n. We recall the following description:

H i,j(T ) = ⟨dzI ∧ dzJ⟩I,J . (2.2.1)

In particular, we deduce:

hi,j(T ) =
(
n

i

)(
n

j

)
(2.2.2)

and
e(T ) = 0 χ(T ) = 0. (2.2.3)
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2.3 | The dual complex torus
Let T = Cn/Λ be a complex torus. We denote by Ω := HomC(Cn,C) the complex
vector space of C-antilinear forms l : Cn −→ C. The underlying real vector space of Ω is
isomorphic to HomR(Cn,R) via the following isomorphism

Ω HomR(Cn,R)

l Im(l)

−k(iv) + ik(v) k.

≃

Therefore, we obtain a R-bilinear form:

⟨ , ⟩ : Ω× Cn R

(l, v) ⟨l, v⟩ = Im(l)(v)

Definition 2.3.1. We define the dual lattice Λ̂ = {l ∈ Ω: ⟨l,Λ⟩ ⊆ Z}. The quotient

T̂ = Ω
Λ̂

is a complex torus, called dual complex torus of T .

Lemma 2.3.2. [56, Proposition 2.4.1] Let T be a complex torus. Then T̂ is isomorphic
to Pic0(T ).

Given an homomorphism φ : X → X with analytic representation φ̃ : Cn −→ Cn,
the (anti)-dual map φ̃∨ : Ω −→ Ω induces a homomorphism φ̂ : X̂ −→ X̂ called the
dual map of φ, see [56, Section 2.4].

Let D ∈ Pic(T ), for any point x ∈ T the line bundle t∗xD⊗D−1 has zero first Chern
class, where tx is the translation by x. According to the Theorem of the Square [56,
Theorem 2.3.3], we get a group homomorphism for any D ∈ Pic(T ):

ϕD : T T̂ ≃ Pic0(T )

x t∗xD ⊗D−1

(2.3.1)

The map ϕD depends on the first class c1(D), see [56, Corollary 2.4.6 (a)].

Lemma 2.3.3. [56, Corollary 2.4.6. (d)] Given f ∈ Hom(T, T ′) and D ∈ Pic(T ′) then

ϕf∗D = f̂ ◦ ϕD ◦ f. (2.3.2)
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2.4 | Endomorphism algebra of abelian variety
Definition 2.4.1. An abelian variety is a projective complex torus.

Remark 2.4.2. The reader need to pay attention that while in the previous chapter we
use the term “variety” to emphasize the singular nature of our object of study, here the
same term emphasizes the projectivity of a manifolds.

Definition 2.4.3. An abelian variety is called simple abelian variety if it does not
admit any nontrivial abelian subvariety.

Let X be an abelian variety. By using the existence of an ample line bundle on X, we
obtain a decomposition of X, up to isogeny, into the product of abelian subvarieties.
More precisely:

Theorem 2.4.4. [56, Poincarè Completely Reducibility Theorem, Theorem 5.3.7. ] Let
X be an abelian variety. Then X is isogenous to a product Xn1

1 × . . . ×X
nk
k where the

Xi’s are simple abelian varieties, not isogeneous for i ̸= j. The isogeny type of the Xi

and the natural numbers ni are uniquely determined by X.

An important consequence of the Poincarè Completely Reducibility Theorem is that
EndQ(X) is a semisimple algebra.

Definition 2.4.5. A division algebra (also called division ring or skew field) is a ring
in which every nonzero element has a multiplicative inverse.

Definition 2.4.6. An algebra A is called simple algebra if A ≠ 0 and it has no proper
two-sided ideals.
A finite-dimensional algebra A is said to be semisimple algebra if it can be expressed
as a Cartesian product of simple sub-algebras.

We denote by Matr(D) the space of square matrices r × r over the ring D.

Lemma 2.4.7. [39, IX. Proposition 1.4] Let D be a ring. Every two-sided ideal of
Matr(D) is of the form Matr(I) for an unique two-sided ideal I of D.

Corollary 2.4.8. If D is a division algebra, then Matr(D) is simple.

Proof. Assume the contrary. Then by Lemma 2.4.7 any ideal of Matr(D) is of the form
Matr(I) for an unique ideal I of D. But division ring has no proper ideal. Thus Matr(D)
is simple.
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Corollary 2.4.9. [56, Corollary 5.3.8] Let X be an abelian variety and X → Xn1
1 × . . .×

Xnk
k be the isogeny defined by the Poincarè Complete Reducibility Theorem. Then there

is an isomorphism of Q-algebras:

EndQ(X) Matn1(D1)⊕ . . .⊕Matnr (Dr)≃

where Dj = EndQ(Xj) are division algebras of finite dimension over Q. In particular,
EndQ(X) is a semisimple algebra.

2.5 | The Rosati involution
Let X be an abelian variety. We have seen that EndQ(X) is a finite dimension semisim-
ple Q-algebra. We see that the presence of an ample line bundle on X gives an extra
structure on EndQ(X).

Let L be an ample line bundle onX, according to [56, Proposition 2.4.8] ϕL : X −→ X̂

is an isogeny and so the inverse ϕ−1
L : X̂ −→ X is well-defined in HomQ(X̂,X). This

allows to define an algebra homomorphism on EndQ(X) as follows:

′ : EndQ(X) EndQ(X)

φ φ′ := ϕ−1
L ◦ φ̂ ◦ ϕL

(2.5.1)

which is in fact an involution since ˆ̂φ = φ by [56, Section 2.4 pag 35]. The involution
above is called Rosati involution with respect L.

Definition 2.5.1. Let Ak be a k-algebra for a subfield k ⊂ R and τ an involution on
it. We say that τ is positive-definite with respect to the reduced trace over k if
the following holds:

∀φ ∈ Ak then TrQ(φ ◦ φ′) > 0, (2.5.2)

The Rosati involution is positive-definite with respect to the reduced trace TrQ over
Q, see [56, Theorem 5.1.8].

Remark 2.5.2. We recall the following relations, see [56, Sectioin 5.1]

(f + g)′ = f ′ + g′ (fg)′ = g′f ′. (2.5.3)

This extra structure on EndQ(X) allows us to give a very nice description of this
endomorphism algebra. We recall the following result, due to A. A. Albert, which
provides a classification of Q-division algebra with a positive-definite involution.
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Theorem 2.5.3. [70, IV.21 Theorem 2, page 201] Let D be a division algebra with finite
rank over Q together with an involution τ such that TrQ(x, τ(x)) > 0 for all x ∈ D and
x ̸= 0. Then (D ⊗ R, τ) is isomorphic, as a R-algebra with an involution, to one of the
following:

• R× . . .× R and the involution is the identity.

• H× . . .×H, where H is the algebra of Hamiltonian quaternions and the involution
is τ(x) = x̄, the conjugate on each component.

• Mat2(R)× . . .×Mat2(R) and the involution is τ(x) = xt, the transpose matrix on
each component.

• Mat2(C)× . . .×Mat2(C) and the involution is τ(x) = x†, the conjugate transpose
matrix on each component.

According to Theorem 2.4.4, EndQ(X) decomposes as direct sum of spaces of matrices
over a division algebra with a positive definite involution. Combining this with the
classification of division algebra given by Theorem 2.5.3, we obtain the following result.

Theorem 2.5.4. [77, Corollary 3.5] Let X be an abelian variety. Then, we have the
following isomorphism of R-algebra:

ψ :
(
EndR(X),′

) (∏
i

Matri(R)×
∏
j

Matsj (C)×
∏
k

Mattk(H), †
)≃ (2.5.4)

where the Rosati involution ′ is sent to the positive-definite involution † given by the
conjugate transpose on each factor.

2.6 | Polarizations on abelian varieties
The Rosati involution allows us to give an alternative description of the real Néron-Severi
vector space N1(X)R, see Definition 1.2.4, in term of R-endomorphisms of X.

Let us consider the Q-vector space N1(X)Q = N1(X) ⊗ Q. We define the following
homomorphism of abelian groups:

fL : N1(X)Q EndQ(X)

D ϕ−1
L ◦ ϕD

(2.6.1)

where ϕL and ϕD are defined as in (2.3.1).
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Definition 2.6.1. An endomorphism φ ∈ End(X) is called symmetric endomor-
phism if φ′ = φ where ′ is the Rosati involution. We denote by Ends(X)⊂ End(X) the
subvector space that consists of symmetric endomorphisms

Theorem 2.6.2. [56, Proposition 5.2.1] and [56, Remark 5.2.5] Let X be an abelian
variety and L be the ample line bundle which defines the Rosati involution ′, see (2.5.1).
Then fL : N1(X)Q −→ EndQ(X), defined in (2.6.1), is an embedding. In particular, fL
defines the following isomorphism of Q-vector space

N1(X)Q ≃ {φ ∈ N1(X)Q : φ = φ′} = EndsQ(X).

According to Theorem 2.5.4:

ψ :
(
EndR(X),′

) ≃−−−−→
(∏
i

Matri(R)×
∏
j

Matsj (C)×
∏
k

Mattk(H), †
)
.

Combing it with Theorem 2.6.2 we obtain the following result.

Proposition 2.6.3. [70, Theorem 6, pag 208] [77, Theorem 4.3] Let X be an abelian
variety. Then we have the following isomorphism of vector space:

(ψ ◦ fL) : N1(X)R
⊕
i
Hri(R)⊕

⊕
j
Hsj (C)⊕

⊕
k
Htk(H) ⊂ ψ(EndR(X))≃

where Hn(F) is the space of hermitian matrices of dimension n× n over the field F.

In [70, Application III pag 209], Mumford showed that (ψ ◦ fL) establishes a cor-
respondence between ample R-divisors and positive definite matrices in ψ(EndR(X)).
Here we present an alternative proof, using different techniques.

Proposition 2.6.4. [56, Theorem 2.1.2., Proposition 2.1.6 and Lemma 2.1.7.] Let X be
an abelian variety. There is a 1 : 1 correspondence between D ∈ Pic(X) and hermitian
form H := c1(D) on Cn with Z-values on Λ.

Lemma 2.6.5. [56, Proposition 4.5.2] Let X be an abelian variety and D ∈ Pic(X).
Then D is ample if and only if H := c1(D) is a positive-definite hermitian form.

Lemma 2.6.6. Let X be an abelian variety. Then the isomorphism (ψ ◦ fL) establishes
a bijection between ample R-divisors and positive-definite matrices.

Proof. For every D ∈ N1(X)R we have

D
fL7−−−−−→ ϕ−1

L ϕD =: φ ψ7−−−−→M hermitian matrix in ψ(EndR(X)).
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• AssumeM to be positive-definite,i.e. there exist an invertible matrix C in ψ(EndR(X))
such that M = C†C. Let us denote γ = ψ−1(C). Since ψ is an isomorphism of
R-algebras and sends ′ to † we have

φ = γ′γ. (2.6.2)

To prove that D is ample, we prove that its hermitian form c1(D) = H is positive-
definite, according to Lemma 2.6.5. Let H0 = c1(L) be the positive-definite her-
mitian matrix associated to L, according to Lemma 2.6.5. Since ϕD = ϕLφ we get
H(·, ·) = H0(ρa(φ)·, ·). By using (2.6.2) and [56, Proposition 5.1.1] we get that for
every 0 ̸= v ∈ Cn:

H(v, v) = H0(ρa(φ)·, ·) = H0(ρa(γ)v, ρa(γ)v) ≥ 0.

Thus, H is positive definite and so D is ample.

• Assume D be ample, according to [56, Proposition 2.4.8.] ϕD is invertible in
EndR(X) and so M is invertible. Since M is hermitian, we prove that it is positive-
definite by proving that all its eigenvalues are positive (since M is invertible it has
no zero eigenvalues). Assume the contrary and let λ a negative eigenvalues of M .
The matrix −λI is positive-definite, thus by above there exists an ample R-divisor
Dλ such that (ψ ◦ f)(Dλ) = −λI. We see that the matrix M − λI has zero as
eigenvalue and so it is not invertible. On the contrary, we have:

(ψ ◦ f)(Dλ +D) = M − λI

thus M − λI is the image under (ψ ◦ f) of an ample R-divisor Dλ + D and so
it must be invertible, as we have observe above. Therefore M has only positive
eigenvalue and so it is positive definite.

2.7 | Elliptic curves
In this section we collect some proprieties of elliptic curves which will be useful through-
out the thesis.

2.7.1 | Elliptic curves with complex multiplication
It is well-known that one dimension complex tori are projective hence they coincide with
one dimensional abelian variety. In fact, they are commonly called elliptic curves. Let
E be an elliptic curve. In general the endomorphism ring of E is isomorphic to Z.
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Definition 2.7.1. We define the hyperelliptic involution to be the involution ιE on
E such that E/ιE ≃ P1.

Definition 2.7.2. An elliptic curve E has complex multiplication if End(E) ⊋ Z.

The advantages to study elliptic curves with larger endomorphism ring is that we
can find endomorphisms of order grater than 2. If End(E) is different from Z, then
End(E) is an imaginary quadratic field. More precisely we have a finite list given by the
following result.

Proposition 2.7.3. [56, Corollary 13.3.4] Let E be an elliptic curve together with an
automorphism f of order d > 2. Then (E, f) is one of the following:

d E f

3 Eζ3 ζ3

4 Eζ4 ζ4
6 Eζ3 ζ6

Table 2.1: Elliptic curves with complex multiplication

where Eν = C/(Z⊕ νZ) and ζn = e
2πi
n . In these case the EndQ(Eν) ≃ Q(ν).

2.7.2 | Moduli space of elliptic curves
In this section we recall the description of the moduli space of the elliptic curves. For
a more general description of moduli space of abelian varieties we refer to [56, Section 8].

Definition 2.7.4. We denote the upper half plane by h = {v ∈ C | Im(v) > 0}

Let us consider a lattice Λ = ω1Z⊕ω2Z ⊂ C, by multiply by ω−1
1 we obtain a lattice

Z ⊕ τZ with τ = ω2(ω1)−1: we can assume τ ∈ h, otherwise we can simply multiply Λ
by ω−1

2 and consider τ−1. Thus we obtain a map:

{elliptic curves} h

E = C/(ω1Z⊕ ω2Z) ω2(ω1)−1

E = C/(Z⊕ τZ) τ
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and we see that h gives a space of parameters of elliptic curves. Since we want to describe
elliptic curves up to biholomorphisms, we need to consider an action of a specific group
on h.

Definition 2.7.5. We define the modular action of SL(2,Z) on h:

SL(2,Z) GL(h)

A =
(
a b

c d

) (
τ 7→ A · τ = aτ + b

cτ + d
= τ ′)

The following result holds.

Proposition 2.7.6. [41, Proposition 1.17 ] The set of biholomorphisms classes of elliptic
curves is isomorphic to the quotient M1,1 = h/SL(2,Z).

Remark 2.7.7. We recall that sometimes authors define M1,1 = h/PSL(2,Z) where
PSL(2,Z) is the modular group SL(2,Z)/{±I}.

Proposition 2.7.8. [81, Chapter VII section 1.2 ] The group SL(2,Z) is generated by

T =
(

1 1
0 1

)
and S =

(
0 −1
0 1

)
.

The region D = {z | |z| ≥ 1, |Re(z)| ≤ 1
2} is a fundamental domain for the SL(2,Z)-

action on h, i.e. all points in h lie in the orbit of a point of D and the orbits of the
interior of D are disjoint.
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Part I

Calabi-Yau manifolds of type A

L’importante non è dove tu stai,
ma dove ti stanno portando le tue scelte.



3 Summary of Part I

In the last years free quotients of complex tori are not again complex tori, called genera-
lized hyperelliptic manifolds, have gained significant attention as they are the natural
generalizations of the bi-elliptic surfaces. Among them, there exist quotients that are
Calabi-Yau manifolds: in this case the cover is a projective complex torus and in fact
these quotients are called Calabi-Yau manifolds of type A, see Lemma 5.6.6.

In this part of the thesis we consider the Calabi-Yau manifolds of type A investigate
the following problems:

1. Do Calabi-Yau manifolds exist in all admissible dimensional cases?

2. What we can say about the geometry of Calabi-Yau manifolds of type A?

Chapter 4. We present the hyperelliptic manifolds and we recall the main proper-
ties about their automorphisms group, see Theorem 4.1.12, and their deformations see
Section 4.2.

Chapter 5. We introduce the Calabi-Yau manifolds and those of type A. We recall
that Calabi-Yau manifolds of type A exist only in odd dimension n > 1 and in [73] the
authors have fully classified them in dimension 3. In this Chapter we consider the first
problem and we obtain the following result.

Theorem A (see Theorem 5.6.6). Calabi-Yau (2n + 1)-folds of type A exist for every
n ∈ N≥1. In particular,

(i) For every n, there exists a Calabi-Yau manifold Y = A/G with G ≃ (Z/2Z)2n and
A = E1 × . . . × E2n+1 is the product of 2n + 1 (non necessarily isomorphic each
other) elliptic curves.
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(ii) For n = 1, there exists a Calabi-Yau threefolds Y = A/G with G ≃ D4 the dihedral
group of order 8 and A = E × E × E′ with E,E′ elliptic curves.

Furthermore, for every odd n there exists a free quotient Y = A/G with G ≃ D4n with
KY ≃ OY and h1,0(Y ) = h2,0(Y ) = 0.

We observe that item (i) is a new action; while the dihedral actions where first in-
troduced in [73] and [1].

The second problem is considered in the last chapters. More precisely, we consider the
Calabi-Yau threefolds of type A classify in [73]. We recall that there are only two groups
to construct these threefolds: the abelian group (Z/2Z)2 and the dihedral group D4 of
order 8. Our main results concern the classification of the automorphisms group and
quotients of these threefolds. These results and study are also enclosed in the article [66].

Chapter 6. We study of the family FAD4
of Calabi-Yau threefolds of type A con-

structed with the group D4, given in [25]. In this case each X ∈ FAD4
is a free quotient

of the abelian variety A′ = E ×E ×E′ by a group of order 16 which contains a normal
subgroup isomorphic to D4. The main results are the followings.

Theorem B (see Theorem 6.4.1). part (ii): LetX ∈ FAD4
and we assume that EndQ(E′) ̸≃

Q(ζ6). Then the automorphism group of X is isomorphic to (Z/2Z)4. Specifically, the
automorphisms on X are induced by order two translations by the points (t1, t2, t3) ∈ A′

satisfying certain conditions, see (6.4.2).

Theorem C (see Theorem 6.5.1 and Theorem 7.4.1). part (ii): Let X ∈ FAD4
and

Υ ∈ Aut(X). Let β : Y → X/Υ be the blow up of the singular locus of X/Υ. Then
for each Υ, β is a crepant resolution and Y a Calabi-Yau 3-fold. Moreover, there exist
exactly 2 automorphisms (α1)X and (α2)X acting freely on X. In particular, X

(αj)X
’s

belong to FAD4
.

Chapter 7. In this chapter we consider the Calabi-Yau threefolds of type A con-
structed with the group (Z/2Z)2 and we apply similar studies to the one undertaken for
FAD4

. In Theorem 7.1.2 we construct the family FA(Z/2Z)2 of these threefolds. In particu-
lar, each X ∈ FA(Z/2Z)2 is a free quotient of the abelian threefolds A = E1 × E2 × E3 by
the free action of (Z/2Z)2. The main results are the followings.

Theorem B (see Theorem 7.3.1). part (i): Let X ∈ FA(Z/2Z)2 and we assume Ei’s are
not isogenous each other. Then the automorphism group of X = A/G is isomorphic to
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(Z/2Z)7. Specifically, the automorphism on X are induced by those on A whose linear
part belong to ⟨diag(−1, 1, 1)⟩ and the translation part given by any point of order 2.

Theorem C (see Theorem 7.4.1). part (i): Let X ∈ FA(Z/2Z)2 and Υ ∈ Aut(X). Let
β : Y → X/Υ be the blow up of the singular locus of X/Υ. The followings hold.

1. If Υ preserves the volume form of X, β is a crepant resolution and Y is a Calabi-
Yau 3-fold. In particular, there are exactly 33− 1 automorphisms (αj)X which act
freely on X and X/(αj)X belong to FA(Z/2Z)2 .

2. If Υ does not preserve the volume form of X, we have the following cases.

a. If there exists at least one αX ∈ Υ that fixes surfaces on X then Y has
negative Kodaira dimension.

b. Otherwise, Y has trivial Kodaira dimension and KY ̸= 0.
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4 Preliminaries on Generalized
Hyperelliptic Manifolds

In this chapter we give a brief introduction on hyperelliptic manifolds recalling some of
their properties focusing mainly on their automorphism group and their deformations,
which will be useful throughout the thesis. Good references are [55],[25],[28].

4.1 | Generalized hyperelliptic manifolds
Definition 4.1.1. A manifold not isomorphic to a complex torus but admitting a com-
plex torus as finite étale Galois cover is called (generalized) hyperelliptic manifolds
(GHM for short). We called it (generalized) hyperelliptic variety (GHV for
short) if moreover the complex torus has an ample line bundle.

Remark 4.1.2. Let Y be a GHM: since the covering is Galois there exists a complex torus
T ′ and a finite group G′ ≤ Aut(T ′) acting freely such that Y = T/G. In particular, since
Y must not be a complex torus, the group G′ does not contain only translations. In fact,
we assume in Definition 4.1.1 that the Galois group G′ of the covering does not contain
any translations. Let {id} ̸= G0 be the subgroup of translations contained in G′. Since
G0 is normal in G′ then Y = T

G
where T := T ′/G0 is a complex torus and G := G′/G0

is a finite group acting freely on T without containing any translation. Thus, Y is also
the quotient of a complex torus T by a free action of a finite group G which does not
contain any translation.

According to the classification of bi-elliptic surfaces, see [11, List VI.20, pag 84], in
dimension 2 hyperelliptic manifolds are always projective and the group G is always
cyclic. In higher dimension, already in dimension 3, different cases appear. For instance
we can find non abelian groups, see [25].
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Definition 4.1.3. Let V be a finite dimensional real vector space. A crystallographic
group Γ is a subgroup of the isometry group of V such that it is discrete and Γ is co-
compact, i.e. V/Γ is compact. A torsion-free crystallographic group is called Bieber-
bach group.

Remark 4.1.4. The crystallographic group Γ is torsion-free if and only if it acts freely
on V , [23, Proposition 9].

Crystallographic groups are characterized by the following theorems of Bieberbach.

Theorem 4.1.5 (Bieberbach’s theorems). [84, Theorem 2.1]

1. Let Γ ⊂ Iso(Rn) = O(n) ⋉ Rn be a crystallographic group. Then the group of
translation Γ ∩ (I × Rn) is a torsion free and finitely generated abelian group of
rank n in Γ, and is a maximal abelian and normal subgroup of finite index.

2. For each positive integer n there are only a finite number of isomorphism classes
of crystallographic groups on Rn.

3. Two crystallographic groups on Rn are isomorphic if and only if they are conjugate
by an element of the affine group of Rn.

There is also an analogous theorem in the complex case.

Theorem 4.1.6 (Complex Bieberbach Theorems). [42, Theorem 4.4]

1. M is a flat Kähler manifold of complex dimension n if and only if there exists
complex n-dimensional torus T and a finite group G ⊂ Aut(T ) acting freely such
that M = T/G.

2. Two flat Kähler manifolds M = T/G and M ′ = T ′/G′ are biholomorphic if and
only if there exists a biholomorphic map φ : T −→ T such that G = φ−1G′φ

3. For every complex torus T there exist only finite number of flat Kähler manifolds
of the form T/G, up to biholomorphism.

Remark 4.1.7. Let Γ ≤ Iso(Rn) = O(n) ⋉ Rn be a crystallographic group. By the first
theorem of Bieberbach, Γ is characterized by the following exact sequence:

0 −→ Λ′ i−−−−→ Γ l−−−−→ G′ −→ 0 (4.1.1)

where Λ′ is the group of translations, G′ = Γ/Λ′ is a finite group and i(λ) = (I, λ) and
l(M,m) = M for every λ ∈ Λ′ and (M,m) ∈ Γ. Moreover Λ′ has a G′-action given by
the so-called holonomy representation:
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L : G′ GL(Λ′)

g ∈ L(g) : λ 7→ i−1(γi(l)γ−1)

where l(γ) = g.

Lemma 4.1.8. Let Y = T/G be a hyperelliptic manifold with T = Cn/Λ. Then there
exists Γ ≤ Iso(Cn) such that Y = Cn/Γ and π1(Y ) ≃ Γ. Moreover, Γ is a crystallographic
group in Iso(Cn) and fits in the following exact sequence:

0 −→ Λ i−→ Γ l−→ G −→ 0. (4.1.2)

Proof. By standard results of covering space Y = Cn/π1(Y ). By Remark 1.5.8 and
Remark 4.1.7, it follows that π1(Y ) ≃ Γ is a crystallographic group characterized by the
exact sequence as in the statement.

Remark 4.1.9. According to the Bieberbach’s theorems: the hyperelliptic manifold T/G
is topologically determined by the group G which acts freely on T and does not contain
translations, that is, G characterizes the fundamental group of T/G. Hence we may say
that T/G is a hyperelliptic manifold with the group G.

Proposition 4.1.10. Let Y = T/G be a hyperelliptic manifold with the group G. Then
(i) The Euler characteristic of Y is e(Y ) = 0.

(ii) The manifold Y does not contain rational submanifolds.

Proof. (i) The covering π : T → Y is étale hence e(T ) =deg(π)e(Y ), by Lemma 1.1.16.
From the fact that e(T ) = 0, see (2.2.3), we have the result.

(ii) Let us assume that there exists Pk ⊂ Y for some k ∈ N. Since π is étale we
have that (π)−1(Pk) consists of |G| copies of Pk in T , which is impossible since
any complex torus does not contain rational submanifolds. Indeed if it would exist
j : Pk ↪→ T non-constant morphism then every k-form wT ∈ H0(T,Ωk

T ) would give
rise a non-zero k-form on Pk which is a contradiction. This proves the statement.

Definition 4.1.11. Let π : X −→ Y be an étale morphism of complex manifolds and
αX ∈ Aut(X). Assume that there exist αY ∈ Aut(Y ) making the following diagram

commutative
X X

Y Y

αX

π π

αY

. We call αY automorphism induced by αX on the

quotient Y .
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In Section 1.5, see Corollary 1.5.9, we have recalled the characterization of the auto-
morphism group of Kähler manifolds Y with c1(Y ) = 0 is related to the automorphism
group of its finite étale cover. As special case we obtain the following.

Corollary 4.1.12. Let Y = T/G be a hyperelliptic manifold with the group G. Then
the following homomorphism is surjective:

ϑ : NAut(T )(G) Aut(Y )

αT αY

where αY is the automorphism induced by αT on the quotient Y and kerϑ = G. In

particular, we have Aut(Y ) ≃
NAut(T )(G)

G
.

4.2 | Deformations of GHM
We review the theory of deformations of hyperelliptic manifolds following the article [23].

Definition 4.2.1. Let Λ be a free abelian group of even rank and G −→ GL(Λ) be a
faithful representation of a finite group G. A G-Hodge decomposition is a decompo-
sition into G-invariant linear subspaces:

Λ⊗ C = H1,0 ⊕H0,1 H1,0 = H0,1.

We can split Λ⊗C =
⊕

χ∈Irr(G)
Uχ into isotypic components Uχ = Wχ ⊗Mχ. Here, Wχ is

the Z-module corresponding to the irreducible representation χ and Mχ ≃ Cmχ encodes
how many times the representation with character χ appears in the decomposition.
Thus, we obtain:

V := H1,0 =
⊕

χ∈Irr(G)
Vχ

with Vχ = Wχ ⊗M1,0
χ .

Definition 4.2.2. The Hodge type of a G-Hodge decomposition is the collection
of the dimensions ν(χ) = dimCM

1,0
χ . Here, χ runs over all non-real characters.

Remark 4.2.3. 1. For χ non real it holds ν(χ) + ν(χ) = dimC(Mχ).

2. All G-Hodge decompositions of a fixed Hodge type are parametrized as follows:
for a real irreducible character χ, one chooses a 1

2dimC(Mχ)-dimensional subspace
of Mχ, and for a non-real irreducible character, one can choose a ν(χ)-dimensional
subspace of Mχ.
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3. The Hodge type is a invariant by deformations, see [21, Theorem 81].

Remark 4.2.4. Therefore, to give a classification of the complex tori T = Cn/Λ with
a free action of G (which does not contain any translation), one needs to determine
all possible complex structures on T such that the action of G is holomorphic. This
corresponds to determine all possible G-Hodge decompositions on Λ.

Let Y be a compact complex manifold. We denote by CS(Y ) the space of complex
structure on Y and by Diff(Y )+ the group of diffeomorphisms preserving orientation on
Y . The group Diff(Y )+ acts on CS(Y ) We consider the subgroup Diff0(Y ) ⊂ Diff(Y )+

given by the connected component of the identity.

Definition 4.2.5. We define the Teichmüller space of Y to be the quotient

T (Y ) = CS(Y )/Diff0(Y )

The following result of Catanese and Corvaja describes the Teichmüller space of
a hyperelliptic manifold Y = T/G pointing out that it is related to the G-invariant
Teichmüller space of T . More precisely:

Theorem 4.2.6. [23, Theorem 1] Let Y = T/G be a hyperelliptic manifold. The sub-
space of the Teichmüller space T (Y ) corresponding to Kähler manifolds consists of a
finite number of connected components, indexed by the Hodge type of the Hodge decom-
position of G. In particular it is homeomorphic to T (T )G the locus of fixed points for
the G-action.
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5 Calabi-Yau manifolds and
Calabi-Yau manifolds of type A

In this chapter we introduce the Calabi-Yau manifolds and we collect some results which
will be useful through out the thesis, specifically those on actions of involutions on
them. Furthermore, we introduce the Calabi-Yau manifolds of type A, i.e. given as free
quotients of abelian varieties, and we prove Theorem A which guarantees their existence
in all dimension.

5.1 | Calabi-Yau manifolds
Let Y be a Calabi-Yau n-fold. By definition (see Definition 5.3.3) hj,0(Y ) = 0 for
1 ≤ j ≤ n− 1, hence:

χ(Y ) =

0 n is odd

2 n is even.
(5.1.1)

Lemma 5.1.1. Let Y be a Calabi-Yau n-fold. Then it is projective whenever n ̸= 2.

Proof. The n-fold Y is a Kähler manifold with H2(Y,OY ) = 0 if n ̸= 2. According to
[48, Corollary 4.16] we have the result.

It is worth to present some explicit constructions of Calabi-Yau manifolds. In the
first construction we consider complete intersections in projective space and we use the
adjuction formula, see Proposition 1.4.3.

Example 3 (Hypersurface in projective space). Let Y ⊂ Pn be a smooth hypersurface
of degree n+ 1. By the adjuction formula, see Proposition1.4.3, we find:

KY = OY (−n− 1 + deg(Y )) = OY .
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Thus Y has trivial canonical bundle. By using the following exact sequence

0 −→ OPn(−n− 1) −→ OPn −→ OY −→ 0

and its long sequence in cohomology one can find hj,0(Y ) = 0 for every 1 ≤ j ≤ n − 2.
Thus Y is a Calabi-Yau (n− 1)-fold.

Another construction involves actions of finite groups on K-trivial manifold.

Example 4 (Kummer surface). Let T be a 2-dimensional complex torus and ι be the
involution sending P ∈ T to its opposite −P with respect to the group operation on
T , (2.1.1). In local coordinates ι(x, y) = (−x,−y) for P = (x, y) ∈ T . We see that ι
fixes 16 points on T which are exactly the 2-torsion points on T . Since ι preserves the
volume form ωT = dx ∧ dy on T , we obtain a volume form on the smooth part of T/ι.
In particular T/ι has 16A1 singularities. According to Theorem 1.6.10, T/ι admits a
crepant resolution. Here we recall the explicit construction. Let us consider the following
diagram:

ι̃ ⟳T̃ T

T̃ /⟨ι̃⟩ = T̃/⟨ι⟩ T/⟨ι⟩

β

π̃ π

γ

where γ is the blow up of the singular part of T/⟨ι⟩, β is the blow up of the fixed locus of ι
and since ι preserves the blown up locus of β it lifts to an involution ι̃ on Ỹ . One can easily
check that the diagram commutes. We have: h1,0(T̃ /⟨ι̃⟩) = h1,0(T̃ )̃ι = h1,0(T )ι = 0 and
h2,0(T̃ /⟨ι̃⟩) = h2,0(T/ι) = 1. Moreover, according to Proposition 1.4.4 and Proposition
1.7.1:

π̃∗K
T̃ /⟨̃ι⟩ +R = K

T̃
K
T̃

= β∗KT +R

where R denotes the exceptional divisor introduced by β which, by construction, is also
the ramification divisor of π̃. Since KT = 0 we obtain π∗K

T̃ /⟨̃ι⟩ = 0, i.e. K
T̃ /⟨̃ι⟩ is

either trivial or 2-torsion. Since h2,0(T̃ /⟨ι̃⟩) = 1 then K
T̃ /⟨̃ι⟩ = 0. Thus T̃ /⟨ι̃⟩ = 0 is a

Calabi-Yau surface or K3 surface.

Definition 5.1.2. The Calabi-Yau surface T̃ /⟨ι̃⟩ constructed in Example 4 is called
Kummer surface and it is denoted by Km2(T ).

Remark 5.1.3. Fujiki in [33, Chapter 3] has classified all finite actions on 2-dimensional
complex tori such that the quotient admits a desingularization which is a K3 surface.
These surfaces are called generalized Kummer surfaces. Whenever these action are

55



5.2. Picard group of Calabi-Yau manifolds

given by cyclic group |G| = n ≥ 2, the resulting generalized Kummer surfaces is denoted
by Kmn(T ).

Example 5 (Borcea-Voisin Calabi-Yau threefold). Let S be a K3 surface together with
an involution ιS which does not preserve the volume form ωS . Let E be an elliptic curve
and ι be the hyperelliptic involution, see Definition 2.7.1. The automorphism ιS × ιE
defines an involution on S×E. Moreover, since separately ιS and ιE do not preserve the
volume form of S and E, respectively, we obtain that ιS × ιE preserves the volume form
of S × E given by ωS ∧ ωE . The singular quotient (S × E)/(ιS × ιE) admits a crepant
resolution, for instance by Proposition 1.6.13. Therefore we obtain a manifold Z with
trivial canonical bundle and birational to (S ×E)/(ιS × ιE). Since H1,0(S ×E) = ⟨ωE⟩
and H2,0(S × E) = ⟨ωS⟩ are not preserved by ιS × ιE and hj,0 are birational invariant,
we obtain h1,0(Z) = h2,0(Z) = 0. Thus Z is a Calabi-Yau threefold.

The construction above can be generalized by considering higher order of automor-
phisms, n = 3, 4, 6 and E with complex multiplication, see for instance [26]. Additionally,
according to [73] and in [45] there exist Calabi-Yau threefolds admitting the product of
an elliptic curve and a K3 surface as finite étale Galois cover.

5.2 | Picard group of Calabi-Yau manifolds
The Picard group plays a central role in the study of geometry of manifolds. For Calabi-
Yau n-folds with n > 2 it has a very nice description.

We first recall an useful theorem.

Theorem 5.2.1. [46, Universal Coefficient for cohomology, Theorem 3.2] Let Y be a
topological space. Let G be a module over a principal ideal domain R, then there is an
exact sequence:

0→ Ext1(Hq−1(Y,R), G)→ Hq(Y,G)→ Hom(Hq(Y,R), G)→ 0.

Moreover it splits, though not naturally.

Lemma 5.2.2. Let Y be a Calabi-Yau n-fold with n > 2 then:

Pic(Y ) ≃ Zh
1,1(Y ) ⊕ Ab(π1(Y )) (5.2.1)

where Ab(π1(Y )) denotes the abelianization of the fundamental group.
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Proof. Since hi,0(Y ) = 0 for i = 1, 2, the first Chern map c1 is an isomorphism

Pic(Y ) = NS(Y ) ≃ H2(Y,Z) (5.2.2)

and we get ρ(Y ) = h2(Y,C) = h1,1(Y ). By Theorem 5.2.1 we obtain:

H2(Y,Z) ≃ Hom(H2(Y,Z),Z)⊕ Ext1(H1(Y,Z),Z).

Using the properties of the functors Hom and Ext [46, pages 195] one obtains:

H2(Y,Z) ≃ Zh
2(Y,C) ⊕H1(Y,Z)tor (5.2.3)

where H1(Y,Z)tor is the torsion subgroup of H1(Y,Z). Since h1,0(Y ) = 0 we have that
H1(Y,Z) ≃ H1(Y,Z) is a torsion group, i.e. H1(Y,Z)tor = H1(Y,Z) . By the Hurewicz
theorem we know thatH1(Y,Z) ≃ Ab(π1(Y )). Since h2,0(Y ) = 0 then ρ(Y ) = h2(Y,C) =
h1,1(Y ).

Remark 5.2.3. We observe that the result above holds for every compact complex Kähler
manifold Y with h1,0(Y ) = h2,0(Y ) = 0.

5.3 | Deformations of Calabi-Yau manifolds
The key result about the space of deformation of Calabi-Yau manifolds is the Bogomolov-
Tian-Todorov (unobstructed) theorem.

We have recalled the notion of Theichmüller space of a complex manifolds, see Defi-
nition 4.2.5. By studying local deformations of complex structures, in a neighbourhood
of the Theichmüller space, we can deduce informations about the moduli space of a
complex manifold.

Definition 5.3.1. Let Y be a complex manifold with a fixed complex structure. A
deformation of Y consists of a smooth proper morphism f : Y −→ S where Y and S

are connected spaces and Y ≃ Y0 = f−1(0) where 0 is a distinguished point in S.

We denote by Def(Y ) the space of all the deformations of Y .

Theorem 5.3.2. [40, Theorem 14.10] Let Y be a compact, Kähler, complex manifold
with H0(Y, TY ) = 0 and KY ≃ OY , where TY is the tangent bundle. Then Def(Y ) is a
germ of a smooth manifold with tangent space H1(Y, TY ).

Let Y be a manifold with KY ≃ OY and we denote ωY its volume form. We have a
perfect pairing induced by the wedge product:
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Ω1
Y × Ωn−1

Y Ωn
Y ≃ OY

(ω1, ωn−1) ω1 ∧ ωn−1 ≃ ωY .

In others words, by the existence of ωY we have a sheaves isomorphism:

ωY : (Ω1
Y )∨ ≃ TY Ωn−1

Y

v ωY (v,−).

∼

In particular, we obtain

H1(Y, TY ) ≃ H1(Y,Ωn−1
Y ) = Hn−1,1(Y )

H0(Y, TY ) ≃ Hn−1,0(Y )

If Y is a Calabi-Yau n-fold with n > 1 then h0(Y,Ωn−1
Y ) = hn−1,0(Y ) = 0 which

combining with Theorem 5.3.2 leads to the following result.

Corollary 5.3.3. Let Y be a Calabi-Yau n-fold with n > 1. Then Hn−1,1(Y ) parametrizes
its local deformations.

5.4 | Automorphisms and quotients of Calabi-Yau manifolds
In this section we collect results about the automorphisms group of Calabi-Yau manifolds
and their quotients.

5.4.1 | The automorphisms group
For a Calabi-Yau curve, i.e. elliptic curve, the automorphism group is well-known and
classified. It is infinite and given by translations and complex multiplication, see Section
2.1. In higher dimension, already in dimension 2, the structure of the automorphism
group of Calabi-Yau manifolds can be more complicated and its study remains an active
area of research. We first present some results about the finiteness of the automorphism
groups of Calabi-Yau manifolds.

Theorem 5.4.1. [72, Theorem 1.2] Let Y be an (2n+1)-dimensional Calabi-Yau mani-
fold with ρ(Y ) = 2. Then Aut(Y ) is finite.
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Theorem 5.4.2. [58, Theorem 1.1] Let Y be a Calabi-Yau threefold with ρ(Y ) = 3.
Then the automorphism group Aut(Y ) is either finite, or it is an almost abelian group
of rank 1, i.e. it is isomorphic to Z up to finite kernel and cokernel.

Remark 5.4.3. It is still an open problem whether or not a Calabi–Yau threefold with
Picard rank equal to 3 admits infinite automorphism group. While there are example
of Calabi–Yau threefolds with Picard rank equal to 3 with finite automorphism group,
see [73, Theorem 0.1 IV], [45, Section 5]. We highlight that these latter examples are all
given by Calabi-Yau threefolds with infinite fundamental group.

It is worth also recalling what happens for Calabi-Yau manifolds Y with ρ(Y ) ≥ 4.
Borcea in [15] gave an example of Calabi-Yau threefold with Picard rank equal to 4
and infinite automorphism group. In fact it is expected a similar phenomena for any
Calabi-Yau threefold Y with ρ(Y ) ≥ 4, see [37], [74].

5.4.2 | The quotients
In this section we consider actions of finite groups on Calabi-Yau manifolds, with the
aim to describe their properties. We distinguish two cases depending if the resulting
quotient is smooth or singular. In the second cases we mainly consider involutions.

Free actions on Calabi-Yau manifolds can be easily classified in the following way.

Proposition 5.4.4. Let Y be a Calabi-Yau n-fold and G ≤ Aut(Y ) be a finite group
acting freely on it.

(i) G preserves ωY if and only Y/G is a Calabi-Yau n-fold if and only if n is odd.

(ii) G does not preserves ωY if and only if n is even if and only if G ≃ Z/2Z. In
particular, Y/G is a manifold with 2-torsion canonical bundle.

Proof. Let us denote π : Y −→ Z = Y/G the finite étale morphism, according to Propo-
sition 1.1.16 we have:

χ(Y ) = |G|χ(Z). (5.4.1)

We first observe that for every 1 ≤ j ≤ n− 1 we have Hj,0(Z) ≃ Hj,0(Y )G = 0, since Y
is a Calabi-Yau manifold.

(i) The group G preserves ωY if and only if π∗ωY defines a volume form on Z, i.e.
Hn,0(Z) = ⟨π∗ωY ⟩. The last condition is equivalent to say that Z is a Calabi-Yau
manifold which is also equivalent to say that χ(Y ) = χ(Z). Since |G| > 1 and the
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equations (5.1.1) and (5.4.1) hold, then we have χ(Y ) = χ(Z) if and only if they
are both equal to zero, and so n is odd.

(ii) The group G does not preserves ωY if and only if n is even, according to item
(i). By (5.1.1), n is even if and only if χ(Y ) = 2 which by (5.4.1) is equivalent to
G ≃ Z/2Z. Since G does not preserve ωY then Z has 2-torsion canonical bundle.

If the action of G on Y is not free the situation can be more complicated, due
to the different nature of the fixed locus. A nice situation appear when G fixes only
hypersurfaces.

Proposition 5.4.5. Let Y be a Calabi-Yau manifold and G be a finite group. Assume
that all the irreducible components of the fixed locus of G have codimension 1. Then G

does not preserve ωY and Y/G is smooth with negative Kodaira dimension.

Proof. By [19, Lemma 1] each g ∈ G can be diagonalized in a neighbourhood of a fixed
point and since it fixes only divisors there exists only one eigenvalues different from 1.
Therefore G ̸⊂ SL(n,C) and so it does not preserve ωY . By proposition 1.6.3, Y/G is
smooth. Let us consider the map π : Y −→ Z = Y/G. By Proposition 1.4.4 we have
π∗KZ +R = KY = 0 where R is the ramification divisor defined by the fixed locus of G
on Y . Hence we obtain that π∗KZ = −R is not effective, therefore k(Z) = −∞.

If the fixed locus of G contains components of codimension grater than 1 then Y/G

is singular. As we have briefly recalled in the Chapter 1 Section 1.6, we can consider
a resolution of singularities whose properties heavily depends on the singularities. Here
we present some results about involutions on Calabi-Yau manifolds distinguishing the
case when they preserve or not the volume form of Y .

Proposition 5.4.6. Let Y be a Calabi-Yau n-fold and αY ∈ Aut(Y ) be an involution
that preserves the volume form of Y . Then

(i) Either Fix(αY ) is empty or is the finite disjoint union of even-codimensional sub-
manifolds.

(ii) The fixed locus has codimension 2 if and only if Y/⟨αY ⟩ admits a crepant resolution
given by the blow up of Y/αY in its singular locus. In this case, Y/⟨αY ⟩ is birational
to a Calabi-Yau manifold.

Proof. If Fix(G) ̸= ∅, according to [19, Lemma 1], near to a point y ∈ Y then αY can
be diagonalized into a matrix δy: since δy ∈ SL(n,C) then the eigenvalue −1 has even
multiplicity denoted by 2ky with ky ∈ N. Therefore the fixed locus of αY is a finite
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disjoint union of even-codimensional submanifolds.
Let y be a singular point. The age of αY at y is equal to 2ky

2 , see Definition 1.6.16.
According to Theorem 1.6.17: Y/⟨αY ⟩ is a crepant resolution if and only if Y/⟨αY ⟩ has
canonical singularities if and only if ky = 1 for every y ∈ Sing(αY ) if and only if the
codimension of Fix(αY ) is equal to 2. Finally, since hj,0 are birational invariants we
get: hj,0(Z) = hj,0(Y/⟨αY ⟩) = hj,0(Y )αY . Since Hj,0(Y ) = 0 for 1 ≤ j ≤ n − 1, then
hj,0(Z) = 0 for 1 ≤ j ≤ n− 1. Therefore Z is a Calabi-Yau manifold.

Let us consider finite groups acting on a Calabi-Yau n-fold Y such that the action
does not preserve the volume form of Y .

Proposition 5.4.7. Let Y be Calabi-Yau n-fold and αY ∈ Aut(Y ) be an involution
which does not preserve ωY .

(i) If n is even then either αY acts freely or Fix(αY ) is the disjoint union of odd-
codimensional submanifolds,

(ii) If n is odd then Fix(αY ) ̸= ∅ and it is the disjoint union of odd-codimensional
submanifolds

(iii) If the fixed locus of αY does not contains codimension 1 submanifolds, then it admits
a desingularization Z such that k(Z) = 0 and hj,0(Z) = 0 for j > 0.

(iv) Otherwise Y/⟨αY ⟩ has negative Kodaira dimension and hj,0(Z) = 0 for j > 0.

Proof. According to Proposition 5.4.4, αY can acts freely only if n is even. Assume
Fix(αY ) ̸= ∅. Let y ∈ Fix(αY ): according to [19, Lemma 1] there exists a neighbour-
hood of y where αY can be diagonalized in δy. Since δy is an involution and δy ̸∈ SL(n,C)
then the eigenvalue −1 has odd multiplicity. Therefore, the fixed locus of αY consists of
a finite number of smooth manifolds of odd-codimension. This prove (i) and (ii).

Let Fki
the ki-dimension subset of Fix(αY ) with ki =

 even in {1, . . . , n− 1} if n is odd

odd in {1, . . . , n− 1} if n is even
.

We consider the following diagram.

α̃Y

⟳

Ỹ Y

Z := Ỹ /⟨α̃Y ⟩ ≃ Ỹ/⟨αY ⟩ Y/⟨αY ⟩

γ

π2:1 2:1

β

where γ blows up one times the irreducible components in each Fki
for every ki ̸= n− 1,

since αY preserves the blown up locus it lifts to an involution α̃Y on Ỹ and β is the blow
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5.5. Calabi-Yau manifolds of quotient type

up of the singular locus of Y/⟨αY ⟩. The diagram commutes since γ blows up one times
each irreducible components in Fki

. The ramification divisor of π is given by
∑
ki

Rki

where Rki
= γ−1(Fki

) for every ki. By Proposition 1.4.4 and Proposition 1.7.1 we have:

γ∗KY +
∑

ki ̸=n−1
(n− ki − 1)Rki

= K
Ỹ

K
Ỹ

= π∗KZ +
∑
ki

Rki
.

Therefore we obtain:

π∗KZ =
∑

ki ̸=n−1
(n− ki − 2)Rki

−Rn−1 (5.4.2)

In case (iii): there are no codimension 1 submanifolds in Fix(αY ) and so in formula
(5.4.2) the factor Rn−1 does not appear. Thus, we have that π∗KZ is effective and KZ

too. Hence k(Z) ≥ 0. Since the Kodaira dimension cannot increase under quotient and
it is a birational invariant we get k(Y/⟨αY ⟩) = k(Z) ≤ k(Y ) = 0 and so k(Z) = 0. In
case (iv): π∗KZ is not effective and so KZ , hence k(Y/⟨αY ⟩) = k(Z) = −∞. Since hj,0

are birational invariants and Y is a Calabi-Yau manifold, then hj,0(Z) = 0 for j > 0.

5.5 | Calabi-Yau manifolds of quotient type
Definition 5.5.1. A Calabi-Yau manifold of quotient type is a Calabi-Yau mani-
fold given as free quotient of a K-trivial manifold.

According to Definition 1.5.3, Calabi-Yau manifolds can have infinite, finite or trivial
fundamental group. In this thesis we mainly focus on Calabi-Yau manifolds with infinite
fundamental group. We observe that these manifolds can appear only in odd dimension.
Indeed let Y be a Calabi-Yau manifolds with π1(Y ) infinite, then π1(Y ) is a finite
extension of a rank-k lattice. Thus, Y admits a finite étale cover Y ′ such that Y ′

contains a k-dimensional complex torus as a factor. Hence e(Y ′) = 0 and e(Y ) = 0 too.
According to (5.1.1) this happens if and only if Y has odd dimension.

Definition 5.5.2. A Calabi-Yau 3-fold of type K is a Calabi-Yau 3-fold which admits
the product of a K3 surface and an elliptic curve as étale Galois cover.

Definition 5.5.3. A Calabi-Yau manifold of type A is a Calabi-Yau manifold which
admits an abelian variety as étale Galois cover.

Remark 5.5.4. By definition, Calabi-Yau manifolds of type A are hyperelliptic varieties,
hence we can assume that the Galois group does not contain any translations, see Remark
4.1.2.
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Remark 5.5.5. Similar to remark 4.1.2, we can assume that given a Calabi-Yau threefolds
of type K the Galois group does not contain elements of type (id, t) where t is the
translation on the elliptic curve.

Let Y be a Calabi-Yau threefolds of type K. The fundamental group of Y is a finite
extension of a rank-2 lattice Λ:

1 −→ Λ −→ π1(Y ) −→ G −→ 1. (5.5.1)

Definition 5.5.6. We say that Y is a Calabi-Yau threefolds of type K with the
group G if Λ in 5.5.1 is the maximal rank-2 lattice in π1(Y ).

5.6 | Calabi-Yau manifolds of type A

Calabi-Yau manifolds of type A are completely classified in dimension 3, see [73, Theo-
rem 0.1]; while not much is known for higher dimensional examples. In this section we
produce higher dimensional examples which guarantee the existence of these manifolds
in all dimension.

We observe that Calabi-Yau manifolds of type A can be defined as Calabi-Yau GHM.

Lemma 5.6.1. Let Y = T/G be a hyperelliptic n-fold with the group G. If it is a
Calabi-Yau n-fold, then n is odd, n ̸= 1 and the complex torus T has an ample line
bundle.

Proof. Let us denote π : T −→ Y = T/G the finite étale Galois covering. According
to the formula χ(T ) = deg(π)χ(Y ), see Lemma 1.1.16, and since χ(T ) = 0, (2.2.3), we
obtain χ(Y ) = 0. Thus by (5.1.1), n must be odd. Moreover, by definition (Definition
4.1.1) the hyperelliptic manifolds don’t exist in dimension 1 hence n ≥ 3. Let Y be
a Calabi-Yau GHM of dimension n ≥ 3. According to Lemma 5.1.1, Y is projective,
thus there exists an ample line bundle L on Y . Since π : T −→ Y = T/G is a finite
morphism, π∗(L) defines an ample line bundle on T , by Proposition 1.3.2 (ii). Hence, T
is an abelian variety.

We observe that the Calabi-Yau manifolds of type A cannot be constructed with a
cyclic group.

Lemma 5.6.2. Let A = Cn/Λ be an abelian variety and g ∈ Aut(A) be an automorphism
of finite order that acts freely. Then h1,0(A/⟨g⟩) ̸= 0.
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Proof. According to (2.1.2), we can decompose g(z) = α(z) + tg where α is the linear
part and t the translation part. The freeness of g on A is equivalent to say that there
exist no (z, λ) ∈ Cn×Λ solution of (α−Id)(z) = λ−t. Therefore, α−Id is not invertible
and has 1 has eigenvalue, see also [30, Remark 2.8]. Let v be the eigenvector relative to
the eigenvalue 1, then g preserves the (1, 0)-form dv. Thus dv descend to a (1, 0)-form
on A/⟨g⟩.

5.6.1 | Examples with dihedral actions
In [1], the author has constructed free actions of the dihedral group D4n of order 8n on
certain abelian varieties of dimension (2n+ 1). Here we prove that these actions lead to
Calabi-Yau manifolds if and only if n = 1.

Let us consider τ, τ ′ ∈ h and the elliptic curves

Ej = C/(Z⊕ τZ) j = 1, . . . , 2n E2n+1 = C/(Z⊕ τ ′Z).

We define the abelian variety

A′ = E1 × . . .× E2n+1.

We set, for z = (z1, z2, . . . , z2n, z2n+1) ∈ A′:

r(z) := (−z2n, z1, z2, . . . , z2n−1, z2n+1 + 1
4n) = R(z) + (0, . . . , 0, 1

4n) (5.6.1)

s(z) := (−z2n + b1,−z2n−1 + b2, . . . ,−z1 + b2n,−z2n+1) = S(z) + (b1, b2, . . . , b2n, 0)
(5.6.2)

where b2j−1 := 1 + τ

2 and b2j := τ

2 for j = 1, . . . , n. Since s2 is a translation, we
construct the abelian variety A := A′/s2 and by [1, Theorem] the group G = ⟨r, s⟩
induces on A a free action of the dihedral group of order 8n which does not contain any
translations. Thus, Y = A/G is a hyperelliptic variety with the group D4n.

Lemma 5.6.3. With the notation above. The hyperelliptic variety Y = A/G with the
group D4n is a Calabi-Yau manifold if and only if n = 1. For all n odd we have KY ≃ OY
and h1,0(Y ) = h2,0(Y ) = 0.

Proof. We need to prove that KY ≃ OY and hj,0(Y ) = 0 for 0 < j < 2n + 1. The first
condition is equivalent to say that the representation of G goes in SL(2n + 1,C). An
easy computation show that:

det(R) = 1 det(S) = (−)n+1.
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Therefore, Y has trivial canonical bundle if and only if n is odd. It remains to prove
that hj,0(Y ) = hj,0(A)G = 0 for 0 < j < 2n+ 1 if and only if n = 1. Let us denote by ρ
the representation of G. We decompose ρ into irreducible representations. To do this,
as explained in Section 1.8, we need compute the products ⟨χρ, χi⟩ for i = 1, 2, 3, 4 and
⟨χρ, χρ̃h

⟩ for i = 1, 2, 3, 4 and 0 < h < 2n, where χρ is the characters associated to ρ and
χi’s and χρ̃h

’s are the irreducible characters of D4n of dimension 1 and 2, respectively,
described in Example 2.

{rk, r−k} for k = 1, . . . 2n− 1 r2n srk for k = 0, . . . , 4n− 1 id

χρ 1 1− 2n −1 2n+ 1

Table 5.1: Characters of representation ρ

We have:

1. ⟨χρ, χi⟩ =

0 i ̸= 2

1 i = 2

2. We have ⟨χρ, χρ̃h
⟩ = 1

8n
∑
g∈G

χρ(g)χρ̃h
(g). By a direct computation we obtain:

⟨χρ, χρ̃h
⟩ = 1

8n

[
4

2n−1∑
k=1

cos
(
πhk

2n

)
+ 2(−2n+ 1) cos(hπ) + 2(2n+ 1)

]
.

Claim:
2n−1∑
k=1

cos
(
πhk

2n

)
=

−1 h even

0 h odd
.

proof of the Claim. We denote H = hπ

2n for 0 < h < 2n and we write:

2n−1∑
k=1

cos(Hk) = 1
2

2n−1∑
k=1

(eiHk + e−iHk).

We recognize two finite geometric series of ratio eiHk and e−iHk, respectively. By

using the formula
N∑
k=0

qk = 1− qN

1− q , we lead to the following expression:

2n−1∑
k=1

cos(Hk) = 1
2

(
eiH(1− ei(2n−1)H)

1− eiH + e−iH(1− e−i(2n−1)H)
1− e−iH

)
.
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Through straightforward computations and simplifications, we lead to:

2n−1∑
k=1

cos(Hk) = cos(H)− cos(2nH) + cos((2n− 1)H)− 1
2− 2 cos(H) .

We make the following observations:

• cos(2nH) = cos(πh) =

1 h even

−1 h odd

• cos((2n−1)H) = cos(2nH) cos(H)+sin(2nH) sin(H) =

cos(H) h even

− cos(H) h odd

In conclusion, we obtain:
2n−1∑
k=1

cos(Hk) =

−1 h even

0 h odd

Therefore, by applying the Claim, we obtain:

⟨χρ, χρ̃h
⟩ = 1

8n

[
4

2n−1∑
k=1

cos(Hk) + 2(−2n+ 1) cos(hπ) + 2(2n+ 1)
]

=

0 h even

1 h odd

Combining items 1. and 2. we obtain the following decomposition:

ρ =
2n−1⊕

h=1 odd
ρ̃h ⊕ ρ2

where ρ̃h and ρ2 are the irreducible representations associated to the characters χρ̃h

and χ2. This is exactly the decomposition of G on H1,0(A). We immediately see that
h1,0(Y ) = h1,0(A)G = 0, since ρ does not contain the trivial representation ρ1. According
to Lemma 2.2.1 we have Hj,0(A) =

∧j H1,0(A) and according to (1.8.1) we have

k∧
ρ =

⊕
i−1+···n+j=k

i1∧
ρ̃i1 ⊗ . . .⊗

in∧
ρ̃in ⊗

j∧
ρ2.

To compute hj,0(Y ) = hj,0(A)G we need to compute the multiplicity of ρ1 in
∧j ρ.

The following relations hold:

2∧
ρ̃ij = ρ2 ρ̃⊗ ρ2 = ρ̃ij

2∧
ρ2 = 0 ⟨χρ̃ij

⊗ρ̃il
, χ1⟩ = 0 for ij ̸= il.
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Thus, h2,0(Y ) = h2,0(A)G = [
∧2 h1,0(A)]G = 0. Similar argument lead to the following

relations:
3∧
ρ̃ij = 0 ρ̃ij ⊗

2∧
ρ2 = 0

2∧
ρ̃ij ⊗ ρ2 = ρ1

⟨χρ̃ij
⊗ρ̃il

, χρ2⟩ = 0 for ij ̸= il

3∧
ρ2 = 0

Therefore, h3,0(Y ) = h3,0(A)G = n. In conclusion, we deduce that Y is a Calabi-Yau
manifolds if and only if n = 1.

In subsection 5.6.3, we insert the python code to compute all the Hodge numbers of the
hyperelliptic manifold Y with the group D4.

Remark 5.6.4. We observe that often in literature the definition of Calabi-Yau manifold
can be "relaxed", in the following way. A Calabi-Yau manifold can be defined as a
compact, Kähler, complex manifold with trivial canonical bundle and no (1, 0)-forms.
In fact, this definition is the one used by the authors of [73]. Therefore, with this
definition the actions enclosed in [1], yield to Calabi-Yau (2n + 1)-folds of type A with
the group D4n if and only if n is odd.

5.6.2 | Examples with abelian actions
Here we construct new examples of Calabi-Yau manifolds of type A which ensure their
existence in all dimension.

Let us fix n ∈ N and denote by Ej elliptic curves (not necessarily isomorphic) for
j = 1, . . . , 2n+ 1. We define the abelian variety

A = E1 × . . .× E2n+1.

For j = 1, . . . , 2n, we fix uj ∈ Ej [2] \ {0} and vj+1 ∈ Ej+1[2] \ {0} and for z ∈ A we set

gj(z) = (−z1,−z2, . . . ,−zj−1, zj ,−zj+1, . . . ,−z2n+1) + (0, . . . , uj , vj+1, 0 . . . , 0)

We denote G := ⟨g1, . . . , g2n⟩.

Lemma 5.6.5. With the notation above. The group G defines a free action of (Z/2Z)2n

on A and Y = A/G is a Calabi-Yau (2n+ 1)-fold of type A with Hodge numbers:

hi,j(Y ) = hi,j(A)G =


(2n+1

i

)
i = j ∨ i+ j = 2n+ 1

0 otherwise.
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Proof. We note that G ≃ (Z/2Z)2n. We first prove that G defines a free action on A. We
observe that for every g ∈ G there exist at least one entry in g which is a translation, this
proves that G acts freely on A. Let us fix a multi-index i1 < i2 < · · · < ik ∈ {1, . . . , 2n},
we denote

g(1,...,k) := gi1 ◦ gi2 ◦ · · · ◦ gik with gij ∈ G.

One can easily verify that there exists at least ir ∈ {1, . . . , 2n} such that(
g(1,...,k)

)
|Eir

(z) = zir + ϵir

where ir =

i1 k odd

ik + 1 k even
and ϵr =

ui1 k odd

vik+1 k even .

Therefore, G defines a free action on A that does not contain any translations, i.e. A/G
is a hyperelliptic variety with the group (Z/2Z)2n. Moreover, since the representation
of G goes into SL(2n+ 1,C) then Y := A/G is a manifold with trivial canonical bundle.
Then, we prove that in fact Y is a Calabi-Yau manifold by looking at the G-invariant
cohomology of A, since H i,j(Y ) = H i,j(A)G. We recall:

H i,j(A) = ⟨dzI ∧ dzJ : I, J ∈ {1, . . . , 2n+ 1} multi-index}⟩.

We observe:

• If |I|+ |J | is even. The forms which are preserved by G are of the following type∧
i∈I

dzi∧dzi. So they are (|I|, |I|)-forms. In particular, J is determined by the choice

of I. The number of such forms is the number of the choices of the multi-index I.

• If |I| + |J | is odd. The forms which are preserved by G are of the following type
dzI ∧dzJ with I∩J = ∅ and I∪J = {1, . . . , 2n+1}. In particular 2n+1 = |I|+ |J |
and J is determined by the choice of I. The number of such forms is the number
of the choices of the multi-index I.

Therefore we get:

hi,j(Y ) = hi,j(A)G =


(2n+1

i

)
i = j ∨ i+ j = 2n+ 1

0 otherwise.

In particular, we obtain H i,0(Y ) = H i,0(A)G ≃

C i = 0, 2n+ 1

0 1 ≤ i ≤ 2n
, i.e. Y is a Calabi-

Yau manifold of type A.

As a consequence of this example we obtain the following result.
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Theorem 5.6.6 (Theorem A). Calabi-Yau manifolds of type A exist in all odd dimen-
sions. In particular

(i) For ever n, there exists a Calabi-Yau manifold Y = A/G with G ≃ (Z/2Z)2n and
A = E1× . . .×E2n+1 is the product of 2n+ 1 (non necessarily isomorphic) elliptic
curves.

(ii) For n = 1, there exists a Calabi-Yau threefolds Y = A/G with G ≃ D4n the dihedral
group of order 8n and A = (E)n × E′ with E,E′ elliptic curves.

Remark 5.6.7. It is easy to check that if Y is as in Theorem 5.6.6 then h1,1(Y ) = ρ(Y )
equals h2n,1(Y ) the dimension of the space of local deformation of Y .

5.6.3 | Coding for Hodge numbers of GHMs with the group D4n

The following is a Python code to compute the Hodge number of the Hyperelliptic Va-
rieties constructed in [1].

import numpy as np
n = int(input("insert dimension n: "))
R =np.zeros((2 ∗ n+ 1, 2 ∗ n+ 1))
S = np.zeros((2 ∗ n+ 1, 2 ∗ n+ 1))
R[0, 2 ∗ n− 1] = −1 R[2 ∗ n, 2 ∗ n] = 1
for i in range(1, 2 ∗ n):
R[i, i− 1] = 1
S[2 ∗ n, 2 ∗ n] = −1
for i in range(0, 2 ∗ n):
S[i, 2 ∗ n− i− 1] = −1
G = [ ]
for j in range(0, 2):
for i in range(0, 4 ∗ n):
G.append(np.dot(np.linalg.matrix_power(R, i), np.linalg.matrix_power(S, j)))
def chi_V(g):
return np.trace(g)
chi_values = [chi_V(g) for g in G]
def chi_wedge(g, i):
if i == 0:
return 1
chi_value= 0
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for m in range(1, i+ 1):
chi_value + = ((−1)∗∗(m−1)∗ chi_V(np.linalg.matrix_power(g,m)) ∗ chi_wedge(g, i−
m))
return chi_value/i
for i in range(2 ∗ n+ 2):
for j in range(i+ 1):
if i+ j < 2 ∗ n+ 2:
total_sum=sum(ch_wedge(g, i)*chi_wedge(g, j) for g in G)
print(f"hi,j=", total_sum/(8 ∗ n))
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6 The family of Calabi-Yau
threefolds of type A with the

group D4

This chapter is dedicated to the study of Calabi-Yau threefolds of type A with the group
D4. In particular, Theorem B part (ii) (as Theorem 6.4.1) and Theorem C part (ii) (as
Theorem 6.5.1) are proven, see also [66].

6.1 | The Calabi-Yau 3-folds of type A with the group D4

Following [25] we construct the family of Calabi-Yau 3-folds of type A with the group
D4.
Let us consider the abelian 3-fold A′ := E × E × E′ where

E := Eτ = C/(Z⊕ τZ) E′ := Eτ ′ = C/(Z⊕ τ ′Z) (6.1.1)

with τ, τ ′ ∈ h. For (u1, u2) ∈ (E × E)[2] \ {(0, 0)} s.t. u1 ̸= u2 and u3 ∈ E′[4] \ {0}, we
define

r(z) := (z2,−z1, z3 + u3) s(z) := (z2 + u1, z1 + u2,−z3) for z ∈ A′ (6.1.2)

We denote H := ⟨r, s⟩ and its representation ρ : H −−−→ GL3(C):

ρ(r) =


0 1
−1 0

1

 ρ(s) =


0 1
1 0

−1

 (6.1.3)

We write ρ = ρ2 ⊕ ρ1 with dim(ρj) = j for j = 1, 2 using the decomposition into
irreducible representations. This is the unique faithful representation of D4 on C3, see
[73, Theorem 0.1] and [25]. We are free to choose u1, u2, u3 in several ways and in the
following definition we make a choice.
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Definition 6.1.1. We set u1 := τ + 1
2 , u2 := τ

2 , u3 = 1
4. We denote X := A′

⟨r, s⟩
and

w := s2.

Lemma 6.1.2. The algebraic manifold X is a Calabi-Yau 3-fold of type A with the
group D4 and its Hodge numbers are (h1,1(X), h2,1(X)) = (2, 2).

Proof. We observe that X is the three dimensional case of the example enclosed in
Section 5.6.1. Thus, by Lemma 5.6.3, X is a Calabi-Yau threefold. In particular, we
have X = A/G with A = A′/⟨w⟩ and G = H/⟨w⟩ ≃ D4. By using (6.1.3) and Lemma
2.2.1:

H1,1(A)G = ⟨dz1 ∧ dz1 + dz2 ∧ dz2, dz3 ∧ dz3⟩

H2,1(A)G = ⟨dz1 ∧ dz2 ∧ dz3, dz1 ∧ dz3 ∧ dz2 − dz2 ∧ dz3 ∧ dz1⟩.

Therefore, h1,1(X) = h2,1(X) = 2.

From now on A = A′/⟨w⟩ and G = H/⟨w⟩ ≃ D4. In this chapter, we consider X both

as the quotient A
′

H
and A

G
. By abuse of notation we still denote by ρ the representation

of G on C3.
Using the fact that there exists a unique faithful representation of D4 on C3 and by
Theorem 4.2.6, we lead to the following result.

Theorem 6.1.3. [24, Corollary 1.1] The family above of Generalized Hyperelliptic 3-folds
X with group D4 forms an irreducible and 2-dimensional family of complex manifolds.
The Kähler manifolds with the same fundamental group as X yield an open subspace of
the Teichmüller space of X parametrized by the periods τ and τ ′ of the elliptic curves E
and E′.

Definition 6.1.4. We denote by FAD4
the 2-dimensional family of Calabi-Yau 3-folds of

type A with the group D4.

Remark 6.1.5. Roughly speaking, Theorem 6.1.3 tells us that all manifolds Y ∈ FAD4
are

given as the quotient of an abelian 3-fold Eµ × Eµ × Eµ′ , isomorphic to the product
of three elliptic curves, by a free action of a group H ′ of order 16 which contains a
normal subgroup G′ which is isomorphic to D4 and does not contain any translation. In
particular, the space of parameters of FAD4

is isomorphic toM1,1×M1,1, whereM1,1 is
defined in Proposition 2.7.6.
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Remark 6.1.6. We observe that A = B×E′ where w1(z) = (z1+ 1
2 , z2 + 1

2) is a translation
on E × E and B = (E × E)/⟨w1⟩ is an abelian surface. Let us define:

rE×E(z1, z2) := (z2,−z1) r2(z3) := z3 + 1/4

sE×E(z1, z2) := (z2 + b1, z1 + b2) s2(z3) := −z3.
(6.1.4)

We denote by r1 and s1 the automorphisms induced on B by rE×E and sE×E , respec-
tively.
We set

G1 := ⟨r1, s1⟩ G2 := ⟨r2, s2⟩ (6.1.5)

which satisfy G2 ≃ G1 ≃ G ≃ D4. In particular X is the quotient of A by the diagonal
action of G.

6.2 | The Picard group of Calabi-Yau threefolds in FA
D4

In this section we explicitly describe the Picard group of X ∈ FAD4
. It is worth recalling

that abstractly the Picard group of hyperelliptic manifolds is described in [22, section 2].
Although, in this situation we know that the manifolds in FAD4

are Calabi-Yau threefolds
and so we can use the characterization of their Picard group given in Section 5.2. We
are going to prove the following result.

Notation: Let W be an abelian variety, we denote by + the group operation on W and
by +Div(W ) the group operation on Div(W ).

Theorem 6.2.1. Let X ∈ FAD4
as in Definition 6.1.1. The followings hold:

(i) The Picard group satisfies Pic(X) ≃ Z2 ⊕ (Z/4Z× Z/4Z× Z/2Z) with

Z/4Z× Z/4Z× Z/2Z = ⟨r, s, λτ ′⟩

where λτ ′(z) = (z1, z2, z3 + τ ′) ∈ Biho(C3) and r, s are respectively the lifts of r, s
to the universal cover C3 of A′.

(ii) The group PicQ(X) is generated by the classes of two divisors DX,1 and DX,2 such
that

(πH)∗DX,1 =
( ∑
P+P=0

(E × P ) +Div(E×E) (P × E)
)
× E′,

(πH)∗DX,2 = (E × E)× (0E′ +Div(E′) Q+Div(E′) (2Q) +Div(E′) (3Q)) with Q+Q = 1
2 .

and the followings hold

(DX,1)3 = 0 (DX,2)3 = 0 DX,1 · (DX,2)2 = 0 (DX,1)2 ·DX,2 = 4.
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6.2.1 | The torsion part of the Picard group
According to Lemma 5.2.2 we have Pic(X) = Zρ(X) ⊕ Ab(π1(X)) for any X ∈ FAD4

. By
Lemma 6.1.2 we known that ρ(X) = 2. It remains to compute Ab(π1(X)).

By construction, π1(X) is the finite extension of π1(A′) ≃ Λ by the group H = ⟨r, s⟩ 1,
i.e. we have the following exact sequence

0 −→ π1(A′) ≃ Λ −→ π1(X) ≃ Γ −→ H −→ 0

Let us denote Λ1 = Λ2 := π1(E) ≃ Z⊕ τZ and Λ3 = τ ′Z⊕ Z ≃ π1(E′).
We write Λ = {λ ∈ Biho(C3) | λ(z) = (z1 + t1, z2 + t2, z3 + t3) and ti ∈ Λi} where
Λ1 = Λ2 = τZ⊕ Z ≃ π1(E) and Λ3 = τ ′Z⊕ Z ≃ π1(E′). We denote by r, s ∈ Γ the lifts
of r, s ∈ H to C3, respectively. We define 3 elements in Λ:

λ1 : (z1, z2, z3) 7−−→ (z1 + 1, z2, z3)

λ2 : (z1, z2, z3) 7−−→ (z1, z2 + 1, z3)

λ3 : (z1, z2, z3) 7−−→ (z1 + τ, z2 + τ, z3)

and we consider Σ1 := ⟨λ1, λ2, λ3, [r, s]⟩ a specific subgroup of Γ ≃ π1(X).

Theorem 6.2.2. Let X be as in Definition 6.1.1, we have the following isomorphism:

Ab(π1(X)) ≃ (Z/4Z)× (Z/4Z)× (Z/2Z) = ⟨r, s, λτ ′⟩

where λτ ′(z) = (z1, z2, z3 + τ ′).

Proof. We observe that the group 2Λ is contained in [π1(X), π1(X)] indeed:

(z1 − 2t1, z2 − 2t2, z3) = [λ, (r)2](z) ∀λ(z) = (z1 + t1, z2 + t2, z3 + t3) ∈ π1(A′) ≃ Λ

(z1, z2, z3 − 2t3) = [λ̃, s](z) ∀λ̃(z) = (z1, z2, z3 + t3) ∈ π1(A′) ≃ Λ

Let us denote by λ1,τ : (z1, z2, z3) 7→ (z1 + τ, z2, z3). The followings hold:

λ1 = [(r), (s)2](mod2Λ) λ2 = [r−1, (s)2](mod2Λ) λ3 = [λ1,τ , r](mod2Λ).

Thus ⟨2Λ,Σ1⟩ ≤ [π1(X), π1(X)] and since it is normal we get the following diagram:

π1(X) π1(X)
⟨2Λ,Σ1⟩

=: Σ

Ab(π1(X)).

φ

f
(6.2.1)

1We just observe that in this case Λ is not the maximal abelian and normal subgroup of finite index.
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The generators of Σ are {φ(r), φ(s), φ(λτ ′), φ(λ1,τ ), φ(λ2,τ )} where φ(λτ ′)(z) = (z1, z2, z3+
τ ′) and φ(λ2,τ )(z) = (z1, z2 + τ, z3). The following relations hold:

λ2,τ = λ3(λ1,τ )−1 ⇒ φ(λ2,τ ) = φ(λ1,τ )−1

(rs)2 = λ1,τ ⇒ φ(λ1,τ ) = φ(rs)2 = φ(r)2φ(s)2.

Therefore:

Σ = ⟨φ(r), φ(s), φ(λτ ′)⟩.

In particular, Σ is an abelian group:

φ(r)φ(s) = φ(s)φ(r) φ(r)φ(λτ ′) = φ(λτ ′)φ(r) φ(λτ ′)φ(s) = φ(λ2τ ′)φ(s)φ(λτ ′).

From the fact that φ(λτ ′) has order two and that both φ(r) and φ(s) have order four,
the only possibility is Σ ≃ Z/4Z × Z/4Z × Z/2Z. Since the commutator subgroup
[π1(X), π1(X)] is the smallest subgroup of π1(X) such that the quotient group is abelian,
we obtain [π1(X), π1(X)] = ⟨2Λ,Σ1⟩. Thus f in diagram (6.2.1) is an isomorphism and
Ab(π1(X)) ≃ Σ.

Proof of Theorem 6.2.1 part (i). We have Pic(X) = Zρ(X)⊕Ab(π1(X)): since by Lemma
6.1.2 ρ(Y ) = h1,1(X) = 2 and in Theorem 6.2.2 we have described Ab(π1(X)), we obtain
the result.

6.2.2 | A Q-basis of PicQ(X)
In this section we prove Theorem 6.2.1 part (ii) providing a Q-basis for PicQ(X). We
recall the notation πH : A′ −→ X = A′/H.

Proof of Theorem 6.2.1 part (ii). Let us consider the following H-invariant divisor on
A′:

DA′,1 := (
∑

P+P=0
(E × P ) +Div(E×E) (P × E))× E′. (6.2.2)

We observe that the support of DA′,1 is the union of 8 surfaces all isomorphic to the

surface D1 :=
(

(0E × E) +Div(E×E) (E × 0E)
)
× E′ (they are the orbits of D1 under

H) and that D1 is preserved by ⟨r2⟩. Since D1 is a surface, we can define its image
DX,1 := πH(D1), which is in particular a divisor on X (in fact it is the reduced image
of DA′,1). We obtain:

(πH)∗(D1) = 2DX,1 (πH)∗(DA′,1) = 16DX,1.
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It follows that (πH)∗(DX,1) = DA′,1.
Let us consider another H-invariant divisor on A′:

DA′,2 := (E×E)× (0E′ +Div(E′)Q+Div(E′) (2Q)+Div(E′) (3Q)) with Q+Q = 1
2 . (6.2.3)

The support of DA′,2 consists of 4 disjoint surfaces all isomorphic to D2 := (E×E)×0E′ .
In particular D2 is preserved by ⟨s⟩. We define DX,2 := πH(D2) and obtain:

(πH)∗(D2) = 4DX,2 (πH)∗(DA′,2) = 16DX,2.

It holds (πH)∗(DX,2) = DA′,2.
We can compute the trilinear form on DX,1, DX,2, using the projection formula (1.2.2):

(DX,1)3 = 0 (DX,2)3 = 0 DX,1 · (DX,2)2 = 0 (DX,1)2 ·DX,2 = 4.

Hence the classes of the divisors DX,1, DX,2 are linearly independent over Q and define
a basis of PicQ(X).

6.3 | Fibrations on X ∈ FA
D4

In Theorem 6.2.1 we have find a Q-basis PicQ(X) = ⟨DX,1, DX,2⟩. We consider these
two divisors and we describe the maps associated to them.

Definition 6.3.1. A fibration f : Y1 → Y2 is a proper surjective morphism of normal
varieties such that 0 < dimY2 < dimY1 with connected fibers.
A fibration is called isotrivial if there exists a open dense set U ⊆ Y2 such that for
every x, y ∈ U then f−1(x) ≃ f−1(y) .
A fiber f−1(y2) over a point y2 ∈ Y2 such that f is not smooth for every y1 ∈ f−1(y2) is
called multiple fiber.

Theorem 6.3.2. Let X ∈ FAD4
as in Definition 6.1.1. The following hold:

(i) The map

φ|DX,1| : X −→ φ|DX,1|(X) := Z ⊂ P(H0(X,OX(DX,1))∨)

is an isotrivial fibration whose general fiber is isomorphic to the elliptic curve E′.
The base Z is a normal Enriques surface with singularities of type 3A1 and 2A3.
We have three multiple fibers with multiplicity two and two with multiplicity four.

(ii) The map
φ|DX,2| : X −→ P1

is an isotrivial fibration whose general fiber is isomorphic to the abelian surface B.
There are four multiple fibers with multiplicity two.
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Proof. (i) We recall that (πH)∗(DX,1) = DA′,1 where DA′,1 is defined in (6.2.2). We
observe that φ|DA′,1| factorizes through the fibration pr1 : A′ −→ E × E, whose
fibers are isomorphic to E′. Indeed by definition:

DA′,1 =
( ∑
P+P=0

(E×P )+Div(E×E)(P×E)
)
×E′ = pr∗

1
( ∑
P+P=0

(E×P )+Div(E×E)(P×E)
)

:= pr∗
1D1

where D1 is an ample line bundle on E × E, by [56, Proposition 4.5.2].
We split H0(A′,OA′(DA′,1)) =

⊕
χ∈Irr(H)

Vχ into irreducible characters decomposi-

tion: since (πH)∗(DX,1) = DA′,1, the pull backs under πH of the global sections
of OX(DX,1) define global sections of H0(A′,OA′(DA′,1)) which, in particular, are
contained in an eigenspace Vχ relative to an unique irreducible character χ of H.
Thus we obtain the following commutative diagram:

A′ E × E P(H0(A′,OA′(DA′,1))∨)

X (E × E)/H|E×E P(H0(X,OX(DX,1))∨) ⊆ P(Vχ)

φ|DA′,1|

πH p1

φ|DX,1|

Using the notation in (6.1.4) and (6.1.5) we have Z := (E × E)
H|E×E

= B

G1
where

the quotient B = (E × E)/⟨w1⟩ is an abelian surface and G1 = ⟨r1, s1⟩ ≃ D4.
We can easily observe that r1 preserves the volume form of B, ⟨r1⟩ ≃ Z/4Z and
does not contain translations. Hence by [33, Lemma 3.1] B/⟨r1⟩ is birational to
a K3 surface. By [13, Proposition 2.1] the singularities of the surface B/⟨r1⟩ are
6A1 + 4A3. Moreover, by studying ∀g ∈ ⟨w1, rE×E⟩ the equations sE×E(z) = g(z)
we find that they don’t admit solutions, hence s1 defines a fixed point free involution
on B/⟨r1⟩. Thus Z is a singular model of an Enriques surface with singularities
3A1 + 2A3.

Let z = p1(z1) ∈ Z \Sing(Z), then (p1 ◦φ|DA′,1|)
−1(z) =

⋃
h∈⟨sE×E ,rE×E⟩

(
h(z1)×E′).

These fibers are in the same orbit under the action of H and each element of H
permutes them, hence πH identifies them. Therefore, the general fiber of φ|DX,1| is
isomorphic to E′. Furthermore, the fibers φ−1

|DX,1|(z) over the points in z ∈ Sing(Z)
are multiple fibers. Since the singularities of Z are 3A1 + 2A2, we obtain the
statement.

(ii) We apply arguments similar to the ones of part (i). Let us consider pr2 : A′ −→ E′

whose fibers are isomorphic to E×E and (πH)∗(DX,2) = pr∗
2(0E′ +Div(E′)Q+Div(E′)

(2Q)+Div(E′)(3Q)) with Q+Q = 1
2 . We obtain the following commutative diagram:
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A′ E′ P(H0(A′,OA′(DA′,2))∨)

X E′/G2 P(H0(X,OX(DX,2))∨)

φ|DA′,2|

πH p2

φ|DX,2|

We recall G2 = ⟨r2, s2⟩, see (6.1.4) and (6.1.5): since r2 is a translation on E′ and
s2 is the elliptic involution then E′/G2 = P1. Let z ∈ E′ with trivial stabilizer
under the action of G2, then (p2 ◦ φ|DA′,2|)

−1(p2(z)) =
⋃

g∈G2

(
E × E × g(z)

)
which

are in the same orbit under the action of H, in particular the translation w acts
on each of them and all the others g ∈ G permute them. Thus, the quotient given
by w maps them to 8 manifolds isomorphic to B and the quotient by G identifies
these latter manifolds. Therefore, the general fiber of φ|DX,2| is isomorphic to B.
Let zi ∈ E′[2], they are the only points with non-trivial stabilizer under the action
of G2. Thus, the fibers over p2(zi) are multiple fibers.

Remark 6.3.3. We remark that the authors of [73], using a different approach, have
already proven that X ∈ FAD4

has two fibrations induced by the natural projection on
the cover A and that in fact the divisors associated to these fibrations define a Q-basis
of PicQ(X). The main difference with our approach is that we explicitly write down the
divisors generating the torsion free part of Pic(X).

6.4 | The automorphism group of Calabi-Yau threefolds in
FA

D4

In this section we describe the automorphism group of X ∈ FAD4
. The main result is the

following.

Theorem 6.4.1 (Theorem B (ii)). Let X ∈ FAD4
and assume that EndQ(E) ̸= Q(ζ6).

The automorphism group of X is isomorphic to Aut(X) ≃ (Z/2Z)4 whose elements are
induced by order two translations by the points (t1, t2, t3) ∈ A′ = E × E × E′ satisfying

t1 + t2 ∈ {0,
1
2} t1 ∈ E[2] t3 ∈ E′[2]. (6.4.1)

In particular, every αX preserves the volume form of X.
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Remark 6.4.2. According to Corollary 4.1.12 we have Aut(X) ≃
NAut(A)(G)

G
. According

to Theorem 5.4.1, the group Aut(X) is finite and since G is finite then NAut(A)(G) is
finite too.

Remark 6.4.3. Let T1 = Cn/Λ1 and T2 = Cn/Λ2 be two n-dimensional complex tori,
we consider an isogeny f : T1

m:1−−→ T2. Let α2 ∈ Aut(T2), η : ⟨α2⟩ −→ GLn(C) be its
representation. Then α2 admits at least one (and indeed m) lift to T1 if and only if
η(α2)(λ1) ∈ Λ1 for every λ1 ∈ Λ1 which is equivalent to η(α2) ∈ End(T1)×. Clearly, any
lift α1 of α2 to T1 belongs to NAut(T1)(ker(f)).

We recall that αA′ ∈ Aut(A′) is written as αA′ = η(αA′) + tαA′ where η(αA′) is its linear
part and tαA′ its translation part, see (2.1.2).

Proposition 6.4.4. Let us assume that EndQ(E) ̸= Q(ζ6). The following homomor-
phism of groups is surjective:

θ : NAut(E×E)×Aut(E′)(H) Aut(X)

αA′ αX

where αX is the automorphism induced by αA′ on X. Thus Aut(X) ≃
NAut(E×E)×Aut(E′)(H)

H
.

Proof. We consider the following diagram:

NAut(A′)(H)

NAut(A)(G) Aut(X)

θ2
θ

θ1

where θ1 is surjective by Corollary 4.1.12. In order to prove the surjectivity of θ we
prove the one of θ2.

To start, we observe that NAut(A)(G) = NAut(B)(G1) × NAut(E′)(G2), where G1 and
G2 are defined in (6.1.5). The inclusion “⊇” is trivial. For the other one, let η be a
representation of ⟨αA⟩ on C3 for αA ∈ NAut(A)(G). We recall that the representation ρ

of G splits into ρ = ρ2 ⊕ ρ1, see (6.1.3): since αA ∈ NAut(A)(G), η splits into the direct
sum of two representations η2⊕ η1 such that dimηj = j. Hence we write αA = (αB, αE′)
and we easily deduce the other inclusion. In particular, it follows that NAut(A′)(H) =
NAut(E×E)(⟨G1, w1⟩) × NAut(E′)(G2). Thus, in order to prove the surjectivity of θ2 it’s
enough to prove that every αB admits a lift to E ×E. In fact, since NAut(A)(G) is finite
then we are interested to prove that the maximal automorphism group of finite order
on B admits a lift to E ×E. Moreover, B is an abelian surface which admits an action
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of D4 which is induced by the action of D4 on E × E, hence we restrict our attention
to the maximal automorphism group of finite order on B which contains a subgroup
isomorphic to D4.

We observe that B can not split into the product of two isomorphic elliptic curves.

If it was true, γ :=
(

0 −1
1 1

)
should belong to End(B)× and since γ ∈ End(E × E)×,

accordingly to Remark 6.4.3, we would have two lifts of γ to E × E given by γ̃ϵ(z) =
γ(z) + ϵw1 for ϵ ∈ {0, 1}. This leads to a contradiction since it is easy to check that
γ̃ϵ ̸∈ NAut(E×E)(w1).

Let us consider the pair (B,G′) where G′ is the maximal automorphisms group of
finite order in End(B)× which contains a subgroup isomorphic to D4. According to [33,
Tables 8 and 9]: whenever EndQ(E) ̸= Q(ζ6) then G′ = ⟨ρ2(r), ρ2(s)⟩ ≃ D4. Hence, by
Remark 6.4.3, αB admits a lift to E × E and it belongs to NAut(E×E)(w1). Therefore,
θ2 is surjective and θ too.

Corollary 6.4.5. With the notation and hypothesis above, every αA′ ∈ NAut(A′)(H)
admits a representation η = η2 ⊕ η1 on C3 such that η2(αA′) = ρ2(rjsi) for j = 0, 1, 2, 3
and i = 0, 1.

Assumption: According to Proposition 6.4.4, from now on we assume EndQ(E) ̸=
Q(ζ6).

Lemma 6.4.6. Let αA′ ∈ NAut(A′)(H) such that αA′(z) = η(αA′)z + tαA′ where tαA′

is the translation by the points (t1, t2, t3) and η is a representation of αA′ on C3. The
following conditions hold :

η(αA′) = ρ(rjsi) for some j = 0, 1, 2, 3 i = 1, 2

t1 + t2 ∈ {0, 1
2} t1 ∈ E[2] 2t3 =


0 if j = 0, 2
1
2 if j = 1, 3.

Proof. By Corollary 6.4.5: η = η2 ⊕ η1 and η2(αA′) = ρ2(rjsi) for j = 0, 1, 2, 3 and
i = 0, 1. We write αA′(z) = η(αA′)z + tαA′ and α−1

A′ (z) = η(αA′)−1z − η(αA′)−1tαA′ .
Using the expression of r, s in (6.1.2) we have:

α−1
A′ rαA′(z) = [η2(αA′)−1ρ2(r)η2(αA′)⊕ ρ1(r)](z) + η(αA′)−1(t2 − t1,−t1 − t2, 1/4).

Since η2(αA′) = ρ2(rjsi) for some i = 0, 1 and j = 0, 1, 2, 3, we find:

η(αA′)−1ρ(r)η(αA′) = ρ2(s−ir−jrrjsi)⊕ ρ1(r) =

ρ(r) if i = 0, ∀j

ρ(r3) if i = 1, ∀j.
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Hence α−1
A′ rαA′ ∈ H if and only if

η(αA′)−1(t2 − t1,−t1 − t2,
1
4) = η2(αA′)−1(t2 − t1,−t1 − t2)⊕ η1(αA′)−1(1

4)

=

tr ∨ ts2r if i = 0

tr3 ∨ ts2r3 if i = 1

from which we deduce:

t1 + t2 ∈ {0,
1
2} t1 ∈ E[2] and

η1(αA′) = 1 = ρ1(rjsi) if i = 0, ∀j

η1(αA′) = −1 = ρ1(rjsi) if i = 1, ∀j.

In particular we obtain η(αA′) = ρ(rjsi). The study of α−1
A′ sαA′ ∈ H leads to the

following conditions:

t1 + t2 ∈ {0,
1
2}, t1 ∈ E[2] and 2t3 =


0 if j = 0, 2
1
2 if j = 1, 3.

Let αA′ ∈ NAut(A′)(H) be as in Lemma 6.4.6. We observe that for j = 1, 3 we can

rewrite tαA′ as the translation by the point (0, 0, 1
4)+t = tr+t where tr is the translation

part of r (see (6.1.3)) and t is a translation by a point (t1, t2, t3) which satisfies:

t1 + t2 ∈ {0,
1
2} t1 ∈ E[2] t3 ∈ E′[2]. (6.4.2)

Thus, we may write an automorphism αA′ ∈ NAut(E×E)×Aut(E′)(H) as follows :

αA′(z) = ρ(rjsi)(z) +

tr + tαA′ if j = 1, 3, ∀i

tαA′ if j = 0, 2, ∀i
with tαA′ satisfying (6.4.2) . (6.4.3)

Theorem 6.4.7. The automorphism group of X is isomorphic to Aut(X) ≃ (Z/2Z)4

whose elements are induced by order two translations by the points (t1, t2, t3) ∈ A′ satis-
fying (6.4.2). In particular, every αX preserves the volume form of X.

Proof. By Lemma 6.4.6 we have
∣∣∣NAut(A′)(H)

∣∣∣ = 28, hence |Aut(X)| = 28

24 = 24. Let us
consider the following translations in NAut(A)(H):tr + tαA′ − trjsi if j = 1, 3, ∀i

tαA′ + trjsi if j = 0, 2, ∀i
(6.4.4)
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with tαA′ satisfying (6.4.2). It is easy to see that any αA′ as in (6.4.3) differs from a
translation in (6.4.4) by an element in H. Thus they induce the same automorphism on
X and consequently, every αX ∈ Aut(X) is induced by a translation on A′ by a point
(t1, t2, t3) of order two satisfying (6.4.2): they are 25. Since each translation commutes
with any other translation we have Aut(X) is abelian, hence Aut(X) ≃ (Z/2Z)4. Since
each translation αA′ ∈ NAut(A′)(H) preserves ωA′ and ωX = (πH)∗ωA′ , each αX in
Aut(X) preserves ωX .

6.5 | Quotients of Calabi-Yau threefolds in FA
D4

In this section we describe the quotients of X for all the possible Υ ≤ Aut(X).

Theorem 6.5.1 (Theorem C part (ii)). Let X ∈ FAD4
as in Definition 6.1.1 and Υ ≤

Aut(X). Under the same assumption of Theorem 6.4.1, each quotient X/Υ admits a
crepant resolution β : Y −→ X/Υ where Y is a Calabi-Yau 3-fold. In particular, there
exist exactly 2 automorphisms (α1)X and (α2)X acting freely on X. They are induced
respectively by the translations αj ∈ Aut(A′)

α1(z) := (z1, z2, z3 + τ ′

2 ) α2(z) := (z1, z2, z3 + τ ′

2 + 1
2)

and the X

(αj)X
’s belong to FAD4

.

Let αX ∈ Aut(X) with X ∈ FAD4
. According to Proposition 6.4.4, αX is induced by

αA′ in NAut(A′)(H). Thus, we have the following characterization:

Fix(αX) = {πH(z) ∈ X | αX(πH(z)) = πH(z)}

= πH({(z) ∈ A′ | ∃h ∈ H with αA′(z) = h(z)}).

Remark 6.5.2. Let α(z) = (z1 + t1, z2 + t2, z3 + t3) be a translation on C3. Let us fix
ϵ ∈ {0, 1}. We denote by H a lift of H to C3, we consider different h ∈ H and study
the equations α(z) = h(z) on C3. In the followings, u1 and u2 are the ones in Definition
6.1.1.

1. If h ∈ {id, s2}: α(z) ∈ {z, s2(z)} ⇔ α ≡ id ∨ α ≡ s2 ⇔ αX = idX .

2. If h ∈ {s2ϵrk} for k = 1, 2, 3:

α(z) = s2ϵrk(z) admits solution ⇔ t3 = 1
4 + ϵ

2 for k = 1, 3

α(z) = s2ϵr2(z) admits solution ⇔ t3 = 1
2.
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3. If h ∈ {s2ϵ+1}: α(z) ∈ {s(z), s3(z)} ⇔ t1 + t2 = 1
2 + ϵ.

4. If h ∈ {r2s2ϵ+1}: α(z) ∈ {r2s(z), r2s3(z)} ⇔ t1 − t2 = 1
2 .

5. If h ∈ {r3s2ϵ+1}: α(z) ∈ {r3s(z), r3s3(z)} ⇔ t2 = u1 + ϵ
2 .

6. If h ∈ {rs2ϵ+1}: α(z) ∈ {rs(z), rs3(z)} ⇔ t1 = u2 + ϵ
2 .

Proof of Theorem 6.5.1. By Theorem 6.4.1, Υ ≃ (Z/2Z)m for some 1 ≤ m ≤ 4 and
every υ ∈ Υ preserves the volume form of X. According to Proposition 5.4.6 the fixed
locus of Υ, if not empty, is a disjoint union of curves, i.e. the codimension of Fix(Υ) is
2. Since Υ is abelian, we can split the quotient X/Υ in a subsequent quotients of order
two as follows. Let αX ∈ Υ: by Proposition 5.4.6 the quotient X/⟨αX⟩ is birational to
a Calabi-Yau 3-fold X̃. Since Υ is abelian, Υ1 := Υ/⟨αX⟩ preserves Sing(X/⟨αX⟩) and
so Υ1 lifts to an action on X̃. Moreover, each element of Υ1 preserves the volume form
ω
X̃

of X̃ since each element of Υ preserves ωX . Thus, we have a Calabi-Yau 3-fold X̃

with an action of Υ1 ≃ (Z/2Z)m−1 which preserves its volume form: by iterating the
argument above we conclude that X/Υ admits a crepant resolution β : Y → X/Υ with
Y a Calabi-Yau 3-fold.
Let αA′(z) = (z1 + t1, z2 + t2, z3 + t3) be an automorphism of A′ satisfying (6.4.2). It
induces a free action on X if and only if for every h ∈ H the equation αA′(z) = h(z) has
no solutions. By using Remark 6.5.2, this happens if and only if t1 = t2 ∈ {0, 1

2} and
t3 ∈ { τ

′

2 ,
τ ′+1

2 }. Fixed t3 we have (z1 + 1
2 , z2 + 1

2 , z3 + t3)− (z1, z2, z3 + t3) = w(z), hence
these two translations define the same automorphism onX. Therefore, there are only two
automorphisms which act freely on X and they are induced by α1(z) := (z1, z2, z3 + τ ′

2 )
and α2(z) := (z1, z2, z3 + τ ′+1

2 ). Let us denote by Yj := X/⟨(αj)X⟩. As we prove above,

they are Calabi-Yau 3-folds. By construction Yj = A′

⟨αj , H⟩
. We observe that Yj can be

obtained as free quotient of the abelian 3-fold Aj = A′

⟨αj , w⟩
by the action of the finite

group ⟨αj , H⟩
⟨αj , w⟩

. It is easy to check that this latter group is isomorphic to D4 and does

not contain any translation. Therefore, Yj ∈ FAD4
.

We finish this section by computing the fixed locus of every αX in Aut(X). Let us
fix t1 ∈ E[2], t1 + t2 ∈ {0, 1

2} and t3 ∈ E′[2]. We define the elliptic curves:
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C1
p,q = {(p, q, l) ∈ A′ | l ∈ E′, 2p = t1, 2q = t2}

C2
p,q = {(p, q, l) ∈ A′ | l ∈ E′, 2p = t1 + 1

2 , 2q = t2 + 1
2}

C3
q,t = {(p, q, l) ∈ A′ | p ∈ E, 2q = 1

2 , 2l = 1
4 + t3}

C4
p,t = {(p, q, l) ∈ A′ | q ∈ E, 2p = 1

2 , 2l = 3
4 + t3}

C5,t1
l = {(p,−p+ u1 + t1, l) ∈ A′ | p ∈ E, 2l = 1

2 + t3}

C6,t1
l = {(p,−p+ u2 + t1, l) ∈ A′ | p ∈ E, 2l = 1

2 + t3}

C7,t1
l = {(p, p+ u1 + t1, l) ∈ A′ | p ∈ E, 2l = t3}

C8,t1
l = {(p, p+ u2 + t1, l) ∈ A′ | p ∈ E, 2l = t3}

C9
q,l = {(p, q, l) ∈ A′ | p ∈ E, 2q = 0, 2l = 1

4 + t3}

C10
p,l = {(p, q, l) ∈ A′ | q ∈ E, 2p = 0, 2l = 3

4 + t3}

(6.5.1)

Proposition 6.5.3. Let αA′(z) = (z1+t1, z2+t2, z3+t3) ∈ Aut(A′) with t1+t2 ∈ {0, 1
2},

t1 ∈ E[2], and t3 ∈ E′[2] which induces αX on X. The fixed locus of αX consists of
elliptic curves and it is described in the following table:

Table 6.1: The fixed locus of αX on X.

t1 t2 t3 Fix(αX) |Fix(αX)|
0 0 τ ′

2 ∅ 0
0 0 τ ′+1

2 ∅ 0
0 0 1

2 πH(C1
0,0), πH(C1

τ
2 ,

τ
2
), πH(C1

0, τ
2
), πH(C2

1
4 ,

1
4
), πH(C2

1
4 ,

1
4 + τ

2
) 5

τ
2

τ
2

1
2 πH(C1

τ
4 ,

τ
4
), πH(C2

τ+1
4 , τ+1

4
), πH(C3

1
4 ,

3
8
), πH(C3

1
4 ,

3
8 + τ ′

2
) 4

τ
2

τ
2 ̸= 1

2 πH(C3
1
4 ,β

), πH(C3
1
4 ,β+ τ ′

2
) with 2β = 1

4 + t3 2
τ
2

τ+1
2

1
2 πH(C1

τ
4 ,

τ+1
4

), πH(C1
τ
4 ,

3τ+1
4

), πH(C9
0, 3

8
), πH(C9

0, 3
8 + τ ′

2
), πH(C5, τ

2
0 ), πH(C5, τ

2
τ ′
2

) 6
τ
2

τ+1
2 ̸= 1

2 πH(C9
0,β), πH(C9

0,β+ τ ′
2

), πH(C5, τ
2

γ ), πH(C5, τ
2

γ+ τ ′
2

) with 2β = 1
4 + t3 and 2γ = 1

2 + t3 4

0 1
2

1
2 πH(C1

0, 1
4
), πH(C1

0, 1
4 + τ

2
), πH(C5,0

0 ), πH(C5,0
τ ′
2

) 4

0 1
2 ̸= 1

2 πH(C5,0
γ ), πH(C5,0

γ+ τ ′
2

) with 2γ = 1
2 + t3 2

Proof. We need to study the solutions of the equations αA′(z) = h(z) with h ∈ H and
we use Remark 6.5.2. As evidence we explicitly show the computations in one case.
Let us consider t1 = t2 and t2 = 1

2 . By Remark 6.5.2 we have just to compute the
equation above for h ∈ {s2r2, r2}. Let us denote Ij(t1, t2) =

∐
2p=t1,2q=t2

Cjp,q with Cjp,q as

in (6.5.1). We find Fix(αA′) = I1(t1, t2)
∐
I2(t1, t2). Now, we need to study the action
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of H on the fixed locus. To do this we fix t1 = 0. Let C1
p,q ∈ Fix(αA′), since −p = p and

−q = q we have:

r

⟳

C1
p,p C1

p+ τ+1
2 ,p+ τ

2
C1
p+ 1

2 ,p+ 1
2

C1
p+ τ

2 ,p+ τ+1
2

s s s

C1
p,p+ τ

2
C1
p+ 1

2 ,p+ τ
2

C1
p+ 1

2 ,p+ τ+1
2

C1
p,p+ τ+1

2

C1
p+ τ

2 ,p
C1
p+ τ+1

2 ,p
C1
p+ τ+1

2 ,p+ 1
2

C1
p+ τ

2 ,p+ 1
2
.

s

r

s s

r

s s s

Thus for t1 = 0: πH(I1(t1, t2)) = {πH(C1
0,0), πH(C1

τ
2 ,

τ
2
), πH(C1

0, τ
2
)}. Similar computa-

tions for C2
p,q lead to πH(I2(t1, t2)) = {πH(C2

1
4 ,

1
4
), πH(C2

1
4 ,

1
4 + τ

2
)}. By applying the same

argument for the other possibility of t1, t2, t3 as in the statement, we obtain the re-
sult.

6.6 | Classification of quotients of Calabi-Yau threefolds in
FA

D4

In this section we classify the Calabi-Yau 3-folds Y obtained as crepant resolution of
X/Υ with X ∈ FAD4

and Υ ≤ Aut(X): we compute their Hodge numbers and their
fundamental groups. We summarize our results in a series of tables in Section 6.10: for
Υ ≃ (Z/2Z) in Table 6.2, for Υ ≃ (Z/2Z)2 in Table 6.3, for Υ ≃ (Z/2Z)3 in Table 6.4,
for Υ ≃ (Z/2Z)4 in Table 6.5. We obtain the following:

Corollary 6.6.1. There are at least 19 non-homeomorphic Calabi-Yau 3-folds Y ob-
tained as crepant resolution of X/Υ as varying Υ ≤ Aut(X). The h1,1(Y ) = h2,1(Y )
and π1(Y ) are summarized in Section 6.10.

6.6.1 | Hodge numbers of crepant resolution of X/Υ
In this section we recall how to compute the Hodge numbers of the Calabi-Yau 3-folds
Y obtained as desingularization of the quotients X/Υ with Υ ≤ Aut(X) via the orbifold
cohomology (cf. [27]).

Definition 6.6.2. An orbifold M is an n-dimensional variety which for every m ∈M
there exists a neighborhood Um of m isomorphic to Cn/G′

m for certain finite group G′
m.
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Without going in details: there is a good way to define cohomology on orbifolds, said
orbifolds cohomology such that in the projective case (or Kähler case) it holds the Hodge
decomposition Theorem, cf. [27].

We recall the formula of orbifold cohomology in the situation which is of our interest.
Let X be the Calabi-Yau 3-fold constructed in Section 6.1 and Υ ≤ Aut(X) is charac-
terized by Theorem 6.4.1. Since Aut(X) is abelian, the set of representatives of the
conjugacy classes of Υ is equal to Υ and the centralizer of each element is Υ itself. The
action of αX can be locally (near a fixed point) linearized as diag(1,−1,−1) hence the
age of αX (see Definition 1.6.16) in a fixed point is equal to 1 The orbifold cohomology
of X/Υ is:

Hp,q
orb(X/Υ) := Hp,q(X)Υ ⊕

⊕
F∈Sing(X/Υ)

Hp−1,q−1(F ). (6.6.1)

We denote by hp,qorb(X/Υ) the dimension of Hp,q
orb(X/Υ).

Theorem 6.6.3. [7, Theorem 5.4 and Corollary 6.15] Let M be a compact, Kähler,
complex manifold of dimension n with trivial canonical bundle and equipped with an
action of a finite group G′ that preserves the volume form of M . Assume the existence
of a crepant resolution β : M̃ −→M/G′. Then

hp,q(M̃) = hp,qorb(M/G′).

Proposition 6.6.4. Let X ∈ FAD4
and Υ ≤ Aut(X). Let Y −→ X/Υ be the crepant

resolution constructed in Theorem 6.5.1, we have:

h1,1(Y ) = h2,1(Y ) = 2 +
∑

id ̸=αX∈Υ

∣∣∣∣Fix(αX)
Υ

∣∣∣∣ .
In particular e(Y ) = 0.

Proof. If Υ acts freely then, by Theorem 6.5.1 part (ii), Y = X/Υ ∈ FAD4
. Thus, since

FAD4
is irreducible then h1,1(Y ) = h2,1(Y ) = h1,1(X) = 2 (see Lemma 6.1.2) and so as we

have the result. Assume that Υ has non empty stabilized locus. Then X/Υ is singular
and let Y be as in the statement. We use (6.6.1) to compute the Hodge numbers of X/Υ
which according to Theorem 6.6.3 are equal to the ones of Y . According to Proposition
6.5.3, Fix(Υ) consists of elliptic curves. We prove that also Sing(X/Υ) = Fix(Υ)

Υ consists
of elliptic curves. Let F ∈ Sing(X/Υ) and p : X −→ X/Υ then F = p(F iαX

) with F iαX

elliptic curve fixed by αX ∈ Υ. We observe that since Υ is abelian then it preserves

Fix(αX). Hence

∐
αX∈Υ

Fix(αX)

Υ =
∐

αX∈Υ

Fix(αX)
Υ . Let βX ̸= αX ∈ Υ, it’s enough to
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observe that if βX preserves F iαX
then it does not fix points on F iαX

: this follows since
βX(F iαX

) = πH(βA′(F iαX
)), H acts freely and βX is induced by the translation βA′ on

A′. Thus if Υ preserves F iαX
, it fixes F iαX

or it acts as a translation on it; if Υ maps F iαX

to F jαX
then the quotient q identify these two elliptic curves. In any case F = q(F iαX

)
is an elliptic curve for every F ∈ Sing(X/Υ) and so h1,0(F ) = h0,0(F ). Since every
element of Υ is induced by a translation, Υ acts trivially on H1,1(X) and H2,1(X),
hence h1,1(X)Υ = h1,1(X) = h2,1(X) = h2,1(X)Υ. Therefore, using (6.6.1) we obtain:

h1,1(Y ) = h1,1
orb(X/Υ) = h1,1(X)Υ +

∑
id ̸=αX∈Υ

∑
F∈Sing(X/Υ)

h0,0(F )

= h2,1(X)Υ +
∑

id ̸=αX∈Υ

∑
F∈Sing(X/Υ)

h1,0(F ) = h2,1
orb(X/Υ) = h2,1(Y ).

Consequently h1,1(Y ) = h2,1(Y ) and e(Y ) = 0. Since h0,0(F ) = 1 and h1,1(X) = 2 we
have:

h1,1(X/Υ) = h1,1(X)Υ +
∑

F∈Sing(X/Υ)
h0,0(F )

= 2 + |Sing(X/Υ)|

= 2 +
∑

id̸=αX∈Υ

∣∣∣∣Fix(αX)
Υ

∣∣∣∣ .
(6.6.2)

To compute
∣∣∣∣Fix(αX)

Υ

∣∣∣∣ one can use the description of Fix(αX) in Proposition 6.5.3
and then study the action of Υ similarly to the proof on Proposition 6.5.3. We omit
these computations.

6.6.2 | Fundamental group of a desingularization of X/Υ
In this section we explain how to compute the fundamental group of the Calabi-Yau 3-
folds obtained as crepant resolution of X/Υ for every Υ ≤ Aut(X) via the fundamental
groupoid. We only recall the results which we need, for a complete discussion we refer
to [18, Chapter 11].

Definition 6.6.5. Let Γ be a group acting on a topological space. The action is called
discontinuous if for every y ∈ Y , the stabilizer Γy is finite and there exists an open
neighborhood Vy such that γVy ∩ Vy = ∅ for every γ ̸∈ Γy.

Theorem 6.6.6. [18, Propositions 11.2.3 and 11.5.2 (c)] Let Y be a connected topological
space and Γ be a group acting on Y . If Γ defines a discontinuous action on Y and Y is
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simply connected, the fundamental group of Y/Γ is:

π1

(
Y

Γ

)
≃ Γ
FΓ

where FΓ = {γ ∈ Γ | ∃ z ∈ Y s.t. γ ∈ Γz}⊴ Γ.

Lemma 6.6.7. Every crystallographic group Γ ≤ Iso(Rn) = O(n) ⋉ Rn defines a dis-
continuous action on Rn.

Proof. Since Rn is a Hausdorff topological space, for every z ∈ Rn there exists Vz such
that γVz ∩ Vz = ∅ for every γ ∈ Γ which is not in the stabilizer Γz of z. We prove that
the stabilizer of z is finite. By Remark 4.1.7, Γ fits in the following exact sequence

0 −→ Λ′ i−−−−→ Γ l−−−−→ G′ −→ 0 (6.6.3)

where Λ′ is the maximal abelian and normal subgroup of finite index in Γ. We obtain
the following description:

Γz = {(M,λ′) ∈ Γ | l(M,λ) = M ∈ G′, i−1(M,λ′) = λ′ ∈ Λ′ such that λ′(z) = M−1(z)}.

The description above tell us that λ′ is uniquely determined by M and since M varies
in the finite group G′, we deduce that Γz is finite.

In our situation: we have X/Υ with X ∈ FAD4
and Υ ≤ Aut(X). By Theorem 4.1.12

Υ admits a lift ΥA to A and ΥA is a group of translation on A. Since every holomorphic
maps on A lifts to C3, we have a group Γ ≤ Iso(C3) such that X/Υ = C3/Γ. The group
Γ is a crystallographic group since it is the finite extension of ⟨π1(A),ΥA⟩ by the group
G, see Remark 4.1.7. Thus Γ defines a discontinuous action on C3 and we can apply
Theorem 6.6.6 to compute π1(X/Υ).

Theorem 6.6.8. [53, Theorem 7.8] Let Y1 be a normal analytic space and let us consider
a resolution of singularities f : Y2 −→ Y1. If Y1 has quotient singularities then π1(Y2)
and π1(Y1) are isomorphic.

Consequently we obtain:

Corollary 6.6.9. Let X ∈ FAD4
and Y be a desingularization of X/Υ for Υ ≤ Aut(X).

Then:
π1(Y ) ≃ π1(X/Υ) ≃ Γ

FΓ

where Y = C3/Γ as explained before.
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Remark 6.6.10. We briefly explain how to compute π1(X/Υ). We assume Υ = ⟨αX⟩
and denote by αA′ a lift of αX on A′. We have X/Υ is also the quotient C3/Γα where
the group Γα ≤ Iso(C3) is the finite extension of Λ = π1(A′) by the group ⟨H,αA′⟩. We
denote by H and αA′ the lifts of H and αA′ to C3, respectively. By using Remark 6.5.2
one can compute the solution of αA′((z)) = (h ◦ λ)(z) with h ∈ H, λ ∈ Λ and for every
z ∈ C3 and so compute FΓα as definition. If Υ has more than one generator, said αX

and βX : we have FΓΥ = ⟨FΓαX
,FΓβX

⟩ and by using Remark 6.5.2, one can easily check

that ΓΥ
FΓΥ

is a subgroup of both ΓαX

FΓαX

and ΓβX

FΓβX

. Thus as Υ grows then π1(Y ) tends to

the identity group, i.e. Y is simply-connected.

6.6.3 | The universal cover of crepant resolution of X/Υ
By tables in Section 6.10, we have that π1(Y ) is on of the followings: a finite extension
of a rank-6 lattice, a finite extension of a rank-2 lattice or a finite group. From this
description, we deduce the topology of the universal cover of Y .

Corollary 6.6.11. Let X ∈ FAD4
be as in Definition 6.1.2, β : Y −→ X/Υ be a crepant

resolution with Υ in Aut(X) and π1(Y ) is described in the tables in Section 6.10. The
following cases appear.

(i) If π1(Y ) is a finite extension of a rank-6 lattice, Y is a Calabi-Yau 3-fold of type
A which belongs to FAD4

.

(ii) If π1(Y ) is a finite extension of a rank-2 lattice, the universal cover of Y is iso-
morphic to C× S where S is a K3 surface.

(iii) If π1(Y ) is finite and not trivial, the universal cover of Y is a simply-connected
Calabi-Yau 3-fold. If it is trivial, Y is a simply connected Calabi-Yau threefold.

Proof. The universal cover Ỹ of Y is a 3-fold with trivial canonical bundle and by the
Beauville-Bogomolov decomposition theorem 1.5.6 we deduce that:

Ỹ = Cn ×
∏
i

Wi ×
∏
j

Zj

where Wi’s are simply connected Calabi-Yau manifolds and Zj ’s are irreducible holo-
morphic symplectic manifolds. If π1(Y ) is the extension of a rank-6 lattice then Ỹ = C3

and we have the first statement. If π1(Y ) is the extension of a rank-2 lattice the only
possibility is Ỹ = C ×W1 where W1 is a K3 surface. In the last case: since π1(Y ) is
finite we cannot find a complex space as factor of Ỹ and since Y has dimension 3 the
only possibility is that Ỹ is a simply-connected Calabi-Yau 3-fold.
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6.7 | A map of degree two defined on FA
D4

By Theorem 6.5.1 we know the existence of quotients of X ∈ FAD4
which belong to the

same family. As consequence, we construct a map in FAD4
which tell us how to move in

this family.

Lemma 6.7.1. Let X ∈ FAD4
as in Definition 6.1.2. There are two double covers of X

which belong to FAD4
and they are isomorphic.

Proof. From Theorem 6.5.1 we know that there exist exactly 2 quotients X/⟨(αj)X⟩ of
X which belong again to FAD4

. This result can be re-read as follows: X is the Z/2Z-free
quotient of other two manifolds Y1, Y2 ∈ FAD4

which making the following diagram

A′
1 A′ A′

2

Y1 X Y2

16:1 16:1

2:1 2:1

where A′
j = Eνj × Eνj × Eν′

j
, with νj , ν

′
j ∈ h, is the Hj-étale cover of Yj with |Hj | = 16

for j = 1, 2, according to Remark 6.1.5. Moreover, by Theorem 6.5.1 we have X =
Y1/⟨(β1)Y1⟩ and X = Y2/⟨(β2)Y2⟩ where βj ’s are translations on A′

j respectively by
the points (0, 0, ν

′
1
2 ) and (0, 0, ν

′
2+1
2 ). The commutativity of the diagram implies that

A′ = A′
j/⟨βj⟩ for j = 1, 2 which lead to:

τ = ν1 = ν2 2τ ′ = ν ′
1 2τ ′ = ν ′

2 + 1.

In particular, we see that ν ′
2 = T(ν ′

1) with T ∈ SL2(Z) as in Proposition 2.7.8. Thus by
Proposition 2.7.6 we have Eν′

1
≃ Eν′

2
. Consequently, Y1 ≃ Y2 and this proves that the

two (Z/2Z)-étale covers of X which belong to FAD4
are isomorphic.

Remark 6.7.2. We denote by Yµ,µ′ ∈ FAD4
the manifold whose the order 16-étale Galois

cover is Eµ × Eµ × Eµ′ .

Theorem 6.7.3. There exists a map

f : FAD4
FAD4

Yµ,µ′ Yµ,2µ′

2:1

where Yµ,µ′
2:1−−→ Yµ,2µ′ is a double cover. In particular f has degree two, indeed the

preimage of Yµ,µ′ ∈ FAD4
are its two étale quotients Y

µ,µ′
2

and Y
µ,µ′

2 + 1
2

in FAD4
.
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Proof. Let Yµ,µ′ ∈ FAD4
. By Lemma 6.7.1 the map f is well-defined and the image of

Yµ,µ′ is Yµ,2µ′ . By Theorem 6.5.1 there exist exactly two quotients of Yµ,µ′ of degree 2
which belong to FAD4

which are Y
µ,µ′

2
and Y

µ,µ′+1
2

. Thus f is a degree two map.

Remark 6.7.4. It is worth noting that the existence of exactly two quotients of X which
belong again to FAD4

tells us that there exist others two constructions for an abelian
3-folds with a free action of D4: they are (Eµ×Eµ×Eµ′)/Tj where Tj = ⟨w, γj⟩ and γj
are the translation by the point (0, 0, µ

′+j
2 ) for j = 0, 1. This result was already stated

in [45, Theorem 2.7], but we observe that there is an error in the computation of γj .

6.8 | Action of the automorphisms group on fibration of Calabi-
Yau threefolds in FA

D4

In this section we analyze the action of the automorphism group of X on the fibrations
that we have described in Section 6.2.1.

Let g : Y1 → Y2 be a fibration between two complex manifolds Yi. Then α1 ∈ Aut(Y1)
preserves g if there exists an automorphism α2 of the base Y2 making the following
diagram commutative:

Y1 Y2

Y1 Y2

f

α1 α2

f

Definition 6.8.1. If α2 ̸= id we say that α1 acts on the base, otherwise we say that
α1 is the identity on the base. Let F be a fiber of f . We call F an invariant fiber
(under the action of α1) if α1(F ) = F but F ̸∈ Fix(α1). We call F a fixed fiber if
F ∈ Fix(α1).

We also recall that: if y ∈ Fix(α2), the fiber over y is preserved by α1; so if
α2 = id, all the fibers are preserved by α1. Furthermore, one can easily show that
f(Fix(α1)) ⊆ Fix(α2).

It is easy to see that both φ|DX,1| and φ|DX,2| are preserved under the action of
Aut(X). We recall that in Table 6.1 we have summarized the action of each αX on X.
We denote by Ij(t1, t2) =

∐
2p=t1,2q=t2

Cjp,q where Cjp,q are defined in (6.5.1) for j = 1, 2.
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We have described the fibrations φ|DX,j| in Theorem 6.2.1.

The following two theorems describe the action of αX of the fibration φ|DX,1| and
φ|DX,2|.

Theorem 6.8.2. Let us consider the fibration φ|DX,1| : X −→ Z and αX ∈ Aut(X)
and by αZ the automorphism induced by αX on the base Z. Let us denote by αA′(z) =
(z1 + t1, z2 + t2, z3 + t3) a lift of αX to A′. Then:

(i) If t1 = t2 = 0, αX is the identity on the base of φ|DX,1| and αX acts as a translation
on all the fibers over z ∈ Z \ φ|DX,1|(Fix(αX)), while fixes the ones over z in
φ|DX,1|(Fix(αX)).

(ii) In all the other cases, αX acts as an involution on the base and it has non trivial
fixed locus. The action of αX on the fibers is the following:

• It identifies the fibers over {z, αZ(z)} ∈ Z \ Fix(αZ).

• It acts by translation on the fibers over z ∈ Fix(αZ) \ φ|DX,1|(Fix(αX)).

• It is the hyperelliptic involution (see Definition 2.7.1) on the elliptic fibers
over φ|DX,1|(Fix(αX) \ (πH(I1(t1, t2) ∪ I2(t1, t2)))).

• It fixes the fibers over z ∈ φ|DX,1|(πH(I1(t1, t2) ∪ I2(t1, t2))).

Proof. (i) The fibration φ|DX,1| is induced by the projection of A′ over the first two
coordinates (see proof of Theorem 6.2.1). Since αA′ acts trivially on these coordi-
nates, αX is the identity on the base Z. In particular all the fibers of φ|DX,1| are
preserved by αX . Since αX is a translation on the third coordinates, it acts as a
translation on the fibers over z ∈ Z \ φ|DX,1|(Fix(αX)). If z ∈ φ|DX,1|(Fix(αX))
then αX fixes the fiber over z, since according to Table 6.1 these fibers belong to
the fixed locus Fix(αX), if it is not empty.

(ii) In this case αX acts as an involution on Z and we have ∅ ≠ φ|DX,1|(Fix(αX)) ⊊
Fix(αZ). As we have observed before, any fiber over z ∈ Fix(αZ) is preserved by
αX . In particular the action αX on it is one of the following:

• If z ∈ Fix(αZ) \ φ|DX,1|(Fix(αX)), then φ−1
|DX,1|(z) ̸∈ Fix(αX) is an invariant

fiber and αX acts on it by translation.

• Let z ∈ φ|DX,1|(Fix(αX) \ πH(I1(t1, t2) ∪ I2(t1, t2))). According to Table
6.1, the fiber φ−1

|DX,1|(z) is not fixed by αX . Indeed Fix(αX) \ πH(I1(t1, t2) ∪

I2(t1, t2)) consists of horizontal curves for φ|DX,1| and we have that φ−1
|DX,1|(z)
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intersects one of these curves. Thus αX is an involution of the elliptic curve
φ−1
|DX,1|(z) ≃ E

′ with non trivial fixed locus: by Riemann-Hurtwiz formula for
curves, it fixes 4 points on it.

• Let z ∈ φ|DX,1|(πH(I1(t1, t2) ∪ I2(t1, t2))). According to Table 6.1 we have
φ|DX,1| is fixed by αX .

Theorem 6.8.3. Let us consider the fibration φ|DX,2| : X −→ P1 and αX ∈ Aut(X)
and by αP1 the automorphism induced by αX on P1. We denote by αA′(z) = (z1 +t1, z2 +
t2, z3 + t3) a lift of αX on A′. Then:

(i) If t3 ∈ {0, 1
2} then αX is the identity on the base of φ|DX,2| and the action on the

fibers is the following:

• It acts as a translation on the fibers over z ∈ P1 \ φ|DX,2|(Fix(αX)).

• It is the Kummer involution on the fiber over z ∈ φ|DX,2|(πH(I1(t1, t2) ∪
I2(t1, t2))).

• It fixes an elliptic curve in the fiber over z ∈ φ|DX,2|(Fix(αX) \πH(I1(t1, t2)∪
I2(t1, t2))). More precisely, this elliptic curve belongs to Fix(αX)\πH(I1(t1, t2)∪
I2(t1, t2)) and it is mapped to z under φ|DX,2|.

(ii) In all the other cases αX acts as an involution on the base of φ|DX,2| and it fixes
two points on it. The action of αX on the fibers is the following:

• It identifies the fibers over {z, αP1(z)} ∈ P1 \ Fix(αP1).

• If Fix(αX) = ∅, αx acts as translation on the fibers over z ∈ Fix(αP1).

• If Fix(αX) ̸= ∅, αX fixes an elliptic curve in the fiber over a point in φ|DX,2|(Fix(αX)).
More precisely, this elliptic curve belongs to Fix(αX)\πH(I1(t1, t2)∪I2(t1, t2))
and it is mapped to z under φ|DX,2|.

Proof. (i) Arguments similar to the ones in the proof of Proposition 6.8.2 show that
αP1 is the identity on P1. Thus all the fibers are preserved by αX . The action of
αX on the fibers is the following:

• It acts by translation on the fibers over z ∈ P1 \ φ|DX,2|(Fix(αX)).

• Let z ∈ φ|DX,2|(πH(I1(t1, t2) ∪ I2(t1, t2))). By Table 6.1, we know that the
curves in πH(I1(t1, t2)∪ I2(t1, t2)) are horizontal for φ|DX,2|. Hence, the fiber
φ−1
|DX,2|(z) over z intersect transversely the curve on which lies the point y such
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that z = φ|DX,2|(y). Therefore αX acts on this fiber fixing the intersection
points: since the fiber is an abelian surface and αX defines an involution on
it which preserves its period and has non trivial fixed locus, then it fixes 16
points.

• Let z ∈ φ|DX,2|(Fix(αX) \ πH(I1(t1, t2) ∪ I2(t1, t2))). According to Table 6.1
there is a curve in Fix(αX) \πH(I1(t1, t2)∪ I2(t1, t2)) mapped to z. The fiber
over z is a surface and so it cannot be fixed by αX . Thus, we obtain that αX
fixes this elliptic curve in the fiber.

(ii) In this case αP1 acts as an involution on P1 and, according to the Riemann-
Hurtwiz formula for curves, an involution of P1 has two fixed points; moreover
φ|DX,2|(Fix(αX)) is contained in Fix(αP1).

• If z ∈ P1 \ Fix(αZ), then αX identifies the fibers over z and αZ(z).

• If Fix(αX) = ∅, all fibers over z ∈ Fix(αP1) are invariants.

• If Fix(αX) ̸= ∅, one can check that φ|DX,2|(Fix(αX)) contains exactly 2 points,
therefore φ|DX,2|(Fix(αX)) = Fix(αZ). Let z ∈ Fix(αZ), according to Table
6.1 and an argument similar to the one above we show that αX fixes this
elliptic curve in the fiber.

Since every αX preserves the fibrations φ|DX,j| for j = 1, 2, these fibrations induce
two fibrations on the desingularization Y of the quotient X/αX as follows:

X Z

X/⟨αX⟩ Z/⟨αZ⟩

Y

φ|DX,1|

φ1

β1
ϕ1

X P1

X/⟨αX⟩ P1/⟨αP1⟩

Y

φ|DX,2|

φ2

β2
ϕ2

.

From Theorem 6.8.2 and 6.8.3, we deduce directly the description of the fibrations
ϕ1 and ϕ2.

1. For the fibration ϕ1 : Y −→ Z/⟨αZ⟩:

(i) If αX is the identity on Z, the base Z/⟨αX⟩ is the normal Enriques surface
Z.
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• If Fix(αX) = ∅, Y = X/αX ∈ FAD4
and we obtain the same result of

Theorem 6.3.2: the fibration φ1 = ϕ1 is over Z and the general fibers is
the elliptic curve E′/⟨αX⟩.

• If Fix(αX) ̸= ∅: the action of αX on the fibers is either a translation or
the identity. In the first case the corresponding fiber for ϕ1 is the elliptic
curve E′/αX . In the second case the (elliptic) fibers are fixed by αX ,
hence the fibration φ1 have some fibers which are singularities of X/αX ,
given by E′/⟨αX⟩. The resolution β1 blows up each of them introducing
a P1-bundle on each of them. Therefore, the corresponding fibers of ϕ1

are 2-dimensional and in particular are P1-bundles over E′/⟨αX⟩.

(ii) If αZ is not the identity, the base of ϕ1 is the normal rational surface Z/αZ
and the general fiber is the elliptic curve E′. The action of αX on the invariant
fibers is either a translation or the hyperelliptic involution or the identity. In
the first case the corresponding fiber for ϕ1 is the elliptic curve E′/⟨αX⟩, in
the second case the corresponding fiber for ϕ1 is isomorphic to an elliptic fiber
of type I∗

0 (it is a curve given by 5 rational curves where 4 of them intersect
at exactly one point the fifth curve which has multiplicity two) and in the
third case is a P1-bundle over E′.

We obtain an equi-dimensional fibration of X/⟨αX⟩ if and only if Fix(αX) = ∅; in
all the other case since β1 blows up curves which are fibers of φ1 we have that ϕ1

has fibers with different dimensions.

2. For the fibration ϕ2 : Y −→ P1/⟨αP1⟩:

(i) If αP1 is the identity, ϕ2 is an isotrivial fibration whose base is P1 and the
general fiber is isomorphic to B/⟨αX⟩ which is an abelian surface since by
Theorem 6.8.3 αX generically acts as a translation. We have that αX acts
on the invariant fibers either by fixing 16 points or fixing an elliptic curve on
them. In the first case the corresponding fiber for ϕ2 is a Kummer surface
and in the second case the corresponding fiber of ϕ1 is reducible and the
components are given by the strict transform of F/⟨αX⟩ under β2, where F
is a fiber of φ|DX,2|, and the P1-bundles introduced by β2 over the fixed curve.

(ii) Otherwise, the fibration ϕ2 is an isotrivial fibration whose base is the rational
curve P1/αX and the general fiber of ϕ2 is isomorphic to B. If Fix(αX) = ∅,
X/⟨αX⟩ ∈ FAD4

and we obtain results as those of Theorem 6.2.1. Otherwise
αX acts on the invariant fibers by fixing an elliptic curve on them, as above
they become reducible fibers for ϕ2.
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6.9 | Relations with Calabi-Yau threefolds of type K

As we have observed in Section 5.5 there exist two types of Calabi-Yau threefolds with
infinite fundamental group: the Calabi-Yau threefolds of type A and the one of type K
(see Definition 5.5.2). In this section we highlight other relations between Calabi-Yau
manifolds of type A and of type K, by studying manifolds in FAD4

. In particular we
prove: there exist quotients of X ∈ FAD4

which are Calabi-Yau threefolds of type K and
we present each X ∈ FAD4

as finite cover of certain Calabi-Yau threefolds of type K.

6.9.1 | Calabi-Yau threefolds of type K quotients of X

In Corollary 6.6.11 we have given a description of the universal cover of each Calabi-
Yau 3-folds Y obtained as crepant resolution of X/Υ as varying Υ ∈ Aut(X). Let us
consider the Y whose universal cover is C × S with S a K3 surface. In this case π1(Y )
is characterized by the following exact sequence

0 −→ LY −→ π1(Y ) −→ G′ −→ 0 (6.9.1)

where LY is a maximal rank-2 lattice in π1(Y ) and G′ is a finite group; so Y admits a G′-
cover isomorphic to the product of a K3 surface and the elliptic curve C/LY . Therefore
there exist quotients of X ∈ FAD4

which, up to a desingularization, are Calabi-Yau
threefolds of type K.

Corollary 6.9.1. Let X as in Definition 6.1.1. There are exactly two groups Υ ≤
Aut(X) such that X/Υ admits as desingularization a Calabi-Yau 3-folds of type K with
the group (Z/2Z)2. Moreover, the followings hold.

(i) If Υ = ⟨αX⟩ is induced by αA′(z) = (z1, z2, z3 + 1
2) ∈ Aut(A′), the (Z/2Z)2-étale

cover is isomorphic to Km2(B)× E′

(r2)2 and r2 is defined in (6.1.4).

(ii) If Υ = ⟨αX , βX⟩ is induced by αA′(z) = (z1, z2, z3 + 1
2) and βA′(z) = (z1, z2, z3 + τ ′

2 )
in Aut(A′), the (Z/2Z)2-étale cover is isomorphic to Km2(B)× E′.

Proof. By looking at the classification of the desingularizations Y of quotients X/Υ
with X ∈ FAD4

and Υ ≤ Aut(X), see Section 6.10, there are only two groups Υ1 and
Υ2 such that π1(Y ) fits in the exact sequence (6.9.1) and we find G′ ≃ (Z/2Z)2. Thus
there are exactly two Y ’s that are Calabi-Yau 3-folds of type K with the group (Z/2Z)2.
In particular, these groups are Υ1 = ⟨αX⟩ with αX induced by αA′(z) = (z1, z2, z3 +
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1
2) ∈ Aut(A′) and Υ2 = ⟨αX , βX⟩ induced by αA′(z) = (z1, z2, z3 + 1

2) and βA′(z) =

(z1, z2, z3 + τ ′

2 ).

(i) If Υ = Υ1. We denote by αA the automorphism induced by αA′ on A = A′/w

and we consider the group Γ := ⟨G,αA⟩ ≤ Aut(A) and Y −→ A/Γ is the crepant
resolution. By Remark 6.5.2 αAr2 is the only element with non empty fixed locus
on A. We obtain the following diagram:

B × E′ = A A/⟨αA⟩ = B × E′′

A/Γ (B × E′′)/r2

Y Km2(B)× E′′

16:1

2:1

2:1

4:1
g

4:1
f

We have: ⟨αA⟩ ⊴ Γ, (αA)|B = id and (αA)|E′ = (r2)2 is a translation, see (6.1.4).

Therefore, we denote the elliptic curve E′′ := E′

⟨(r2)2⟩
and we have A

⟨αA⟩
= B×E′′.

The automorphism r2 descends to an automorphism on B × E′′ which acts as
diag(−1,−1) on the abelian surface B and as the identity on E′′, hence (B ×
E′′)/⟨r2⟩ is birational to Km2(B)× E′′. It is easy to check that the action of the
group Γ/⟨αA, r2⟩ defines a free action of (Z/2Z)2 on (B × E′′)/r2. Moreover it
preserves the singular locus of (B×E′′)/r2, thus it lifts to a free action of (Z/2Z)2

on Km2(B) × E′′ which does not contain any element (id, t) with t a translation
on E′′. Therefore, since π1(E′′) is the maximal rank-2 in π1(Y ) then the quotient
map f is the (Z/2Z)2-étale cover of Y .

(ii) If Υ = Υ2. We denote by αA and βA the automorphisms induced on A by αA′ and
βA′ , respectively. We denote the group Γ := ⟨G,αA, βA⟩ ≤ Aut(A): by Remark
6.5.2, αAr2 is the only element with non empty fixed locus and we denote by Y

the Calabi-Yau 3-fold which is a desingularization of A/Γ. We have ⟨αA, βA⟩ ⊴
Γ we consider the quotient A/⟨αA, βA⟩: since αA and βA act only on E′ and
⟨αA, βA⟩ ≃ E′[2], we have A/⟨αA, βA⟩ ≃ A. The automorphism r2 descends to an
automorphism on A/⟨αA, βA⟩ ≃ B × E′ which acts as diag(−1,−1) on B and as
the identity on E′. We obtain the following diagram:

97



6.9. Relations with Calabi-Yau threefolds of type K

A A/⟨αA, βA⟩ ≃ B × E′

A/Γ (B × E′)/⟨r2⟩

Y Km2(B)× E′

32:1

4:1

2:1

4:1
g

4:1
f

As above, the action of the group Γ/⟨αA, βA, r2⟩ defines a free action of (Z/2Z)2

on Km2(B) × E′ which does not contain any element (id, t) with t a translation
on E′. Therefore, since π1(E′) is the maximal rank-2 lattice in π1(Y ) then the
quotient f is the (Z/2Z)2-étale cover of Y .

6.9.2 | Calabi-Yau threefolds in FA
D4

as cover of Calabi-Yau threefolds
of type K

Let X ∈ FAD4
be as in Definition 6.1.1. We recall that X is given as the quotient of

B × E′ by the free diagonal action of G ≃ D4, see Remark 6.1.6. Beside the diagonal
action of G, one can look at the quotient varieties obtained by considering the actions
of subgroups of G and G1 × G2, see Section 6.1. With the notation of Section 6.1, we
obtain the following diagram:

A = (E × E × E′)/⟨w⟩ ((E × E)/⟨w1⟩)× E′ = B × E′ ≃ A

A′/⟨r, w⟩ B/⟨r1⟩ × E′/⟨r2⟩

X = A′/⟨r, s⟩ (B/⟨r1⟩ × E′/⟨r2⟩)/⟨s⟩

≃

4:1 16:1

4:1

2:1 2:1

4:1

(6.9.2)

On the left we are considering the action of G induced on A and on the right we are
looking at the action of subgroups of G1, G2 and G1 ×G2 on B and E′.

Proposition 6.9.2. With the notation above. The manifold (B/r1 × E′/r2)/s admits
a desingularization Y which is a Calabi-Yau 3-fold of type K with the group Z/2Z. The
manifold X is a degree 4 cover of Y branched along exceptional divisors introduced on
Y .
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Proof. Let us look at the diagram (6.9.2). From the proof of Theorem 6.3.2 part (i)
we have that B/⟨r1⟩ is birational to the K3 surface S′ = Km4(B). The resolution
introduces 6 rational curves Ci for i = 1, . . . , 6 and 4 curves Fj whose components are 3
rational curves where two of them intersect the third one in one point for j = 1, . . . , 4.
The involution s1 lifts to an Enriques involution on S since it preserves Sing(B/⟨r1⟩),
while E′′′ := E′/⟨r2⟩ is an elliptic curve with the action of s2 such that E′′′/⟨s2⟩ ≃ P1.

In particular, we recall s = s1 × s2. Thus, we have that Y = S′ × E′′′

⟨s⟩
is a Calabi-Yau

3-fold of type K. We can see that threefold (B/⟨r1⟩ × E′/⟨r2⟩)/⟨s⟩ can be obtained
as the quotient of C3 by the action Γ = ⟨Λ, r1 × id, id × r2, s⟩ and that Γ defines a
discontinuous action on it (the proof is similar to the one of Lemma 6.6.7). Therefore we
can use Theorem 6.6.6 and Theorem 6.6.8 to compute π1(Y ). The explicit computations
show that π1(E′′′) is exactly the maximal rank-2 lattice in π1(Y ) and so, according to
Definition 5.5.6, Y is a Calabi-Yau 3-fold of type K with the group (Z/2Z). We rewrite
the diagram (6.9.2) using smooth varieties:

A = B × E′

A/r S′ × E′′′

X = A

⟨s⟩
Y = S′ × E′′′

⟨s⟩

q1 q2

q3

q4 q5

q6

(6.9.3)

In diagram 6.9.3 the Galois coverings q1, q4, q5 are étale morphisms. The morphism
q6 is finite of degree 4, since it is induced by the morphism q3 which is finite of degree
4. By construction the exceptional divisors on S × E′′ define the branch locus of q3.
Since q5 is étale then the image under q5 of Branch(q3) defines the branch locus of q6: it

consists of the exceptional divisors on S′ × E′′

⟨s⟩
. The exceptional divisors are the surfaces

q5(Ci × E′′) and q5(Fj × E′′) for i = 1, 2, 3 and j = 1, 2.

6.10 | Tables of results
Let Y be the Calabi-Yau 3-fold desingularization ofX/Υ withX ∈ FAD4

and Υ ≤ Aut(X).
We denote by αX and βX and γX the generators of Υ (depending on the cardinality
of Υ) and, as usual, by αA′ and βA′ and γA′ their lifts on A′, respectively, which are
translations by a point (t1, t2, t3) of order two satisfying (6.4.2). We define the following

sub-lattices of Λ3 = Z ⊕ τ ′Z: Λ′
3 := Z ⊕ τ ′

2 Z, Λ′′
3 := Z ⊕ τ ′ + 1

2 Z and Λ′′′
3 := 1

2Z ⊕ τ
′Z.

We recall Λ1 = Λ2 = Z⊕ τZ.
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αA′ h1,1(Y ) = h2,1(Y ) π1(Y )

(0, 0, τ ′

2 ) 2 0→ Λ1 ⊕ Λ2 ⊕ Λ′
3 → π1(Y )→ D4 → 0

(0, 0, τ ′+1
2 ) 2 0→ Λ1 ⊕ Λ2 ⊕ Λ′′

3 → π1(Y )→ D4 → 0
(0, 0, 1

2) 7 0→ Λ′′′
3 → π1(Y )→ Z/2Z× Z/2Z→ 0

( τ2 ,
τ
2 ,

1
2) 6 Z/2Z

( τ2 ,
τ
2 , ̸=

1
2) 4 Z/2Z× Z/4Z

( τ2 ,
τ+1

2 , 1
2) 8 {0}

( τ2 ,
τ+1

2 , ̸= 1
2) 6 Z/2Z

(0, 1
2 ,

1
2) 6 Z/2Z

(0, 1
2 , ̸=

1
2) 4 Z/2Z× Z/2Z

Table 6.2: Hodge numbers and fundamental group of crepant resolution Y of X/(Z/2Z)

αA′ βA′ h1,1(Y ) = h2,1(Y ) π1(Y )

(0, 0, τ ′

2 ) (0, 0, τ ′+1
2 ) 7 0→ Λ3 → π1(Y )→ Z/2Z× Z/2Z→ 0

(0, 0, τ ′

2 ) ( τ2 ,
τ
2 ,

1
2) 6 Z/2Z

(0, 0, τ ′

2 ) ( τ2 ,
τ
2 , 0) 4 Z/2Z× Z/4Z

(0, 0, τ ′

2 ) ( τ2 ,
τ+1

2 , 1
2) 8 {0}

(0, 0, τ ′

2 ) ( τ2 ,
τ+1

2 , 0) 6 Z/2Z
(0, 0, τ ′

2 ) (0, 1
2 ,

1
2) 6 Z/2Z

(0, 0, τ ′

2 ) (0, 1
2 , 0) 4 Z/2Z× Z/2Z

(0, 0, τ ′+1
2 ) ( τ2 ,

τ
2 ,

1
2) 6 Z/2Z

(0, 0, τ ′+1
2 ) ( τ2 ,

τ
2 , 0) 4 Z/2Z× Z/4Z

(0, 0, τ ′+1
2 ) ( τ2 ,

τ+1
2 , 1

2) 8 {0}
(0, 0, τ ′+1

2 ) ( τ2 ,
τ+1

2 , 0) 6 Z/2Z
(0, 0, τ ′+1

2 ) (0, 1
2 ,

1
2) 6 Z/2Z

(0, 0, τ ′+1
2 ) (0, 1

2 , 0) 4 Z/2Z× Z/2Z
(0, 0, 1

2) ( τ2 ,
τ
2 ,

1
2) 12 Z/2Z

(0, 0, 1
2) ( τ2 ,

τ
2 ,

τ ′

2 ) 10 Z/2Z
(0, 0, 1

2) (0, 1
2 ,

1
2) 12 Z/2Z

(0, 0, 1
2) (0, 1

2 ,
τ ′

2 ) 10 Z/2Z
( τ2 ,

τ
2 ,

1
2) ( τ2 ,

τ+1
2 , 1

2) 13 {0}
( τ2 ,

τ
2 ,

1
2) ( τ2 ,

τ+1
2 , τ

′

2 ) 10 {0}
( τ2 ,

τ
2 ,

1
2) ( τ2 ,

τ+1
2 , τ

′+1
2 ) 10 {0}

( τ2 ,
τ
2 ,

1
2) ( τ2 ,

τ+1
2 , 0) 14 {0}

( τ2 ,
τ
2 , 0) ( τ2 ,

τ+1
2 , 1

2) 13 {0}
( τ2 ,

τ
2 , 0) ( τ2 ,

τ+1
2 , τ

′

2 ) 8 Z/2Z
( τ2 ,

τ
2 , 0) ( τ2 ,

τ+1
2 , 1+τ ′

2 ) 8 Z/2Z
( τ2 ,

τ
2 , 0) ( τ2 ,

τ+1
2 , 0) 10 Z/2Z

( τ2 ,
τ
2 ,

τ ′

2 ) ( τ2 ,
τ+1

2 , τ
′

2 ) 8 Z/2Z
( τ2 ,

τ
2 ,

τ ′

2 ) ( τ2 ,
τ+1

2 , 1+τ ′

2 ) 10 Z/2Z
( τ2 ,

τ
2 ,

τ ′

2 ) ( τ2 ,
τ+1

2 , 0) 6 Z/2Z
( τ2 ,

τ
2 ,

τ ′+1
2 ) ( τ2 ,

τ+1
2 , 1

2) 7 {0}
( τ2 ,

τ
2 ,

τ ′+1
2 ) ( τ2 ,

τ+1
2 , τ

′

2 ) 10 Z/2Z
( τ2 ,

τ
2 ,

τ ′+1
2 ) ( τ2 ,

τ+1
2 , 1+τ ′

2 ) 8 Z/2Z
( τ2 ,

τ
2 ,

τ ′+1
2 ) ( τ2 ,

τ+1
2 , 0) 6 Z/2Z

Table 6.3: Hodge numbers and fundamental group of crepant resolution Y of
X/(Z/2Z)2
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αA′ βA′ γA′ h1,1(Y ) = h2,1(Y ) π1(Y )

(0, 0, τ ′

2 ) (0, 0, 1
2) ( τ2 ,

τ
2 ,

1
2) 12 Z/2Z

(0, 0, τ ′

2 ) (0, 0, 1
2) ( τ2 ,

τ+1
2 , 1

2) 17 {0}

(0, 0, τ ′

2 ) (0, 0, 1
2) (0, 1

2 ,
1
2) 12 Z/2Z

(0, 0, τ ′

2 ) ( τ2 ,
τ
2 ,

1
2) ( τ2 ,

τ+1
2 , 1

2) 13 {0}
(0, 0, τ ′

2 ) ( τ2 ,
τ
2 ,

1
2) ( τ2 ,

τ+1
2 , 0) 14 {0}

(0, 0, τ ′

2 ) ( τ2 ,
τ
2 , 0) ( τ2 ,

τ+1
2 , 1

2) 13 {0}
(0, 0, τ ′

2 ) ( τ2 ,
τ
2 , 0) ( τ2 ,

τ+1
2 , 0) 9 Z/2Z

(0, 0, τ ′+1
2 ) ( τ2 ,

τ
2 ,

1
2) ( τ2 ,

τ+1
2 , 1

2) 13 {0}
(0, 0, τ ′+1

2 ) ( τ2 ,
τ
2 ,

1
2) ( τ2 ,

τ+1
2 , 0) 14 {0}

(0, 0, τ ′+1
2 ) ( τ2 ,

τ
2 , 0) ( τ2 ,

τ+1
2 , 1

2) 13 {0}
(0, 0, τ ′+1

2 ) ( τ2 ,
τ
2 , 0) ( τ2 ,

τ+1
2 , 0) 10 Z/2Z

(0, 0, 1
2) ( τ2 ,

τ
2 ,

1
2) ( τ2 ,

τ+1
2 , 1

2) 27 {0}
(0, 0, 1

2) ( τ2 ,
τ
2 ,

1
2) ( τ2 ,

τ+1
2 , τ

′

2 ) 20 {0}
(0, 0, 1

2) ( τ2 ,
τ
2 ,

τ ′

2 ) (0, 1
2 , 0) 18 {0}

(0, 0, 1
2) ( τ2 ,

τ
2 ,

τ ′

2 ) (0, 1
2 ,

τ ′

2 ) 15 {0}

Table 6.4: Hodge numbers and fundamental group of crepant resolution Y of
X/(Z/2Z)3

Υ = Aut(X) h1,1(Y ) = h2,1(Y ) π1(Y )

27 {0}

Table 6.5: Hodge number and fundamental group of crepant resolution Y of X/(Z/2Z)4
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7 The family of Calabi-Yau
threefolds of type A with the

group (Z/2Z)2

In this chapter we consider the Calabi-Yau threefolds of type A with the group (Z/2Z)2.
Proceeding similarly to the previous one, we aim to study their geometry. In particular,
Theorems B part (i) (as Theorem 7.3.1) and C part (i) (as Theorem 7.4.1) are proven,
see also [66].

7.1 | The Calabi-Yau 3-folds of type A with (Z/2Z)2

We consider the abelian 3-fold A := E1×E2×E3 where Ej := C/(Z⊕ τjZ) is an elliptic
curve with τj ∈ h, for j = 1, 2, 3 and the automorphisms:

a(z) = (−z1,−z2, z3 + u3) b(z) = (−z1 + u1, z2 + u2,−z3) (7.1.1)

where uj ∈ Ej [2] \ {0}. One can easily prove that G = ⟨a, b⟩ defines a free action of
(Z/2Z)2 on A, see also [73, Theorem 0.1]. According to [73, Theorem 0.1], the faithful
representation of G is in fact unique. We denote ρ : G −→ GL(3,C) and ρ = ρ1⊕ρ2⊕ρ3

splits into the direct sum of three irreducible 1-dimensional representations.

Definition 7.1.1. With the notation above and fixed uj ∈ Ej [2] \ {0} for j = 1, 2, 3, we
define the Calabi-Yau 3-fold X := A/G of type A with the group (Z/2Z)2.

Using (7.1.1) one can prove the following relations:

H1,1(A)G = ⟨dzj ∧ dzj⟩j=1,2,3 H2,1(A)G = ⟨dzj ∧ dzk ∧ dzj⟩i ̸=k ̸=j=1,2,3 (7.1.2)

hence h1,1(X) = h2,1(X) = 3, see also Lemma 5.6.5.

Theorem 7.1.2. There exists a 3-dimensional family of (Z/2Z)2-equivariant complex
structures on a 3-dimensional complex torus T . The family of Calabi-Yau 3-folds of type
A with the group (Z/2Z)2 is irreducible and 3-dimensional.

102



Chapter 7. The family of Calabi-Yau threefolds of type A with the group (Z/2Z)2

Proof. To give a (Z/2Z)2-equivariant complex structure on T = C3/Λ means to give a
decomposition of type Λ ⊗ C = V ⊕ V into (Z/2Z)2-invariant subspaces, see Remark
4.2.4. By [73, Theorem 0.1] we have a unique (Z/2Z)2-decomposition on C3 given by
V = Vχ1 ⊕ Vχ2 ⊕ Vχ3 where χj are the irreducible characters corresponding to the
irreducible representations ρj . Hence we obtain:

Λ⊗ C = V ⊕ V =
3⊕
j=1

Vχj ⊗Mχj

where Vχj = Vχj since χj are real characters and dimCMχj = 2. By Remark 4.2.3
the parameters of the (Z/2Z)2-Hodge decomposition are given by the choice of a 1
dimensional subspace M1,0

χj
of Mχj for j = 1, 2, 3. Hence we have a 3-dimensional family

of (Z/2Z)2-equivariant complex structures on T . Let X be a Calabi-Yau 3-fold of type A
with the group (Z/2Z)2: by Corollary 5.3.3, H2,1(X) parametrizes its local deformation.
We have H2,1(X) is irreducible and has dimension 3, see (7.1.2). We conclude that
the family of Calabi-Yau 3-folds of type A with the group (Z/2Z)2 is irreducible and
3-dimensional.

Remark 7.1.3. We also deduce that the space that parametrizes the Calabi-Yau 3-folds
of type A with the group (Z/2Z)2 is isomorphic to (M1,1)3 where M1,1 is defined in
Proposition 2.7.6.

Definition 7.1.4. We denote the family constructed in Theorem 7.1.2 by FA(Z/2Z)2 .

7.2 | The Picard group and fibrations on X ∈ FA
(Z/2Z)2

In this section we describe the Picard group of X ∈ FA(Z/2Z)2 : we produce a Q-basis
of PicQ(X) and study the maps associated to its generators. Some of the results are
enclosed in [73].

Theorem 7.2.1. Let X ∈ FA(Z/2Z)2 as above. The followings hold:
(i) The Picard group satisfies Pic(X) ≃ Z2⊕ π1(X) with π1(X) is the finite extension

of π1(A) by the group G = ⟨a, b⟩ ≃ (Z/2Z)2 defined in (7.1.1).

(ii) The free-torsion part PicQ(X) is generated by the classes of three divisors DX,1,
DX,2 and DX,3 which are the fiber classes of the following fibrations

φ1 : X −→ E1
G|E1

φ2 : X −→ E2
G|E2

φ3 : X −→ E3
G|E3

.

The base Ej/G|Ej
of each fibration φj is a rational curve and the general fiber is

the abelian surface Ei × Ek for i, k ̸= j.
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7.3. Automorphism group of manifolds in FA
(Z/2Z)2

(iii) There are other three isotrivial fibrations on X given by:

φ1,2 : X −→ E1 × E2
G|E1×E2

φ1,3 : X −→ E1 × E3
G|E1×E3

φ2,3 : X −→ E2 × E3
G|E2×E3

.

The general fiber of φi,j is isomorphic to the elliptic curve Ek for k ̸= i, j = 1, 2, 3
and the base is a normal Enriques surface whose singularities are of type 8A1.

Proof. (i) According to Lemma (5.2.2) we have

Pic(X) = Zh
1,1(X) ⊕Ab(π1(X)).

Since h1,1(X) = 3 and the fundamental group π1(X) is abelian, we obtain the
result.

(ii) Let us consider the maps φj : X −→ Ej
G|Ej

. By looking at the action of G, it is

easy to show that φj ’s are fibrations over a rational curve and the general fiber is
the abelian surface Ei × Ek for i ̸= k ̸= j = 1, 2, 3. Let us denote by DX,j the
fiber class of φj for j = 1, 2, 3. According to [73, Claim 2.20 pag. 61], DX,j ’s are
linearly independent and, since ρ(X) = h1,1(X) = 3 by (7.1.2), we obtain that
{DX,1, DX,2, DX,3} defines a Q-basis of the Picard group of X.

(iii) We see that the three projections A −→ Ej×Ei induce three fibrations on X given

by φi,j : X −→ Ei × Ej
G|Ei×Ej

for i ̸= j = 1, 2, 3. A more in depth study shows that any

G|Ei×Ej
≃ (Z/2Z)2 contains a subgroup isomorphic to (Z/2Z) which acts on Ei×Ej

with non trivial fixed locus and it preserves the volume form of Ei × Ej , hence it
fixes 16 points on it. Thus we get a singular K3 surface whose singularities are of
type 16A1. One can check that the remaining action of G|Ei×Ej

is a fixed point

free involution on the singular K3 surface. Hence Ei × Ej
G|Ei×Ej

is a singular Enriques

surface with 8A1 singularities. Since the fibers of the projections A −→ Ej × Ei
are isomorphic to Ek, the general fibers of φi,j is still Ek with k ̸= i, j = 1, 2, 3.
We also refer to [73, Remark 2.22].

7.3 | Automorphism group of manifolds in FA
(Z/2Z)2

In this section we compute the automorphism group of X ∈ FA(Z/2Z)2 .

Since we aim to study the general element X in the family FA(Z/2Z)2 , we compute
Aut(X) under the additionally assumption that Ei’s are not isogenous to each other.
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Theorem 7.3.1. The automorphism group Aut(X) ≃ (Z/2Z)7 and its elements are in-
duced by automorphisms on A whose linear part is in ⟨diag(−1, 1, 1)⟩ and the translation
part is any translation of order two.

Proof. By Corollary 4.1.12 we have Aut(X) ≃
NAut(A)(G)

G
. Let αA ∈ Aut(A), as usual

we write αA(z) = η(αA)(z) + tαA . Since αA ∈ NAut(A)(G) then η = η1 ⊕ η2 ⊕ η3. The
condition αA ∈ NAut(A)(G) leads also to:

ηj(αA) ∈ ⟨−1⟩ tj ∈ Ej [2].

We obtain that NAut(A)(G) is abelian and of cardinality 23 · (22 · 22 · 22). Since each
element of NAut(A)(G) has order two, we deduce that Aut(X) ≃ (Z/2Z)7. We remark
that two automorphisms in NAut(A)(G) induce the same automorphism on X if and only
if they differ by an element in G. It is easy to check that every αA ∈ NAut(A)(G) which
preserves ωA but it is not a translation differs from any translation of order two by
an element in G. Thus every automorphism on X which preserves ωX is induced by a
translation of order two. Let α1, α2, α3, α4 ∈ NAut(A)(G) as follows:

α1(z) = diag(−1, 1, 1) + t α2(z) = diag(1,−1, 1) + ta + t

α3(z) = diag(1, 1,−1) + tb + t α4(z) = diag(−1,−1,−1) + tab + t

with t any translation of order two on A and ta,tb, tab are the translation parts of a, b, ab
respectively. One can check that α2, α3 and α4 differ from α1 by an element in G. Hence
every automorphism on X which does not preserve ωX is induced by an automorphism
on A whose linear part is diag(−1, 1, 1). We conclude that an element αX ∈ Aut(X) is
induced by an automorphism αA such that the linear part is in ⟨diag(−1, 1, 1)⟩ and the
translation part is given by any translation of order 2.

Remark 7.3.2. Let αX ∈ Aut(X) be induced by αA ∈ Aut(A) and π : A −→ X.

• Assume that αA is a translation by the point (t1, t2, t3) ∈ A with ti ∈ Ei[2]. An
easy computation shows that the fixed locus is a finite set of elliptic curves given
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(Z/2Z)2

by
⋃

id̸=g∈G
π(Fix(αAg)). In particular,

π(Fix(αAa)) = π

(
{(p, q, l) ∈ A | 2p = t1, 2q = t2, l ∈ E3}

)
⊂ Fix(αX)⇔ t3 = u3

(7.3.1)

π(Fix(αAb)) = π

(
{(p, q, l) ∈ A | 2p = t1 + u1, 2l = t3, q ∈ E2}

)
⊂ Fix(αX)⇔ t2 = u2

(7.3.2)

π(Fix(αAab)) = π

(
{(p, q, l) ∈ A | 2q = t2 + u2, 2l = t3 + u3, p ∈ E1}

)
⊂ Fix(αX)⇔ t1 = u1.

(7.3.3)

• Assume that αA(z) = (−z1 + t1, z2 + t2, z3 + t3) with ti ∈ Ei[2]. By explicit
computations we have the followings. The 0-dimensional subset in Fx(αX) is given
by π(Fix(αAab) and it is never empty. In particular

π(Fix(αAab) = π

(
{(p, q, l) ∈ A | 2p = t1 +u1, 2q = t2 +u2, 2l = t3 +u3}

)
. (7.3.4)

The 2-dimensional set in Fix(αX) is given by

π(Fix(αA)) = π

(
{(p, q, l) ∈ A | 2p = t1, (q, l) ∈ E2 × E3}

)
̸= ∅ ⇔ t2 = 0, t3 = 0

(7.3.5)

π(Fix(αAa))π
(
{(p, q, l) ∈ A | 2q = t2, (p, l) ∈ E1 × E3}

)
̸= ∅ ⇔ t1 = 0, t3 = u3

(7.3.6)

π(Fix(αAb))π
(
{(p, q, l) ∈ A | 2l = t3, (p, q) ∈ E1 × E2}

)
̸= ∅ ⇔ t1 = u1, t2 = u2

(7.3.7)

and it consists of a finite numbers of abelian surfaces.

7.4 | Quotients of manifolds in FA
(Z/2Z)2

We describe the quotient X/Υ for all possible Υ ≤ Aut(X).

Theorem 7.4.1. Let X ∈ FA(Z/2Z)2 and Υ ≤ Aut(X). Let β : Y → X/Υ be the blow up
of the singular locus of X/Υ. The followings hold.
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(i) If Υ preserves the volume form of X, β is a crepant resolution and Y is a Calabi-
Yau 3-fold. In particular, there are exactly 33 − 1 automorphisms (αj)X which
act freely on X. They are induced by the translations αj ∈ Aut(A) by the points
(t1, t2, t3) such that ti ∈ Ei[2] and ti ̸= ui for i = 1, 2, 3. Moreover, X/⟨(αj)X⟩
belong to FA(Z/2Z)2.

(ii) If Υ does not preserve the volume form of X, we have the following cases.

1. If there exists at least one element in Υ that fixes surfaces on X then Y has
negative Kodaira dimension and hj,0(Y ) = 0 for j > 0.

2. Otherwise, Y has trivial Kodaira dimension, KY ̸= 0 and hj,0(Y ) = 0 for
j > 0.

Proof. (i) Let us assume that Υ preserves the volume form of X. According to The-
orem 7.3.1 Υ ≃ (Z/2Z)m with 1 ≤ m ≤ 6, hence we split the quotient in a
subsequent quotients of degree 2. Using similar argument to the one in the proof
of Theorem 6.5.1, we conclude that β : Y −→ X/Υ is a crepant resolution and Y

is a Calabi-Yau 3-fold. By Proposition 5.4.4, free actions on Calabi-Yau threefolds
must preserve the volume form. Let αA be a translation by the point (t1, t2, t3) with
ti ∈ Ei[2]: the study of the equations αA(z) = g(z) with z ∈ A for every g ∈ G lead
to the conditions ti ̸= ui for every i = 1, 2, 3. Let αA ∈ Aut(A) be a translation on
A of order two which induces a free action of αX on X. Since αX acts freely and
preserves the volume form of X, by Proposition 5.4.4 Y = X

⟨αX⟩
is a Calabi-Yau

3-fold. It remains to prove that Y ∈ FA(Z/2Z)2 . We consider Y = A

⟨G,αA⟩
: in the

group H := ⟨G,αA⟩ there is one translation αA, hence we construct A/⟨αA⟩ which

is an abelian 3-fold with the free action of H/⟨αA⟩ and we have Y = (A/αA)
(H/⟨αA⟩)

.

Since (H/⟨αA⟩) ≃ (Z/2Z)2 and does not contain any translation it follows that
Y ∈ FA(Z/2Z)2 .

(ii) In this case there exists at least one element αX in Υ which does not preserve
the volume form of X. We also observe that given two elements in Υ which does
not preserve the volume form of X, their composition defines an element which
preserves the volume form of X. Therefore we can split Υ in the direct product of
two groups Υ1 ×Υ2 where Υ1 ≃ Z/2Z = ⟨αX⟩ whose generator does not preserve
the volume form of X and Υ2 ≃ (Z/2Z)k−1 which preserves the volume form of X
and |Υ| = 2k for some k = 1, . . . , 7.

107



7.5. Hodge numbers of desingularizations of quotients of X ∈ FA
(Z/2Z)2

1. Since there exist at least one elements αX that fixes surfaces (codimension 1
submanifolds), according to Proposition 5.4.7, the quotient X/⟨αX⟩ has neg-
ative Kodaira dimension and hj,0(X/αX) = 0. Since the Kodaira dimension
cannot increase under quotients and is a birational invariant then X/Υ admits
a desingularization Y such that k(Y ) = −∞ and hj,0(Y ) = 0.

2. Since Υ does not fix surfaces we have that the automorphisms αXυ’s fix only
isolated points for every υ ∈ Υ2 and Υ2 either acts freely or fixes (elliptic)
curves, see Proposition 5.4.6 and 5.4.7. We first consider the quotient by X/Υ2

which, up to a desingularization, produces a Calabi-Yau 3-fold Z, by part (i).
Since Υ is abelian and αX preserves the fixed locus of Υ2 then the action of
Υ/Υ2 ≃ ⟨αX⟩ on X/Υ2 lifts to an action of an involution αZ on Z. Moreover,
αZ does not preserve ωZ since αX does not preserve ωX . By Proposition
5.4.7, αZ fixes points or surfaces or both of them. We prove that αZ fixes
only points. Since the resolution γ : Z → X/Υ2 is an isomorphism outside
the blown up locus and αX fixes only points on X/Υ2, the only surfaces that
(perhaps) αZ could fix are the exceptional divisors. The exceptional divisors
introduced by γ on Z are P1-bundles over the curves C ∈ Sing(X/Υ2). So if
αZ fixed an exceptional divisor E, then there should a curve C on X fixed
by αXυ for some υ ∈ Υ2. By hypothesis αXυ does not fix surfaces on X,
therefore αZ fixes only points on Z. Therefore, we end up with a Calabi-Yau
threefold Z with an involution αZ that does not preserve its volume forms and
fixes only points. According to Proposition 5.4.7, the quotient Z/⟨αZ⟩ admits
a desingularization Y such that k(Y ) = 0, KY is not trivial and hj,0(Y ) = 0
for j > 0.

7.5 | Hodge numbers of desingularizations of quotients of X ∈
FA

(Z/2Z)2

In this section we compute the Hodge numbers of Y as in Theorem 7.4.1.

Proposition 7.5.1. Let X ∈ FA(Z/2Z)2 and Υ ≤ Aut(X).
(i) If Υ preserves the volume form of X, then there exist β : Y −→ X/Υ a crepant

resolution such that

h1,1(Y ) = h2,1(Y ) = 3 +
∑

id̸=αX∈Υ

∣∣∣∣Fix(αX)
Υ

∣∣∣∣ .
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In particular e(Y ) = 0.

(ii) If Υ = Υ1×Υ2 (as in proof of Theorem 7.4.1) does not preserve the volume form of
X and we denote by αA a lift to A of the generator of Υ1. There exist a resolution
of singularities β : Y −→ X/Υ such that:

h1,1(Y ) = 3 +
∑

id ̸=υ∈Υ2

∣∣∣∣Fix(υ)
Υ

∣∣∣∣+ |Π|
h2,1(Y ) =

∑
F∈Sing(X/Υ)

g(F )

where g denoted the genus of a curve and Π is the 0-dimensional subset fixed by Υ1

on X/Υ2. Furthermore, β is the blowing up of Sing(X/Υ) which introduces exactly
one irreducible divisor on each irreducible submanifold blown up in X/Υ.

Proof. (i) If Υ preserves the volume form of X, by Theorem 7.4.1 β is a crepant
resolution and so we use the orbifold cohomology formula (6.6.1) to compute the
Hodge numbers of Y . We have Fix(Υ) =

∐
υ∈ΥA

∐
g∈G

π(Fix(υg)) where ΥA is a lift of

Υ to A and π : A −→ X. Thanks to Remark 7.3.2 we kwon that Fix(υg) consists
of a finite number of elliptic curves. Moreover, G acts on each Fix(υg) and since
G acts freely on A it can either identify the elliptic curves in Fix(υg) or act on
them as a translation. In any case, Fix(Υ)/Υ consists of a finite numbers of elliptic
curves. We recall that each υ ∈ Υ is induced by a (order two) translation on A.
Applying the same proof of Proposition 6.6.4 we obtain that:

h1,1(Y ) = h2,1(Y ) = 3 +
∑

id̸=αX∈Υ

∣∣∣∣Fix(αX)
Υ

∣∣∣∣ .
In particular e(Y ) = 0.

(ii) We have that Υ does no preserve the volume form of X. Following the proof of
Theorem 7.4.1: we can write Υ as the direct product of the groups Υ1×Υ2 where
Υ1 = ⟨αX⟩ ≃ Z/2Z is cyclic of order 2 which does not preserve the volume form
of X and Υ2 ≃ (Z/2Z)k−1 preserves the volume form of X where |Υ| = 2k for
k = 1, . . . , 7. We remark that the fixed locus of Υ2, if not empty, consists of a
finite number of elliptic curves and the one of αXυ’s consists of finite numbers of
isolated points and (possibly) smooth surfaces for every υ ∈ Υ2, see Remark 7.3.2.
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We consider the following commutative diagram:

A

X

Υ1

⟳W Υ̃1

⟳Z X/Υ2

⟲Υ/Υ2

Y = W/Υ1 X/Υ

π

f

δ

2:1 q

γ

2:1p

β

(7.5.1)

Here γ : Z −→ X/Υ2 is the blow up of each singular curves in X/Υ2 and Z a
Calabi-Yau 3-fold, see Theorem 7.4.1 part (i). Since Υ is abelian then Υ1 preserves
the fixed locus of Υ2. Therefore, the action of Υ1 ≃ Υ/Υ2 on X/Υ2 extends to an
action of Υ̃1 on Z. As we have observed in the proof of Theorem 7.4.1, the fixed
locus of Υ̃1 consists of isolated fixed points and (possibly) smooth surfaces: δ blow
ups the 0-dimensional subset Π of Fix(Υ̃1). In particular, Υ̃1 lifts to an action of
Υ1 on W . Finally, β is a composition of birational maps such that the diagram
commutes. By construction Y is a smooth 3-fold birational to X/Υ.
We compute the Hodge numbers of Y by considering the morphisms q and (γ ◦ δ).
We have H i,j(Y ) ≃ H i,j(W )Υ1 and by using the formula (1.7.2) we lead to:

H i,j(Y ) ≃ H i,j(W )Υ1 ≃ [H i,j(Z)⊕H i−1,j−1(Π)]Υ̃1 = H i,j(Z)Υ̃1 ⊕H i−1,j−1(Π).
(7.5.2)

where the last equality follows since Υ̃1 fixes Π. Since γ is a crepant resolution we
use the formula (6.6.1) to describe the cohomology of Z:

H i,j(Z) ≃ H i,j(X)Υ2 ⊕
⊕

F∈Sing(X/Υ2)
H i−1,j−1(F )

= H i,j(X)⊕
⊕

F∈Sing(X/Υ2)
H i−1,j−1(F )

(7.5.3)

where according to item (i) F is an elliptic curve and the last equality follows since
Υ2 acts as the identity on the cohomology of X. By substituting (7.5.3) in (7.5.2)
we obtain:

H i,j(Y ) ≃ [H i,j(X)⊕
⊕

F∈Sing(X/Υ2)
H i−1,j−1(F )]Υ1 ⊕H i−1,j−1(Π). (7.5.4)

Using (7.1.2) and the expression of the generator of Υ1 we obtain the followings:
H1,1(X)Υ1 ≃ H1,1(X) and H2,1(X)Υ1 = 0. If Υ1 ≃ Υ/Υ2 preserves the elliptic
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curve F i ∈ Sing(X/Υ2), the following situations can appear: it fixes the curve,
it acts by translation on it or it is the hyperelliptic involution on it. In the first
two cases, p(F i) is an elliptic curve. In the last case, p(F i) is a rational curve. If
Υ1 ≃ Υ/Υ2 does not preserve on F i, then F i is mapped to F j and so the quotient
p identifies these two elliptic curves and p(F i) is an elliptic curve. Therefore, we
obtain:

h1,1(Y ) = 3 + |Sing(X/Υ)|+ |Π| = 3 +
∑

id̸=υ∈Υ2

∣∣∣∣Fix(υ)
Υ

∣∣∣∣+ |Π|
h2,1(Y ) =

∑
F∈Sing(X/Υ)

g(F )

where g denotes the genus of a curve.
Finally, we prove that Π is isomorphic, via γ, to the 0-dimensional subset fixed by
Υ1 on X/Υ2. Since the exceptional divisors introduced by γ on Z are P1-bundles
over the curves C in Sing(X/Υ2), we have to prove that whenever Υ1 = ⟨αX⟩
preserves a curve C ∈ Sing(X/Υ2) then Υ̃1 does not fix isolated points on the
fibers of the P1-bundle over C introduced by γ. We recall that C is an elliptic
curve and so if αX preserves C then it acts either as the identity, as a translation
or as the hyperelliptic involution on it.

1. If Υ1 fixes C, then there exists υ ∈ Υ2 such that αXυ fixes f−1(C). Since
αXυ is an involution of the Calabi-Yau 3-fold X which does not preserve ωX ,
according to Proposition 5.4.7 it cannot fix curve. Therefore in this situation
Υ1 fixes a surface S ⊂ X/Υ2 that contains C. The blowing up γ introduces
a P1-bundle E over C and Υ̃1 preserves each fibers of E. Since the fibers are
rational curve, Υ̃1 can either act as the identity or fix two points on each of
them. Then first situation cannot happen, otherwise we would find that E
is fixed by Υ̃1 and so we would have two surfaces E and S in Fix(Υ1) that
intersects in C which is impossible since Fix(Υ1) is smooth. Thus, Υ̃1 fixes
two points on each fibers of E. In this case we prove that Υ̃1 does not fix
isolated points on the fibers of E.

2. If Υ1 preserves C but acts as translation, then Υ̃1 does not acts on the fibers
of the P1-bundle over C introduced by γ.

3. If Υ1 preserves C and fixes four points on it. Thus Υ̃1 preserves fours fibers
in the P1-bundle E introduced by γ over C. We prove that these fibers
are fixed since they lie in a surface fixed by Υ̃1 and so we deduce that Υ̃1

does not fix isolated points on the fibers of E. To prove this we show that
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Υ1 fixes surfaces on X/Υ2 that intersect C in the four points that it fixes
on C. Let υX ∈ Υ2 such that fixes the curve C ′ = f−1(C) and we write
υA = (z1 + t1, z2 + t2, z3 + t3) a lift of υX to A = E1×E2×E3 with ti ∈ Ei[2].
According to Remark 7.3.2, υX fixes a curve C ′ if and only if ti = ui for at
least one i = 1, 2, 3. We are in the case when αX fixes four points on C ′. We
write αA = (−z1 + l1, z2 + l2, z3, l3) a lift of αX on A with li ∈ Ei[2]. We
prove that under this hypothesis then αXυX fixes surfaces that intersect C ′

in the points fixed by αX on C ′. Assume that t1 = u1 then by Remark 7.3.2
we have that C ′ = π(E1

q,l) where E1
q,l is an elliptic curve on A over the point

(q, l) such that 2q = t1 + u2 and 2l = t3 + u3. By using (7.3.4), we see that
the isolated fixed points by αX lie on C ′ if and only

l2 = t2 l3 = t3. (7.5.5)

It is now an easy check to see that αAυA satisfies the condition (7.3.5) which
tells us that αXυX fixes surfaces on X. In particular, by construction these
surfaces intersect C ′ in the points which αX fixes on C. Hence the four points
fixed by Υ1 on C, in fact lie on surfaces fixed by Υ1. Therefore, Υ̃1 fixes
surfaces that contain the fibers of E that it preserves and so it fixes these
fibers. Similar computations can be checked for the cases when ti = ui for
i = 2, 3. In the end, we prove that Υ̃1 does not fix isolated points on the fibers
of E.

In conclusion, we prove that Π is isomorphic, via γ, to the 0-dimensional subset
fixed by Υ1 onX/Υ2. We deduce that implies that β is the blowing up of Sing(X/Υ)
which introduces exactly one irreducible divisor on each irreducible submanifold
blown up in X/Υ.

We make some explicit examples.

Example 6. We consider Υ2 = ⟨υ2⟩ where υX is induced by υA(z) = (z1 + t1, z2 +
t2, z3 + u3) in Aut(A) with ti ∈ Ei[2]. According to Remark 7.3.2 we have

Fix(αX) = π(Fix(αAa)) = π

(
{(p, q, l) ∈ A | 2p = t1, 2q = t2, l ∈ E3}

)
which consists of 16 elliptic curves. We denote by E1

p,q a curve in Fix(αAa). An easy
check shows that a acts on them as identity if and only if t1 = t2 = 0. Therefore:

|Fix(αX)| =

4 t1 = t2 = 0

8 otherwise
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The argument used in the examples above can be applied to every cyclic subgroup in
Aut(X) and we obtain the following result: let X ∈ FA(Z/2Z)2 and Υ = Υ1×Υ2 ∈ Aut(X)
where

• Υ1 is either id or generated by αX induced by αA(z) = (−z1 + l2, z2 + l2, z3 + l3)
with li ∈ Ei[2];

• Υ2 is induced by ΥA ∈ Aut(A) subgroup of translation: υA ∈ ΥA is a translation
by the point (t1, t2, t3) with t1 ∈ Ei[2].

Let β : Y −→ X/Υ as in Theorem 7.4.1.

Υ1 Υ2 h1,1(Y ) h2,1(Y )

id ( ̸= u1, ̸= u2, ̸= u3) 3 3
id ( ̸= {u1, 0}, ̸= {u2, 0}, u3) 7 7
id ( ̸= {u1, 0}, u2, ̸= {u3, 0}) 7 7
id (u1, ̸= {u2, 0}, ̸= {u3, 0}) 7 7
id ( ̸= u1, u2, u3) 11 11
id (u1, ̸= u2, u3) 11 11
id (u1, u2, ̸= u3) 11 11
id (0, 0, u3) 11 11
id (0, u2, 0) 11 11
id (u1, 0, 0) 11 11
id (u1, u2, u3) 15 15
∀li id 19 0

Table 7.1: Hodge numbers of Y if Υ ≃ (Z/2Z)2

We compute the Hodge number of Y in two cases where Υ is non cyclic.

Example 7. We consider Υ2 = ⟨υX⟩ where υX is induced by υA(z) = (z1 + u1, z2, z3)
and Υ1 = ⟨αX⟩ where αX is induced by αA(z) = (−z1, z2 + u2, z3 + u3). According to
Remark 7.3.2:

Fix(ΥX) = π
(
Fix(αAab)

)
= π

(
{(p, q, l) ∈ A | p ∈ E1, 2q = u2, 2l = u3}

)
.

Let E1
q,l be a curve in Fix(αAab), some easy computation shows that ab acts has the

identity on it. Hence Fix(ΥX) consists of 8 elliptic curves. Moreover αX preserves each
of these elliptic curve and it fixes 4 points on each of them given. In particular, we
observe that αXυX fixes the surfaces π

(
{(p, q, l) ∈ A | p ∈ E1, q ∈ E2, 2l = u3} and one

can check that the points fixes by αX on the curves π(E1
p,q) lies on the surfaces fixed by
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αXυX . Therefore Fix(Υ2)
Υ consists of 8 rational curve. Finally we compute Π. Following

the proof of Theorem 7.5.1 one can easily see that Π is the image under X −→ X/Υ2 of
all isolated points fixed by αXυX and αX that don’t lie on a curve fixed by Υ2. Indeed,
as we shows in the proof of Theorem 7.5.1, if p is an isolated points fixed by αX and lies
on a curves fixed by Υ then p lies on a surface fixed by αXυX and so in the quotient
X/Υ2 the image of p is no longer an isolated fixed point. One can easily check that the
isolated points fixed by αXυX and αX don’t lie on the curves fixed by Υ2 and now it is
easy to check that |Π| = 16. Thus, we obtain the following Hodge numbers:

h1,1(Y ) = 3 + 8 + 16 = 27 h2,1(Y ) = 0

Example 8. We consider Υ2 = ⟨υX⟩ with υX induced by υA(z) = (z1 + u1, z2, z3) and
Υ1 = ⟨αX⟩ with αX induced by αA(z) = (−z1, z2 + t2, z3 + t3) with ti ∈ Ei[2] \ {ui}.
The fixed locus Fix(Υ2)/Υ2 is as in the previous example. We see that αX preserve
the elliptic curves in Fix(Υ2)/Υ2 if and only if t2 = t3 = 0 and in fact it fixes them.
Otherwise, αX acts on Fix(Υ2)/Υ2 by mapping curves to curves. As in the previous
example, we compute Π. In this case we see that the all points fixed by αXυX and αX

lie on the curves fixed by Υ2 if and only if t2 = t3 = 0. Thus

π =

0 t2 = t3 = 0

16 t2 = t3 = 0
(7.5.6)

Therefore:

Fix(Υ2)/Υ =

8 t2 = t3 = 0

4 otherwise

and it consists of elliptic curves. Thus we obtain:

h1,1(Y ) =

11 t2 = t3 = 0

23 otherwise
h2,1(Y ) =

8 t2 = t3 = 0

4 otherwise.
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Part II

The Morrison-Kawamata cone
conjecture for hyperelliptic varieties

A volte, dovresti provare a guardare le cose da un’altra prospettiva.
Potresti trovare un punto di vista decisamente migliore.



8 Summary of Part II

One of the way to understand the (birational) geometry of a projective variety Y is to
study the nef cone Nef(Y ) and the movable cone Mov(Y ), especially from the point of
view of the Minimal Model Program (MMP for short). As we have briefly explain in the
Introduction, it is difficult to describe these cones. For K-trivial manifolds, we expected
that the nef and the movable cones are rational polyhedral up to the action of Aut(Y ) and
Bir(Y ), respectively (see Section 9.4). This prediction is known as Morrison-Kawamata
cone conjecture, see Conjecture 9.4.2 and Conjecture 9.4.3. Even if the cone conjecture
is proven in numerous cases, see Section 9.4, it remains still nowadays an active area of
research. In this par of the thesis, we establish the Morrison-Kawamata cone conjecture
for the hyperelliptic varieties. This result is a joint work with Ana Quedo and it is
available as preperint on Arxiv [65].

Chapter 9. We introduce the Morrison-Kawamata cone conjecture, giving also a
gentle introduction to MMP.

Chapter 10. We introduce the so-called reduction theory which will be one of the
main tool that we use to prove the cone conjecture for hyperelliptic varieties.

Chapter 11. We establish the validity of the cone conjecture for hyperelliptic
varieties. More precisely:

Theorem D (Corollary 11.1.3 and Theorem 11.2.1). Let Y = X/G be a hyperelliptic
variety. Then, the Morrison-Kawamata cone conjecture (see Conjecture 9.4.2 and 9.4.3)
holds for the nef and movable cones, in both its formulations. In particular, the followings
equality hold: Mov(Y )+ = Mov(Y )e = Mov(Y ) = Nef(Y ) = Nef(Y )e = Nef(Y )+.
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Chapter 12 We conclude this second part with two final investigations on the
nef cone of hyperelliptic varieties, specifically of Calabi-Yau manifolds of type A. In
[73, Theorem 0.1 (IV)], the author have proven that the Calabi-Yau threefolds of type
A, studied din Part I, have rational polyhedral nef cones. Inspiring by this result,
we investigate more on the rational polyhedral nature of hyperelliptic varieties. More
precisely, we obtain the following result.

Theorem E (see Theorem 12.1.2 and Corollary 12.1.4). Let Y = A/G be a hyperelliptic
variety and we denote by η the representation of G. We assume that A is not of CM-
type. If G contains a normal abelian group H such that η|H does not contain two equals
irreducible sub-representations, then the nef cone of Y is a polyhedral cone. In addition,
if h1,0(Y ) = 0 then Aut(Y ) is finite.

Furthermore, we deduce that all the Calabi-Yau manifold of type A given as in
Theorem A have a rational polyhedral nef cone, see Corollary 12.1.5. Finally, we describe
the extremal rays of the nef cone for these Calabi-Yau manifolds of type A, deducing in
particular that all nef divisors of X are semi-ample divisors.

Theorem F (see Corollary12.2.3). Let X be the Calabi-Yau manifold of type A as in
Theorem D. Then extremal rays are of the nef cone are given by semi-ample divisors
which define fibrations on X induced by natural projections on A. In particular all nef
divisors are semi-ample divisors.
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9 The Morrison-Kawamata Cone
Conjecture

In this chapter we introduce the Morrison-Kawamata cone conjecture. To do this, we give
a briefly introduction to the Minimal Model Program which emphasizes the importance
of the study of the nef and movable cones. We also give an introduction to the formalism
of convex geometry.

9.1 | A gentle introduction to Minimal Model Program
The Minimal Model Program (MMP for short) is a (non deterministic) algorithm that
birationally transforms a mildly singular projective variety to one satisfying certain posi-
tivity conditions. We will not go into any details except only what will be needed for
the next chapters. However a good reference for this theory is [54] and [63].

The ultimate goal of the Minimal Model Program (or the Mori Program) is to classify
projective varieties up to birational morphisms. In dimension 1, two projective curves are
birationally equivalent if and only if they are isomorphic. Therefore, there is an unique
smooth projective model in each birational classes and we classify them via the genus
g(Y ) = h0(Y, ωY ) of a smooth projective curve Y . In dimension 2, the situation is not so
simple since birational morphisms are more complicated. Indeed, birational morphisms
between surfaces are composition of finite number of blow-ups and their inverses, see
[11, Theorem II.11]. It turns out that any smooth projective surface can be obtained
from a distinguished representative in its birational class by a sequence of blow-ups and
blow downs.

Definition 9.1.1. A (−1)-curve on a smooth surface is a smooth rational curves with
self-intersection −1.
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The Castelnuovo contraction theorem [11, Theorem II.17] says that any (−1)-curve
E on a smooth surface S′ can be contracted and the target space is again a smooth
surface. Repeating this process for any (−1)-curves, we end up with a smooth surface
S with no (−1)-curves birational to S′. This output is the distinguished representative
surface in the birational class of S′. Therefore, the classical MMP for surface works
in the following way. We ask if a given smooth surface S have (−1)-curves: if no the
algorithm stop, otherwise we contract them. The process must stop after a finite number
of steps because the Picard number, which is a positive integer, drops by one every time
we contract a (−1)-curve, see [11, Remark II.13.1].
When we move to the higher dimensional case, the assertion to ask “if the surface
S contains (−1)-curves” does not have a generalization. Therefore, we need a slight
change of perspective. We notice that (−1)-curves have negative intersection with the
canonical divisor. Therefore, a natural way to generalize the MMP for surfaces in higher
dimension is to ask whenever there exists curves that intersect negatively the canonical
divisor and contract them. Indeed Mori proved the following result.

Theorem 9.1.2 (Mori’s theorem). [54, Theorem 1.13] Let Y be a smooth projective
variety and H an ample divisor on Y . Assume that there is an irreducible curve C ⊂ Y
such that −(KY · C) > 0. Then there is a rational curve E ⊂ X which, in particular,
satisfies the followings:

0 < −(KY · E) ≤ dim(Y ) + 1 −(E ·KY )
(E ·H) ≥ −(C ·KY )

(C ·H) .

The theorem above suggests in fact that the presence of rational curves are related
to the failure of the canonical divisor to be nef. Thus, it is should be now clear the
reason of the following definition of minimal model.

Definition 9.1.3. A minimal model of Y is a variety Y ′ birational to Y such that
KY ′ is nef.

The reader need to pay attention that the definition above is not equivalent to the
one classically given for surfaces. Indeed it coincides only for surfaces with positive
Kodaira dimension.
According to Definition 9.1.3, it is clear that the criterior to find the minimal model is
to ask “if the canonical divisors is nef”. To proceed in our algorithm, it is important to
study the curves that intersect negatively the canonical divisor and more generally the
cone of curves.

Definition 9.1.4. Let V be a finite real vector space. A subset C ⊂ V \ {0} is a
(convex) cone if it is closed under addition and multiplication by positive scalar.
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We recall the real vector space N1(Y )R =
(
Z1(Y )/ ≡

)
⊗R where Z1(Y ) is the group

of 1-cycle, see Definition 1.2.7.

Definition 9.1.5. We define the cone of curves or Mori cone as follows

NE(Y ) = {
∑

ni[Ci] | ni ≥ 0, Ci ∈ Z1(Y )} ⊂ N1(Y )R.

Theorem 9.1.6 (Cone Theorem). [63, Theorem 7-2-1] Let Y be a normal projective
variety. Then there are countably many rays Γl such that KY · Γl < 0 and

NE(Y ) = NE(Y )KX≥0 +
∑
i

R≥[Γl] (9.1.1)

where NE(Y )KX≥0 = {C ∈ NE(Y ) | KY · C ≥ 0}. Furthermore Γl = NE(Y ) ∩ L⊥ for
some nef line bundle L (depending on Γl). Moreover, for every ample Q-divisor H on
Y , there exist finitely many such rays Γl with

NE(Y ) = NE(Y )KX+H≥0 + R≥[Γl]. (9.1.2)

In particular, the rays Γl are discrete in the half-space NE(Y )KX<0.

Figure 9.1: The cone of curves

The Cone Theorem gives a precise description of the cone of curves in the half part(
N1(Y )R

)
KY <0 saying that in this part is finitely generated. We can observe that the

second equation, in Theorem 9.1.6, tell us that the rays Γl’s can accumulate only on the
hyperplane K⊥

Y . Furthermore, there is another result that states that we can contract
the extremal ray Γl’s, known as the Contraction theorem of Kawamata and Shokurov.
It was proven before the Cone’s Theorem.

Definition 9.1.7. A Q-factorial variety is a normal variety such that every Weil
divisor D is Q-Cartier, i.e. there exists r ∈ Q such that rD is a Cartier divisor.
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Theorem 9.1.8 (Contraction theorem). [63, Theorem 8-1-3] Let Y be a normal projec-
tive Q-factorial variety. With the notation of Theorem 9.1.6. For each extremal ray Γl
of NE(Y ) in the half space

(
N1(Y )R

)
KY <0 where

Γl = NE(Y ) ∩ L⊥ for some nef line bundle L

there exist a morphism ϕ = contrΓl
: Y −→ Z, called contraction of an extremal ray

Γl with respect to KY such that:

1. ϕ is not an isomorphism;

2. for any curve C ⊂ X such that ϕ(C) is a point, KY · C < 0;

3. for any curve C ⊂ Y : ϕ(C) is a point if and only if [C] ∈ Γl;

4. ϕ has connected fibers with Z normal and projective.

The above properties characterize the contractions of an extremal ray Γl with respect
to KY . Furthermore,

(i) L = ϕ∗H for some ample divisor H on Z;

(ii) (ϕ)∗OY = OZ ;

(iii) for any divisors DY on Y :

DY = ϕ∗DZ for some divisor DZ on Z ⇔ DY · C = 0 for any [C] ∈ Γl.

Definition 9.1.9. Let f : X −→ Y be a birational morphism. We define the excep-
tional locus, denoted by Exc(f) ⊂ X, the locus of points where f is not an isomorphism.

An extremal contraction ϕ : Y −→ Z can be classified into one of three categories,
see [54, Proposition 2.5].

1. Divisorial contraction if ϕ is a birational morphism and Exc(ϕ) has codimension
1.

2. Fiber contraction if dim(Y ) > dim(Z): we observe that (KY · F ) < 0 for a
general fiber F , hence (−KY )|F is ample. In this case Y is called Mori fiber
space.

3. Small contraction if ϕ is birational and Exc(ϕ) has codimension at least 2.
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Together with these three types of contractions, we can describe the algorithm of
the MMP in higher dimension. Let Y be a projective Q-factorial variety. If KY is nef,
then Y is a minimal model. Otherwise, pick Γl ∈ NE(Y )KY <0 an extremal ray with
contraction map ϕ = contrΓl

: Y −→ Z. If ϕ is a divisorial contraction, then there are
good chances that Z is still Q-factorial and we restart the process with Z. If ϕ is a fiber
contraction, we reduce the study of Y to the study of Z. When (or if) the algorithm
ends the upshot is a Mori fiber space. If ϕ is a small contraction, then Z has very "bad"
singularities, i.e. it is far away from being Q-factorial. In order to continue the process,
we introduce a new operation called flip, which is a topological surgery in codimension
at least 2 that produce a variety Y + birational to Y and then we restart the algorithm
with Y +. The final outcome, if the procedure eventually finishes, is either a minimal
model of Y or a Mori fiber space.

Remark 9.1.10. It seems important to point out that even if the criterior of the MMP for
surface is different from the one described above, the output is the same. If classically
we say that the output of the MMP for surfaces is a smooth surface with no (−1)-curves,
in the modern language we say that it is either a surface S with nef canonical bundle (it
is the case for k(S) ≥ 0) or a Mori fiber space (the case with k(S) = −∞).

Let us return to the MMP. Even if we have written down an algorithm, we point
out that there are still several open conjecture in MMP that need to be proven in order
to obtain a full birational classification of projective varieties in all dimension. For
instance, whenever the MMP for a variety Y ends up with a minimal model Y ′ then it
is conjectured that we can study Y ′ via the map φ|KY ′ |, i.e. that φ|mKY ′ | is a morphism
for some m ∈ N.

Definition 9.1.11. Let Y be a smooth variety and D ∈ Div(Y ). Then D is said to be
semi-ample if there exists an integer m >> 0 such that Bs(mD) = ∅.

Conjecture 9.1.12 (Abundance conjecture). [54, Conjecture 3.12] Let Y be a Q-
factorial variety. If KY is nef then it is semi-ample.

The viceversa is also true.

Lemma 9.1.13. Let X be a normal variety and let D be a Q-Cartier divisor. If D is
semi-ample then D is nef.

Proof. Since D is semi-ample, by definition, there exists n ∈ N such that |nD| is base-
point free. We consider

Φ|nD| := Φ: X Φ(X) ⊂ PM for some M ∈ N.
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We denote by H the hyperplane section on PM and we have Φ∗H = nD. Let C ⊂ X be
a curve, by the projection formula (1.2.2) we have:

D · C = Φ∗H

n
· C = 1

n
H · Φ∗(C) ≥ 0,

therefore, D is nef.

We also remark that semi-ample divisors corresponds to faces of the nef cone that
defines contractions.

Definition 9.1.14. A face F of a cone C is a subcone of C such that is closed under
addition.

Given a contraction f : Y −→ Z on Y then f∗N1(Z)R ∩ Nef(Y ) defines a face in
Nef(Y ). Viceversa, let L be a semi-ample divisor. According to [57, Proposition 2.1.26],
φ|mL| : Y → Z defines a fibration on Y for some m >> 0. Furthermore, there exists an
ample line bundle H on Z such that f∗H = L⊗m. We have that f∗H lies in the interior
of a face of Nef(Y ) and so we see that the faces of this cones defined by semi-ample line
bundles correspond to contractions on Y .

9.2 | Preliminaries on Convex Geometry
Let V be a finite-dimensional R-vector space.

Definition 9.2.1. We say that V has a k-structure for a subfield k ⊂ R if it is obtained
by extension of scalars from a vector space Vk over k.

Definition 9.2.2. The convex hull of C is the cone of convex combination of points
in C, i.e. convhull(C) = {

∑
aici | ai ∈ R≥0,

∑
i
ai = 1 and ci ∈ C}.

The rational hull of C, denoted by C+, is the convex hull of the rational points in C,
i.e. C+ = convhull (C ∩ VQ).

Definition 9.2.3. A cone C ⊆ V , with dim V = n, is said to be polyhedral if it is
finitely-generated, i.e. there is a set of vectors {v1, . . . , vk} ∈ V such that

C = {a1v1 + · · ·+ akvk | ai ∈ R>0, vi ∈ Rn}.

A polyhedral cone is said to be rational when it is generated by vectors with integral
coordinates:

C = {a1v1 + · · ·+ akvk | ai ∈ R>0, vi ∈ Zn}.
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9.2. Preliminaries on Convex Geometry

Definition 9.2.4. Let C be a cone in V . The automorphism group of C is the group
Aut(C)= {φ ∈ GL(V ) | φ(C) = C} of transformations of V preserving the cone C.

Definition 9.2.5. Let C be a cone in a real vector space V and let Γ ≤ GL(V ) be a
subgroup that preserves the cone C. Let Π be a polyhedral subcone of C+. We say that
Π is a fundamental domain for the action of G on C

a.
⋃
γ∈Γ

γ(Π) = C, we write Γ ·Π = C;

b. γ
(
Int(Π)

)
∩ Int(Π) = ∅ for every γ ̸= id ∈ Γ.

Figure 9.1: Slice of a round cone with a fundamental domain

The existence of a rational polyhedral fundamental domain is a question that has
been studied deeply in convex geometry. We recall two of the main results that allow us
to simplify the problem.

The first result asserts that in order to cover C with a rational polyhedral cone under
the action of Γ, it is enough to cover its interior.

Proposition 9.2.6. [62, Part of Proposition-Definition 4.1] Let C be an open convex
non-degenerate cone in a finite dimensional real vectors space V with a Q-structure VQ.
Let Γ ≤ GL(V ) be a subgroup such that C is Γ-invariant and Γ preserves some lattice
in VQ. Then the following are equivalent:

(i) there exists a rational polyhedral cone Π ⊂ C+ with Γ ·Π = C+;

(ii) there exists a rational polyhedral cone Π ⊂ C+ with Γ ·Π ⊇ C.

Moreover, in the second case we necessarily have Γ ·Π = C+.
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Chapter 9. The Morrison-Kawamata Cone Conjecture

To get a fundamental domain we need condition (b) of Definition 9.2.5 on the interi-
ors. The following result guarantees that, in the situation of Proposition 9.2.6 together
with another reasonable condition, there exists a smaller cone Π′ ⊆ C+ which is a ra-
tional fundamental domain under the Γ-action. We underline that the existence of such
Π′ is guaranteed in [62, Application 4.14] where the author explicitly constructed it.

Definition 9.2.7. Let σ ⊂ V be a cone in a finite dimensional real vector space V , then
the dual cone σ∨ is defined as σ∨ = {l ∈ V ∨ | l(s) ≥ 0 for all s ∈ σ} ⊂ V ∨.

Lemma 9.2.8. [62, Application 4.14] Let Λ be a finitely generated free Z-module, and
let C be a strict open cone in the R-vector space ΛR := Λ ⊗ R. Let C+ be the convex
hull of C ∩ ΛQ. Let (C∨)◦ ⊂ (ΛR)∨ be the interior of the dual cone of C. Let Γ be a
subgroup of GL(Λ) which preserves the cone C. Suppose that

1. there exists a rational polyhedral cone Π ⊂ C+ such that Γ ·Π ⊃ C;

2. there exists an element η ∈ (C∨)◦ ∩ (ΛQ)∨ whose stabilizer in Γ (with respect to
the dual action of Γ on (ΛQ)∨) is trivial.

Then Γ · Π = C+, and in fact there exists a rational polyhedral cone Π′ ⊂ C+ which is
a fundamental domain for the action of Γ on C+.

9.3 | The cones of R-divisors
Let Y be a projective, compact, smooth algebraic variety over C of dimension n. As
explained in the previous sections, we are interested in the study cones of R-divisors in
N1(Y )R, see Definition 1.2.4. Specifically, also in view of MMP, we are interested in the
study of the following cones in N1(Y )R :

• Eff(Y ) is the cone spanned by effective divisors;

• Mov(Y ) is the cone spanned by movable divisors;

• Nef(Y ) is the cone spanned by nef divisors;

• Amp(Y ) is the cone spanned by ample divisors.

In general Mov(Y ) and Eff(Y ) are neither open nor closed, thus one considers their
closure. By results of Chapter 1, the following inclusions hold:

Amp(Y ) ⊂ Nef(Y ) ⊂ Mov(Y ) ⊂ Eff(Y ). (9.3.1)

The fundamental results concerning nef and ample cones are the Kleiman’s theorems.
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9.4. The Morrison-Kawamata Cone Conjecture

Theorem 9.3.1. [57, Theorem 1.4.9] Let X be a complete variety and D be a nef R-
divisor. Then Ddim(V ) · V ≥ 0 for every irreducible subvariety V ⊂ X.

Proposition 9.3.2. [57, Theorem 1.4.23] Let Y be a projective algebraic variety. Then

Amp(Y ) = Int(Nef(Y )) Amp(Y ) = Nef(Y ).

We also recall the following characterization of the pseudoeffective cone Eff(Y ).

Definition 9.3.3. Let Y be a smooth variety. Then D ∈ Div(Y ) is said big if |mD|
defines a birational map onto its image for some m >> 0. We denote by Big(Y ) the
cone spanned by big divisors.

Lemma 9.3.4. [57, Theorem 2.2.26] Let Y be a projective variety. Then:

Big(Y ) = Int(Eff(Y )) Big(Y ) = Eff(Y ).

We recall that the vector spaces N1(Y )R and N1(Y )R are dual vector spaces. In
particular, the following result asserts that the closure of the Mori cone, which plays a
central role in the contest of MMP, is dual to the nef cone.

Proposition 9.3.5. [57, Theorem 1.4.28] Let Y be a projective variety. The cones
Nef(Y ) and NE(Y ) are dual.

The Mori cones is also important as test for amplitudine of divisors. Let D ∈ N1(Y )R
and we denote

D>0 = {C ∈ N1(Y )R | D · C > 0}.

Proposition 9.3.6 (Kleiman’s Ampleness Criterior). [54, Theorem 1.18] Let Y be a
projective variety and let D ∈ N1(Y )R. Then D is ample if and only if

NE(Y ) \ {0} ⊆ D>0.

9.4 | The Morrison-Kawamata Cone Conjecture
It should be clear at this point why the study of the nef cone is so important in the
study of the geometry of a projective variety. A nice situation appear for Fano variety.

Corollary 9.4.1. Let Y be a Fano variety, i.e. −KY is ample. Then Nef(Y ) and NE(Y )
are polyhedral cones.
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Chapter 9. The Morrison-Kawamata Cone Conjecture

Proof. Since −KY is ample, all curves C on Y intersect KY negatively, so NE(Y ) is
contained in the half-space

(
N1(Y )R

)
KY <0. Thus, by the Cone Theorem 9.1.6 we ob-

tain that NE(Y ) =
∑
l

Γl is spanned by finitely many rational rays Γl so it is rational

polyhedral. Since Nef(Y ) is dual to NE(Y ), we get that it is rational polyhedral.

The situation for K-trivial manifolds is more complicated. We start with an example,
see also [85, Section 4.1].

Example 9. Let Y = E ×E be the abelian surface product of two elliptic curves. The
Picard group of Y has rank 3 and is spanned by the following three classes: a fiber F1

of the first projection, a fiber F2 of the second projection and the diagonal ∆. All three
divisors intersect the other two with value 1 and have self intersection 0. We consider
the cone C = {x ∈ N1(Y )R>0 | x2 ≥ 0}. Writing x = aF1 + bF2 + c∆ we see that
C is a round cone. We observe that the cone C contains the nef cone: indeed for any
D ∈ Nef(Y ), D2 ≥ 0. It also contains the cone NE(Y ): let y ∈ NE(Y ), which is in
particular an effective divisor. Let α be a translation on Y , then α∗y ≡ y with different
support. Hence y2 = y · α∗y ≥ 0. Let C∨ = {y ∈ N1(Y )R | y · x ≥ 0 for every x ∈ C }.
We immediately see that the intersection pairing defines an isomorphisms between C and
C∨. Since C contains both the nef cone and the cone of curves, which are dual cones,
and C ≃ C∨ then C must coincide with Nef(Y ).

The previous example shows that the nef cone for K-trivial manifolds can be not
rationally polyhedral. In this case one can seek for a (rational) fundamental domain
under the action of a group. Let us consider the previous example E × E: we have
that the nef cone is round, but as Namikawa proved in [71] by using the action of
pullbacks of Aut(E × E) of the nef cone one can find a rational fundamental domain.
The existence of this fundamental domain can in fact be explained by the infinity of
Aut(E × E) ≃ PGL(2,Z).

The cone conjecture aims to generalize this phenomena, by predicting that the nef
and the movable cones of any K-trivial manifold Y have a rational fundamental domains
up to the action of Aut(Y ) and Bir(Y ), respectively. Let us consider the action by pull
backs of Bir(Y ) on N1(Y )R

ρ : Bir(Y ) GL(N1(Y )R)

f f∗

(9.4.1)
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9.4. The Morrison-Kawamata Cone Conjecture

According to Lemma 1.3.4, Bir(Y ) preserves the movable cone and by Proposition 1.3.2
Aut(Y ) preserves the nef cone.

There exist two versions (non equivalent!) of the cone conjecture. Historically Mor-
rison stated it before taking inspiration from the Mirror Symmetry, then Kawamata
reformulated it in view of the MMP.

Conjecture 9.4.2 (Morrison’s version). [69] Let Y be a smooth projective K-trivial
variety. Then

(i) There exists a rational polyhedral cone Π which is a fundamental domain (in the
sense of Definition 9.2.5.) for the action of the automorphism group Aut(Y ) on the
cone Nef(Y )+ (see Definition 9.2.2).

(ii) There exists a rational polyhedral cone Π′ which is a fundamental domain (in
the sense of Definition 9.2.5) for the action of the birational automorphism group
Bir(Y ) on the cone Mov(Y )+.

Conjecture 9.4.3 (Kawamata’s version). [50] Let Y be a smooth projective K-trivial
variety. Then:

(i) There exists a rational polyhedral cone Π which is a fundamental domain for the
action of Aut(Y ) on the effective nef cone Nef(Y )e = Nef(Y ) ∩ Eff(Y ).

(ii) There exists a rational polyhedral cone Π′ which is a fundamental domain for the
action of Bir(Y ) on Move(Y ) = Mov(Y ) ∩ Eff(Y ) the effective movable cone.

Before to explain the relation between these two versions of the cone conjecture, it is
worth noting the importance of Conjecture 9.4.3 in the contest of MMP. The first item
of the conjecture would imply that the faces of the nef cone corresponding to birational
contractions or fiber space structures are finite up to automorphisms, see [85, Section 1],
while the second one would imply, modulo standard conjectures of the Minimal Model
Program, the finiteness of minimal models, birational automorphisms, see [20, Theorem
2.14].

For the nef cone, the connection between these two different versions of the cone
conjecture, Conjecture 9.4.2 and Conjecture 9.4.3, can be explained by the following
result, which is well-known (see for example [60, Theorem 2.15]).

Lemma 9.4.4. Let Y be a projective variety. Then Nef(Y )e ⊆ Nef(Y )+.

Proof. Let D in Nef(Y )e so we write D =
∑
i
ri[Di] with ri ∈ R>0 and Di’s are nef

divisors. We can write ri = pi + δi for some pi ∈ Z≥0 and δi ∈ R≥0. We obtain that:

ri[Di] = (1− δi)pi[Di] + δi(pi + 1)[Di]
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Chapter 9. The Morrison-Kawamata Cone Conjecture

is a convex combination of pi[Di] and (pi + 1)[Di], hence ri[Di] belongs to Amp(Y )+.

Since Amp(Y )+ is a cone then D =
∑
i
riDi ∈ Amp(Y )+ = Nef(Y )+.

We remark that the reverse inclusion is still wide open. The result above together with
the following lemma, highlight the exact relation between the Morrison’s and Kawa-
mata’s version of the cone conjecture.

Lemma 9.4.5. [35, Proposition 2.3] Let Y be a projective variety and let H ≤ Aut(Y )
be a subgroup. Assume that there is a rational polyhedral cone Π ⊆ Nef+(Y ) such that
Amp(Y ) ⊂ H ·Π. Then H ·Π = Nef+(Y ), and the H-action on Nef+(Y ) has a rational
polyhedral fundamental domain.

Proposition 9.4.6. Let Y be a projective complex manifold with c1(Y ) = 0. Then
Kawamata’s Cone Conjecture holds for Y if and only if Nef(Y )e = Nef(Y )+ and Morri-
son’s Cone Conjecture holds for Y .

Proof. If we assume Kawamata’ version then we have Π ⊂ Nef(Y )e such that

Amp(Y ) ⊂ Nef(Y )e = Aut(Y ) ·Π.

Then Π ⊆ Nef(Y )e ⊆ Nef(Y )+ and so by Lemma 9.4.5, we have Nef(Y )e = Nef(Y )+.
Therefore, Morrison’s version is satisfied. The reverse implication is obvious.

Let us denote by A(Y ) the image of Aut(Y ) under ρ in (9.4.1). We have the following
well-known result (for people working on the cone conjecture).

Lemma 9.4.7. [36, Corollary 2.17] Let Y be a smooth projective K-trivial variety. If
Nef(Y ) is a rational polyhedral cone, then A(Y ) is a finite group and Morrison’s Cone
Conjecture holds on Y . Conversely, if A(Y ) (resp. B(Y )) is a finite group and we assume
that Morrison’s Cone Conjecture holds on Y , then Nef(Y ) is a rational polyhedral cone.

Proof. Suppose that Nef(Y ) is rational polyhedral. We observe that A(Y ) not only
preserves the cone, it also acts as a permutation all the extremal rays. We can take
primitive integer classes as extremal rays of the cone. Any φ ∈ A(Y ) permutes these
classes and is uniquely determined by this permutation. There are only finitely many of
these permutations, so A(Y ) is a finite group. We apply Lemma 9.4.5 to the convex cone
Nef(Y ) and the rational polyhedral subcone Π = Nef(Y ), we get a rational polyhedral
cone Π′ which is a fundamental domain for the action of Aut(Y ) on Nef(Y )+. Conversely,
assume the Morrison’s Cone Conjecture for Y . Then there is a rational polyhedral cone
Π ⊆ Nef(Y )+ which is a fundamental domain for the action of Aut(Y ) on Nef(Y )+. Since
A(Y ) is finite, Nef(Y )+ = A(Y ) ·Π is also a rational polyhedral cone. Thus, it is closed
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9.4. The Morrison-Kawamata Cone Conjecture

and since Amp(Y ) ⊆ Nef(Y )+ ⊆ Nef(Y ) by minimality we have Nef(Y )+ = Nef(Y ).
Therefore, Nef(Y ) is a rational polyhedral cone.

As final remark, we recall the following relation between the finiteness of A(Y ) and
the one of Aut(Y ).

Lemma 9.4.8. [72, Proposition 2.4] Let Y be a complex manifold with numerically
trivial canonical bundle and h1,0(Y ) = 0. Then the kernel of

ρ : Aut(Y ) GL(N1(Y )R)

f f∗

(9.4.2)

is a finite group. In particular, Aut(Y ) is finite if and only if A(Y ) is.
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10 Reduction theory

The problem of computing fundamental domains for action of groups on convex cones
dates back to H. Minkoswki, specifically in relation to reduction theory. In 1905, Minkowski
made several contributions to the theory of quadratic forms, particularly to the reduc-
tion of positive-definite quadratic forms, see [64] and [31]. The term "reduced form" was
first introduced by C. Hermite who in the 19th century developed the first techniques
to reduce a quadratic form into an equivalent form which is easier to analyze or classify.
Minkoswki expanded and refined this reduction theory with a more geometric prospective
by considering some relations with lattice theory. Roughly speaking, the Minkowski’s
algorithm to minimize a quadratic form consists of finding a fundamental domain of a
lattice, i.e. a region in Rn that contains exactly one representative of each equivalence
class of points under the lattice’s translations. The points in the fundamental domain of
a lattice represent a unique reduced form. All the other forms can be recovered by acting
on this fundamental region with Z-valued linear transformations. Some years later, A.
Weyl generalized this work and others to many other cases. In 1940, A. Borel has refined
the reduction theory by introducing the concept of coarse fundamental domains, known
as Siegel sets, for actions of arithmetic groups, i.e. linear algebraic group with integers
values. The Siegel sets are better than the Minkowski’s fundamental domains and in fact
they are more similar to the fundamental domains introduced in the previous chapter,
see Definition 9.2.5. In the 1975, A. Ash used the the notion of the Siegel sets to provide
a positive answer to the following problem, see Theorem 10.3.1:

Question 4. Given a homogeneous self-dual cone C and an arithmetic group Γ ≤
Aut(C), does there exist a fundamental set for the action of Γ on C?

In this chapter we give a briefly introduction on the problem above: we collect the
main results around homogeneous self-dual cones and arithmetic groups and we conclude
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by stating the result of Ash, Theorem 10.3.1. This will be our main tool to prove the
cone conjecture for hyperelliptic varieties.

10.1 | Homogeneous self-dual cones
Let C be a cone in a finite-dimensional real vector space V .

Definition 10.1.1. A cone C is said to be homogeneous if Aut(C) acts transitively
on it, i.e. for every x, y ∈ C there exists φ ∈ Aut(C) such that φ(x) = y.

Definition 10.1.2. A cone C is said to be self-dual if there exists a positive-definite
form on V such that the resulting isomorphism between V and its dual V ∨ transforms
C into C∨.

The theory of a self-dual homogeneous cones is very wide, but due to results of Vinberg
and Koecher, we known that homogeneous self-dual cones can be completely classified
into a small number of cases, see [86].

Definition 10.1.3. Let Ci ⊂ Vi be cones in the vector space Vi for i = 1, 2. We
define the direct sum of C1 and C2 in the vector spaces V1 ⊕ V2 to be the cone
C1 ⊕ C2 := {v1 + v2 ∈ V1 ⊕ V2 | vi ∈ Ci} and call a cone indecomposable if it cannot
be written as the direct sum of two nontrivial cones.

Theorem 10.1.4. [4, Remark 1.11 ] Any convex cone C ⊂ V can be written as a direct
sum

⊕
i
Ci of indecomposable cones. The product

∏
i

Aut(Ci) is a finite-index subgroup

of Aut(C). The cones Ci are homogeneous and self-dual if and only if C is too. Any
indecomposable homogeneous self-dual cone is isomorphic to one of the following:

1. the cone Pr(R) of positive-definite matrices in the space Hr(R) of r × r real sym-
metric matrices;

2. the cone Pr(C) of positive-definite matrices in the space Hr(C) of r × r complex
hermitian matrices;

3. the cone Pr(H) of positive-definite matrices in the space Hr(H) of r×r quaternionic
hermitian matrices;

4. the spherical cone {(x0, . . . , xn) ∈ Rn+1 | x0 >
√
x2

1 + . . . x2
n} ;

5. the 27-dimensional cone of positive-definite 3× 3 octonionic hermitian matrices.
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The inner product for which the cone is self-dual is ⟨x, y⟩ = Tr(xy∗) in all cases except
4, and we take the usual inner product on Rn+1 in case 4.

Moreover, in [87] Vinberg have computed the automorphism groups of all the cones
in the list of Theorem 10.1.4. In particular, we have the following result.

Theorem 10.1.5. [87] Let C be one of the cones Pr(F) in the previous theorem where
F = R,C, or H. The identity component Aut(C)0 of the automorphism group of C
consists of all R-linear transformations of Hr(F) of the form D 7−−−→M †DM for some
M ∈ GL(r,F) where M † is the conjugate transpose.

10.2 | Arithmetic groups
The theory of arithmetic groups is very large. For our purpose we only need the defini-
tion. For a more detailed discussion see [16] or [67].

Definition 10.2.1. An algebraic group G over a field k is an algebraic variety over
k endowed with a group structure such that the following homomorphisms:

µ : G×G G i : G G

(g, h) gh g g−1

are morphisms of varieties.
An algebraic group G is said to be defined over a subfield K ⊂ k if the polynomial
equations defining it have coefficients in K. We denote the underlying structure of K-
variety of G by G(K).
An algebraic group G is said to be a linear algebraic group if it admits a closed (with
respect to the Zarisky topology) embedding ρ : G ↪→ GL(n, k) for some n ∈ N, i.e.
ρ(G) := G(k) is a subgroup of GL(n, k) defined by polynomial equations with coefficient
in k.

An important result about the automorphism group of a homogeneous self-dual cone is
the following.

Theorem 10.2.2. [87] Let C ⊂ V be a self-dual convex cone. Then the automor-
phism group Aut(C) is the group of real points of a reductive algebraic group denoted by
Aut(C).
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Definition 10.2.3. [16, Sectoin 7.C] Let G be an algebraic linear group in GL(n,C) for
some n defined over Q. We define G(Z) := G ∩GL(n,Z). A subgroup Γ ⊂ G(Q) is said
to be arithmetic if it is commensurable with G(Z), i.e. G(Z) ∩ Γ is of finite index in
both G(Z) and Γ.

Remark 10.2.4. It is proved in [16, Section 7.C] that the property of being arithmetic is
invariant under Q-isomorphisms.

Example 10. Let E×E the abelian surfaces. Then the group End(E×E)× defines an
arithemtic group in EndR(E ×E)× = (End(E ×E)⊗R)×. In fact, it is easy to observe
that EndR(E × E)× ≃ GL(2,R) is an algebraic group and End(E × E)× is exactly the
group of invertible matrices with integers coefficients.

10.3 | On the fundamental domain for homogeneous self-dual
cone

Ash investigated the existence of a fundamental domain for action of arithmetic groups
on homogeneous self-dual cones. One of the main tool he used was the existence of the
Siegel sets introduced by Borel. We only recall the result omitting the proofs, we refer
to [4, Chapter II].

Theorem 10.3.1. [4, Chapter II] Let C be a homogeneous self-dual cone in a real
vector space V with Q-structure. Let Aut(C) be the automorphism group of C and let
Aut(C) be the associated reductive algebraic group which exists in view of Theorem
10.2.2. Assume that the connected component of the identity Aut(C)0 is defined over
Q. Then, for any arithmetic subgroup Γ of Aut(C)0 there exists a rational polyhedral
cone Π ⊂ C+ such that (Γ ·Π) ∩ C = C.

It is worth recalling that starting from Π, it is possible to construct a rational fun-
damental domain for the action of Γ on C, see [4, pag. 75].
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11 The cone conjecture for
hyperelliptic varieties

In this chapter we prove Theorem D, the Morrison-Kawamata cone conjecture for hy-
perelliptic varieties, see also [65].

According to the Beauville-Bogomolov decomposition Theorem 1.5.6 every smooth pro-
jective K-trivial variety Y , up to an étale finite covering, splits into the product of
three building blocks: abelian varieties, simply-connected Calabi-Yau manifolds and IHS
manifolds. The Kawamata cone conjecture 9.4.3 is proven for abelian varieties ([77]),
for IHS manifolds ([3] and [2]) and for certain Calabi-Yau manifolds ([61], [72], [75], and
[58]). The following result guarantees that if each factor of the Beauville-Bogomolov
decomposition of Y satisfies the cone conjecture then Y satisfies the cone conjecture.

Lemma 11.0.1. [43, Exercise 12.6 (b)] Let Y1 and Y2 be projective varieties and assume
that H1(Yj ,OYj ) = 0 for at least one j = 1, 2. Let us denote by prj : Y1 × Y2 −→ Yj the
projections on the j-factor for j = 1, 2. Then:

Pic(Y1 × Y2) = pr∗
1Pic(Y1)× pr∗

2Pic(Y2).

Corollary 11.0.2. Let Y1 and Y2 two projective varieties that satisfy the Morrison cone
conjecture 9.4.2 for the nef cone. Assume that h1,0(Yj) = 0 for at least one j = 1, 2.
Then Y = Y1×Y2 satisfies the Morrison cone conjecture for the nef cone. In particular,
if Y = T ×

∏
i
Vi
∏
j
Xj is given by the Beauville-Bogomolov decomposition Theorem 1.5.6

and each factor satisfy the Morrison cone conjecture, then Y satisfies the Morrison cone
conjecture.

Proof. According to Lemma 11.0.1 we have

Pic(Y )⊗ R = pr∗
1

(
Pic(Y1)⊗ R

)
× pr∗

2

(
Pic(Y2)⊗ R

)
,
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where prj ’s are the projections on the j-factor for j = 1, 2. Thus we obtain:

N1(Y )R = pr∗
1N

1(Y1)R × pr∗
2N

1(Y2)R.

By assumption there exists a rational polyhedral cones: ΠYj ⊂ Nef(Yj)+ which is a
fundamental domain for the action of Aut(Yj) on Nef(Yj)+ for j = 1, 2. We consider the
rational polyhedral cone ΠY1 × ΠY2 ⊂ Nef(Y1)+ × Nef(Y2)+ = Nef(Y )+. The following
inclusion holds:

Amp(Y ) ⊂ Nef(Y )+ = Nef(Y1)+ ×Nef(Y2)+

=
⋃

φY1 ∈Aut(Y1)
φY1(ΠY1)×

⋃
φY2 ∈Aut(Y2)

φY2(ΠY2)

=
⋃

(φY1 ,φY2 )∈Aut(X)
(φY1 , φY2)(ΠY1 ×ΠY2).

Therefore, according to Lemma 9.4.5 there exists a fundamental domain for the action
of Aut(Y1)×Aut(Y2) ⊂ Aut(Y ) on Nef(Y )+.
Let Y = T ×

∏
i
Vi
∏
j
Xj be as in the Beauville-Bogomolov decomposition Theorem 1.5.6.

Since there is at least one factor that is either an IHS manifold Xj or a Calabi-Yau
manifold Vi and we have h1,0(Xj ,OXj ) = h1,0(Vi,OVi) = 0, we can apply (and generalize)
the proof above.

11.1 | The cone conjecture under étale quotients
In this section, we reformulate the cone conjecture for étale quotients and in particular
for hyperelliptic varieties.

Proposition 11.1.1. Let X be a compact projective manifold and G ≤ Aut(X) a finite
group that acts freely on it. We denote by π : X −→ Y = X/G. Assume the existence
of a rational polyhedral cone Π ⊂ (Nef(X)G)+ such that Amp(X)G ⊂ H · Π for some
H ≤ NAut(X)(G). Then Y satisfies the Kawamata’s cone conjecture 9.4.3.

Proof. Let us consider π∗(Π): it defines a rational polyhedral cone in Nef(Y )+ such that:

Amp(Y ) ⊂ (H/G) · π∗(Π) ⊂ Aut(Y ) · π∗(Π). (11.1.1)

Thus by Lemma 9.4.5, Nef+(Y ) has a rational polyhedral fundamental domain.

Proposition 11.1.2. Let Y = X/G be a hyperelliptic variety and D be a divisor on it.
Then [D] ∈ Eff(Y ) if and only if [D] ∈ Nef(Y ). In particular, Eff(Y ) is closed.
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Proof. The statement is true for abelian varieties, see [8, Lemma 1.1]. Let π : X −→ Y

be the finite étale covering. The statement easily follows using that D is nef/effective
on Y if and only if π∗D is nef/effective on X, see Lemma 1.3.2.

Corollary 11.1.3. Let Y be a hyperelliptic variety. Then

Mov(Y )+ = Mov(Y )e = Mov(Y ) = Nef(Y ) = Nef(Y )e = Nef(Y )+.

In particular, the cone conjecture for the nef cone is equivalent to the one of the movable
cone. Moreover, the Morrison’s Cone Conjecture 9.4.2 is equivalent to the Kawamata’s
Cone Conjecture 9.4.3.

Proof. According to (9.3.1) we have: Nef(Y ) ⊆ Mov(Y ) ⊆ Eff(Y ). By Proposition 11.1.2
we have Nef(Y ) = Eff(Y ) = Eff(Y ), it follows Nef(Y ) = Mov(Y ) = Eff(Y ). Thus, the
cone conjecture for the nef cone is equivalent to the one of the movable cone. We prove
that Nef(Y )e coincides with Nef(Y )+. It holds Nef(Y )e ⊆ Nef(Y )+ by Lemma 9.4.4. We
observe that Nef(Y )+ = Amp(Y )+ ⊂ Nef(Y ), hence since Nef(Y )e = Nef(Y ) we obtain
the reverse inclusion and so the equality. Thus, the Morrison’s Cone Conjecture 9.4.2 is
equivalent to the Kawamata’s Cone Conjecture 9.4.3.

11.2 | The proof of Theorem D
In the following X is an abelian variety and G ≤ Aut(X) is a finite group which does
not contain any translation.

The goal of this section is to prove the following theorem.

Theorem 11.2.1 (Theorem D). Let Y = X/G be a hyperelliptic variety. Then then
Conjecture 9.4.2 and Conjecture 9.4.3 hold both for the nef and the movable cones.

We first explain the strategy. Due to the results of the preceding section, Proposition
11.1.1 and Corollary 11.1.3, to prove Theorem 11.2.1, it is enough that there exists a
rational polyhedral cone Π ⊂ (Nef(X)G)+ such that

Amp(X)G ⊂ H ·Π (11.2.1)

for some H ≤ NAut(X)(G). To achieve this, we adopt the following strategy: we estab-
lish that the cone Amp(X)G is a homogeneous self-dual cone and that the centralizer
H := CAut(X)(G) defines an action of an arithmetic group on it. This results allow us
to invoke the main result of reduction theory, Theorem 10.3.1, which guarantees the
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existence of the desired Π satisfying (11.2.1) for the H-action on Amp(X)G.

We prove some useful facts.

Lemma 11.2.2. Let X be an abelian variety and let us consider the following homo-
morphism:

ρ : Aut(X) GL(N1(X)R)

φ (φ∗ : D 7−−−→ φ∗D).

Then, ρ(Aut(X)) = ρ(End(X)×). In other words, every translation of X acts as the
identity on N1(X)R.

Proof. Let t be a translation on X and [D]num ∈ N1(Y )R denotes the numerical class
of D, see 1.2.3. Then OX(t∗D − D) ∈ Pic0(X), i.e. [t∗D − D]hom = 0 in H2(X,Z).
By Remark 1.2.5 homological and numerical equivalence coincide up to torsion, so on
N1(Y )R, we have that [t∗D −D]num = 0 (see Definition 1.1.9) and so the result.

The homomorphism ρ in Lemma 11.2.2 can be extended to an action of EndR(X)×

on EndR(X). We define the following action:

α : EndR(X)× GL(EndR(X))

φ α(φ) : l 7→ φ′ ◦ l ◦ φ

(11.2.2)

where ′ is the Rosati involution defined in (2.5.1). We recall that the following embedding
of vector spaces, defined in Theorem 2.6.2:

fL : N1(X)R EndR(X)

D ϕ−1
L ◦ ϕD

where L is the ample line bundle on X defining the Rosati involution ′ and ϕL, ϕD are
defined as in (2.3.1).

Lemma 11.2.3. The action α defined in (11.2.2) extends the action of Aut(X) on
N1(X)R by pull back.

Proof. Let φ ∈ Aut(X). We have to prove that the following diagram
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N1(X)R EndR(X)

N1(X)R EndR(X)

fL

φ∗ α(φ)
fL

is commutative. Let D ∈ N1(X)R, we have:

fL(φ∗D) = ϕ−1
L ϕφ∗D

(2.3.2)= ϕ−1
L (φ̂ ◦ ϕD ◦ φ) (2.5.1)= φ′ϕ−1

L ϕDφ = α(φ)(fL(D)).

11.2.1 | The G-invariant R-algebra of an abelian variety
Definition 11.2.4. EndQ(X)G:= {φ ∈ EndQ(X) | α(g)(φ) = φ for every g ∈ Lin(G)}
where Lin(G) is the the linear part of G.

The Rosati involution ′ depends on the choice of the ample line bundle L. Since we
are considering X with an action of a finite group G, we can choose L to be G-invariant.1

Hence we have
ϕL = ϕg∗L

(2.3.2)= ĝϕLg for every g ∈ G. (11.2.3)

This leads to the following relation:

∀g ∈ G g′ (2.5.1)= ϕ−1
L ĝϕL = ϕ−1

L (ĝϕLg)g−1 (11.2.3)= g−1. (11.2.4)

Therefore we obtain:

CEnd(X)×(G) = {φ ∈ End(X)× | g′φg = φ for every g ∈ Lin(G)} =
(
End(X)G

)×
.

(11.2.5)
We have the following characterization of EndQ(X)G.

Theorem 11.2.5. Let X be an abelian variety and G ≤ Aut(X) be a finite group. Then:
(i) EndQ(X)G is a finite dimensional Q-algebra with an involution ι given by ι(x) = x′

for every x ∈ EndQ(X)G ⊆ EndQ(X) which is positive-definite with respect to the
trace reduced over Q, see Definition 2.5.1.

(ii) We have the following isomorphism of R-algebras:

Ψ: (EndQ(X)G ⊗ R, ι) (
∏
i

Matli(R)×
∏
j

Matmj (C)×
∏
k

Matnk
(H), †)≃

1If L is not invariant, we can consider
∑

g∈G

g∗L which defines a G-invariant ample line bundle since

L ̸= 0 and ample.
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where the involution ι is sent to the conjugate transpose † on each factor.

Before proving the theorem above we recall fundamental results about finite-dimensional
algebras with positive-definite involution.

Lemma 11.2.6. [88, Lemma 8.4.5] Let Ak be a k-algebra, for a subfield k ⊂ R, and τ

be a positive-definite involution with respect to the trace (see Definition 2.5.1). Then Ak
is semisimple, see Definition 2.4.6.

Remark 11.2.7. Let Ak as in Lemma 11.2.6 and consider the decomposition Ak =
∏
i
Ai

into simple sub-algebras Ai ⊂ Ak. Then τ preserves this decomposition, i.e. τ(Ai) = Ai
for all i. Indeed if τ(Ai) = Aj for i ̸= j, then Aj is a simple factor and AiAj = 0.
Therefore Tr(Aiτ(Ai)) = Tr(AiAj) = 0 which is a contradiction since τ is positive
definite with respect to the trace.

Lemma 11.2.8. [56, Lemma 5.5.1] For any simple R-algebra AR of finite dimension
with a positive-definite involution there is an isomorphism of R-algebras from (AR, τ) to
(Matn(F), †) for some n ∈ N, where F = R,C,H and † is the correspondent conjugate
transpose on each field.

We are in position to prove Theorem 11.2.5.

proof of Theorem 11.2.5. (i) We prove that EndQ(X)G is a well-defined sub-algebra of
the finite dimensional Q-algebra EndQ(X), i.e. the algebra operations of EndQ(X)
are G-equivariants. In the following x, y ∈ EndQ(X), λ ∈ Q and g ∈ G:

1. α(g)(x+ y) = g′(x+ y)g = g′xg + g′yg = α(g)(x) + α(g)(y),

2. α(g)(λx) = g′λxg = λα(g)(x),

3. α(g)(xy) = g′xyg = g′xgg′yg = α(g)(x)α(g)(y) we use g′g = id by (11.2.4).

Clearly, the multiplicative and additive identity are in EndQ(X)G as well as the
multiplicative and additive inverse. Thus, EndQ(X)G is a finite-dimensional Q-
algebra. We prove that the Rosati involution ′ on EndQ(X) is G-equivariant, i.e. ι
is well-defined as involution in EndQ(X)G. For every g ∈ G, the following diagram
is commutative:

EndQ(X) EndQ(X)

EndQ(X) EndQ(X).

′

α(g) α(g)

′
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Indeed for every φ ∈ EndQ(X) it holds

α(g)(φ′) = g′φ′g
(2.5.3)= (g′φg)′ =

(
α(g)φ

)′
.

Therefore ι is well-defined on EndQ(X)G. In particular, it is still an involution and
positive-definite with respect to trace over Q.

(ii) According to (i), EndR(X)G is a finite dimensional Q-algebra with a positive-
definite involution ι. Hence by Lemma 11.2.6, it is semisimple. Therefore we get a
decomposition

EndR(X)G =
∏
i

Ai

where Ai’s are simple R-algebras. Moreover, according to Remark 11.2.7 the
positive-definite involution ι preserves each factorAi and so it restricts to a positive-
definite involution at each factor Ai. By applying Lemma 11.2.8 at each simple
R-algebra Ai with a positive-definite involution, we obtain the following isomor-
phism of R-algebras:

Ψ:
(
EndR(X)G, ι

) ≃−−−−→
(∏
i

Matli(R)×
∏
j

Matmj (C)×
∏
k

Matnk
(H), †

)
.

11.2.2 | The G-invariant ample cone of an abelian variety
Definition 11.2.9. We define the R-vector space N1(X)G

R := {D ∈ N1(X)R s.t. G-invariant}.
We define the G-invariant ample cone Amp(X)G:= {D ∈ Amp(X) s.t. G-invariant}.

Theorem 11.2.10. Let X be an abelian variety and G ≤ Aut(X) be a finite group.
Then the G-invariant ample cone is isomorphic to :

(Ψ ◦ F ) : Amp(X)G ≃−−−−−→
⊕
i

Pli(R)⊕
⊕
j

Pmi(C)⊕
⊕
k

Pnk
(H) ⊆ Ψ(EndR(X)G)

where Pl(F) is the cone of positive-definite hermitian matrices of dimension l over the
field F, F = (fL)|N1(X)G

R
with fL as in (2.6.1) and Ψ is defined in Theorem 11.2.5. In

particular, it is a homogeneous self-dual cone.

Proof. By Theorem 2.6.2, we have the following isomorphism of R-vector spaces:

fL : N1(X)R EndsR(X)

D ϕ−1
L ϕD,

≃
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where EndsR(X) denotes the space of R-endomorphisms on X fixed by the Rosati invo-
lution, see Definition 2.6.1. According to Lemma 11.2.3, for every g ∈ G we have the
following commutative diagram:

N1(X)R EndsR(X)

N1(X)R EndsR(X)

fL

g∗ α(g)

fL

Therefore, fL is G-equivariant and the following morphism of R-vector spaces is well-
defined:

F = (fL)|N1(X)G
R

: N1(X)GR EndR(X)G

D ϕ−1
L ϕD.

In particular, F is still an embedding since fL is an embedding. Furthermore, since
fL establishes a bijection between N1(X)R and ′-invariant element in EndR(X), see
Theorem 2.6.1, we get that F establishes a bijection between N1(X)GR and ι-invariant
elements in EndR(X)G. This bijection is actually an isomorphism of vector spaces. Since
by Theorem 11.2.5:

Ψ:
(
EndR(X)G, ι

) ≃−−−−→
(∏
i

Matli(R)×
∏
j

Matmj (C)×
∏
k

Matnk
(H), †

)
we have that (Ψ ◦ F ) maps R-divisors in N1(X)GR to matrices in Ψ(EndR(X)G) fixed
by †, i.e. the space of hermitian matrices. More precisely, we obtain the following
isomorphisms of vector spaces:

(Ψ ◦ F ) : N1(X)GR
⊕
i
Hli(R)⊕

⊕
j
Hmi(C)⊕

⊕
k
Hnk

(H) ⊂ Ψ(EndR(X)G)

D
(∏
i
ϕi,
∏
j
ϕj ,
∏
k
ϕk
)

≃

As we have recalled in Lemma 2.6.6 the isomorphism (ψ ◦ fL) maps ample R-divisors in
N1(X)R to positive definite matrices in ψ(EndR(X)). One can easily see that the same
proof holds for (Ψ ◦ F ). Therefore, we obtain:

(Ψ ◦ F ) : Amp(X)G
⊕
i
Pli(R)⊕

⊕
j
Pmi(C)⊕

⊕
k
Pnk

(H) ⊂ Ψ(EndR(X)G).≃
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Chapter 11. The cone conjecture for hyperelliptic varieties

By Theorem 10.1.4 we know that a cone C =
⊕
i
Ci is homogeneous self-dual if and only if

each indecomposable cone Ci’s is too. By the classification of the homogeneous self-dual
indecomposable cones, see Theorem 10.1.4, we know that each factor Pl(F) of Amp(X)G

is a homogeneous self-dual cone, hence we have that Amp(X)G is a homogeneous self-
dual cone.

11.2.3 | The action of the centralizer on the G-invariant ample cone
We prove that the centralizer CAut(X)(G) defines an arithmetic subgroup in Aut(Amp(X)G)0.

Lemma 11.2.11. Let X be an abelian variety and G ≤ Aut(X) be a finite subgroup. The
group of units

(
EndR(X)G

)× is an affine algebraic group defined over Q and CEnd(X)×(G)
is an arithmetic subgroup.

Proof. By Theorem 11.2.5 part (i) EndQ(X)G, as finite dimensional Q-algebra, is a
finite dimensional Q-vector space and, since EndR(X)G = EndQ(X)G ⊗ R, it defines a
Q-structure on EndR(X)G. We set the following isomorphisms of affine spaces:

EndQ(X)G ≃ Qd EndR(X)G ≃ Qd ⊗ R ≃ Rd.

We denote by AQ the d-dimensional Q-algebra EndQ(X)G and by AR its extension over
R, that we call EndR(X)G. We consider the following injective map:

j : (AR)× AR ×AR

x (x, x−1).

This map yields to the following description of (AR)× as a Zariski closed subset in
AR ×AR ≃ R2d:

(AR)× j
≃ {(x, y) ∈ AR ×AR | xy − 1 = 0} = V (xy − 1) ⊂ AR ×AR ≃ R2d.

Therefore, (AR)× is an affine algebraic subgroup G of the affine space R2d. Since the
equation defining (AR)× is in fact defined over Q, we have that (AR)× is an affine variety
defined over Q. Moreover, we observe that the group of Q-points of (AR)× is (AQ)×.
We now prove the arithmetic part. Given an abelian variety X ≃ Cn/Λ there is the
following faithful representation, see (2.1.4):

ρr : End(X) EndZ(Λ) ≃ Mat2n(Z)

φ φ̃
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where φ̃ is the unique C-linear map such that φ̃(Λ) ⊆ Λ inducing φ. We extend it R-
linearly and then we restrict (ρr)R to the group of units of G-invariant R-endomorphisms,
leading to the following embedding:

(ρr)R :
(
EndR(X)G

)× GLR(Λ⊗ R) ≃ GL2n(R)

which, in particular, is a morphism of Q-algebraic groups, i.e. it is a closed embedding.

Since (ρr)R
((

End(X)G
)×) ⊂ GL2n(Z), we obtain:

(
End(X)G

)× ≃ Im((ρr)R) ∩GL2n(Z) = (ρr)R
((

EndR(X)G
)×) ∩GL2n(Z).

Therefore, denoting the algebraic group G = (ρr)R
((

EndR(X)G
)×) we have

G(Z)
(ρr)R≃

(
End(X)G

)×
,

see by Definition 10.2.3. Together with (11.2.5), we prove that that CEnd(X)×(G) =(
End(X)G

)× is an arithmetic group in
(
EndR(X)G

)×.

Lemma 11.2.12. Let X be an abelian variety and G ≤ Aut(X) finite group. The
following Q-morphism of algebraic groups

β :
(
EndR(X)G

)× Aut(Amp(X)G)0 ⊂ GL(N1(X)GR )

φ β(φ) : x 7→ ι(φ) ◦ x ◦ φ

is surjective.

Proof. It is clear that β is a morphism of algebraic groups. Moreover it is also well-
defined as morphism of Q-varieties

(
EndQ(X)G

)× −→ GL(N1(X)GQ), where N1(X)GQ =
(N1(X)⊗Q)G.
Assume, for simplicity, that EndR(X)G has a single direct factor. Using the notation of
Theorem 11.2.5:

Ψ:
(
EndR(X)G, ι

) ≃−−−−→
(
Matl(F), †

)
Ψ:

(
EndR(X)G

)× ≃−−−−→ GLl(F)

and by Theorem 11.2.10 we have

(Ψ ◦ F ) : Amp(X)G ≃−−−−→ Pl(F)

where F = R,C,H. Thus we have:
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(
EndR(X)G

)× Aut(Amp(X)G)0 φ β(φ) : x 7→ ι(φ) ◦ x ◦ φ

GLl(F) Aut(Pl(F))0 M β(M) : D 7→M †DM

≃ Ψ

β

≃Ψ Ψ Ψ

β

Theorem 10.1.5 guarantees the surjectivity of β since every automorphism in Aut(Pl(F))0

is of the form D 7→M †DM with M ∈ GLl(F).
If EndR(X)G ≃

∏
i

Matli(R) ×
∏
j

Matmj (C) ×
∏
k

Matnk
(H) we can generalize the proof

above since for a C =
⊕
i
Ci the identity component Aut(C)0 is isomorphic to

∏
i

Aut(Ci)0

by Theorem 10.1.4. Thus, the surjectivity of β follows by applying the previous proof
at each factor.

Remark 11.2.13. We note that by definition β of Lemma 11.2.12 is nothing else than the
restriction of α defined in (11.2.2) to (EndR(X)G)×. In particular, since by Theorem
11.2.3 α is the extension of the action of Aut(X) by pull-backs on N1(X)R, we deduce
that β is the extension of the action of CAut(X)(G) by pull-backs on N1(X)GR . Therefore,
by the Lemma 11.2.2 we have:

β(CAut(X)(G)) = β(CEnd(X)×(G)).

Proposition 11.2.14. Let X be an abelian variety and G ≤ Aut(X) be a finite group.
Then the centralizer CAut(X)(G) defines an arithmetic subgroup in Aut(Amp(X)G)0.

Proof. Let us consider the Q-morphism of algebraic groups:

β :
(
EndR(X)G

)× −→ GL
(
N1(X)GR

)
.

By Lemma 11.2.12 we have Aut(Amp(X)G)0 is the image of β, hence it is an algebraic
group defined over Q. By Remark 11.2.13 we have β(CAut(X)(G)) = β(CEnd(X)×(G)) and
by Lemma 11.2.11 we have that CEnd×(X)(G) is an arithmetic subgroup of

(
EndR(X)G

)×.
According to [16, Remark 8.22] the property to be arithmetic is preserved under Q-
epimorphism. Therefore, we obtain that β(CAut(X)(G)) is an arithmetic subgroup in
Aut(Amp(X)G)0.

Now, we are in position to prove Theorem 11.2.1

Proof of Theorem 11.2.1. According to Proposition 11.1.1 and Corollary 11.1.3, it is
enough to prove the existence of a rational polyhedral cone Π ⊂ Nef(X)G = (Nef(X)G)+

such that Amp(X)G ⊂ H · Π for some H ≤ NAut(X)(G). By Theorem 11.2.10, we have
that Amp(X)G is a homogeneous self-dual cone. By Proposition 11.2.14, the centralizer
H := CAut(X)(G) defines an action of an arithmetic group on it. By Theorem 10.3.1.
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There exists a rational polyhedral cone Π ⊂ Nef(X)G such that Amp(X)G ⊂ CAut(X)(G)·
Π.
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12 On the nef cone of Calabi-Yau
manifolds of type A

In this chapter we prove Theorem E about the rational polyhedral nature of the nef
cone of hyperelliptic varieties deducing also that all Calabi-Yau manifolds Y of type A
constructed in Theorem A have a rational polyhedral cone. Then in Theorem F we
describe the extremal rays of the nef cone for these Calabi-Yau manifolds, deducing in
particular that all nef divisors of X are semi-ample divisors

12.1 | Polyhedral nature of nef cone of hyperelliptic varieties
In part I, we have studied the Calabi-Yau threefolds of type A and since they are hyper-
elliptic varieties, they satisfy the cone conjecture according to Theorem 11.2.1. In fact
this latter observation was already proven in [73, Theorem 0.1 (IV)] and, specifically, it
is proven that for these threefolds the nef cone is rational polyhedral. This result agrees
with the finiteness of the automorphisms group for these threefolds, see Lemma 9.4.7.
It is natural to ask the following question:

Question 5. Given a hyperelliptic variety Y = X/G, under which conditions its nef
cone of is rational polyhedral? Or equivalent, under which conditions its automorphism
group of is finite?

We observe that this question is related to the one asked in [42, Section 6].

Definition 12.1.1. Let K be a totally complex quadratic extension of a totally number
field of degree g over Q. A CM-type of K is a set Φ = {σ1, . . . , σn} of non complex
conjugate embeddings K ↪→ C.
An abelian variety X = Cn/Λ is said to be of CM-type (K,Φ) if there exists an
embedding η : K ↪→ C where ρa ◦ η = diag(σ1, . . . , σn).
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Theorem 12.1.2. Let Y = X/G be a hyperelliptic variety and we denote by η the rep-
resentation of G. We assume that X is not of CM-type. If G contains a normal abelian
group H such that η|H does not contains two equals irreducible sub-representations, then
the nef cone of Y is a rational polyhedral cone.

Proposition 12.1.3. Let Y = X/G be a projective hyperelliptic n-fold with G an abelian
group. Assume that X is not of CM-type and that the representation η of G does not
contains two equal irreducible representations. Then CEnd(X)×(G) is finite. In particular,
every α ∈ CEnd(X)×(G) has order two.

Proof. By Proposition 1.8.10 the representation η : G −→ GL(Cn) decomposes into the
direct sum

n⊕
i=1

ηi of irreducible representations ηi and since G is abelian dim(ηi) = 1 for

every i, by Lemma 1.8.11. In other words, η(g) has a diagonal form for every g ∈ G. Let
α ∈ End(X)×: it can be though as a linear transformation of V = Cn. We have that
α ∈ CEnd(X)×(G) if and only if for every g ∈ G the following diagram is commutative

V V

V V

η(g)

α α

η(g)

which can be rephrased as follows: α is a G-linear transformation of V with respect to
η. By hypothesis η =

n⊕
i=1

ηi with ηi ̸= ηj for every j ̸= i = 1, . . . , n. By the Schur’s

Lemma 1.8.9, we have that α = diag(µ1, . . . , µn). Indeed since ηi ̸= ηj for any i ̸= j we
have that

α : Vi −→ Vj

is zero whenever i ̸= j where ηk : G −→ GL(Vi). Since α ∈ End(X)× = GLn(Z) we get
that µi ∈ {±1}, equivalently, α has finite order equals to two. Therefore, CEnd(X)×(G)
is finite.

Now we are in position to prove Theorem 12.1.2.

proof of Theorem 12.1.2. By assumption η|H does not contain two equal irreducible sub-
representations. Thus CEnd(X)×(H) is finite and since CEnd(X)×(G) ≤ CEnd(X)×(H) then
CEnd(X)×(G) is finite. According to the Theorem 11.2.1, Y satisfies the Morrison’s cone
conjecture, specifically there exists a rational polyhedral cone Π ⊂ Nef(Y ) such that

1. Nef(Y ) =
CEnd(X)×(G)

G
·Π,

2. Π is a fundamental domain.
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Since
CEnd(X)×(G)

G
is finite, following the proof of Lemma 9.4.7 we deduce that Nef(Y )

is rational polyhedral.

As we have already observed in Section 9.4, having a rational polyhedral cone does
not imply that the automorphism group is finite. We recall an easy example.

Example 11. Let S = E ×F/G be a bi-elliptic surface. According to [80] its nef cones
is rational polyhedral. But its automorphism group is not finite since the elliptic curve
on which G acts as translation is contained in CAut(E×F )(G)), see [12]. Thus Aut(S) is
infinite since it contains translations.

The example above shows that given Y = X/G a hyperelliptic variety even if we
can control the cardinality of the centralizer, we can have some infinity part in Aut(Y )
coming from translations on X. A different situation appear under the hypothesis that
the hyperelliptic manifolds has trivial irregularity.

Corollary 12.1.4. Let Y = X/G be a hyperelliptic variety. In the same hypothesis
of Theorem 12.1.2. Assume moreover that h1,0(Y ) = 0. Then the nef cone is rational
polyhedral and the automorphism group is finite.

Proof. The first assertion is Theorem 12.1.2. For the second one: we have that CEnd(X)×(G)
is finite. Let us consider the following homomorphism of groups:

φ : NAut(X)(G) Aut(G)

f φ(f) : (g 7→ f−1gf)

whose kernel is CAut(X)(G). Since G is finite we have Aut(G) is finite. Therefore we
obtain:

CAut(X)(G) is finite if and only if NAut(X)(G) is finite. (12.1.1)

Let us consider:
ρ : Aut(X) GL(N1(X)R)

f f∗

which according to Lemma 9.4.8 has finite kernel, since h1,0(Y ) = 0. According to

Lemma 11.2.2 we have that ρ
(

CAut(X)(G)
)

= ρ

(
CEnd(X)×(G)

)
. Since CEnd(X)×(G)

is finite and ρ has finite kernel then CAut(X)(G) must be finite. Thus by (12.1.1),

NAut(X)(G) is finite and since G is finite we have that Aut(Y ) =
NAut(X)(G)

G
is finite.
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Corollary 12.1.5. All the Calabi-Yau manifolds of type A in Theorem A have rational
polyhedral nef cone and finite automorphism group.

Proof. It’s enough to check that for the known examples of Calabi-Yau manifolds of type
A enclosed in Theorem 5.6.6, we are in the hypothesis of Corollary 12.1.4.

12.2 | The extremal rays of the nef cone
In [73, Theorem 0.1], the authors proved that the nef cone of the Calabi-Yau threefolds
Y of type A is rational polyhedral and they also described explicitly the extremal rays of
the nef cone. More in details, they proved that the extremal rays are the divisors which
generate PicQ(Y ) which define fibrations on Y . Thus, in particular, the extremal rays
are semi-ample divisors. As a consequence, they deduce that each rational nef divisor is
semi-ample.

Since in Corollary 12.1.5, we prove that all Calabi-Yau manifolds of type A in Theo-
rem A have rational polyhedral nef cone, we investigate on the extremal rays of this cone
generalizing the result of Oguiso and Sakurai. More precisely, we obtain the following.

Theorem 12.2.1. Let Y be the Calabi-Yau manifold of type A with the group (Z/2Z)2n.
Then every nef divisor is semi-ample.

Proof. We recall:
A = E1 × · · · × E2n+1

where Ej ’s are elliptic curves. By Lemma 5.6.5 we have that h1,1(Y ) = 2n+ 1 and since
the h2,0(Y ) = 0 it holds ρ(Y ) = h1,1(Y ) = 2n+ 1, where ρ(Y ) denotes the Picard rank.
We consider the following fibrations on A:

pj : A −→ Ej j = 1, . . . , 2n+ 1.

Each pj is G-equivariant, i.e. the following diagram is commutative:

pj : A Ej

fj : Y = A/G Ej/G|Ej
≃ P1

In particular, fj ’s are still fibrations. We denote by [Fj ] the class of the fiber of fj for
j = 1, . . . , 2n+ 1, which in particular are nef divisors.
Claim 1: {[F1], . . . , [F2n+1]} defines a Q-basis of PicQ(Y ). We have already observed
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that rk
(
PicQ(Y )

)
= 2n + 1, hence it is enough to prove that the Fj ’s are linearly inde-

pendent. We note that these divisors have no trivial intersection with each other. Let
H be an ample line bundle on Y , the following relations hold:

(Fj)l ·H2n+1−l = 0 1 < l ≤ 2n+ 1 (12.2.1)

Fi1 · Fi2 . . . Fik ·H
2n+1−k ̸= 0 i1 ≤ · · · ≤ ik ∈ 1, . . . , 2n+ 1. (12.2.2)

Let us consider F1 and F2: if F2 was linearly dependent from F1, by (12.2.1) we would
have F1 · F2 . . . F2n · H2n+1−2 = 0 which contradicts (12.2.2). Thus, [F1] and [F2] are
linearly independent. Iterating the argument above to B := {[F1], . . . , [F2n+1]}, we prove
that B defines a Q-basis of PicQ(Y ).
Claim 2: {[F1], . . . , [F2n+1]} span the nef cone of Y , i.e.:

Nef(Y ) = R≥0[F1]⊕ · · · ⊕ R≥0[F2n+1] := C. (12.2.3)

Since Fj ’s are nef divisors, the inclusion "⊇" follows. For the reverse inclusion: let us
consider H an ample divisor on Y . Since H ∈ Amp(Y ) ⊂ PicR(Y ), by Claim 1 there
exist ci ∈ R such that:

H =
2n+1∑
i=1

ci[Fi].

The followings hold:

0 < H ·
2n+1∏
i ̸=j=1

Fj = ci for all i = 1, . . . , 2n+ 1.

Thus, Amp(Y ) ⊆ C ⊆ Nef(Y ). Since C is closed and contains Amp(Y ), by minimality
C ⊇ Nef(Y ) and so the equality holds. In conclusion, the nef cone of Y it is a rational
polyhedral cone generated by [Fj ] for j = 1, . . . , 2n+ 1.
Finally, we observe that Fj ’s are semi-ample divisors and so Nef(Y ) is generated by
semi-ample divisors. Let us take [D] ∈ Nef(Y ) ∩N1

Q(Y ) ⊂ PicQ(Y ), we have:

D ≡
2n+1∑
i=1

qiFi qi ∈ Q.

Since h1,0(Y ) = 0 then Pic0(X) = 0. Therefore there exist m ∈ Z such that

mD ∼lin m
2n+1∑
i=1

qiFi

where ∼lin denotes the linear equivalence. Thus, since Fi’s are semi-ample divisors we
deduce that mD is a semi-ample divisor and so D is.
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Remark 12.2.2. The proof above can be applied whenever we have a hyperelliptic variety
Y = A/G with h1,0(Y ) = 0 with exactly h1,1(Y ) linearly independent fibrations.

In conclusion, combining Theorem 12.2.1, [73, Theorem 0.1], Theorem 7.2.1 and
Theorem 6.3.2 we obtain the following.

Corollary 12.2.3 (Theorem F). Let Y be the Calabi-Yau manifold of type A as in
Theorem D. Then extremal rays of the nef cone are given by semi-ample divisors which
define fibrations on X induced by natural projections on A. In particular all nef divisors
are semi-ample divisors.
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Part III

Further questions and investigations

Se credi abbastanza in te stesso
e con abbastanza coraggio,

tutto è possibile.



* Problem 1 *

In all examples of the Calabi-Yau manifolds of type A, presented in this thesis, they
admit an étale cover that splits into the product of elliptic curves. We observe that even
if this is the easiest construction, it is not expected in general to be the only one. In
fact, more generally, this is not expected to be true also for hyperelliptic manifolds. For
instance in [28, Chapter 3] the author showed that there exists hyperelliptic manifold
whose cover splits into the product of lower dimensional abelian varieties but not all
of them have dimension 1. Thus we can expect a similar phenomena for Calabi-Yau
manifolds of type A. Indeed one of the naif way to construct Calabi-Yau manifolds of
type A is to look at the actions producing hyperelliptic manifolds and select the one
that give Calabi-Yau quotients. Thus we ask the following question.

Problem 1. Are there Calabi-Yau manifolds of type A whose cover is not isogenous to
the product of elliptic curves?

* Problem 2 *

Another investigation is to consider more in details the “up to étale cases” in the decom-
position theorem 1.5.6, with a focus on Calabi-Yau quotients. For instance, non-simply
connected Calabi-Yau threefolds play a central role in the study of string compactifi-
cations. As we observe in Section 5.5, Calabi-Yau threefolds of quotient type can be
obtained in different ways. In dimension three we can distinguish three main situations:
the one given as free quotient of a simply connected Calabi-Yau threefolds, the Calabi-
Yau threefolds of type A and the one of type K. We highlight that in the first case we
obtain a Calabi-Yau quotient with finite fundamental group, while in the last two cases
the fundamental group is infinite. The first situation is undertaken in [17] and [38] and
in this situation the simply-connected Calabi-Yau threefolds are mainly given as com-
plete intersections in projective spaces. The last two situations are studied in [73], [32],
[44], [45] and here. In higher dimension more situations appear. For instance, the gen-
eralization of Calabi-Yau threefolds of type K in higher dimension seems an interesting
problem. We consider the following example.

Example 12. Let S and S′ be two K3 surfaces. Let ιS be an Enriques involution on
S and ιS′ be a non symplectic involution on S′, i.e. it does not preserve ωS′ . Then



ι = ιS × ιS′ defines a free action on S × S′ which preserves the volume form. Thus
the quotient Y = (S × S′)/ι is a fourfold with trivial canonical bundle. Moreover,
H1,0(Y ) = H3,0(Y ) = 0 since H1,0(S) = H1,0(S′) = 0. Since ιS and ιS′ are non-
symplectic involutions then H2,0(Y ) = 0. Hence Y is a Calabi-Yau fourfold.

Example 13. Let S be a K3 surface and E,E′ two elliptic curves. Let ιS be an Enriques
involution on S, ιE and ιE′ be the hyperelliptic involution on E and E′, respectively, and
tE and tE′ be translations of order two on E and E′, respectively. Let α = ιS × ιE × tE′

and β = ιS × tE × ιE′ , then G⟨α, β⟩ define a free action on S × E × E′ which preserves
the volume form. One can easily check that G does not preserve any (i, 0)-form for
i = 1, 2, 3. Thus Y = (S × E × E′)G is a Calabi-Yau fourfold.

The examples above shows that when one tries to generalize in higher dimension the
Calabi-Yau threefolds of type K as Calabi-Yau manifolds whose universal cover contains
a K3 surface different situations appear. We also recall as showed in [45] that Calabi-Yau
threefolds of type K are interesting also from the point of view of the Mirror Symmetry.
Therefore, it seems natural investigate the following problem.

Problem 2. Define and study Calabi-Yau manifolds whose étale cover contains at least
one K3 surface.

* Problem 3 *

According to Theorem F, we know that all nef divisors of all the Calabi-Yau manifolds
given in Theorem A are semi-ample. We observe that this result is in fact related with
one of the main conjecture in MMP. In Chapter 9.1 we have briefly introduced the
Abundance conjecture 9.1.12. We recall that it predicts that given a Q-factorial variety
Y with KY ′ nef then KY ′ is semi-ample. For the state of ars on this conjecture we refer
to [59]. For K-trivial varieties, the Abundance conjecture has an alternative statement.

Conjecture 12.2.4. [59, Conjecture 4.8] Let Y be a projective manifold withH1(Y,OY ) =
0 such that c1(Y ) = 0. If D is a nef divisor on Y , then Y is semi-ample.

The condition H1(X,OX) = 0 is needed to exclude the case of abelian varieties. We
deduce that Theorem F, guarantees the validity of Conjecture 12.2.4 for all Calabi-Yau
manifolds of type A in Theorem A (which for the best of the author’s knowledge are the
only ones known). Therefore, it is natural to investigate following problem:



Problem 3. Under which conditions Calabi-Yau manifolds of type A satisfy the Con-
jecture 12.2.4? Or, more in general, under which conditions hyperelliptic varieties with
no (1, 0)-forms satisfy the Conjecture 12.2.4?

We hope to return to the problems mentioned above in the future.
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