Linear independence of \boldsymbol{L}-functions

Jerzy Kaczorowski, Giuseppe Molteni and Alberto Perelli
(Communicated by Peter Sarnak)

Abstract

We prove the linear independence of the L-functions, and of their derivatives of any order, in a large class \mathscr{C} defined axiomatically. Such a class contains in particular the Selberg class as well as the Artin and the automorphic L-functions. Moreover, \mathscr{C} is a multiplicative group, and hence our result also proves the linear independence of the inverses of such L functions.

2000 Mathematics Subject Classification: 11M41.

1 Introduction

In a previous paper [4], we proved that the L-functions in the Selberg class \mathscr{S} (see the survey papers [3] and [5] for definitions and basic properties) are linearly independent over \mathbb{C} and, more generally, over the ring of the p-finite Dirichlet series (see [4] for definition). Although it is expected that the class \mathscr{S} contains all reasonable global L-functions (see [3], [5]), this is far from being proved at present. As a consequence, there are several examples of classical L-functions, such as the Artin L-functions, which are not yet known to belong to \mathscr{S}. It is therefore natural to ask for a more general result, establishing the linear independence inside a suitably larger class of L functions, unconditionally containing both \mathscr{S} and several classical examples of L functions.

In this paper we prove a general result on the linear independence of the derivatives of any order of the L-functions, and of their inverses, in a large class \mathscr{C} defined below. Such a class does in fact contain the class \mathscr{S} as well as several important L-functions, in particular the Artin L-functions and the automorphic L-functions. We remark that Nicolae [6] has recently obtained a weaker result of this type in the special case of Artin L-functions. However, his result follows from the arguments in [4]. In fact, the results in this paper are also based on the arguments in [4].

We define the class \mathscr{C} of L-functions by the following axioms. A function $F(s)$ belongs to \mathscr{C} if
i) $F(s)$ is an absolutely convergent Dirichlet series for σ sufficiently large, and has meromorphic continuation to \mathbb{C} as a function of finite order;
ii) $F(s)$ satisfies a functional equation of type

$$
\gamma(s) F(s)=\omega \bar{\gamma}(1-s) \bar{F}(1-s)
$$

where $|\omega|=1, \bar{f}(s)=\overline{f(\bar{s})}$ and the γ-factor $\gamma(s)$ has the form

$$
\gamma(s)=Q^{s} \prod_{j=1}^{r} \Gamma\left(\lambda_{j} s+\mu_{j}\right)
$$

with $Q>0,0 \neq \lambda_{j} \in \mathbb{R}$ and $\mu_{j} \in \mathbb{C}$;
iii) for σ sufficiently large

$$
F(s)=\prod_{p} F_{p}(s)
$$

where

$$
\log F_{p}(s)=\sum_{m=1}^{\infty} \frac{b\left(p^{m}\right)}{p^{m s}} \quad \text { with } b\left(p^{m}\right) \ll p^{m \theta} \text { for some } \theta<\frac{1}{2} .
$$

It is easy to check that \mathscr{C} contains the Selberg class \mathscr{S} and also several well known L-functions, such as the Artin L-functions and the GL(n) cuspidal automorphic L functions (see [2] and [7] for the latter case, ensuring that axioms i)-iii) are satisfied). Moreover, while \mathscr{S} is a multiplicative semigroup, our class \mathscr{C} is a multiplicative group thanks to condition $\lambda_{j} \neq 0$ in axiom ii). Indeed, if $F \in \mathscr{C}$ satisfies the functional equation in ii), then $F(s)^{-1}$ satisfies

$$
\tilde{\gamma}(s) F(s)^{-1}=\frac{1}{\omega} \overline{\tilde{\gamma}}(1-s) \bar{F}(1-s)^{-1}
$$

with

$$
\tilde{\gamma}(s)=\left(\frac{1}{Q}\right)^{s} \prod_{j=1}^{r} \Gamma\left(-\lambda_{j} s+\lambda_{j}+\bar{\mu}_{j}\right),
$$

and it is easy to see that $F(s)^{-1}$ satisfies axioms i) and iii) as well. Therefore, \mathscr{C} contains also the inverse of all the functions in \mathscr{S}, of the Artin L-functions and of the $\mathrm{GL}(n)$ cuspidal automorphic L-functions.

Denoting as usual by $F^{(k)}(s)$ the k-th derivative of the function $F(s)$ we have
Theorem. Let $F_{1}(s), \ldots, F_{N}(s)$ be distinct non-constant functions in \mathscr{C} and K be a nonnegative integer. Then the functions

$$
F_{1}^{(0)}(s), \ldots, F_{1}^{(K)}(s), F_{2}^{(0)}(s), \ldots, F_{2}^{(K)}(s), \ldots, F_{N}^{(0)}(s), \ldots, F_{N}^{(K)}(s)
$$

are linearly independent over \mathbb{C}.
As a corollary of the Theorem we obtain for instance that the Artin L-functions, their inverses and the derivatives of any order are linearly independent, and the same applies to most L-functions. Moreover, the same arguments in the proof of the Theorem can be used to prove a more general result, where linear independence is over the ring of p-finite Dirichlet series, derivatives are replaced by suitable convolutions by additive functions, and the axioms of the class \mathscr{C} are suitably relaxed.

The proof of the Theorem is based on two lemmas. Given an arithmetical function $f(n)$ and a non-negative integer k we write $f^{(k)}(n)=(-1)^{k} f(n) \log ^{k} n$ for its arithmetic k-th derivative. Moreover, two multiplicative arithmetical functions $f(n)$ and $g(n)$ are called equivalent if $f\left(p^{m}\right)=g\left(p^{m}\right)$ for all integers $m \geq 1$ and all but finitely many primes p. Further, we denote by $e(n)$ the identity function, defined by $e(1)=1$ and $e(n)=0$ for $n \geq 2$. Our first lemma deals with the linear independence of the derivatives of non-equivalent multiplicative functions.

Lemma 1. Let $f_{1}(n), \ldots, f_{N}(n)$ be multiplicative functions such that e $(n), f_{1}(n), \ldots$, $f_{N}(n)$ are pairwise non-equivalent, and let K be a non-negative integer. Then the functions

$$
f_{1}^{(0)}(n), \ldots, f_{1}^{(K)}(n), f_{2}^{(0)}(n), \ldots, f_{2}^{(K)}(n), \ldots, f_{N}^{(0)}(n), \ldots, f_{N}^{(K)}(n)
$$

are linearly independent over \mathbb{C}.
Our second lemma proves the multiplicity one property for the class \mathscr{C}.
Lemma 2. Let $F, G \in \mathscr{C}$ satisfy $F_{p}(s)=G_{p}(s)$ for all but finitely many primes p. Then $F(s)=G(s)$.

We remark that the bound $b\left(p^{m}\right) \ll p^{m \theta}$ for some $\theta<\frac{1}{2}$ in axiom iii) is crucial for Lemma 2. In fact, Lemma 2 does not hold if condition $\theta<\frac{1}{2}$ is relaxed, as the following example shows. Let $P(s)=\left(1-2^{a-s}\right)\left(1-2^{b-s}\right)$ with $a, b \in \mathbb{R}$ and $a+b=1$, and hence $b\left(2^{m}\right) \gg 2^{\max (a, b) m}$ in this case. Clearly, $P(s)$ satisfies $2^{s} P(s)=$ $2^{1-s} \bar{P}(1-s)$, therefore $P(s) F(s)$ belongs to \mathscr{C} for any $F \in \mathscr{C}$. Thus Lemma 2 does not hold for \mathscr{C} if condition $\theta<\frac{1}{2}$ is relaxed.

Since Lemma 2 shows that the coefficients of functions in \mathscr{C} are pairwise nonequivalent multiplicative functions, the Theorem follows at once from Lemma 1.

Acknowledgments. We wish to thank Zeév Rudnick for supplying the required information about automorphic L-functions. This research was partially supported by a MIUR grant Cofin2002, by the Foundation for Polish Science and by KBN grant 1 PO3A 00826.

2 Proofs

In the proof of Lemma 1 we may clearly assume that $K \geq 1$, otherwise the result follows from Theorem 2 in [4]. We remark here that there are two misprints in the proof of Theorem 2 of [4]: on page 30, line -8 , change "for $j=2, \ldots, N$ " to "for some $j \in\{2, \ldots, N\}$ ", and on page 31 , line 4 , change "and the $\tilde{c}_{j}(n)$ are non-identically vanishing" to "and some $\tilde{c}_{j}(n)$ is non-identically vanishing".

We prove Lemma 1 by contradiction. Assume that there exists an identically vanishing non-trivial linear combination of derivatives of arithmetical functions satisfying the properties in Lemma 1. That is, suppose there exist $f_{1}(n), \ldots, f_{N}(n)$ as in Lemma 1, an integer $K \geq 1$ and complex numbers $c_{j k}$ not all zero such that for every $n \geq 1$

$$
\begin{equation*}
\sum_{j=1}^{N} \sum_{k=0}^{K} c_{j k} f_{j}^{(k)}(n)=\sum_{j=1}^{N} \sum_{k=0}^{K}(-1)^{k} c_{j k} f_{j}(n) \log ^{k} n=0 \tag{1}
\end{equation*}
$$

We assume that K is minimal over all such linear combinations and, with such a K, also that

$$
v=\left|\left\{j: c_{j K} \neq 0\right\}\right|
$$

is minimal.
Suppose that $v \geq 2$, assume without loss of generality that $c_{1 K}, c_{2 K} \neq 0$, and let $q_{0}>1$ be such that $f_{1}\left(q_{0}\right) \neq f_{2}\left(q_{0}\right)$. For every n coprime with q_{0} we have

$$
\begin{equation*}
\sum_{j=1}^{N} \sum_{k=0}^{K} c_{j k} f_{j}^{(k)}\left(q_{0} n\right)=\sum_{j=1}^{N} \sum_{k=0}^{K} \sum_{l=0}^{k}(-1)^{k}\binom{k}{l} c_{j k} f_{j}\left(q_{0}\right) \log ^{k-l} q_{0} f_{j}(n) \log ^{l} n=0 \tag{2}
\end{equation*}
$$

Multiplying (1) by $f_{1}\left(q_{0}\right)$ and then subtracting from (2) we get

$$
\begin{equation*}
\sum_{j=1}^{N} \sum_{k=0}^{K}(-1)^{k} \tilde{c}_{j k} \tilde{f}_{j}(n) \log ^{k} n=0 \tag{3}
\end{equation*}
$$

where $\tilde{c}_{j k}$ are suitable complex numbers with $\tilde{c}_{j K}=c_{j K}\left(f_{j}\left(q_{0}\right)-f_{1}\left(q_{0}\right)\right)$ and

$$
\tilde{f}_{j}(n)= \begin{cases}f_{j}(n) & \text { if }\left(n, q_{0}\right)=1 \\ 0 & \text { otherwise }\end{cases}
$$

Since the functions $\tilde{f}_{j}(n)$ satisfy the properties required by Lemma 1, the fact that (3) holds with $\tilde{c}_{1 K}=0$ contradicts the minimality of v.

Therefore $v=1$ and (1) takes the form

$$
\begin{equation*}
c f_{1}(n) \log ^{K} n+\sum_{j=1}^{N} \sum_{k=0}^{K-1}(-1)^{k} c_{j k} f_{j}(n) \log ^{k} n=0 \tag{4}
\end{equation*}
$$

with some $c \neq 0$. Let now $q_{1}>1$ be such that $f_{1}\left(q_{1}\right) \neq 0$. Arguing as before, using q_{1} in place of q_{0}, from (4) we obtain

$$
\begin{equation*}
\sum_{j=1}^{N} \sum_{k=0}^{K-1}(-1)^{k} c_{j k}^{*} f_{j}^{*}(n) \log ^{k} n=0 \tag{5}
\end{equation*}
$$

where $c_{j k}^{*}$ are suitable complex numbers with $\tilde{c}_{1 K-1}^{*}=c K f_{1}\left(q_{1}\right) \log q_{1}$ and the functions $f_{j}^{*}(n)$ are defined analogously to the $\tilde{f}_{j}(n)$'s, with q_{0} replaced by q_{1}. Since $c_{1 K-1}^{*} \neq 0$, equation (5) contradicts the minimality of K, and Lemma 1 follows.

In order to prove Lemma 2 we write the functional equation of $F \in \mathscr{C}$ in the form

$$
\gamma^{*}(s) F(s)=\omega \overline{\gamma^{*}}(1-s) \bar{F}(1-s),
$$

where the modified γ-factor $\gamma^{*}(s)$ is defined by

$$
\gamma^{*}(s)=\frac{\prod_{\lambda_{j}>0} \Gamma\left(\lambda_{j} s+\mu_{j}\right)}{\prod_{\lambda_{j}<0} \Gamma\left(\lambda_{j}(1-s)+\bar{\mu}_{j}\right)}
$$

(as usual, an empty product equals 1). Let

$$
h(s)=\frac{F(s)}{G(s)}=\prod_{p \in \mathscr{P}_{0}} \frac{F_{p}(s)}{G_{p}(s)} \quad \text { and } \quad H(s)=\frac{\gamma_{F}^{*}(s)}{\gamma_{G}^{*}(s)} h(s)
$$

where \mathscr{P}_{0} is a finite set of primes and $\gamma_{F}^{*}(s), \gamma_{G}^{*}(s)$ are modified γ-factors of $F(s)$ and $G(s)$, respectively. By iii), every p-th Euler factor $F_{p}(s)$ and $G_{p}(s)$ is holomorphic and non-vanishing for $\sigma \geq \frac{1}{2}$, hence $h(s)$ is holomorphic and non-vanishing for $\sigma \geq \frac{1}{2}$ as well. Moreover, by the properties of the Γ function, the quotient $\gamma_{F}^{*}(s) / \gamma_{G}^{*}(s)$ is meromorphic with finitely many zeros and poles for $\sigma \geq \frac{1}{2}$, and hence the same property holds for $H(s)$ as well. Therefore $H(s)$ is meromorphic over \mathbb{C} with finitely many zeros and poles by ii), and hence by i) there exists a rational function $R(s)$ such that $R(s) H(s)$ is an entire non-vanishing function of order at most 1 . Thus by Hadamard's theory we get

$$
\begin{equation*}
h(s)=e^{a s+b} \frac{\gamma_{G}^{*}(s)}{R(s) \gamma_{F}^{*}(s)} \tag{6}
\end{equation*}
$$

for some $a, b \in \mathbb{C}$.
Now we use the following classical result of Bohr [1]: if $f(t)$ is an almost periodic function satisfying $|f(t)| \geq k>0$, then $\arg f(t)=\lambda t+\phi(t)$ with $\lambda \in \mathbb{R}$ and $\phi(t)$ al-
most periodic. Let σ be sufficiently large. Then $h(s)$ is an absolutely convergent Dirichlet series

$$
h(\sigma+i t)=\sum_{n=1}^{\infty} \frac{c(n)}{n^{\sigma+i t}}
$$

with $c(1)=1$ and $c(n) \ll n^{A}$ for some constant A. Therefore $h(s)$ is almost periodic in t and satisfies the hypothesis of Bohr's theorem. Applying Stirling's formula to the right hand side of (6) with a sufficiently large fixed $\sigma=\sigma_{0}$ we obtain

$$
h\left(\sigma_{0}+i t\right)=c e^{\alpha t} t^{\beta} e^{i \gamma t \log t} e^{i \delta t}\left(1+O\left(\frac{1}{t}\right)\right) \quad t \rightarrow+\infty
$$

with $c \in \mathbb{C}$ and $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. By almost periodicity we have that $\alpha=\beta=0$ and by Bohr's theorem we deduce that $\gamma=0$ as well, hence

$$
\begin{equation*}
e^{-i \delta t} h\left(\sigma_{0}+i t\right)=c+o(1) \quad t \rightarrow+\infty \tag{7}
\end{equation*}
$$

By almost periodicity, the right hand side of (7) must be constant, thus for $s=\sigma_{0}+i t$ we have

$$
h(s)=e^{d s+e}
$$

for some $d, e \in \mathbb{C}$. By analytic continuation and by the uniqueness principle for generalized Dirichlet series we deduce that $d=0$, and hence $h(s)=1$ since $c(1)=1$.

We remark that, once (6) is established, there is a more direct proof of Lemma 2 in the case where the Euler factors of functions in \mathscr{C} are of polynomial type, that is

$$
F_{p}(s)=\prod_{j=1}^{k}\left(1-\frac{e^{i \theta_{j}(p)}}{p^{s}}\right)^{-1} \quad \theta_{j}(p) \in \mathbb{C} .
$$

This is the case, for instance, of automorphic L-functions. In fact, in this case the zeros and poles of $h(s)$ consist of finitely many "vertical progressions" $i \frac{\theta_{j}(p)}{\log p}+i \frac{2 \pi}{\log p} \mathbb{Z}$. The zeros and poles of the RHS of (6) consist of finitely many zeros and poles of $R(s)^{-1}$ as well as finitely many "horizontal semi-progressions", caused by the poles of the Γ function. Therefore, (6) implies that each side is identically one, and Lemma 2 follows. We wish to thank the referee for this remark.

References

[1] Bohr H.: Über fastperiodische ebene Bewegungen. Comm. Math. Helv. 4 (1932), 51-64
[2] Iwaniec H., Sarnak P.: Perspectives on the analytic theory of L-functions. Visions in Mathematics Towards 2000 (ed. by N. Alon et al.) GAFA 2000 Special Volume, 705-741. Birkhäuser, 2000
[3] Kaczorowski J.: Axiomatic theory of L-functions: the Selberg class. Preprint 2003
[4] Kaczorowski J., Molteni G., Perelli A.: Linear independence in the Selberg class. C. R. Math. Rep. Acad. Sci. Canada 21 (1999), 28-32
[5] Kaczorowski J., Perelli A.: The Selberg class: a survey. Number Theory in Progress, Proc. Conf. in Honor of A. Schinzel (ed. by K. Györy et al.), 953-992. de Gruyter, 1999
[6] Nicolae F.: On Artin's L-functions. I. J. Reine Angew. Math. 539 (2001), 179-184
[7] Rudnick Z., Sarnak P.: Zeros of principal L-functions and random matrix theory. Duke Math. J. 82 (1996), 269-322

Received April 5, 2004
Jerzy Kaczorowski, Faculty of Mathematics and Computer Science, A. Mickiewicz University, 61-614 Poznań, Poland
kjerzy@amu.edu.pl
Giuseppe Molteni, Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy
giuseppe.molteni@mat.unimi.it
Alberto Perelli, Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146
Genova, Italy
perelli@dima.unige.it

