
Frontiers in Bee Science

OPEN ACCESS

EDITED BY

Peter Kevan,
University of Guelph, Canada

REVIEWED BY

Phil Lester,
Victoria University of Wellington,
New Zealand
Michael Lattorff,
University of Nairobi, Kenya

*CORRESPONDENCE

Carlo Polidori

carlo.polidori@unimi.it

RECEIVED 30 July 2023

ACCEPTED 13 November 2023

PUBLISHED 28 November 2023

CITATION

Polidori C, Ferrari A, Ronchetti F,
Tommasi N and Nalini E (2023) Warming
up through buildings and roads: what we
know and should know about the urban
heat island effect on bees.
Front. Bee Sci. 1:1269600.
doi: 10.3389/frbee.2023.1269600

COPYRIGHT

© 2023 Polidori, Ferrari, Ronchetti, Tommasi
and Nalini. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Perspective

PUBLISHED 28 November 2023

DOI 10.3389/frbee.2023.1269600
Warming up through buildings
and roads: what we know and
should know about the urban
heat island effect on bees

Carlo Polidori1*, Andrea Ferrari 1, Federico Ronchetti2,
Nicola Tommasi3 and Elia Nalini1

1Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy, 2Department
of Biosciences and Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of
Milan, Milan, Italy, 3ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-
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Urbanization leads to cities having higher temperatures than surrounding non-

urban areas [this is known as the urban heat island (UHI) effect]. Very little is

known about the impacts of the UHI effect on bees, despite the importance of

temperature on many aspects of bees’ life suggesting that these may be not

negligible. In this study, we aimed to highlight how the UHI effect could impact

relevant functional traits of bees in cities, proposing several ad hoc hypotheses

for traits that have thus far been investigated only in few studies or not at all,

based on what we know from non-urban studies. The UHI effect was shown to

influence bee body size, and generally tended to reduce the body size of bees in

cities. Urban temperature may also affect bees’ wing morphology, and thus their

overall flight morphology parameters. Individuals may be more brightly colored

in cities. Bee ommatidial size and the number of antennal thermoreceptors they

have may be smaller and fewer, respectively, in cities than in non-urban areas. As

expected, because urban bees face a higher risk of desiccation, higher

proportions of alkanes and longer main-carbon chain lengths are expected in

their cuticular hydrocarbon (CHC) profiles. Stress biomarkers can also occur at

greater concentrations in bees in cities and specific bacteria in the bee gut may

occur at lower abundances. Warm urban temperatures may impact the life cycle

of pathogens by reducing their proliferation. Aggression levels may be increased,

and eusocial species may present more worker phases per year due to the UHI

effect. All of these proposed impacts could be likely more visible in solitary and

primitively eusocial bee species, which are those suspected to have a more

limited dispersal ability. Comparative studies would help in the proper testing of

these hypotheses.
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1 Introduction

Urbanization, defined as the expansion of cities, represents one

of the main drivers of land-use change since the 21st century and is

predicted to increase in the future (Kalnay and Cai, 2003).

Approximately 3% of the earth’s surface is covered by urban land,

and more than 50% of the global population lives in cities, across an

urban surface that has expanded by 9,687 km2 per year in the last

few decades (Grimm et al., 2008; Liu et al., 2014; Liu et al., 2020).

More than 95% of the net increase in the global population will be in

cities, and individual cities are rapidly growing, creating new

megacities (i.e., those containing > 10 million people) (Grimm

et al., 2008). Hence, the impact of urbanization on earth is currently,

and will continue to be, enormous. This seems to be especially true

for megacities in the southern hemisphere, which are already

characterized by having higher greenhouse gas emissions than

those in the northern hemisphere (Venter et al., 2021). In

addition to the reduction of green areas and fragmentation of the

remaining green patches, urbanization is well known to produce a

non-negligible rise in temperature within cities compared with in

the surrounding non-urban areas. Such climatic alteration—which

elevate city temperatures approximately 2°C–4°C (sometimes even

more)—is called the “urban heat island effect” (hereafter, the UHI

effect) (Deilami et al., 2018) and is due to both the impervious (i.e.,

concrete) surface acting as a heat sink (Cheela et al., 2021) and the

loss of tree cover (Rakoto et al., 2021). We note again that such

increases in temperature in the urban matrix are predicted to be

more severe in the future for cities in the Global South (Huang et al.,

2019). Given the extent of this temperature shift, it is thus not

surprising that in many studies, the UHI effect was associated with

variations in the abundance, diversity, phenology, and physiology of

both plants and animals.

Due to the important ecosystem service provided, bees

(Hymenoptera: Apoidea)—the most important group of pollinators

in cities (Lowenstein et al., 2015)—are increasingly receiving

attention in the context of urbanization, though mostly from a

community ecology point of view (e.g., Biella et al., 2022; Ferrari

and Polidori, 2022; Geppert et al., 2023). Indeed, recent literature

reviews clearly highlight the large amount of diversity and abundance

data for urban bees accumulated in the last 20 years (e.g., Winfree

et al., 2011;Wenzel et al., 2020; Brant et al., 2022; Ferrari and Polidori,

2022). On the other hand, there has been much less research

published on the effect of urbanization—and in particular on the

UHI effect—on bee functional traits (Buchholz and Egerer, 2020),

spanning morphology, physiology, and behavior, among other traits

(Brant et al., 2022). All we know regarding the UHI effect on bees

comes from studies on a very limited number of species and traits

(e.g., Hamblin et al., 2017; Burdine and McCluney, 2019; Zeballos

et al., 2022). However, since temperature is a key factor in the life of

bees (Atkinson, 1994), it is expected that the UHI effect will impact

bees in cities, and a range of their traits, in a variety of ways.

From this perspective, we aimed to highlight how the UHI effect

could impact the essential functional traits of bees in cities. We

present the few available, previously published studies on the topic,

and then propose ad hoc hypotheses for traits not yet investigated,
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based on what we know from non-urban studies on bees and on

other organisms (Figure 1).
2 External morphology of bees and
the UHI effect

2.1 Body size

Body size is a crucial functional trait in bees, as it is positively

correlated with dispersal abilities, fecundity, foraging efficiency, and

other fitness-related traits (e.g., Araújo et al., 2004; Bosch and

Vicens, 2006; Benjamin et al., 2014). It is possible that this is the

main reason why body size is by far the most investigated functional

trait of wild bees in relation to the UHI effect (Buchholz et al., 2020).

In such studies, the general hypothesis is that increasing

temperatures due to the UHI effect should induce shrinkage in

the body size of bees [Bergman’s rule, Bergmann (1847)]. This

could occur through two different mechanisms: either higher

temperatures may accelerate the larval development of the bees

(Howe, 1967), or it could be an adaptation to hotter urban

landscapes, in accordance with Bergmann’s rule. The evidence

supporting the body size-shrinking hypothesis in urban areas has

been obtained at the intraspecific level in different species and

countries: in Europe on different Bombus species (Apidae)

(Theodorou et al., 2021; Tommasi et al., 2022), and in central

America on two Euglossa species (Apidae) (Garlin et al., 2022). The

variation in intertegular distance (proxy of body size) reached up to

5% in an approximate gradient of 10°C (Bombus terrestris,

Theodorou et al., 2021). However, some studies found no

variation in body size, for example in an Anthophora (Apidae) in

Europe (Banaszak-Cibicka et al., 2018); or found larger bees (i.e.,

the opposite trend) in more urbanized landscapes such as in north

America in a Bombus species (Austin et al., 2022). The data on body

size variation at a community levels support this hypothesis also in

time and space. For example, the species richness of large bees

(measuring > 15 mm) was higher—and the species richness of

medium-sized species (measuring 8 mm–15 mm) lower—in larger

(hotter) cities (Ferrari and Polidori, 2022). In addition, Herrera

et al. (2023) found a reduction in mean body size in a community of

solitary wild bee species across time. This somewhat contrasting

evidence might be due to the tested species. In fact, most of the

studies have been performed on single or congeneric species

(usually Bombus), with only a few studies conducted on solitary

species. In addition, such contrasting patterns may arise as a result

of particular trade-offs between body size and other traits, so that

the expected effects might not be always seen. For example, limited

food availability either leads to smaller individuals or the

production of more males (the cheaper sex in bees), preserving

female body size (Torchio and Tepedino, 1980). Furthermore, it is

still largely unclear if body size reduction in urban environments is

due to the effects of temperature on larval development or on

genetic processes (i.e., plasticity vs. adaptation). In at least one study

on bumblebees, body size clines were observed across the urban

gradient, despite a lack of population genetic structure (Austin et al.,
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2022). Nonetheless, analyses including both physiological

assessment and the detection of possible genetic signatures in

urban vs. non-urban populations would be highly welcome. In

addition, studies would be easily directed to abundant species of

certain bee genera such as Andrena (Andrenidae), Bombus

(Apidae), Halictus, and Lasioglossum (Halictidae), or Osmia and

Megachile (Megachilidae) in Europe. Finally, one should consider

that variations in bee body size may be differently driven

accordingly to the actual size of the bee species and its thermal

tolerance. This highlights the need to further investigate this

phenomenon, considering as many bee genera, sizes, and cities

as possible.
2.2 Wing morphometry and
flight morphology

Morphological variation driven by temperature shifts may also

occur in wings. Wings are known to respond to environmental
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changes (Hayes et al., 2019) through subtle variations in their

bilateral symmetry (Møller and Swaddle, 1997). This fluctuating

asymmetry (FA) is commonly considered to reflect developmental

instability and it is increasingly used as an indicator of

environmental stress (Benı ́tez et al., 2020). It is therefore

hypothesized that increasing temperature due to the UHI effect

may increase the stress during the development of the larvae, and

hence the wing FA. The existing studies, however, yield contrasting

results. For example, Tommasi et al. (2022) found increasing FA in

hotter urban areas in only one of the two Bombus species

investigated, whereas Banaszak-Cibicka et al. (2018) found no

variation in wing asymmetry along an urbanization gradient in an

Anthophora species. We note again that this contrasting evidence

may be the result of the investigated species. As different species

have different thermal tolerance limits, the UHI effect may act as a

high or low stress factor. This highlights a general lack of knowledge

about what these tolerance limits are, which prevents us from

knowing, or even estimating, how close species are to this

threshold and thus how stressed they might be.
FIGURE 1

Schematic graphical representation of the proposed impacts of the UHI effect on bee functional traits. An asterisk marks the traits for which an effect
of the UHI was detected in at least one urban study on bees. All the other proposed impacts are hypothesized following either urban studies on
other animal groups or non-urban studies on bees and other insects. L, length; A, area; N, number; T, time; ROS, reactive oxygen species; GM, gut
microbiome. An up-directed arrow identifies a positive effect of the UHI on the trait, whereas a down-directed arrow identifies a negative effect of
the UHI on the trait. For more details on the different hypotheses, please see the text.
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Allen’s hypothesis states that higher temperatures favor longer

and less-thick appendages and meets some confirmation in several

insect species (e.g., Shelomi and Zeuss, 2017). This may in turn

affect two parameters used as proxy of the flight abilities, which are

based on wing morphology. Wing loading (WL) is the ratio between

the body weight and wing area; lower values minimize the energetic

cost of flight and improve flight maneuverability (Marden, 1987).

The aspect ratio (AR) is the relative front-to-back width of the wing

relative to its length (i.e., narrow vs. broad); higher values (i.e.,

longer and narrower wings) are associated with better flight

maneuverability (Danforth, 1989). Bee wing morphology has

rarely been investigated in urban contexts, and we are aware of

no studies that have considered WL and AR. Beasley et al. (2019)

studied wing size in a solitary bee along an impervious surface

gradient (i.e., a proxy of urbanization, but not necessarily for the

UHI effect) without finding any significant differences. Examples

from other temperature gradients might be useful in guiding future

urban-based studies. For example, Lozier et al. (2021) found

reduced wing loading in colder environments in a Bombus species

along an altitudinal gradient. If this trend applies in urban contexts,

then bees would have a higher WL in cities, negatively affecting

them. On the other hand, if Allen’s rule applies to urban bees, then

AR would be increased in cities, favoring flight ability. Since WL

and AR allometrically scale with body size in bees (Marden, 1987;

Danforth, 1989), future studies should focus on conducting

comparative analyses of flight morphology in species with

different body sizes.
2.3 Melanism

Melanins (eumelanin and pheomelanin) confer darker colors,

such as black, red, or brown, to animals, including bees (Polidori

et al., 2017; Popadić and Tsitlakidou, 2021). The melanism

variations can be explained by two main rules: the Gloger’s rule

(Gloger, 1833) and the thermal melanism hypothesis (e.g., Lusis,

1961; Clusella-Trullas et al., 2008). The first rule states that animals

tend to be darker in habitats with more intense solar ultraviolet

(UV) radiation (since darker surfaces are more protected from UV

radiation) and/or humid environments (since darker surfaces may

be more protected against degrading bacteria) (Delhey, 2019). The

second hypothesis states that colder habitats select for melanic

individuals since they can absorb more light and become hot faster

than lighter individuals. Thus, darker individuals may have an

advantage over lighter ones (Forsman, 2011).

The color variation associated with the UHI effect has never been

investigated in bees. In the wasp Vespula vulgaris (Vespidae), there

are differences in the frequency of color morphs in different climatic

conditions (Badejo et al., 2018) and between urban and rural areas

(Badejo et al., 2020), thus suggesting that the increased temperatures

in urban spots can impact the pigmentation of the wasps. Other

investigations have been carried out along wide geographical

gradients. For example, more melanic species of Polistes inhabit

colder latitudes and altitudes more than the brighter species, thus

supporting the thermal melanism hypothesis (de Souza et al., 2017;
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de Souza et al., 2020). Similarly, honeybees are darker in colder

climates (Ruttner, 1988). Laboratory experiments also support the

thermal melanism hypothesis (Pereboom and Biesmeijer, 2003). In

that single study, carried out on stingless bees (Apidae: Meliponini),

paler bees warmed up less rapidly and had lower temperature

excesses than darker bees, both in interspecific and intraspecific

comparisons. Therefore, new studies should aim to test for the two

alternative hypotheses on melanism variation in urban

environments, considering bee species with different colorations

and body size. Furthermore, attention should be given to which

type of pigment is responsible for the coloration, as eumelanins

(which confer black color) and pheomelanins (which confer yellow

to red colors) are both detected in bees (Polidori et al., 2017), and are

predicted to increase (the former) or decrease (the latter) with

humidity (Delhey, 2019).
2.4 Sensory system

The bee sensory system processes both internal and external

stimuli, through signal transfer from sensory receptors to the brain.

The main receptors are the light/visual detectors, the

mechanoreceptors, the chemoreceptors, and the temperature

receptors (Wyatt, 2014; Souto et al., 2022). Eyes, ocelli, and

antennae are the main structures bearing one or more types of

these receptors.

Concerning visual system, no studies were carried out in urban

habitats. The limited evidence suggests that insects respond to

higher developmental temperatures by reducing cell size, because

of the high demand for oxygen in such conditions. Kierat et al.

(2017) manipulated the thermal conditions inside the nests of a

solitary Osmia species (Megachilidae) and found that ommatidial

size, a proxy for general cell size in insects (Blanckenhorn and

Llaurens, 2005), decreases in response to a higher temperature.

Hence, the UHI effect may lead to bees with decreased ommatidial

size, compared with non-urban populations. Smaller ommatidia, in

turn, may impact bee movements in flight, though not necessarily

negatively. Indeed, the interaction between ommatidia size and

number either increases light capture (larger but fewer ommatidia)

or image resolution (smaller but more ommatidia) (Land, 1997).

However, the link between ommatidial size and flight behavior is

not well understood, and we need new studies to properly test for

this hypothesis.

Concerning antennal system, bees possess a wide range of

sensillar types with a variety of functions (Chapman, 2013).

Although density and morphology of the sensilla was shown to be

correlated in bees with diet (Polidori et al., 2020), kleptoparasitic

lifestyle (Wcislo, 1995), and sociality (Wittwer et al., 2017), none

addressed the UHI effect on the antennal sensory system of bees. In

a study on the socially polymorphic sweat bee Halictus rubicundus

(Halictidae), a species whose social behavior depends on climate

(Field et al., 2010), it was found that bees from a mid- and northern

latitude possess more of hygro/thermoreceptive sensilla than bees

from the southern areas (Boulton and Field, 2022). Hence, future

studies should test if bees possess lower numbers or densities of
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hygro/thermoreceptive sensilla in urban environments, compared

with rural or natural ones.
3 Physiology of bees and the
UHI effect

3.1 Cuticular hydrocarbon profiles

The primary and ancestral function of the cuticular

hydrocarbon (CHC) layer on bees’ cuticle is to provide

waterproofing and, hence, desiccation resistance (Blomquist and

Bagnères, 2010). The CHC profile comprises a mixture of saturated

compounds (i.e., n-alkanes, methyl-branched alkanes) and

unsaturated hydrocarbons (i.e., alkenes). The former are

especially important when facing temperature increases and

desiccation risk, as they aggregate more tightly than unsaturated

hydrocarbons (Gibbs and Pomonis, 1995). Furthermore, a CHC

profile with a higher mean chain length provides a better resistance

to increased temperatures (Menzel et al., 2017).

Although we know that CHC profile characteristics vary

according to these expectations at both inter- and intraspecific

level, available studies in insects have focused on large geographical

scales (latitudinal or altitudinal) (Menzel et al., 2017; Rajpurohit

et al., 2017; Mayr et al., 2021). In bees, studies are still rare. In one

study on alpine Bombus, Maihoff et al. (2023) showed that workers

translocated to a warm region tended to possess longer

hydrocarbon chains than bumblebees translocated to cool regions.

In addition, Mayr et al. (2021) found that Lasioglossum species

(Halictidae) at higher elevations along Mount Kilimanjaro

(Tanzania) possess higher proportions of alkanes. No evidence is

available for similar trends along urbanization gradients. Because it

was shown that CHC profiles can alter plastically in the short term

under changing climatic conditions (Menzel et al., 2018), we can

hypothesize that the UHI effect may shift CHC profiles in bees, not

only as a long-term adaptation, but also as a rapid acclimation.

Interestingly, since CHC profiles are greatly involved in chemical

communication (Blomquist and Bagnères, 2010), such a shift may

potentially affect behavioral interactions, though new studies are

necessary to properly test for this hypothesis.
3.2 Molecular biomarkers of stress

Reactive oxygen species (ROS) are normal byproducts of

aerobic metabolism, which can increase disproportionately under

environmental stresses. Heat stress is trigged by temperatures that

exceed the optimum growth conditions and it is a problem under

the current global warming (Medhaug et al., 2017). Heat stress

generates ROS, such as hydroxyl radicals, hydrogen peroxide

(H2O2), and superoxide anions, which if they occur at high levels

can lead to damage to DNA, proteins, and lipids, and an increase in

age-related diseases and aging, and, ultimately, to cell death (Slimen

et al., 2014). However, studies on the deleterious effects of heat
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stress on bees are still scarce. In honeybees, heat stress can impact

growth and development of larval and pupal stages, and their ability

to learn and forage as adults. In addition, it can promote senescence

and death (Tautz et al., 2003; Abou-Shaara, 2015; Abou-Shaara

et al., 2017). It could be expected that ROS are overproduced in the

warmer urban conditions, negatively affecting bees; therefore, this is

a new analysis that should be performed through both laboratory

a s s a y s and phy s i o l o g i c a l i n v e s t i g a t i o n s on fi e l d -

collected individuals.
4 Microorganisms associated with
bees and the UHI effect

4.1 Symbionts

The symbionts in the gut of bees [i.e., the gut microbiome

(GM)] can be vulnerable to increasing temperatures, and responses

can be species specific. An analysis on honeybees and bumblebees

showed that the GM of the latter tend to be less heat tolerant than

that of honeybees (Hammer et al., 2021). Such a greater effect of the

UHI on the GM in primitively eusocial species, such as bumblebees,

and solitary species, could be expected since the bacterial

community in the honeybee is notably very simple and conserved

(Kwong and Moran 2016), compared with that of other bees. In

fact, the GM of solitary species is known to be more dependent on

the environment (Keller et al., 2021). Some bee symbionts can

survive at temperatures up to 52°C, whereas others are not able to

grow below a certain thermal limit (29°C). On the other hand,

functionally important bacteria, such as Apilactobacillus, are

overrepresented in areas with lower annual temperatures (Nguyen

and Rehan, 2022). Moreover, in honeybees there is a seasonal

dominance of the non-core bacteria Bartonella, which is

associated to dietary shifts caused by low temperatures in winter

(Li et al., 2022a). In Ceratina (Apidae) from different climatic areas

across Australia a variation in microbiome composition was

observed (McFrederick and Rehan, 2019). Lasioglossum bees also

change the gut microbial communities along an elevation gradient,

this is very likely due to the constraints in the availability of food

resources in the areas with harsher temperatures (Mayr et al., 2021).

To date, no studies have considered the effects of UHI on the GM of

bees. In the future, it could be tested if relevant bacteria may occur

at a lower, non-optimal abundance at the higher urban

temperatures, thus in turn negatively affecting bees.
4.2 Pathogens

The disturbance of the host–parasite equilibrium can produce

unpredictable consequences for bee communities (Goulson et al.,

2015; Meeus et al., 2018; Piot et al., 2022). Temperature is believed

to have species-specific effects on both hosts and pathogens, thus

influencing ecological interactions (Wojda, 2017; Meeus et al.,

2018). Despite several researchers attempting to explore the
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impact of urbanization on bee epidemiology (Cohen et al., 2022;

Ivers et al., 2022; Tommasi et al., 2023), to our knowledge, none of

them have evaluated the UHI effect on host–pathogen dynamics

in bees.

However, insights on the potential impacts come from non-

urban studies. In a Bombus species (Apidae), Crithidia bombi

infection intensity was found to decrease with an increasing

temperature (Palmer-Young et al., 2019), and it seems that fungal

or viral infections ameliorate with relatively high temperatures in

honeybees (Martıń-Hernández et al., 2009; Dalmon et al., 2019). At

the same time high temperatures reduce the viability of pathogens,

especially viruses, present on flowers. Given that flowers are known

to act as a platform for pathogen dispersal between bees (Alger et al.,

2019) warmer temperatures may reduce their transmission (Piot

et al., 2022). Furthermore, high temperatures may also shape the

host–parasite equilibrium, thus in turn altering the susceptibility of

hosts toward infections. InMegachile rotundata (Megachilidae), for

example, higher temperatures promote the expression of immune

response genes, suggesting a positive effect of warmer temperatures

due to the improved efficiency in activating infection prevention

systems (Xu and James, 2012). Similarly, the expression of

antimicrobial peptide genes was found to increase in response to

increasing temperature in Apis mellifera and Apis cerana (Li

et al., 2022b).

Some of this evidence appears to support a positive effect of the

UHI effect on bees, especially in terms of a reduction of pathogen

transmission and susceptibility of hosts toward infections.

However, exposure to elevated temperatures may simultaneously

cause irreversible damage and increased mortality to the host

(Dalmon et al., 2019; Vanderplanck et al., 2019; Walters et al.,

2022) making the disadvantages posed by the UHI effect greater

than the advantages. Species ecological traits may mitigate the

exposure of individuals to stressors. For example, social bees that

can thermoregulate the hive may be less affected (Palmer-Young

et al., 2019; Vanderplanck et al., 2019). Essentially what we know

comes from eusocial Apidae, so it is necessary to include solitary bee

species in new studies. They can harbor the same pathogens but

show different symptoms compared with eusocial bees (Ravoet

et al., 2014). Also interesting to perform in the future would be

the analysis of infections in social vs. solitary species. Indeed, the

thermally more constant conditions in the nests of eusocial bees

may lead to the adaptation of pathogens to a limited temperature

range, compared with the nests of solitary bees.
5 Social behavior of bees and the
UHI effect

Several studies reported an association between the frequency of

social vs. solitary species and urbanization level. However, these

results seem inconsistent across studies (Buchholz et al., 2020), as

some studies report a greater abundance of solitary bee species in
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cities, whereas others indicate a higher abundance of social species

(reviewed in Ferrari and Polidori, 2022).

At the intraspecific level, the possible shifts in social behavior of

bees along an urbanization gradient is completely unknown.

Weissel et al. (2006), in a study carried out at a German

University campus, showed that higher soil temperatures

shortened the duration of the pauses between worker phases in

the ground-nesting, eusocial Lasioglossum malachurum

(Halictidae). Therefore, the annual nesting cycle of this bee

species was also shortened. The acceleration of larval

development may be at the base of such phenomenon, and it may

reflect a gradient in social behavior of eusocial halictid bees along an

urbanization gradient. For example, a quicker cycle may lead to a

higher number of worker phases produced by the queens,

potentially increasing colony success. At larger gradients (e.g.,

across latitudes), social behavior of some bees seems also to be

affected by temperature variations. For example, using field

transplant experiments, it was shown that across a south–north

cline in the UK, Halictus rubicundus (Halictidae) foundresses shift

the initiation of provisioning of the first brood, hence changing size

and maturation time of their offspring. Most importantly, such

plasticity leads to a switch between two strikingly different social

phenotypes, with northern populations being solitary and the

southern ones being eusocial (Field et al., 2010). Furthermore,

Schürch et al. (2016) demonstrated that worker numbers in this

sweat bee species should increase throughout Great Britain under

predicted climate change scenarios, and that sociality should appear

in the northern areas where, at the moment, only solitary nests

occur. Though this is a quite extreme situation due to the great

social plasticity of this species, it may be expected that, in general,

for primitively eusocial bees the timing of colony development and

the number of brood phases produced may also show some

variations across urbanization clines. Therefore, new studies

should aim to collect detailed data on the colony composition

along urbanization gradients. Furthermore, it should be tested if the

UHI effect can negatively affect cognitive skills—and, consequently,

foraging behavior—in bees. Indeed, bumblebees tested at 32°C (a

condition often met during heatwaves in cities) were significantly

worse at forming an association between a colored light and a

sucrose reward, compared with individuals tested at 25°C (Gérard

et al., 2022).
6 Conclusions

In this article we have highlighted barely or not yet-tested

hypotheses on the impacts of the UHI effect on several relevant

functional traits in bees. It remains open the question on which bee

taxa may be more affected by the UHI effect. It is likely that dispersal

ability has an important role in this sense. Indeed, populations of

species with limited dispersal ability may be affected for long times

in urban habitats. Dispersal ability is not well studied in most bee

species, but a strong philopatric tendency while nesting (e.g.,
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Yanega, 1990) and a foraging distance rarely exceeding 1 km from

the nest (e.g., Greenleaf et al., 2007) suggest that the proposed

impacts could be likely more visible in solitary and primitively

eusocial bee species (especially small species, which have a smaller

foraging distance compared with large species), rather than in

honeybees. On the other hand, among solitary species, oligolectic

species may be more affected as they may not successfully forage

their nests if their few used plant species suffer a reduction or a

temporal mismatch with bees due to the UHI effect. In addition,

bees can be also lethally affected if ambient temperature increases

above certain levels. Such lethal effects may be more likely to appear

in very hot cities during the increasingly more common heatwaves.

For example, at an air temperature of 35°C, the thoracic

temperature of a flying bumblebee almost reaches 45°C, that is,

close to the lethal limit (Heinrich, 2004).

Although we have focused on direct effects, it is important to

note that warmer urban conditions can also indirectly affect bees.

For example, elevated temperatures alter flower resource

phenology, diversity, and abundance with direct consequences for

the bee diet (Moss and Evans, 2022; Sexton et al., 2023). This may in

turn potentially decrease bees’ tolerance toward pathogens (Dolezal

and Toth, 2018; Meeus et al., 2018), affect their GM composition

(Voulgari-Kokota et al., 2019), and increase aggression in

intraspecific contexts, as seen in other animals (Parker and Nilon,

2008; Davies and Sewall, 2016; de Tranaltes et al., 2022).

Furthermore, in the warmer urban conditions, pollen foraging

may compromise bees to an unsafe body temperature, since it

was shown, at least in a Bombus species, that bees carrying pollen

have a thorax temperature approximately 1°C –2°C hotter than

those without pollen (Naumchik and Youngsteadt, 2023).

In order to test for these hypotheses and fill the many gaps in our

knowledge on this topic, it would be desirable to (1) enlarge the

taxonomic diversity of species considered in such studies, especially

trying to span different life cycles, biological features, and

morphology (e.g., solitary vs. social, kleptoparasites vs. non-

parasites, ground-nesting vs. aerial nesting, oligolectic vs. polylectic,

small sized vs. large sized), as well as from different bee lineages. For

example, since solitary bees cannot regulate their internal nest

temperature as eusocial ones (Jones and Oldroyd, 2006), it may be

expected that nest settlement by solitary species might be more

dependent on local temperature conditions. This, in turn, could

lead to some future research directions on the behavioral plasticity

of nest settlement as a function of external temperature. (2) Carry out

genetic studies to ascertain if these morphological, physiological, and

behavioral traits can show outcomes in urban habitats because of

adaptation processes or plastic responses to higher temperatures. (3)

Consider different cities that vary in their characteristics (e.g., human

population size, temperature difference between cities and their

surrounding areas). In addition, not only absolute temperature, but

also temperature fluctuations may affect the discussed bee traits. For

example, temperature daily and seasonal variations could be stronger

in cities, with large nocturnal and seasonal variability (Cao et al.,

2021), and such fluctuations were also seen to affect bees (e.g., Kierat

et al., 2017). Hence, also this climatic parameter should be taken into
Frontiers in Bee Science 07
account in future investigations. Since bee species considerably vary

in their biology among and within lineages, it would also be

important to apply phylogenetic corrections to comparative analyses.
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Hamblin, A. L., Youngsteadt, E., López-Uribe, M. M., and Frank, S. D. (2017).
Physiological thermal limits predict differential responses of bees to urban heat-island
effects. Biol. Lett. 13 (6), 20170125. doi: 10.1098/rsbl.2017.0125

Hammer, T. J., Le, E., and Moran, N. A. (2021). Thermal niches of specialized gut
symbionts: the case of social bees. Proc. R. Soc B. 288 (1944), 20201480.
doi: 10.1098/rspb.2020.1480

Hayes, A. M., Lavine, M. D., Gotoh, H., Lin, X., and Lavine, L. C. (2019). Mechanisms
regulating phenotypic plasticity in wing polyphenic insects. Adv. Insect Physiol. 56, 43–
72. doi: 10.1016/bs.aiip.2019.01.005

Heinrich, B. (2004). Bumblebee economics (Cambridge, Massachusetts, USA:
Harvard University Press).
frontiersin.org

https://doi.org/10.3954/JAUE14-05.1
https://doi.org/10.1007/s00040-017-0573-8
https://doi.org/10.1371/journal.pone.0225295
https://doi.org/10.1590/S1519-69842004000400003
https://doi.org/10.1590/S1519-69842004000400003
https://doi.org/10.1016/S0065-2504(08)60212-3
https://doi.org/10.1038/s41598-022-08093-4
https://doi.org/10.5735/086.055.0107
https://doi.org/10.1007/s13592-017-0554-y
https://doi.org/10.1656/058.018.0210
https://doi.org/10.3390/sym12111789
https://doi.org/10.1111/1365-2664.12198
https://doi.org/10.1111/1365-2664.14168
https://doi.org/10.1016/j.jtherbio.2004.11.004
https://doi.org/10.1017/CBO9780511711909
https://doi.org/10.1007/s00265-005-0134-4
https://doi.org/10.1016/j.cois.2023.101083
https://doi.org/10.1016/j.landurbplan.2022.104513
https://doi.org/10.1007/s10531-020-02003-8
https://doi.org/10.1016/j.landurbplan.2019.103731
https://doi.org/10.1038/s41598-018-38338-0
https://doi.org/10.1016/j.landurbplan.2020.103979
https://doi.org/10.3390/buildings11030093
https://doi.org/10.1111/j.1365-2435.2007.01377.x
https://doi.org/10.1111/mec.16374
https://doi.org/10.1016/j.jip.2018.12.005
https://doi.org/10.1111/j.1469-7998.1989.tb02536.x
https://doi.org/10.1098/rsbl.2016.0315
https://doi.org/10.1016/j.jag.2017.12.009
https://doi.org/10.1111/brv.12503
https://doi.org/10.1016/j.jtherbio.2020.102535
https://doi.org/10.1111/bij.12910
https://doi.org/10.1007/s11252-021-01148-w
https://doi.org/10.1016/j.cois.2018.02.006
https://doi.org/10.1007/s13592-022-00950-5
https://doi.org/10.1016/j.cub.2010.10.020
https://doi.org/10.1007/s10682-011-9477-7
https://doi.org/10.1186/s12862-022-02048-z
https://doi.org/10.1111/icad.12602
https://doi.org/10.1111/gcb.16196
https://doi.org/10.1016/0305-0491(95)00081-X
https://doi.org/10.1126/science.1255957
https://doi.org/10.1007/s00442-007-0752-9
https://doi.org/10.1007/s00442-007-0752-9
https://doi.org/10.1126/science.1150195
https://doi.org/10.1098/rsbl.2017.0125
https://doi.org/10.1098/rspb.2020.1480
https://doi.org/10.1016/bs.aiip.2019.01.005
https://doi.org/10.3389/frbee.2023.1269600
https://www.frontiersin.org/journals/bee-science
https://www.frontiersin.org


Polidori et al. 10.3389/frbee.2023.1269600
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