Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

A Web-Based MIDI 2.0 Monitor

Federico Avanzini, Vanessa Faschi, Luca Andrea Ludovico
Laboratory of Music Informatics (LIM), Department of Computer Science, University of Milan
{name.surname}@unimi.it

ABSTRACT

This paper presents a publicly available MIDI monitor. The
application provides a web interface to list both MIDI 1.0
and MIDI 2.0 messages and aims to offer an easy-to-read
interpretation of standardized message parts. In this sense,
particular attention is paid to the SysEx messages that im-
plement MIDI-CI communication in the context of MIDI
2.0. The tool was developed through the Web MIDI API, a
standard proposal by the W3C Audio Group currently sup-
ported by most web browsers, in particular the Chromium-
based ones and Mozilla Firefox. Possible uses range from
diagnosing issues with MIDI devices and connections to
investigating MIDI 2.0 concepts in educational scenarios.

1. INTRODUCTION

MIDI, standing for Musical Instrument Digital Interface, is
a well-known technical standard that, despite its decades-
long history, is still widely adopted in the field of elec-
tronic music generation and musical information descrip-
tion. The MIDI specification describes the communica-
tions protocol, the related digital interface, and the elec-
trical connectors designed to support a wide range of elec-
tronic music-oriented devices (e.g., musical controllers, syn-
thesizers, sequencers, etc.) [1]. About 12 years after the
release of MIDI 1.0 specification, a file format called SMF
(Standard MIDI File) was also standardized with the aim
of saving and reproducing sequences of MIDI messages
and related metadata [2].

A recent milestone in the evolution of this technology
is MIDI 2.0 [3], first released in early 2020. MIDI 2.0
represents an extension of MIDI 1.0 rather than a stand-
alone specification. In other terms, MIDI 2.0 does not
replace MIDI 1.0 but builds on its core principles, archi-
tecture, and semantics. The foundational architecture for
MIDI 2.0 expansion is described in the MIDI Capability
Inquiry (MIDI-CI) specification. MIDI 2.0 compatible de-
vices support bidirectional communication and the mutual
exchange of information and profiles. MIDI-CI lets such
devices agree to use extended MIDI capabilities beyond
those already defined in MIDI 1.0 while preserving back-
ward compatibility. In this way, MIDI systems can embed
both MIDI 1.0 and MIDI 2.0 devices so as to support the

Copyright: © 2023 Federico Avanzini, Vanessa Faschi, Luca Andrea Ludovico et
al. This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original author

and source are credited.

148

wide range of musical instruments and SW/HW tools re-
leased in the last decades.

Backward compatibility is implemented through the use
of System Exclusive, or simply SysEx, messages. This
family of MIDI messages is designed to transmit informa-
tion about specific functions often depending on the prod-
uct’s manufacturer and model. The internal freedom of-
fered by SysEx messages made it possible in the past to
compensate for some shortcomings of the MIDI 1.0 proto-
col by standardizing so-called universal SysEx messages,
accepted by all manufacturers and models interested in ad-
hering to certain standards (e.g., General MIDI). Please
note that SysEx messages can be made up of any num-
ber of bytes, potentially very large. SysEx messages were
already available in MIDI 1.0, thus using them to carry
MIDI 2.0 communication is a very simple solution to guar-
antee backward compatibility. One of the critical issues
with SysEx messages is that their low level of standard-
ization combined with their typically high number of bytes
make them difficult for the user to understand.

In this sense, a category of software tools known as MIDI
monitors can come in handy. A MIDI monitor aims to
let users view, analyze, and test MIDI data. Cook [4] de-
scribes it as a simple terminal program that displays MIDI
messages coming into your system in words rather than
numbers. When inserted into a MIDI layout, the moni-
tor displays incoming and outgoing MIDI messages in real
time.

The goals and applicability fields of this category of soft-
ware are multiple. First, a MIDI monitor can help diagnose
issues with MIDI devices or connections, which is partic-
ularly important for musicians who are not experts with
technologies. Software and hardware designers can ben-
efit from MIDI monitoring, too, in testing MIDI drivers
and applications. Finally, MIDI monitors can play a fun-
damental role in educational activities dealing with MIDI
since they show the byte values exchanged in MIDI com-
munication at a relatively low level of abstraction. ! Avail-
able MIDI monitors can be stand-alone products (e.g., the
tools by Morningstar, Morson, and Snoize) or modules in-
tegrated into more general software (e.g., Logic Pro, MIDI-
OX, Steinberg Nuendo).

This paper aims to describe a publicly available MIDI
monitor designed and implemented through the Web MIDI
API. Although the tool can be profitably used to analyze
MIDI 1.0 communication, the major novelty compared to
already existing alternatives is the attention paid to inter-

' The MIDI protocol is agnostic with respect to the transport layer,
thus a MIDI monitor shows the messages ignoring low-level aspects such
as the start and stop bit required by the electrical specification.

mailto:luca.ludovico@unimi.it
http://creativecommons.org/licenses/by/3.0/

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

preting the various parts that constitute MIDI 2.0 messages.
The remainder of the paper is organized as follows: Sec-
tion 2 will illustrate the technologies employed to develop
the MIDI monitor, Section 3 will describe such a web tool,
Section 4 will underline pros and cons, and, finally, Sec-
tion 5 will draw the conclusions.

2. EMPLOYED TECHNOLOGIES

In order to make our MIDI monitor easily available and
updatable, we chose to implement it in the form of a web
application. This category of software tools refers to ap-
plications accessed via a web browser over a network and
developed using browser-supported languages. For their
execution, web applications depend on web browsers [5].

The Web MIDI Monitor was developed using only client-
side formats and languages for web programming. In par-
ticular, the platform combines HTML and CSS for static
content and its presentation, respectively. In addition, its
active behavior is governed by JavaScript, a well-known
client-side programming language. Since no server-side
language is implied, the Web MIDI Monitor can operate
also in local mode on the user’s device.

Concerning the JavaScript code, one project is worth spe-
cific attention. The management of the connections and
the communication with the external MIDI system was re-
alized through the Web MIDI APIL, a W3C? Audio group
initiative that is currently striving to become an officially
recognized standard. At the moment of writing, the spec-
ification is at the stage of Editor’s Draft, i.e. a work-in-
progress document allowing the group to iterate internally
on its content for consideration [6]. Drafts have not re-
ceived a formal review and are not endorsed by W3C. Even
if not recognized as a standard so far, nowadays the Web
MIDI API is well supported by most web browsers.? In
this sense, a relevant exception is still represented by Ap-
ple Safari.

As reported in [6], this specification describes an API for
MIDI-protocol support which enables web applications to
enumerate and select MIDI I/O devices on the client sys-
tem and send and receive MIDI messages. By providing
access to a wide range of musical instruments, MIDI de-
vices, and compatible software tools, the Web MIDI API
enables both music and non-music MIDI applications. Con-
cerning the former aspect, the scientific literature reports
research works dealing with its direct use [7-9], higher-
level libraries based on it [10, 11], and experiments mixing
it with the Web Audio API, another JavaScript interface
developed by the W3C Audio Group [12]. On the other
side, the scientific literature has also explored applications
based on music concepts but addressing extra-musical as-
pects, e.g. the development of soft skills, problem-solving
attitude, and computational thinking abilities [13, 14].

3. THE WEB MIDI MONITOR

In this section, we will describe the software tool devel-
oped to perform MIDI monitoring via the web. Such a

2 World Wide Web Consortium, https://www.w3.org/
3 Source: https://caniuse.com/midi

149

®LoopBe Internal MIDI

stats | Control Change
b=

Channel 2 data CC number: 123 CCvalue:0
i AllNotesOFf
Bin: 10110001 0111101100000000 Dec: 1771230 Hex B17B00

®LoopBe Internal MIDI

stz
== | Program Change

Program number: 14
GM: Tubular

Channel 3 ==
brie

Bin:1100001000001110 Dec'19414 HexC20E

®LoopBe Internal MIDI

st Note-On Channel 3 @
iz b
Bin: 10010010 0011110000111100 Dec: 1466060 Hex 923C 3

®LoopBe Internal MIDI

st
yte

Note-Off Channel 3

ce
Bin: 10000010 0011110000000000 Dec:130600 Hex: 82 3C00

Figure 1. Example of a MIDI 1.0 message list.

platform, called Web MIDI Monitor, is publicly available
athttps://midimonitor.lim.di.unimi.it/.

3.1 Basic Functions

The Web MIDI Monitor aims to display in real-time the
MIDI messages arriving on all input interfaces recognized
in the client system. Since multiple input sources may be
available, the message’s input port is also displayed.

As an example, a monitoring session is shown in Fig-
ure 1. The list includes an All Notes Off (corresponding to
a specific Control Change), a Program Change, a Note-On,
and a Note-Off message. In accordance with the expected
functions of a MIDI monitor, the tool presents not only the
sequence of status and data bytes (in binary, decimal, and
hexadecimal format) but also a human-readable interpre-
tation of data. Flags and meaningful aggregations of bits
within a byte are highlighted (e.g., the most significant bit
to distinguish between a status and a data byte, or the low
nibble in the status byte of channel messages to identify
the current channel). When possible, numeric information
is matched against MIDI tables to offer a straightforward
interpretation to the user; in Figure 1, this is the case of
the CC number that identifies the AIl Notes Off message
within the Control Change family, the name of the instru-
ment for Program Change, and the note pitch translated
into Scientific pitch notation for Note-On and Note-Off.

Another goal when parsing MIDI information is to recon-
struct values that span across multiple bytes. It is the case
of the Pitch Bend Change message, where 2% detuning
levels are expressed on 2 data bytes and remapped onto the
range [—8192, 4-8191], or the scenario of MIDI Universal
IDs introduced in MIDI 2.0, that are pseudo-random 28-
bit values represented on 4 data bytes. This approach can
be further extended to the visualization of values that span
across multiple MIDI messages, as in the case of MIDI
time code that splits an SMPTE timecode into a series of 8
messages.

3.2 Advanced Features

The features listed above are present in most MIDI mon-
itors. A novelty aspect of our proposal is the use of web
technologies, but, apart from this, there are other charac-
teristics that are worth underlining.

https://www.w3.org/
https://caniuse.com/midi
https://midimonitor.lim.di.unimi.it/

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

The main motivation of the project is to provide the user
with better support to understand MIDI 2.0 messages. As
briefly mentioned in Section 1, MIDI 2.0 introduces the
so-called MIDI-CI communication that relies on suitably-
formatted universal SysEx messages. MIDI 2.0 specifi-
cation defines how to interpret a part of the data-byte se-
quence that, in a manufacturer’s SysEx message, would be
completely free and depending on implementation choices.
A notable example is the unique addresses of the sender
and recipient device, which must be reconstructed by com-
bining 4 bytes of data each; another case is the value of
MIDI profiles expressed in JSON format, which therefore
spans across numerous bytes to be interpreted as text char-
acters. In the mentioned scenarios, the mere list of bytes
that constitute the SysEx message, as shown by generic
MIDI 1.0-compatible monitors, would be hardly readable
by the user.

The general form of MIDI-CI messages, reported in hex-
adecimal values, is:
FO7Ecc0ODxx0lssssssssdddddddd [...]F7

Analyzing the message structure byte by byte:

* FO0 represents the Start of Exclusive message, as de-
fined by MIDI 1.0 specification;

* 7E identifies any non-real time universal SysEx, once
again in accordance with MIDI 1.0;

¢ cc is the channel identifier. Value 7F is reserved to
identify the whole MIDI port, namely all channels;

* 0D is the value of the Sub-ID #I field for a generic
MIDI-CI message. Sub-ID #1 and the following Sub-
ID #2 work together to specify the function and sub-
function of a universal SysEx.* This byte is what
turns a generic non-real time universal SysEXx, as al-
ready defined in MIDI 1.0, into a MIDI-CI message
for MIDI 2.0;

* xx is a placeholder for the Sub-ID #2 part that deter-
mines a more specific function with respect to Sub-
ID #1;

¢ the following byte provides the MIDI-CI version,
currently set to 1;

e the subsequent 4 + 4 bytes contain the MIDI uni-
versal IDs (MUIDs) of the source and destination
device respectively;

e the variable-length part represents the message’s pay-
load;

* finally, F7 stands for End of Exclusive.

Please note that the described structure is far more articu-
lated than in the case of typical MIDI 1.0 messages, whose
length ranges from 1 to 3 bytes (with the obvious excep-
tion of SysEx messages). Moreover, such a structure ig-
nores the content of the payload, which could be further

4The list of MIDI 1.0 supported values is available
https://www.midi.org/specifications-old/item/
table-4-universal-system—exclusive-messages.

at

150

decomposed into smaller information units. Taking into
account complexity and making MIDI 2.0 messages read-
able are the main aspects that motivated the release of a
new monitoring tool aware of the MIDI 2.0 extension. We
presented the generic MIDI-CI message structure in detail
because this internal division guided us in designing MIDI
2.0 visualization.

Minor features include the possibility to filter incoming
messages by input interface, include/exclude single mes-
sages or message families from the monitoring, export the
received data in Comma-Separated Values (CSV) format,
and set the color palette to improve visualization.

3.3 Using the Web MIDI Monitor

In order to see the Web MIDI Monitor in action, it is worth
clarifying some operating aspects.

First, the web browser has to be compatible with the Web
MIDI APL In this sense, the Web MIDI Monitor is sup-
ported also by mobile devices, provided that they have a
suitable browser installed.

Secondly, the web tool must be enabled to receive MIDI
messages, which means that: i) an upstream part of the
MIDI system is required to generate messages, and ii) the
client where the Web MIDI Monitor is running must have
at least one MIDI input port. The MIDI system to monitor
can be a full physical, virtual, or mixed one. The MIDI
layout can include both MIDI 1.0 and MIDI 2.0 devices.

Finally, in order to allow the management of SysEx mes-
sages by the Web MIDI API, the user is required to ex-
plicitly grant access to local MIDI devices. Usually, the
browser asks for such permission via a dialog window.

To see the Web MIDI Monitor in action, it is possible to
introduce it into a physical MIDI setup by making the host
PC talk with the other MIDI devices in the setup. The sim-
plest way to achieve such a mixed physical/virtual MIDI
system is to attach a MIDI controller to the computer via a
USB cable, provided that such a connection is supported
by the MIDI device, and employ the USB-MIDI trans-
port protocol. A more articulated scenario relies on the
use of an external MIDI computer interface that, in addi-
tion to IN/OUT ports for traditional 5-pin DIN cables, can
deliver MIDI messages via USB. For example, the Web
MIDI Monitor was tested by attaching a Roland PC200
master keyboard to an M-AUDIO Fast Track Pro interface,
in turn, connected to the computer via USB (see Figure 2).
The result of the test session shown in the figure includes
a Note-On and a Note-Off 3-byte message surrounded and
interleaved by a number of 1-byte Active Sensing messages
automatically produced by the Fast Track Pro to keep the
communication channel alive.

When no dedicated hardware is available, the simplest
way to enjoy the potential of the Web MIDI Monitor is to
launch a software MIDI controller and attach it to a vir-
tual MIDI port, which, in turn, is seen as a virtual input
by the browser app. Unfortunately, this approach is un-
likely effective to send (and, consequently, track) SysEx
messages. Rather, this scenario can be emulated using a
MIDI sequencer integrating a message editor, so as to en-
ter and send any kind of MIDI commands, including MIDI

https://www.midi.org/specifications-old/item/table-4-universal-system-exclusive-messages
https://www.midi.org/specifications-old/item/table-4-universal-system-exclusive-messages

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

Figure 2. Testing the Web MIDI Monitor with a physical
MIDI setup.

2.0 messages. Another option is to produce ad-hoc MIDI
messages via a dedicated application, such as the MIDI Sy-
sex Editor available at https://midi.toys/.

Since, at the moment of writing, few hardware devices
support MIDI 2.0 and the Web MIDI Monitor was specif-
ically designed for such an extension, the generation and
monitoring of MIDI 2.0 messages deserve particular atten-
tion. To this end, we have installed and configured a couple
of MIDI 2.0 software products designed to work together,
namely the Bome MIDI-CI Initiator and the Bome MIDI-
CI Responder (see Figure 3). In this way, we have simu-
lated a typical MIDI 2.0 information exchange, made of:

* a Discovery inquiry by the initiator;
* a Reply to Discovery inquiry by the responder;

* an inquiry of Property Data Exchange Capabilities
by the initiator;

e the Reply to Property Data Exchange Capabilities
by the responder;

* anumber of Get Property Data inquiries by the ini-
tiator and the corresponding Reply to Get Property
Data messages by the responder.

The interface of the Web MIDI Monitor (see Figure 4)
shows the alternating messages sent by the two devices on
their output ports. Each port is characterized by a different
color, shown on the left side of the message. The structure
of each message is interpreted and clearly presented to the
user. An example is provided by the 4+4 bytes dedicated
to the sender’s and receiver’s MUIDs.

4. DISCUSSION

In this section, we will critically analyze the strengths and
weaknesses of the Web MIDI Monitor.

The main advantage of implementing a MIDI monitor as
a web tool is the ease of embedding it into a (potentially
complex) MIDI system. MIDI communication does not

151

strictly require the 5-pin DIN connectors standardized by
the MIDI 1.0 specification, which are still present in most
MIDI musical instruments but are available on standard
PCs only through ad hoc interfaces (e.g., joystick ports on
old audio cards and external audio peripherals). Luckily,
current devices can receive and send MIDI data using re-
cent standard ports and formats through MIDI over USB,
Bluetooth, and Ethernet.

Another benefit of a web-based solution is the intrinsic
extensibility, with updates made available to users on a
rolling base. In the case of MIDI 2.0, which is a quite
recent standard extension, the possibility to refine mes-
sage visualization and management is fundamental, also
depending on the needs of developers and the release of
new products. For example, the only keyboard controller
on the market that claims to be “MIDI 2.0 ready”, namely
the Roland A-88MKII MIDI Keyboard Controller, never
mentions MIDI 2.0 in its operating manual. In the climate
of uncertainty that characterizes a moment in which the
standard is not yet considered mature by the market, the
possibility of quickly updating the MIDI monitor is a po-
tential success factor.

The Web MIDI API is a commonly accepted JavaScript
interface under development in the W3C context. On one
side, this constitutes a clear advantage, since the manage-
ment of MIDI messages and the connection with exter-
nal devices can occur at a higher level of abstraction. On
the other side, there are some potential drawbacks that are
worth remarking on. First, the client computer has to be
equipped with one of the compatible browsers, even if the
support of this API is getting more and more extensive.
Secondly, the management of some features typical of MIDI
communication is delegated to the design choices of the
Web MIDI API. Examples include how the running status
and the occurrence of real-time messages in the middle of
other messages are handled. Finally, the communication
delay introduced by putting a MIDI monitor in the middle
of a MIDI chain is a minor problem in educational and of-
fline debugging activities, but it could impact, e.g., a live-
performance scenario. A deeper insight into the Web MIDI
API would be beyond the scope of this paper. For a critical
discussion about its pros and cons, please refer to [15].

5. CONCLUSIONS

In this paper, we presented a browser app based on the
Web MIDI API to monitor MIDI messages. It is worth
noting that MIDI-CI messages are fully backward compat-
ible thanks to the adoption of MIDI 1.0 SysEx messages;
consequently, any MIDI monitor, even if developed before
the release of the MIDI 2.0 extension, would be able to
provide monitoring for MIDI-CI messages. Nevertheless,
in our opinion, it is important to have a free support tool ca-
pable to guide the user in understanding the standard parts
of these messages. To this end, the proposed Web MIDI
Monitor is made publicly available to users via the web.
Possible use modes include technical applications, such
as the debugging of MIDI communication in a scenario
that embeds both MIDI 1.0 and MIDI 2.0 devices, and
educational activities, allowing a better comprehension of

https://midi.toys/

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

MIDI-CI message exchange.

6. REFERENCES

[1] IMA, MIDI 1.0 Specification. Sun Valley, CA: Inter-
national MIDI Association (IMA), August 1983.

[2] MMA, The Complete MIDI 1.0 Detailed Specification.
Los Angeles, CA: MIDI Manufacturers Association
(MMA), 1996.

[3] MMA/AMEIL, MIDI 2.0 Specification. Association of
Musical Electronics Industry (AMEI) and MIDI Man-
ufacturers Association (MMA), January 2020.

[4] M. Cook, “Basic MIDI,” Arduino Music and Audio
Projects, pp. 31-47, 2015.

[5] S. Al-Fedaghi, “Developing web applications,” Inter-
national journal of software engineering and its appli-

cations, vol. 5, no. 2, pp. 57-68, 2011.

[6] C. Wilson and J. Kalliokoski, “Web MIDI API W3C
editor’s draft,” https://webaudio.github.io/web-midi-

api/.

[71 M. Walczak and E. Lukasik, “Generowanie, edy-
cja 1 transmisja wieloZzrédlowych strumieni audio
z wykorzystaniem WEB AUDIO API, WEBRTC i
WEB MIDI APL” XVIII Miedzynarodowe Sympozjum
Nowosci w Technice Audio i Wideo NTAV2020, pp. 9-

13, 2020.

[8] C. Gurtner, “Applications of audio and MIDI API

within a music notation editor,” in Web Audio Con-
ference WAC-2016, April 4-6, 2016, Atlanta, USA.
Georgia Institute of Technology, 2016.

[9

—

T. Bazin and G. Hadjeres, “Nonoto: A model-agnostic
web interface for interactive music composition by in-
painting,” in 10th International Conference on Com-
putational Creativity (ICCC 2019), UNC Charlotte,
North Carolina, 2019.

[10] S. Kachalo, “JZZ.js — a unified API for MIDI applica-
tions,” in Web Audio Conference WAC-2016, April 4-6,
2016, Atlanta, USA. Georgia Institute of Technology,

2016.

[11] J-P. Coté, “User-Friendly MIDI the Web
Browser,” in NIME 2022, jun 16 2022,
https://nime.pubpub.org/pub/user-friendly-midi-

in-the-web-browser.

in

[12] S. Stickland, R. Athauda, and N. Scott, “Design of a
real-time multiparty daw collaboration application us-
ing web midi and webrtc apis,” in Proceedings of the

International Web Audio Conference, 2019, pp. 59—-64.

[13] L. A. Ludovico, “The Web MIDI API in on-line ap-
plications for music education,” in Proceedings of the
Ninth International Conference on Mobile, Hybrid,
and On-line Learning (eLmL 2017), L. A. Ludovico
and A. M. F. Yousef, Eds. TARIA XPS, 2017, pp.

72-T71.

152

[14] A. Barate, L. A. Ludovico, and D. A. Mauro, “A web
prototype to teach music and computational thinking
through building blocks,” in Proceedings of the 14th
International Audio Mostly Conference: A Journey in

Sound, 2019, pp. 227-230.

A. Barate and L. A. Ludovico, “Web MIDI API: State
of the art and future perspectives,” Journal of the Au-
dio Engineering Society, vol. 70, no. 11, pp. 918-925,
2022.

[15]

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

ece Bome MIDI-CI Responder
bamn Bome MIDI-Cl Initiator o] Lome Bome MIDI-CI Responder o]

Local MUID: 0x56BDSCF (90953167) Local MUID: 0xS6DE307 (91087623)
Driver IAC Bus 2 / Driver IAC Bus 1

Driver IAC Bus 1 / Driver IAC Bus 2 >
MUID: Ox56DE307 (91087623) Bome MIDI-CI Responder (Bome Software GmbH & Co.KG) Discovery Responder Bome Software: model:0x5 %
Discovery Bome Software: madel:0x5 Profile Responder

LR
Profiles & Property Exchange Responder LN N
Property Exchange & Devicelnfo >
Devicelnfo >
ResourceList >
TX Discovery from @x56BDSCF (9€953167) to broadcast MUID: RX Discovery (v@x01) at MIDI IN "Driver IAC Bus 1" from @x56BD5CF (9@953167) to broadcast MUID:
manufacturer=0x002132 family=0x0001 model=0xB006 version=0x00060000 cats=bOBAOBOOE (none) manufacturer=0x002132 family=0x0001 model=0x0006 version=0x00060000 cats=blOAOEEEE (none)
receivesize=512 receivesize=s12
TX: F@ 7E 7F 0D 70 @1 4F 2B 2F 2B 7F 7F 7F 7F 00 21 32 01 00 06 00 00 00 0G 00 0O 00 04 00 00 F7 TX DiscoveryReply from 0xS6DE307 (91087623) to OxSGBDSCF (90953167):
RX: FO 7E 7F 0D 71 61 07 46 37 2B 4F 2B 2F 2B 00 21 32 01 80 05 00 69 00 06 80 OC 00 84 00 00 F7 manufacturer=6x002132 family=0x0001 model=0x0005 version=0x00060000 cats=beeee1100 (Profiles,
RX DiscoveryReply (vex0l) at MIDI IN 'Driver IAC Bus 2" from OxS6DE307 (91087623) to @xS6BDSCF PE) receiveSize
(90953167) © RX GetCaps from MUID @x56BD5CF (90953157) remote device supports 1 simultaneous streams.
manufacturer=0x002132 family=0x0001 model=0x0005 version=0x00060000 cats=bOOAE1100 (Profiles, PE) TX GetCapsReply to @x56BDSCF (96953167)
receiveSize=512 TX GetPropertyReply('Resourcelist’
TX GetCaps to @x56DE307 (91087623) header: {"status":200,"cacheTime":3@}
TX: F@ 7E 7F 6D 3@ @1 4F 2B 2F 2B 07 46 37 2B 01 F7 data [(“resuur(e" "DeviceInfo"}]
RX: F@ 7E 7F 6D 31 @1 07 46 37 2B 4F 2B 2F 2B 01 F7 - TX Header: {"status":200,"cacheTime"
RX GetCapsReply from MUID Ox56DE307 (91087623): remote device supports 1 simultaneous streams. TX request slot B stream #1 to OXSSBDSCF (98953167) : sending chunk 1/1 (header:29 bytes
TX GetProperty('ResourceList’) to MUID: @x56DE307 (91087623) pay\oad 27 bytes)
- TX Header: {"resource":"Resourcelist"} -- TX request slot 0 stream #1 to ©x56BDSCF (98953167): last chunk 1 sent, reply (payload 27
-- TX request 510(© stream #1 to Ox56DE307 (91087623): sending chunk 1/1 (header:27 bytes bytes) fully sent -- request done.
payload:0 byte: TX GetPropertyReply('DeviceInfo')
TX: F@ 7E 7F BD 34 01 4F 2B 2F 2B ©7 46 37 2B 01 1B 00 7B 22 72 65 73 6F 75 72 63 65 22 3A 22 52 65 header: {"status":200,"cacheTime":30}
73 6F 75 72 63 65 4C 69 73 74 22 7D 01 00 01 00 00 00 data: {"manufacture "Bome Software GmbH & Co.KG","family":"MIDI Software
RX: FO 7E 7F 0D 35 01 07 46 37 2B 4F 28 2F 2B 01 1D 00 7B 22 73 74 61 74 75 73 22 3A 32 30 30 2 22 MIDI-CT
63 61 63 68 65 54 69 6D 65 22 3A 33 30 7D 01 00 ©1 00 1B 00 5B 7B 22 72 65 73 6F 75 72 63 65 22 3A Responder® , "version”:"8.6.0", "manufacturerId": 0,33, 501" fanilyld": [1,8] ,"modelld" [5,0], "versio
22 44 65 76 69 63 65 49 6E 66 6F 22 7D 5D F7 nld":[0,0,6,0]
RX GetPropertyReply('Resourcelist’): with 1 properties - TX Header: {"status":200,"cacheTime":30}
TX GetProperty('DeviceInfo’) to MUID: ©x56DE307 (91087623) -- TX request slot 0 stream #2 to ©x56BD5CF (98953167): sending chunk 1/1 (header:29 bytes
- TX Header: {"resource"”:"Devicelnfo"} payload:203 bytes)
-- TX request slot 1 stream #2 to ©x56DE307 (91087623): sending chunk 1/1 (header:25 bytes -- TX request slot O stream #2 to ©x56BD5CF (98953167): last chunk 1 sent, reply (payload 203
payload:@ bytes) bytes) fully sent equest done.
TX: F@ 7E 7F 6D 34 @1 4F 2B 2F 2B 07 46 37 2B 02 19 6@ 7B 22 72 65 73 6F 75 72 63 65 22 3A 22 44 65 RX Profile Inquiry from @x56BD5CF (98953167) on port channel
76 69 63 65 49 6E 66 6F 22 7D ©1 00 1 00 60 00 F7 TX Profile Inquiry Reply to @x56BD5CF (98953167) on port channel
TX Profile Inquiry on port channel to 0x56DESO7 (91087623) -> @ enabled and @ disabled profiles
TX: F@ 7E 7F @D 20 @1 4F 2B 2F 2B 07 46 37 2B F.
RX: F@ 7E 7F @D 35 @1 07 46 37 2B 4F 2B 2F 2B BZ 1D 00 7B 22 73 74 61 74 75 73 ZZ 3A 32 ZB 39 ZC 22
63 61 63 68 65 54 69 6D 65 22 3A 33 30 7D 61 00 01 00 4B 01 7B 22 6D 75
72 22 3A 22 42 6F 6D 65 20 53 6F 66 74 77 61 72 65 20 47 6D 52 48 20 ZS 20 43 SF ZE AE 47 ZZ IC 22
66 61 6D 69 6C 79 22 3A 22 4D 49 44 49 20 53 6F 66 74 77 61 72 65 22 2C 22 6D 6F 64 65 6C 22 3A 22
42 6F 6D 65 20 4D 49 44 49 2D 43 49 20 52 65 73 70 6F 6E 64 65 72 22 2C 22 76 65 72 73 69 6F 6E 22

3A 22 30 2E 36 2E 30 22 2C 22 6D 61 6E 75 66 61 63 74 75 72 65 72 49 64 22 3A SB 30 2C 33 33 2C 35
30 5D 2C 22 66 61 6D 69 6C 79 49 64 22 3A 5B 31 2C 30 5D 2C 22 6D 6F 64 65 6C 49 64 22 3A 5B 35 2C
30 5D 2C 22 76 65 72 73 69 6F GE 49 64 22 3A 5B 3@ 2C 30 2C 36 2C 30 5D 7D F7
RX GetPropertyReply('DeviceInfo'): with 8 properties

Figure 3. The Bome MIDI-CI Initiator and the Bome MIDI-CI Responder.

@ oo ot wonor x| %

& © hupsiimidimoniorm dLunimi timonior e

0/01010114] 0[0101141

(1[1150000] [0[{TTT150][o[1TT1711] 0[600TTa1] 0[1T10001] 0[1000TT0] (o[0T TOTT] [o[0T0TOT o[T00TTIT]

o [1 [EiiI0/00/0] [0 [IEEEN0] o [[o [oeoimaon [o [Oiio00/0] (o [ololiei00 (o oo o [oEomoE [o [OEommaD| o [oimomoEE [o [oeno/E o [Hoe0mmo| o [DEsomn o PEoEmoE| o [0l0000E |1 [HNoEmNT

.11110000\0 [1111110] 0[1111111] 0[0001101][0[0110001](0[0000001] 0[0000111] 0[1000110][0[0110111] 0[0101011] 0[100%111] 0[0101011]0[0101111] 0[0101011] 0[0000001] 1[1310111
o 1 [IIIE0I0010] (o |G| (o (DI o [GooEmeNE o [oEEoEoi0) o [ooe000NE (o JHo0EEETE |o [OEoEoE o [oEoEEEE [[oRomeE o [SRo0EEE | [He00EEo] o ORI o [oEoEmoEE (o [ooe0o0NE o oo (o o

® 1[1310000] 0[1311410] [0[1131411] 0[0001101][0[0110101][0[6000001] 0[0000111|

CFCILEEL) o[oroToT1] o[00tTIy

0[01010114] 0[0204111] 0[0101011] 0[0000004] 0[00%1101] 0[0]
] Jjuooon [O O] [o S o JOOH0N) [EEOM0D] o [oRO00i0E o OB (o [OROoMom) o oMo o JOMOom] [DR o S000/E0] o [ORE0M) o [DEOM0E) (© [SO00H] o [0
nluoooo\o [£111110][0[1111111] 0/0001101] 0/0110101(0[0000001] 0/0000111] 0/1000110| 0[0110111| 0[0101011] 0[1001111] 0[0101011| 0[0101111] 0/0101011] 0[0000010| 0[0011101] 0[0]
11110000\0 [1111110][0[1111111] 0[0001101]0[0100000] 0[0000001] 0[1001111] 0[0101011][0[0101111] 0[0101011] 0[0000111] 0[1000110] 0[0110111] 00101011] 1[1110111

.11110000 ouuun\o:unn oJoroloiaTio] [0 JorT 010/3) [0 [010/0/0/0/0/3] [0 [0l0/0/0/EE] [0 [F000/@ 0] [0 [OLomaE] [0 [Oomod) [o[Ho0Tad] [0 [Eomomd) [o[0Ho@aad| [0 [o@omond) [o[0/0/00/000] [0 [0/00/010/00] [0 [0

000~ 000

o

Figure 4. Monitoring MIDI 2.0 message exchange through the Web MIDI Monitor.

153

	Binder3.pdf
	SMC2023_cover_page

	SMC2023_proceedings.pdf
	preface.pdf
	toc.pdf
	pc.pdf
	paper_199
	paper_417
	paper_568
	paper_631
	paper_815
	paper_986
	paper_1119
	paper_1314
	paper_1411
	paper_1454
	paper_1717
	paper_1956
	paper_2102
	paper_2164
	paper_2465
	paper_2722
	paper_2881
	paper_2999
	paper_3407
	paper_3854
	paper_4133
	paper_4386
	paper_4772
	paper_5030
	paper_5060
	paper_5179
	paper_5282
	paper_5331
	paper_5469
	paper_5588
	paper_5641
	paper_5662
	paper_5727
	paper_5923
	paper_6100
	paper_6312
	paper_6752
	paper_6896
	paper_7179
	paper_7290
	paper_7327
	paper_7416
	paper_7440
	paper_7462
	paper_7494
	1. INTRODUCTION
	Overview and Conceptualisation

	2. Theoretical framework: Auralisation
	2.1 Geometry-Based Auralisation
	2.2 Perception-Based Auralisation

	3. research questions and methodology
	4. experiment procedure
	4.1 The Two Experiment Versions Explained – Differences in Music Spatialisation
	4.2 Spatial Music Static Auralisation
	4.3 Spatial Music Object-Based Auralisation
	4.4 Adaptive Music Auralisation in the Second Experiment Version
	4.5 Hybrid of Auralisation Techniques

	5. Results of the qualitative inquiry
	6. Discussion
	7. conclusions
	8. REFERENCES

	paper_7681
	paper_7850
	paper_8079
	paper_8112
	paper_8117
	paper_8127
	paper_8412
	paper_8636
	paper_8654
	paper_9431
	paper_9594
	paper_9600
	paper_9619
	paper_9832
	paper_9850
	paper_9932
	keyword_index.pdf
	author_index.pdf

