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Abstract We build upon recent work by Lierler that defines an abstract framework for describing the algorithm

underlying many of the existing answer set solvers (for answer set programs, based upon the Answer Set Seman-

tics), considering in particular Smodels and SUP. We define a particular class of programs, called AOH, and prove

that the computation that the abstract solver performs actually represents a lower bound for deciding inconsis-

tency of logic programs under the Answer Set Semantics. The main result is that for a given AOH program with

n atoms, an algorithm that conforms to Lierler’s abstract model needs Ω(n) steps before exiting with failure (no

answer set exists). We argue that our result holds for every logic program that, like AOH programs, contains

cyclic definitions and rules that can be seen as connecting the cycles.

Keywords: Answer Set Programming, Solvers, Complexity, Lower Bounds.

1 Introduction

Answer Set Programming (ASP) is a paradigm of logic programming which has been gaining credit from
both the theoretical and practical point of view. ASP is based on the answer set semantics of [17], where
solutions to a given problem are represented in terms of selected models (answer sets) of the correspond-
ing logic program [23, 26]. A rich literature exists on applications of ASP in many areas, including
problem solving, configuration, information integration, security analysis, agent systems, semantic web,
and planning (see among many [4, 1, 20, 29, 16] and the references therein). Efficient inference engines,
or ASP Solvers, are available [3] and can be freely downloaded by potential users.

Recently, Yuliya Lierler has proposed [21] an abstract framework for describing the algorithm underly-
ing many of the existing answer set solvers, considering in particular Smodels [28] and her own SUP, thus
introducing the notion of an “abstract solver.” The abstract solver encompasses the main optimization
strategies adopted by actual solvers, and primarily by Smodels, which is often taken as reference for
comparison among solvers.

The expressive power of ASP, as well as its computational complexity, have been deeply investigated.
The interested reader can refer, for instance, to [13]. In particular, deciding the existence of an answer
set has been proved NP-complete in [24]; The same holds for deciding whether an atom is member of
some answer set (proved in [25]).
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A topic that has received less attention in the literature concerns the least number of steps that a
solver relying upon this type of algorithm (essentially, a branch-and-bound recursion) takes in order to
establish whether a given program is inconsistent, i.e., a lower bound for ASP solvers computation. This
is of interest in order to understand whether the existing strategies work well, or what could be done
better1. Moreover, in a scenario were repeated calls to the inferential engine are needed (e.g., [re]planning
as in [27]) one should be careful in evaluating the time investment related to each call, even for instances
computable in polynomial time.

In this article, we introduce a particular class of (inconsistent) programs, AOH-programs, and prove
that for any AOH program with n atoms, the abstract solver must perform no less than n steps, i.e., its
lower-bound complexity is Ω(n). We prove that this class of programs is significant, as every non-trivial
inconsistent program has an AOH-program at its “core,” hence our result extends to every logic program
of given size.

The structure of the paper is as follows: in Section 2 we provide the necessary background about
lower bounds, ASP, some particular class of ASP programs and finally about the abstract ASP solver.
In Section 3 we examine the behavior of the abstract solver on a particular class of programs that we
suitably define and in Section 4 we argue in favor of the significance of this class and formulate a general
lower-bound result. Finally, in Section 5 we conclude.

2 Background

Once algorithms for solving a specific problem have been found one may wonder whether it is possible
to design a faster algorithm or not, and may wish to compare the different algorithms not only in terms
of the number of steps in the worst- or average-case, but also concerning the least number of steps that
they perform on a significant class of inputs. Often, a lower bound for the problem can be given, which
in this context is practically intended as the number of steps that an algorithm has to execute at least in
order to solve the problem on an input belonging to a given (interesting) class2.

As usual, thanks to the Θ-notation constant factors are ignored and instances of size smaller than
some n0 are disregarded. Only the order of the lower bound is considered, as customary in terms of the
function class expressing it.

Let f : N→ R; the set Ω(f) is defined as follows:
Ω(f) = {g : N→ R|

∃c > 0 and n0 ∈ N, such that
∀ n ≥ n0 : g(n) ≥ c f(n)}

I.e., Ω(f) is the set of all functions that asymptotically grow at least as fast as f , modulo constant factors.

2.1 ASP in a nutshell

Below, we briefly recall the basics about Answer Set Programming [4, 23, 26]. In this logical framework, a
problem can be encoded —by using a function-free logic language— as a set of facts, rules and constraints
that describes the (candidate) solutions. More specifically, an ASP-program, or in the following simply a
logic program Π, is a collection of rules of the form

H ← L1, . . . , Lm, not Lm+1, . . . ,not Lm+n. (1)

where H is an atom, m > 0, n > 0, and each Li is an atom. The symbol not stands for default negation
(often also called “negation-as-failure” or simply “negation”). Various extensions to the basic paradigm
exist, but we do not consider here all of them as they are not essential in the present context. The left-
hand side and the right-hand side of the clause are called head and body, respectively. As customary, a
literal can be either an atom a (positive literal) or its negation, in this context denoted by not a (negative
literal). Then, the head of a rule is a positive literal and its body is composed of literals. A rule with
empty head is a constraint (the literals in the body of a constraint cannot be all true, otherwise they

1Victor Marek and Mirek Truszczynski, personal communications.
2The general definition is that of a certain number of steps that every algorithm has to execute at least in order to solve

a problem. As with the upper bounds, the notion of a step refers to an underlying machine model.
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would imply falsity). To the aim of better understanding the discussion below, assume a constraint to
be rewritten as a plain rule as follows, where f is a fresh atom not occurring elsewhere in the program

f ← not f, L1, . . . , Lm, not Lm+1, . . . ,not Lm+n.

By Bodies(Π, H) or simply Bodies(H) if Π is fixed from the context we mean the (multi-)set of the
bodies of all rules with head H.

The semantics of ASP is expressed in terms of answer sets (also called stable models [17]). Consider
first the case of a ground3 ASP-program Π which does not involve negation.

If Π is a ground, positive (i.e., no negative conditions in the body of rules) program, the unique answer
set Cn(Π) is defined as the smallest set of literals constructed from the atoms occurring in Π which is
closed under Π and it is either consistent or equal to the set of all literals. Such a definition is extended
to any ground program P containing negation by considering the reduct ΠX of Π w.r.t. a set of atoms
X obtained by means of the Gelfond-Lifschitz Γ operator introduced in [17].

First, ΠX is defined as the set of rules of type (1) of Π such that X does not contain any of the atoms
Lm+1, . . . , Lm+n. Clearly, ΠX does not involve negation. Let Γ(P,X) = J where J is the unique answer
set of ΠX . The set X is an answer set for Π if it is a fixed point of Γ, i.e., when X = J. Equivalently,
X is an answer set for Π if it is the (unique) answer set of PX . In order to obtain an answer set in
the form of the set of literals which are true w.r.t. that answer set, the definition can be rephrased into
Γ(Π, X) = Cn(ΠX).

Once a problem is described as an ASP-program Π, its solutions (if any) are represented by the answer
sets of Π. Unlike other semantics, a logic program may have several answer sets, or may have no answer
set, because conclusions are included in an answer set only if they can be justified. The following program
has no answer set (and it is said to be inconsistent w.r.t. consistent programs, which admit at least one,
possibly empty, answer set): {a ← not b. b ← not c. c ← not a.}. The reason is that in every minimal
model of this program there is a true atom that depends (in the program) on the negation of another
true atom. Checking for consistency means checking for the existence of answer sets. For a survey of this
and other semantics of logic programs with negation, the reader may refer to [2].

Let us now consider program π1 consisting of three rules:

r ← p. p← not q. q ← not p.

Such program has two answer sets: {p, r} and {q}. If we add the rule (actually, a constraint) ← q. to π1,
then we would rule out the second answer sets, since it violates the new constraint.

This simple example reveals the core of the usual approach followed in formalizing/solving a problem
with ASP. Intuitively speaking, the programmer adopts a “generate-and-test” strategy: first (s)he pro-
vides a set of rules describing the collection of (all) potential solutions. Then, the addition of constraints
rules-out all those answer sets that are not desired real solutions.

Given a rule γ in a language L, the grounding of γ w.r.t. L is the set of all ground rules obtainable
from γ through (ground) instantiation using the constant symbols of L. Usually, given a program P and
a rule γ ∈ P , we will consider the grounding of γ w.r.t. the language underlying P . The grounding of a
set of rules is defined similarly. Given a (not necessarily ground) program P , a set of atoms is an answer
set for P if it is an answer set for the grounding of P . In the following, we will always implicitly consider
ground programs, i.e., equivalently, propositional logic programs.

An ASP solver is an inferential engine that computes the answer sets of an arbitrary ASP program
given as input. Several ASP solvers are now available [3], each of them being characterized by valuable
features and language extensions that simplify the programming activity. As it is well-known, ASP solvers
produce the grounding of the input program as a first step; the actual inferential activity is hence carried
out on ground programs only4.

The expressive power of ASP, as well as, its computational complexity have been deeply investigated.
The interested reader can refer, for instance, to [13]. In particular, deciding the existence of an answer

3As customary, a term (atom, literal, rule, . . . ) is ground if no variable occurs in it. A ground program is a program
that contains no variables.

4Presently, ASP solvers perform a complete grounding before starting inference; Asperix [19] is an exception as it
performs on-the-fly grounding. Several research efforts are now addressing this limitation.
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set has been proved NP-complete in [24] and the same for deciding whether an atom is a member of some
answer set (proved in [25]). The reader can also see [4, 14], among others, for a presentation of ASP as
a tool for declarative problem-solving.

2.2 Kernel Programs

Below we summarize the features of a special class of logic programs, kernel programs, introduced in [7]
and discussed at length in [10] and [12].

The kernel form is a normal form, in the sense that (as proved in [10]) any logic program under
the answer set semantics admits an equivalent kernel program, i.e., one which has the same answer sets,
modulo some projection. Transforming a program into the corresponding kernel normal form eliminates i)
all literals that are true/false in all answer sets and ii) literals that would be irrelevant w.r.t. consistency
and number of answer sets of the program. As it is well-known, case i) contains at least the atoms which
are true (resp. false) in the Well-founded semantics of the program. That semantics is three-valued and
provides the set of atoms which are deemed true and false, while the other atoms are assumed to have
truth value undefined.

If Π is a logic program, we denote by WFM (Π) = 〈T, F 〉 the well-founded model of Π. It can be
obtained in the form of the set of literals which are true/false [22] by iterating the double application of
the Γ operator over a set of atoms I: Γ2(Π, I) = Γ(Π,Γ(Π, I)). The existence of a fixpoint for Γ2 iterated
from ∅ is guaranteed and the process terminates.

A program Π is said WFM-irreducible whenever WFM (Π) = 〈∅, ∅〉. That is, in WFM-irreducible
programs all the atoms are undefined under the well-founded semantics. As discussed in [9, 10], these are
exactly the atoms that are relevant for deciding whether answer sets exist, and for finding them. Below
is the definition of programs in kernel form.

Definition 2.1 A logic program Π is in kernel normal form (or, equivalently, Π is a kernel program) if
and only if the following conditions hold.

1. Π is WFM-irreducible;

2. every rule has its body composed of negative literals only;

3. every atom in Π occurs in the body of some rule;

Clearly, kernel programs contain no facts (else the WFM would not be empty). Also, it is easy to see
that, in kernel programs, each atom occurs as the head of some rule and, since they are undefined w.r.t.
well-founded semantics, it is either part of a cyclic definition or defined using atoms that are part of a
cycle (the notion of cycle is formally defined and developed in [12]).

For programs in kernel normal form, every supported model is stable [8, 9], where a supported model
M is such that for every atom a ∈ M some B ∈ Bodies(a) is true w.r.t. M . We may also notice
that kernel programs are tight, i.e., do not contain positive loops (which is obvious, as no atom occurs
positively). For tight programs, the same result has been proved in [15].

The kernel normal form can be obtained by means of a normalization algorithm (see [12] which carefully
exploits the BDFZ program rewriting w.r.t. the WFM described in [6]. After a preliminary grounding
phase and the finding of positive cycles (a concept that is mapped of graph-theoretic properties of the
dependency graph representing the program), BDFZ transforms the program into a (unique) program
remainder Π̂ obtained by iterating a straightforward extension of the above-mentioned Gelfond-Lifschitz
operator Γ, i.e., by i) deleting every rule instance with a body literal which is false w.r.t. WFM (Π), and
ii) removing from the remaining rule instances the body literals which are true w.r.t. WFM (Π). Atoms
involved in positive cycles will be false in WFM (Π) unless they are also defined in (and supported by)
other rules external to the cycle itself. We exploit this concept to rid programs from positive cycles.

The kernelization algorithm (formally described in [11]) performs, as a first step, a simplification of
the given program Π w.r.t. the well-founded semantics WFS(Π) by means of BDFZ. As a second step,
the kernelization algorithm performs top elimination, i.e., it eliminates all ground rules whose head is an
atom which never appears in the body of a rule. Finally, a Positive Condition Elimination procedure
produces the result ker(Π). The aim of this step is to eliminate all the remaining positive body literals,
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since they amount to nothing but “intermediate steps” between relevant atoms, and are immaterial to
the existence and number of answer sets.

As proved in [9], the answer sets of ker(Π) and the answer sets of Π are in correspondence, in the
sense that they are in the same number, and the latter can be obtained from the former. In particular,
given a answer set S of ker(Π), a stable model of the original program Π can be obtained as follows:

(i) apply the Gelfond-Lifschitz transformation to Π w.r.t. S, and

(ii) compute the Least Model of the resulting (positive) program.

2.3 An Abstract Answer Set Solver

In the following, as it is customary in ASP solvers we will indicate ← with :−, and we will interpret it
as an implication, where if the body of the rule is true (w.r.t. a given answer set) then the head must
be true as well. If instead the body is false, then the head is false as well unless it is made true via some
other rule.

The complement l of literal l is such that, for atom a, we have a = not a and not a = a. If B is a set
of literals, by B we mean a set of literals composed of the complements of all the literals in B; by B+ we
take the set of positive literals occurring in B. For a given program Π, let H≯ be the set of all literals
that can be defined using the atoms appearing in Π.

The abstract solver is described by means of steps, or transition rules, that can be applied to states.
A state here is either ∅, or FailState, or a set M ⊆ H≯. Each literal l in M can be further annotated
using a ‘d’ superscript, as in ld. Literals in the current state M are those that have been deemed true up
to that point. Each annotated literal has been assumed to be true, where the others have been assigned
true by some of the transition rules. A literal l is assigned (w.r.t. unassigned) in state M (or for short
by M) if either l or ld or l occur in M . Sometimes, states will be treated as sets, regardless the order of
literals and the annotations.

The abstract solver starts from state ∅ and from a given formula (in this case a logic program Π) and
applies transition rules until it reaches either a FailState state, or a final state M where each atom in σ
occurs in some literal in M , and M is consistent, i.e., it is not the case that both a literal and its negation
(whatever their annotations) occur in M . The set of possible transitions from the empty state to final
states can be represented as a graph DPΠ where terminal nodes, i.e., nodes with no out-going arcs, are
either FailState or states where no transition is applicable.

We summarize below from [21] the transition rules that define the basic version ATLEASTΠ of the
abstract solver. Capital letters M,M ′, C, P,Q, . . . denote states. A transition rule has the form M ⇒M ′

and is applicable (determining a step to be performed or, equivalently, a new arc of DPΠ to be created)
if its condition is satisfied by M . By mentioning a rule, we implicitly assume that it is a rule occurring
in Π.

Decide (D):
M ⇒M ld if l is unassigned by M .

Fail (F ):
M ⇒ FailState if M is inconsistent and M contains no decision literal.

Backtrack (B):
P ld Q⇒ P l if P ld Q is inconsistent

and Q contains no decision literal.

Notice that the definition of⇒ B includes strategic aspects that are found in most solvers. (i) Backtrack-
ing is performed to the last decision that has been taken, i.e., literal ld: this comes from the assumption
that part Q of initial state M contains no decision literal. The negation l is added to the new state
M ′ = P l as a plain true literal, not as a decision. Notice that adding l to the new state prevents l to be
decided again later, as it is already assigned. However, if later on a backtracking should be performed to
a literal which occurs earlier than ld in M , the assignment would then be retracted, and then l could be
decided again, though in a new context.

Unit Propagate (UP):
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M ⇒M a if we have a rule a :−B and B ⊆M .

I.e., the head of a rule with body true (w.r.t. M) is added to the new state.

All Rules Canceled (ARC ):
M ⇒M not a if for all B ∈ Bodies(a), B ∩M 6= ∅

I.e., the negation not a of the head a is added to the new state if all the bodies B of rules with head
a are false w.r.t. M which in fact includes the negation of some literal in B.

Backchain True (BT ):
M ⇒M B if we have a rule a :−B, a ∈M (whatever its annotation in M),

and for all B′ 6= B, B′ ∈ Bodies(a) we have B′ ∩M 6= ∅

I.e., if an atom a belongs to M and all but one body of a rule with head a are false (w.r.t. M), then
the literals occurring in the only remaining body are added to the new state (which means that they are
deemed true) as in supported models atoms may occur only if derivable via a rule.

Backchain False (BF ):
M ⇒M l if we have a rule a :−l, B such that not a ∈M , and B ⊆M .

I.e., if atom a is false w.r.t. M (as M contains its negation not a) and if we have a rule where all
literals in the body but one are true (w.r.t. M) then this last literal is deemed false, thus justifying the
falsity of a.

As proved in [21], the terminal nodes of the graphDPΠ other than FailState generated by ATLEASTΠ

are consistent states and represent in particular all the supported models of Π (which in the case of kernel
and, more generally, of tight programs correspond to all the answer sets). Moreover, FailState is reachable
only if no supported model exists.

The Smodels solver and all the other solvers that accept programs that are not tight will have to
apply another transition rule called Unfounded; it is needed in order to deem false all atoms that are
involved in positive circularities in Π and cannot be deemed true by any other rule. With this additional
transition rule the above results extends, i.e., the terminal nodes of the graph DPΠ other than FailState
correspond to all the answer sets of given program Π and FailState is reachable only if Π is inconsistent.

3 Understanding the lower bounds for SMODELS-like Algo-
rithms

In the discussion that follows we resort to the previous description ATLEASTΠ of the abstract solver,
as we will consider a class of programs composed of kernel programs only. This is however without loss
of generality, as we may notice that any solver might in principle detect the fact that a given program is
negative (if no positive literal occurs in bodies) and omit the application of Unfounded.

Consider the following inconsistent kernel program π6, containing 6 distinct atoms (thus, n = 6).

p :−not p,not a1,not a2. (1)

q :−not q.
q :−not a1,not a2. (2)

a1 :−not b1.
b1 :−not a1.

a2 :−not b2.
b2 :−not a2.

The reason why this program is inconsistent relies in its structure: there are the odd loops p :−not p
and q :−not q which, by themselves, would make the program inconsistent. The former cycle might in
principle be repaired by the conjunction not a1,not a2 that is called AND-handle [12]. In fact, if at least
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one literal is deemed false (i.e., if either a1 or a2 are true) then p becomes false as well, as there are no
other alternative rules with head p. The latter cycle, could also, in principle, be repaired by the same
conjunction not a1,not a2, called OR-handle [12]: if both literals are deemed true (i.e., if both a1 or a2

are false) then q becomes true, thus overriding the contradictory rule. However, the two conditions are
clearly mutually incompatible, and thus π6 is inconsistent. This might be easily checked either on the
EDG (Extended Dependency Graph, [7]) or even better on the Cycle Graph [12] of the program itself.

Let us see how the abstract answer set solver ATLEASTΠ –which is of course oblivious to such
“structural” information– would behave on π6. We assume that the algorithm does not perform a Decide
step if some other step is possible. We also assume (as most solvers do) to decide positive literals only.
As said before, backtracking is up to the last decision. Also, the execution of the algorithm stops in a
final state whenever all atoms have been assigned, no decision literal occurs in the state, and no further
step is possible. The final state can be FailState in case the last but one state is inconsistent. We finally
assume, quite arbitrarily but harmlessly, that UP is applied according to the order of the rules in the
program.

Notice that the abstract solver behavior is simplified by the fact that, except for q, each atom is
the head of just one rule. Thus, after deciding the head it is immediately possible to apply ⇒ BTor
⇒ ARC. An execution of the abstract solver always starts with the empty state, an proceeds via steps
corresponding to the application of a transition rule. Following [21] we indicate on the right of the current
state (other than FailState) the transition which is applied (for conciseness, by using its label). Let us
first assume that the solver tries to decide atom p first. This results in the following sequence of states:

∅ ⇒ D
pd ⇒ BT
pd, not p, not a1, not a2 ⇒ B
not p . . .

I.e., as p is the head of just one rule, the solver applies Backchain True in order to try to justify its
truth, but it immediately finds a contradiction which implies backtracking, i.e., retracting the decision
to assume p true and asserting not p. The execution will then continue with some other decision. Let
us instead assume that the solver tries to decide atom q first. This results in the following sequence of
states:

(2) Decide atom q first.
∅ ⇒ D
qd, not a1, not a2 ⇒ BT
qd, not a1, not a2 q

d . . .

That is, assuming the truth of d leads, analogously to the case of deciding p, to a later retraction.
Therefore, as we are looking for a lower bound, we will optimistically assume that the solver will start

its execution by deciding some atom other than p or q, say a1. The execution will proceed, for instance,
as follows:

∅ ⇒ D
a1

d ⇒ ARC
a1

d, not p ⇒ BT (or ⇒ ARC )
a1

d, not p, not b1 ⇒ D
a1

d, not p, not b1, qd ⇒ ARC
a1

d, not p, not b1, q, not q ⇒ B

Notice that in the above trace it is relevant whether one decides either a2 or q first. In particular,
deciding q first leads more quickly to discovering the inconsistency, and it is what we have done as we are
looking for a lower bound. This determines to backtrack the decision qd, which implies asserting not q
that again implies q. What remains is a further backtracking, which means undoing a1

d and restarting
from not a1, which implies b1.
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a1
d, not p, not b1, q, not q ⇒ B (6 steps)

not a1 ⇒ UP
not a1, b1 (two steps from backtracking)

If we now decide b2 we then get q. We would quickly run into an inconsistency on p, as all conditions
of its only rule become true but one (not p). The latter can be derived by means of Backchain True
thus determining inconsistency and backtracking on the decision of p. Such backtracking, however, leads
again to inconsistency, which forces us to retract the decision on f and assert not b2, which finally yields
a2.

not a1, b1 ⇒ D (*)
not a1, b1, b2

d ⇒ BT (or ⇒ ARC )
not a1, b1, b2

d, not a2 ⇒ UP
not a1, b1, b2

d, not a2, q ⇒ D (four steps, for each of the b2’s if there were many)
not a1, b1, b2

d, not a2, q, p
d ⇒ BT

not a1, b1, b2
d, not a2, q, p

d, not p ⇒ B
not a1, b1, b2

d, not a2, q, not p ⇒ UP
not a1, b1, b2

d, not a2, q, not p, p ⇒ B (four steps more for each of the b2’s if there were many)
not a1, b1, not b2 ⇒ UP
not a1, b1, not b2, a2 (two steps more for each of the b2’s if there were many)

At this point, p becomes false as the body of its only clause is false, where q has to be decided and as
the body of its second clause is false this leads to assuming that the first rule should work, and then to
inconsistency and failure.

not a1, b1, not b2, a2 ⇒ ARC
not a1, b1, not b2, a2, not p ⇒ D
not a1, b1, not b2, a2, not p, qd ⇒ BT
not a1, b1, not b2, a2, not p, qd, not q ⇒ B
not a1, b1, not b2, a2, not p, not q ⇒ UP
not a1, b1, not b2, a2, not p, not q, q ⇒ F
FailState (six final steps)

The total number of steps is 26, i.e., slightly less than 4n. It remains to see what would happen if at
point (*) one would decide a2.

not a1, b1 ⇒ D
not a1, b1, a2

d ⇒ BT (or ⇒ ARC )
not a1, b1, a2

d, not b2 ⇒ ARC
not a1, b1, a2

d, not b2, not p ⇒ D (three steps to get rid of p)
not a1, b1, a2

d, not b2, not p, qd ⇒ ARC
not a1, b1, a2

d, not b2, not p, qd, not q ⇒ B
not a1, b1, a2

d, not b2, not p, not q ⇒ UP
not a1, b1, a2

d, not b2, not p, not q, q ⇒ B

It turns out that we must backtrack this decision; next, the execution would proceed as before (with
some modifications). Had computation started by deciding a2 instead of a1, by reverting the indexes we
would have obtained the same trace. Instead, things might be different if we start by deciding b1:

∅ ⇒ D
b1

d, not a1 (two steps) (**)

now, deciding b2 will quickly lead to inconsistency on p:

b1
d, not a1 ⇒ D

b1
d, not a1, b2

d ⇒ BT (or ⇒ ARC )
b1

d, not a1, b2
d,not a2 ⇒ UP
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b1
d, not a1, b2

d,not a2, q ⇒ D
b1

d, not a1, b2
d,not a2, q, p

d ⇒ BT
b1

d, not a1, b2
d,not a2, q, p

d, not p ⇒ B
b1

d, not a1, b2
d,not a2, q, not p ⇒ UP

b1
d, not a1, b2

d,not a2, q, not p, p ⇒ B (seven steps for each of the other b2’s, if any)
b1

d, not a1, not b2 ⇒ UP
b1

d, not a1, not b2, a2 ⇒ ARC
b1

d, not a1, not b2, a2,not p ⇒ D
b1

d, not a1, not b2, a2,not p, qd ⇒ BT
b1

d, not a1, not b2, a2,not p, not q ⇒ UP
b1

d, not a1, not b2, a2,not p, not q, q ⇒ B
not b1 ⇒ UP
not b1, a1 . . . (15 steps)

that is symmetrical to (*). Another variation variation is to decide a2 at (**).

b1
d, not a1 ⇒ D

b1
d, not a1, a2

d ⇒ BT (or ⇒ ARC )
b1

d, not a1, a2
d, not b2 ⇒ ARC

b1
d, not a1, a2

d, not b2, not p ⇒ D
b1

d, not a1, a2
d, not b2, not p, qd ⇒ ARC

b1
d, not a1, a2

d, not b2, not p, qd, not q ⇒ B
b1

d, not a1, a2
d, not b2, not p, qd, not q ⇒ UP

not b1 ⇒ UP
not b1, a1 (9 steps)

that is symmetrical to (*) and takes a few less steps. If we decide a2 (or symmetrically b2) from the
beginning we get:

∅ ⇒ D
a2

d, not b2 ⇒ ARC
a2

d, not b2, not p ⇒ D
a2

d, not b2, not p, qd ⇒ ARC
a2

d, not b2, not p, qd, not q ⇒ B
a2

d, not b2, not p, not q ⇒ UP
a2

d, not b2, not p, not q, q ⇒ B
not a2 ⇒ UP
not a2, b2

which requires a decision recollecting one of the traces before. Therefore, the minimum number of steps
that ATLEASTΠ needs to decide that Π6 is inconsistent is in Ω(n).

4 Generalization

The program above is a sample of the following class of programs, that we call AOH-programs where
AOH stands for AND-OR-handles.

Definition 4.1 An AOH-program Πn has the following structure:

p :−not p,not a1, . . . ,not ak. (1)

q :−not q.
q :−not a1, . . . ,not ak. (2)

%for every ai, i ≤ k :
ai :−not bi.
bi :−not ai.
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There are 2k + 2 atoms and n+ 1 rules, as each atom occurs in the head of just one rule, except for q.

As in previous section, the body of rule (1) is an AND handle; for the program to be consistent, at
least one of its conditions must be false (thus making the AND handle active), so that the head becomes
false as well. The body of rule (2) is an OR handle; for the program to be consistent all the composing
literals must be true, thus making the head true (active OR handle). In fact, no answer set would
otherwise exists as the contradiction over p and/or q cannot be overridden.

It is easy to see that in the above program the two handles are incompatible in the sense that they
cannot be both active, as this implies a conflict over at least a literal, that should be simultaneously true
and false. Therefore we have the following proposition.

Proposition 4.1 Every AOH-program Πn is inconsistent, whatever the number n of composing atoms.

Notice that the above-defined AOH programs include in rules (1) and (2) two negative odd cycles
(involving atoms p and q respectively) of length 1, i.e., composed of just one rule. In this sense, we might
call these program AOH1-programs, and introduce the classes of AOHn-programs with n odd, involving
two odd cycles each one of length at most n, the former one exhibiting AND handles (no matter in which
rules) and the latter one exhibiting OR handles (no matter for which rules). The above proposition can
thus be immediately extended to AOHn-programs.

As it is well-known, inconsistency of logic programs stems from negative odd cycles (every program
involving no negative odd cycle is consistent). As discussed in depth in [12], a kernel logic program is
inconsistent either because there is an unconstrained odd cycle (i.e., an odd cycle without handles) or
because, as it happens with AOH programs, there exist two odd cycles whose handles are incompatible.
Kernelization does not affect the above result: in fact, on the one hand it eliminates atoms not involved in
negative cycles and on the other hand removes literal true/false in every answer set and skips intermediate
steps. The only effect can be that some odd cycles, which in the original program seemed to have handles,
become unconstrained in its kernel version as the literals occurring therein are true w.r.t. the well-
founded model. Therefore, the significance of AOHn-programs consists in the fact that they characterize
inconsistency for ASP programs.
Observation: every inconsistent logic program includes in its kernel counterpart either an unconstrained
odd cycle or an AOHn-program (for some n).
Thanks to the above observation, the following lower-bound result, which can be easily extended to
arbitrary AOHn-program, shall hold for every ASP program.

Theorem 4.1 The abstract solver ATLEASTΠ on an AOH-program Πn performs Ω(n) steps.

Proof The proof is essentially the lifting of the detailed proof seen in the previous Section for the AOH
program of size n=6. It suffices to notice that the given value for n is never accessed nor used in the
derivation; i.e., we use n as a parameter for building the instance and for iterating over rules (1) and (2),
but we never exploit any property of the values assigned to n.

Hence, we can say that in general the winning strategy for performing the least possible number of
steps is that of making both handles true. This quickly falsifies the contradictory atom that has been
decided first, and determines later the contradiction on the second one thus leading to a failure state.
This effect is obtained efficiently only if one chooses to decide in the first place all of the ai’s. This choice
results in getting all of them false (and thus no more decidable) via backtracking, obtaining therefore as
soon as possible a failure state.

5 Concluding Remarks

As we have seen above, determining the strategy that chooses the atoms to assume true so as to result
in the least possible number of steps requires information about the structure of the program. From
the Cycle Graph (CG) [12] of an AOH-program [12] one would see immediately that the program is
inconsistent. Granted that obtaining the CG is computationally expensive, the solver designers should
evaluate whether some kind of structural analysis might actually be useful in order to reduce the number
of steps, which is especially valuable on large problem instances.
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We remind the reader about the existence of alternative algorithms for computing the answer sets,
e.g., based on the EDG of a (kernelized) program [5] whose underlying principles have been applied in
order to improve existing solvers [18].

To conclude, we have established that the lower bound of the ASP solvers that adopt the abstract
solver algorithm, like SMODELS, is by no means bad. However, the integration with program analysis
and transformation techniques might bring relevant advantages.
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