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ABSTRACT: Tremendous quantities of textile waste generated
and primarily landfilled annually represent a huge risk of
contaminating the environment, together with loss of valuable
resources. Especially, blended fabrics further pose a challenge for
recycling and valorization strategies, while enzymatic hydrolysis
offers a highly specific and environmentally friendly solution. In
this study, we demonstrate that proteases specifically hydrolyze the
wool components in blends with polyester, allowing recovery of
pure polyester fibers as well as amino acids and peptides as
platform molecules for further valorization. Recovered amino acids
and peptides were successfully used as a nitrogen source for
cultivation of Chlorella vulgaris and Rhodotorula mucilaginosa for
the production of valuable biomolecules including pigments and
lipids. Here, 11.3 mg/gCDW chlorophyll and 47% lipid content were obtained from algal biomass, while 1.1 mg/gCDW carotenoids and
35% lipids content were reached from the yeast grown on wool hydrolysate as the sole nitrogen source. These could be applied as
natural dyes for textile applications or as biofuels to replace toxic synthetic compounds and fossil resources, respectively. The
presented concept demonstrates feasibility of enzymatic recovery and microbial valorization of components of blended textile waste
to support the development toward a circular bioeconomy.
KEYWORDS: enzymatic recycling, protease, textile waste blends, wool/polyester, Chlorella vulgaris, Rhodotorula mucilaginosa,
valuable bioproducts

■ INTRODUCTION
Textile waste management is an almost unsolved sector among
municipal solid waste, while textile production is expected to
reach nearly 150 million tons by 2030.1 Textile recycling is
affected by a large share of fiber blends usually comprising
natural or biobased (cellulose or protein-based) and synthetic
polymer-based fibers (polyethylene terephthalate (PET) or
nylon). This provides beneficial properties but represents a
challenge in developing recycling strategies as these
interconnected fibers need to be somehow separated.2 Wool
fibers show unique comfortable and temperature insolating
characteristics, with an estimated production of 1 million tons
per year. Unfortunately, wool is prone to felting during
machine washing, which considerably reduces the possibility of
wool mechanical recycling. Wool is often blended with
polyester fibers to improve certain properties such as water
repellence and shrinking.3 From a chemical perspective, wool is
composed of 95−98% proteins where from 80−85% is keratin
that has many disulfide bonds (7−20% cysteine residues) and
therefore shows high stability.4 Besides α-keratin as a basic

building block, matrix proteins of wool fibers contain high
numbers of cysteine, glycine, and tyrosine residues.5

Complete or partial decomposition of wool has been of
industrial interest for a long time to improve the characteristics
of wool textiles as well as for waste treatment. This can be
performed by application of chemicals, oxidizing and reducing
agents, ionic liquids, or physicochemical treatments which also
represents several disadvantages such as toxicity, high price, or
special equipment requirement.6−8 Furthermore, enzymes have
been used to specifically modify wool surfaces for antishrinking
properties.9 Here, enzymatic hydrolysis was used as an
environmentally friendly approach to specifically decompose
one type of fiber from wool/PET blends. It has previously been
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demonstrated that PET recovered by enzymatic hydrolysis of
blends with cotton can be regranulated and respun to fibers for
textile manufacture while there are many applications for the
resulting glucose.10,11 Likewise, PET could be directly reused
after enzymatic separation of blends with wool, but much less
research has been conducted on recycling and valorization of
these blends so far.2,12 Concomitantly, enzymatic hydrolysis of
the wool components yields valuable low molecular weight
peptides (keratin) and amino acids.13 Common applications of
keratin-rich waste streams are in animal feed and as fertilizers.
Further concepts include cosmetic and pharmaceutical
applications.14,15 More recently, application of keratin in
(food) packaging was reported as a biobased and biodegrad-
able alternative to conventional materials.4 Attempts have as
well been made to regenerate fibers from hydrolyzed wool
textiles using ionic liquid and blending with high molar mass
cellulose.16 Additional approaches include the application of
protein hydrolysates as flame retarder and binder.17 However,
the hydrolysate from textile feedstock usually contains dyes
and other additives that are released again during the recycling
process.18 This could limit the application of this waste
material in, e.g., feedstock and fertilizers. Therefore, two
organisms that exhibit higher tolerance to toxic additives were
chosen for valorization of the wool hydrolysate as a growth
substrate. The microalgae Chlorella vulgaris and the yeast
Rhodotorula mucilaginosa were investigated related to the
production of added-value molecules. Recycling of waste wool
textiles includes applications in architecture or sewage
treatment as well as fertilizers, finishing agents, and regenerated
protein materials.19 Application of enzymatic wool hydrolysate
after separation from fiber blends as a nitrogen source in
microbial fermentation adds a novel approach in urgently
needed waste wool textile recycling.

Microalgal biomass represents a valuable source for a variety
of biomolecules such as pigments, proteins, lipids, poly-
saccharides, and vitamins. Among microalgae, C. vulgaris has
been investigated for growth in the presence of inhibiting
compounds and for biodegradation of dyes in wastewater
treatment showing promising results.20−24 Besides hetero-
trophic growth, microalgae like C. vulgaris can also grow on
CO2 as a carbon source performing photosynthesis and using
natural light as an energy source and are therefore assessed for
sustainable bioproduction. Nevertheless, a nitrogen source is
required that can be inorganic (NO3, NO2, NO, NH4) or
organic (urea, amino acids) and can represent high cost.25

Therefore, nitrogen-rich wool hydrolysate could serve as both
an economically attractive and sustainable nitrogen source for
growth of C. vulgaris.

The yeast R. mucilaginosa was previously studied for
wastewater treatment containing dyes and therefore represents
another promising organism for valorization of textile waste
hydrolysate.26,27 R. mucilaginosa can naturally produce
carotenoids which are widely employed in various industrial
sectors (i.e., food and feed industry, nutraceutical, pharma).28

Yeasts synthesize carotenoids and lipids with high yields when
cultivated on synthetic media.29 Moreover, oleaginous red
yeasts are capable of efficiently metabolizing a wide range of
carbon sources, as reported in many studies, where they have
been found suitable to produce bioproducts from different
types of waste and residues.30,31

In this study, we have investigated the potential of a
nitrogen-rich hydrolysate resulting from enzymatic separation
of wool/PET blended textiles as the nitrogen source for the

cultivation of two microorganisms, namely, Chlorella vulgaris
and Rhodotorula mucilaginosa. These organisms can produce
valuable pigments and lipids that could potentially be applied
in the textile industry or as biofuel as an eco-friendly alternative
to synthetic dyes and fossil resources, respectively.

■ MATERIALS AND METHODS
Materials, Chemicals, Enzymes, and Organisms. The 40%

wool/60% polyethylene terephthalate (WO/PET 40/60) blend was
purchased from Textil Müller GmbH (Kritzendorf, Austria). Savinase
12T protease enzyme was purchased from Novozymes (Copenhagen,
Denmark). Chlorella vulgaris 211-116 was from the culture collection
of FHWN, Campus Tulln, Austria. Rhodotorula mucilaginosa Ex7,
available in the UBO Culture Collection (https://www.univ-brest.fr/
ubocc/fr), was used for yeast cultivation experiments. All other
chemicals and solvents were used without further purification and
purchased from Sigma-Aldrich (Vienna, Austria) or Carl Roth
(Germany) unless stated otherwise.
Wool Hydrolysis from Wool/PET Blends. The WO/PET blend

was first milled to a size ≤6 mm. THen, 75 g of WO/PET was added
to 1 L of 50 mM Tris/HCl buffer pH 9 containing 2% of protease
stock (0.85 U/mL, 1.1 mg/mL). The hydrolysis reaction was
performed at 50°C for 96 h in triplicate to characterize the hydrolysis
process and record the plateau of amino acid concentration. The
supernatant was sterile filtered through a 0.2 μm PES filter to avoid
contamination during cultivation of microorganisms.
Quantification of Amino Acids. Ninhydrin Assay. Primary

amino groups were detected by the ninhydrin reaction that forms a
blue dye in alkaline solution with glycine calibration from 0−200 μM.
THen, 75 μL of ninhydrin reagent (7.5 mg hydrindantin and 50 mg
ninhydrin in 1.875 mL DMSO and 625 μL of 4 M Na-Acetate buffer
pH 5.2) was added to 100 μL of the sample, vortexed, and incubated
at 80 °C for 30 min. After cooling, 100 μL of stabilizing solution (50%
ethanol) was added, vortexed, and centrifuged for 5 min at 12700 rpm
(Eppendorf Centrifuge 5427 R). Then, 200 μL was transferred to a
96-well plate, and absorbance was measured at 570 nm on an Infinite
200 Pro spectrophotometer (Tecan, Switzerland).

Phenol Content Assay. Phenol group content was determined by
using the Folin-Ciocalteau (FC) assay by formation of a blue
phosphotungstic-phosphomolybdenum complex that can be quanti-
fied by UV−vis spectrophotometry.32 Calibration was performed with
vanillin from 0.05−1 g/L. Then, 60 μL of FC-reagent and 600 μL of
ultrapure water were added to 20 μL of the sample, vortexed, and
incubated for 5−8 min at 21 °C. Afterward, 200 μL of 20% Na2CO3
solution and 120 μL of ultrapure water were added, vortexed, and
shaken for 2 h at 21 °C and 800 rpm. Then, the absorbance was
measured at 760 nm in a 96-well plate.

Total Carbon and Nitrogen Content. For the determination of
total dissolved carbon (TC), the sample was catalytically combusted
and the developed CO2 measured with NDIR. The catalyst, platinum-
coated aluminum oxide pearls, was heated to 720 °C. The total
carbon comprises the organic and inorganic carbon in the sample. For
the standard stock solution, 2.125 g of potassium hydrogen phthalate
was dissolved in 1 L of ultrapure water (Arium, Sartorius, Göttingen,
Germany) resulting in a concentration of 1000 mg C/L. Measure-
ment of total dissolved nitrogen bonded (TNb) reflects the amount of
total nitrogen in the sample in the form of ammonia, nitrate, and
nitrite, as well as organic compounds. The sample was catalytically
combusted at 720 °C, and the resulting gas was analyzed with a
chemoluminescence detector. A solution of 7.219 g of KNO3 (1000
mg/L TN) in 1 L of ultrapure water (Arium, Sartorius, Göttingen,
Germany) was used as a standard stock solution. The samples were
measured with a TOC-VCPH instrument equipped with an ASI-V
autosampler (Shimadzu, Kyoto, Japan). For the detection of TNb, a
TNM-1 (Shimadzu, Kyoto, Japan) was used. Oxygen 4.5 (Messer,
Gumpoldskirchen, Austria) was used as the carrier gas. Samples were
filtered with 0.45 μm Aquatron filters (Whatman Gemany, Göttingen,
Germany) prior to analysis and diluted with ultrapure water to fit the
calibration range. The instrument was calibrated with every sequence
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up to 200 mg/L. Determination and detection limits were calculated
according to DIN 32645 for every calibration.

High Performance Liquid Chromatography (HPLC). The single
amino acids were identified and quantified through HPLC analysis on
a 1260 series (Agilent technologies, USA) equipped with a 1290 series
ELSD (Agilent Technologies, USA) as previously described.33 AAS18
Amino Acid Standard (Sigma-Aldrich, Austria) was used for
quantification at a concentration from 50−1250 μM.

Microbial Cultivation. Chlorella vulgaris. C. vulgaris that has the
GRAS (Generally Recognized As Safe) status was grown in 500 mL
shake baffled flasks containing 100 mL of media at room temperature
and 100 rpm under natural sunlight for 28 days on a GFL 3020 orbital
shaker. Samples were taken at regular timepoints at day 0, 4, 7, 10, 14,
18, 21, 25, and 28. All cultivations were performed in biological
duplicates. Optical density (OD) was measured at 750 nm on a
DR3900 spectrophotometer (Hach Lange, Austria). To confirm the
absence of potentially contaminating microorganisms in the
cultivations, 20 μL of the cultures were plated on agar plates for
each timepoint. Samples were analyzed for phenol and ninhydrin
content after biomass removal by centrifugation and sterile filtration
through a 0.2 μm filter. TC and TN contents were determined from
the initial media after 14 days and the final cultivation supernatant
after 28 days.

Gorham’s medium for algae (ATCC culture medium 625) was
used for cultivation of C. vulgaris containing per liter 496 mg of
NaNO3, 39 mg of K2HPO4, 75 mg of MgSO4·7H2O, 36 mg of CaCl2·
2H2O, 6 mg of FeCl3·6H2O, 58 mg of Na2SiO3·9H2O, 20 mg of
Na2CO3, 6 mg of citric acid, 1 mg of NaEDTA, and 100 μL trace
element solution containing per liter 0.5 g of H3BO3, 0.04 g of
CuSO4·5H2O, 0.1 g of KJ, 0.33 g of FeCl3·6H2O, 0.4 g of MnSO4·
H2O, 0.2 g of (NH4)6Mo7O24·4H2O, and 0.4 g of ZnSO4·7H2O
adapted to a pH of 7.5 ± 0.5. For agar plates, an additional 10 g/L of
peptone, 10 g/L of glucose, 15 g/L of agar, and 10 mL/L of vitamin
stock containing 330 mg/L of biotin, 5 mg/L of vitamin B12, and 5
mg/L of thiamin were added. For cultivations with WH as nitrogen
source, 2x concentrated media without addition of NaNO3 was
prepared. The required ratio of wool hydrolysate (WH) addition was
calculated from TN measurements and diluted accordingly with
concentrated media. Cells were visualized on an Olympus BX43
microscope.

Rhodotorula mucilaginosa. For long-term storage, Ex7 strain
belonging to Rhodotorula mucilaginosa ssp was maintained at −80 °C
on 15% (v/v) glycerol and 85% (v/v) YPD (10 g/Lof yeast extract, 20
g/L of peptone, and 20 g/L of glucose).

As control medium, a defined minimal mineral medium (YNB),
containing 2% glucose (w/v, Sigma-Aldrich, Italy), 1.7 g/L of yeast
nitrogen base (YNB, Difco, Italy), and 0.1 M 2-(N-Morpholino)
ethanesulfonic acid (MES, Sigma-Aldrich, Italy) at pH 6 was used.

As a control medium for microbial lipid production, the lipidogenic
(B) medium containing 20 g/L of glucose, 1 g/L of KH2PO4, 0.05 g/
L of MgSO4·7H2O, 0.01 g/L of NaCl, 0.01 g/L of CaCl2, 1 g/L of
yeast extract, and 1 g/L of (NH4)2SO4 was used.

For cultivations with WH as the nitrogen source, the hydrolysate
was used at a final concentration of 0.1 g/L of TN and supplemented

with 20 g/L of glucose. This medium was also supplemented with 0.1
M 2-(N-morpholino) ethanesulfonic acid to maintain the pH of 6. In
a subsequent scale-up in the bioreactor, the MES addition can be
avoided as the pH can be automatically controlled.

Submerged cultures were performed at 28 °C in 500 mL baffled
flasks using 100 mL of medium, under shaking (150 rpm; INFORS
HT, Multitron Standard). Precultures were prepared by inoculating
cells from the glycerol stocks in baffled flasks with an air-to-liquid
ratio of 5:1 overnight. Cells from precultures grown in YPD were
harvested during the exponential growth phase by centrifugation and
inoculated at OD660 0.1. All cultures were performed in triplicates.

The yeast growth was monitored by collecting samples at regular
time points and analyzing them for OD, cell dry weight (CDW), lipid
content, and carotenoid content.

The increase in the OD at 660 nm was measured using a
spectrophotometer (Eppendorf, Milan, Italy).

For CDW determination, cells were collected from 2 mL of culture
by centrifugation (10 min at 13200 rpm in an Eppendorf 5415D
centrifuge) and washed twice with deionized water. The pellets were
dried at 105°C.

Glucose concentrations during the fermentation processes were
determined spectrophotometrically by using a commercial enzymatic
kit (K-GLUHK, Megazyme, Wicklow, Ireland).

Biomolecule Production. Chlorophyll from C. vulgaris. The
chlorophyll content was determined by extraction from 2−4 mg of
freeze-dried biomass in 1 mL of 90% methanol after washing with 1
mL of ultrapure water and incubated in the dark at room temperature
overnight. The supernatant was collected by centrifugation (10 min,
12700 rpm, Eppendorf Centrifuge 5427 R) and absorbance measured
at 663 nm on a DR3900 spectrophotometer (Hach Lange, Austria).
The chlorophyll a content was calculated through eq 1.34

= ×Chl
g

mL
OD 12.7a 663

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ (1)

Lipids from C. vulgaris. To determine the lipid content, extraction
of 40 mg of freeze-dried biomass was performed on an EDGE Solvent
extraction device (CEM, Germany) with chloroform:methanol 2:1 for
two cycles of 5 min hold time, 150 °C, and 10 mL; one cycle of 3 min,
150 °C, and 5 mL; and two washing cycles of 30 s, 150 °C, and 5 mL
resulting in a total extraction volume of 35 mL. Afterward, the solvent
was evaporated, samples dried at 100 °C for 1 h, and the weight of the
lipid was recorded. For GC analysis, fatty acids were derivatized by
sequential addition of 2 mL of 85% MeOH/15% H2SO4 and
chloroform with 1 g/L of methyl benzoate as the internal standard,
vortexed, and heated to 100 °C for 2 h. After cooling to room
temperature, 1 mL of ultrapure water was added and vortexed, and
the lower organic phase was filtered through anhydrous Na2SO4 and
Na2CO3 into a glass vial. GC analysis was performed as previously
described33 on a 7890A GC-FID (Agilent technologies, USA).

Carotenoids from R. mucilaginosa. The carotenoids concen-
tration was determined after freezing (−20 °C) cell pellets obtained
from 500 μL of culture broth and adapting the protocols from refs 35
and 36. Briefly, carotenoids were extracted by adding 500 μL of glass

Figure 1. Increase in amino group content (A) and phenol content (B) during enzymatic hydrolysis of wool from WO/PET textile blends.
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beads and 500 μL of hexane:ethyl acetate (50:50 (v/v)) containing
0.05% (w/v) of butyrate hydroxytoluene. This mixture was vigorously
mixed in a beat beater (Precellys Evolution from VWR) at 5 °C for
five cycles of 30 s at 6000 rpm with a 30 s pause. The extract was
collected after 5 min centrifugation at 13000 rpm, and the extraction
procedure was repeated until the pellet was colorless. The extract was
then dried under nitrogen and resuspended in DMSO.

The total carotenoid concentration in the mixture was calculated by
measuring absorbance at 450 nm after extraction. The concentrations
were calculated through a standard curve using β-carotene from
Sigma-Aldrich dissolved in DMSO as a reference. The absorbance
value was correlated to the CDW measurement for each
corresponding culture.

Lipids from R. mucilaginosa. The lipid content was determined
via the sulfo-phosphovanilline colorimetric method (Spinreact,
Girona, Spain) from washed cell pellets (≈OD 30 suspended in 0.5
mL of cold deionized water).

■ RESULTS AND DISCUSSION
Enzymatic Hydrolysis of Wool from Blends. To enable

recycling of blended fabrics, different fiber types need to be
separated. Here, wool was specifically hydrolyzed by a protease
in wool/PET textiles. The release of amino acids and
oligopeptides during hydrolysis was monitored through the
ninhydrin and phenol content assay (Figure 1). In comparison
to the blanks that contained either the enzyme only (protease)
or the textile (wool/PET) only, the concentration of amino
groups increased significantly over time, resulting in 1350.1 ±
181.9 mg/L after 96 h together with 495.1 ± 12.7 mg/L
phenol content. However, apart from phenolic amino acids
(i.e., tyrosine), the phenol content could also comprise
aromatic textile dyes possibly present in the hydrolysate after
decomposition of dyed natural fiber.37 Additionally, the TC
and TN contents of the hydrolysate were determined which
resulted in 2466.7 ± 149.7 and 562.8 ± 18.8 mg/L,
respectively, after subtraction of the blank, which indicated

released concentration of carbon and nitrogen containing
molecules into solution.

For (thermo-)mechanical recycling of polyester, the fibers
are required to be free of contaminants. Therefore, after
enzymatic hydrolysis of the wool, the purity of the recovered
PET fibers was evaluated through FTIR analysis which
confirmed that all wool was removed by the enzymatic process
(Figure S1). The characteristic peaks at 3295, 1651, and 1519
cm−1 that correspond to peptide bonds from wool were not
detected in the recovered PET fibers.38 The process could also
be improved in terms of time by optimized protease
formulations and applied in combination with removal of
other contaminants for recovery of white polyester.3 Addition-
ally, novel enzymes are still waiting to be discovered in nature,
and protein engineering can be applied as a modern tool to
specifically improve the performance and stability of
enzymes.39 Furthermore, future work will include the
application of statistical tools to optimize the process
parameters.40

The extended process time was investigated to record the
long-term behavior. It is apparent that wool hydrolysis is
already completed after around 24 h; however, the amino
group concentration continued to increase after 72 h, which
indicated the potential cleaving of larger oligopeptides present
in solution into smaller peptides and/or finally amino acids.
This hypothesis was supported by analysis of the amino acids
present in the hydrolysate over time (Figures S2−S5).
Predominantly identified amino acids include threonine,
valin, methionine, phenylalanine, and tyrosine together with
glycine, leucin, ISO-leucin, histidine, and arginine (Figure S6)
resulting in a total concentration of 1080 and 374 mg/L
aromatic amino acids after 96 h (Table S1). Concentrations of
amino acids still increased after 48 h reaction time together
with decreasing peak areas that can represent dimers, trimers,
or oligomers especially around the retention times of
phenylalanine and tyrosine (Figure S5) which indicated that

Figure 2. (A) OD measurements during cultivation of C. vulgaris on media supplemented with wool hydrolysate (WH) as nitrogen source in
comparison to standard cultivation medium (control) and blanks. (B) Total nitrogen (TN) consumption after 2 and 4 weeks of cultivation of C.
vulgaris. (C) Amino group concentration. (D) Total carbon (TC) content from the cultivation supernatant after 2 and 4 weeks.
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hydrolysis is still ongoing in solution after depletion of solid
substrate.
Upcycling of Wool Hydrolysate. Different valorization

routes for WH from the textile recycling process were
investigated to find new applications for amino acids and
peptides recovered from textile waste. The first approach
represents growth of Chlorella vulgaris for production of
valuable compounds including chlorophyll and lipids. C.
vulgaris can use CO2 as the carbon source and potentially
the WH as the nitrogen source. Furthermore, Rhodotorula
mucilaginosa was cultivated directly in WH supplemented with
glucose for the production of carotenoids and lipids.
Cultivation of Chlorella vulgaris. Application of WH as a

nitrogen source for growth of microalgae under natural light
with CO2 as a carbon source showed significant biomass
formation resulting in 0.48 ± 0.02 g/L under standard
conditions and 0.29 ± 0.02 g/L with WH as sole nitrogen
source after 4 weeks. To confirm that C. vulgaris does not grow
without a nitrogen source, two blank conditions were
performed (without any nitrogen and with only the protease
solution in buffer supplemented). The results showed that
almost no growth was detected without adding either nitrogen
or the WH which indicates the essentiality of this component
as well as confirms the possibility of utilization of WH for
microalgal growth (Figure 2A). However, growth was limited
over time in comparison to the standard medium (control),

reaching 54% of the OD which might be caused by the nature
of the nitrogen source or also the presence of inhibiting
compounds such as the dyes released during the fiber
hydrolysis process. Nevertheless, C. vulgaris has been reported
previously to be applicable for textile wastewater treatment
which would have an additionally beneficial impact. By
increasing the WH content 10x, 63% OD of the control was
reached, which indicated the impact of the nitrogen source
rather than the inhibiting effect of dyes. Limiting the nitrogen
source in the standard media to 10% similarly resulted in 58%
growth reduction and indicated lower nitrogen availability in
the form of amino acids and peptides than sodium nitrate.
Previous research did not show any negative impact of present
additives including dyes on growth of various organisms.41−43

Analysis of the soluble amino group as well as TC and TN
before, during, and at the end of the cultivation showed that
the amino group as well as the total nitrogen concentration did
not decrease significantly during cultivation (Figure 2B, C) on
WH. This indicated that although C. vulgaris is utilizing the
WH for growth, it might at the same time secreting nitrogen-
containing metabolites that lead to a rather stable nitrogen and
amino group concentration in the supernatant. This is also
visible from the TC content that shows a higher increase in the
presence of the WH (Figure 2D). It has been reported in
previous research that external factors such as the presence of

Figure 3. C. vulgaris cells captured through light microscopy with 1000× magnification grown (A) in standard medium and (B) with WH as the
nitrogen source.

Figure 4. Extracted fatty acids (FAs) from C. vulgaris biomass in milligrams of FA per gram of initial freeze-dried biomass after cultivation in
standard media (control) and WH.
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dyes, e.g., can induce secretion of various metabolites including
amino acids in C. vulgaris.44,45

Extraction of Biomolecules. C. vulgaris can accumulate
up to 7% chlorophyll of the CDW and therefore is used as a
prominent industrial natural pigment producer.46 The
extracted chlorophyll concentration resulted in 37.9 ± 8.5
mg/gCDW in the control culture and 11.3 ± 0.4 mg/gCDW from
the culture grown on WH after 14 days and 33.7 ± 3.6 and 5.4
± 0.2 mg/gCDW after 28 days, respectively. As also the OD750
was lower during growth on WH, a lower chlorophyll
concentration was expected. Furthermore, investigating cell
morphology through light microscopy, cells grown in the
presence of WH also exhibited less chlorophyll than the
control (Figure 3). A possible explanation for reduced
chlorophyll production could be the presence of textile dye
as this can represent a stress condition for the cells or the
nitrogen source that is essential for chlorophyll synthesis and
growth. Chlorophyll is a nitrogen-rich compound that could
also be used as an intracellular nitrogen pool47 which would
provide an explanation for decreasing chlorophyll concen-
tration from week 2 to week 4.

On the other hand, nitrogen and salt stress conditions can
lead to an increase of lipid accumulation47 which was indeed
revealed. Here, 15.4 ± 0.9% of lipid content was obtained in
the reference culture whereas 47.4 ± 0.8% was present in the
biomass grown on WH which is impressive also in comparison
to literature.48,49 To evaluate the impact of the nitrogen source
on the fatty acid profile, a gas chromatography analysis was
performed after lipid extraction. The fatty acid profile is further
important for application of lipids as biofuel,50 where Chlorella
represents a promising source of useful fatty acids such as
hexadecenoic, heptadecanoic, and octadecanoic acids.49,51 C.
vulgaris biomass grown on WH showed 192.0 ± 38.0 mg/g
total FA content, in contrast to 32.5 ± 2.4 mg/g in the control.
Therefore, the presence of mainly C16, C18, and C20 chain
length FAs were identified (Figure 4). These FA together with
high lipid content are required for biofuel production proving
that this biomass represents a promising source.49

Cultivation of Rhodotorula mucilaginosa. As a second
valorization opportunity for recovered amino acids, R.
mucilaginosa was cultivated on WH as well as minimal mineral
medium (YNB) and lipidogenic medium (B) as a control. In
comparison to the YNB, the WH resulted in higher biomass
production of 6.5 ± 0.23 g/L CDW after 65 h of cultivation
(Figure 5) versus 3.4 ± 0.08 g/L in YNB. WH, being a source
of already available amino acids, was sufficient to fully support
the nitrogen requirement during yeast growth even more

efficiently than YNB. Furthermore, no inhibition was observed
due to dyes or other molecules present in the WH. In terms of
biomass production, the B medium resulted in slightly higher
CDW (8.0 ± 0.4 g/L) due to the presence of yeast extract,
which is known to enhance yeast growth, especially in the
initial growth phase (Figure 5).

Regarding lipid accumulation, after 65 h of growth, the
percentage of triacyl glycerides (TAGs) in the total CDW was
similar in B and WH medium, resulting in 38% (3.0 ± 0.3 g/L)
and 35% (2.3 ± 0.17 g/L), respectively. Glucose quantification
revealed that the available carbon source (20 g/L of glucose)
was almost entirely consumed in the B medium, while a
residual of 5 g/L of glucose remained in WH medium after 65
h. These data indicated that the WH can be used as a nitrogen
source also in lipid production processes without significantly
affecting the final yield.

Finally, R. mucilaginosa cells grown in WH for 65 h were
analyzed for their carotenoid content, resulting in 7.4 ± 0.2
mg/L, corresponding to 1.1 mg/gCDW. The total carotenoid
content, in line with the production reported in isolated strains
of R. mucilaginosa,52−54 is very promising considering the
inclusion of a waste material and its possible optimization in a
bioreactor through a specific fed-batch strategy.

Carotenoids are 40-carbon-long terpenoid pigments formed
by a polyene chain consisting of 9−11 double bonds and
mainly terminating in rings. Their chemical structure gives
them the ability to act as membrane-protective antioxidants,
scavenging oxygen and peroxyl radicals.55 Due to the high
number of conjugated double bonds, carotenoids are also
natural colorants ranging from yellow to orange and red to
purple.56 Carotenoids produced by oleaginous yeasts have the
advantage of being stored inside lipid bodies increasing their
bioaccessibility and avoiding the loss of their nutritive and
biological desirable properties due to oxygen and light
exposure.57,58 Regarding the expanding market for natural
pigments and the wide range of applications including food,
feed, and textiles, several companies are currently investing in
technologies for the biotechnological production of these
compounds with a significant potential to use yeasts.59,60

Synthetic dyes that are applied in the textile industry
represent a serious concern for the environment. The textile
industry is one of the most polluting sectors with around
200,000 tons of toxic dyes ending up in effluents each year.18

These include various kinds, such as azo, direct, reactive,
acidic, and basic, which as well contain heavy metals like
mercury, chromium, cadmium, and lead.27 Therefore, for an
environmentally friendly and circular bioeconomy vision,
chlorophyll and carotenoids could be used as potential
substitutes for the currently applied partially toxic dyes.
Additionally, natural dyes show different advantageous proper-
ties such as UV protection, antimicrobials, and antiox-
idant,.25,46,61−63

■ CONCLUSION AND OUTLOOK
In this study, a recycling and valorization strategy for blended
textile waste of wool/PET is presented. Natural fiber
components of the blends were enzymatically hydrolyzed
into their corresponding amino acids and oligopeptides,
obtaining pure recovered synthetic fibers. The hydrolysate
was applied as a valorization platform for growth of C. vulgaris
and R. mucilaginosa. Valuable pigments and lipids could be
extracted from the generated biomass, resulting in 11.3 mg/
gCDW chlorophyll and 1.1 mg/gCDW carotenoids as well as 47%

Figure 5. Biomass growth of R. mucilaginosa on lipidogenic (B),
minimal YNB, and WH media.
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and 35% lipid content, respectively. Natural pigments and
extracted lipids could replace toxic synthetic dyes and reduce
consumption of fossil fuels in the future.
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