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Abstract 

Protein aggregation into amyloid fibrils is the archetype of aberrant biomolecular self-assembly 
processes, with more than 50 diseases associated that are mostly uncurable. Understanding 
aggregation mechanisms is thus of fundamental importance and goes in parallel with the 
characterization of the structures of the transient oligomers formed in the process. Oligomers have 
been proven elusive to high-resolution structural techniques, while the large sizes and long-time 
scales typical of aggregation processes have limited, so far, the use of computational methods. To 
surmount these limitations, we introduce here multi-eGO, an atomistic, hybrid structure-based 
model, that leveraging on the knowledge of monomers conformational dynamics and of fibril 
structures, can efficiently capture the essential structural and kinetics aspects of protein 
aggregation. Multi-eGO molecular dynamics simulations can describe the aggregation kinetics of 
thousands of monomers. The concentration dependence of the simulated kinetics, as well as the 
structural features of the resulting fibrils, are in qualitative agreement with in vitro experiments on 
an amyloidogenic peptide of Transthyretin, a protein responsible for one of the most common 
cardiac amyloidosis. Multi-eGO simulations allow to observe in time and at atomic resolution the 
formation of primary nuclei in a sea of transient lower order oligomers, to follow their growth and 
the subsequent secondary nucleation events, till the maturation of multiple fibrils. Multi-eGO, 
combined with the many experimental techniques deployed to study protein aggregation, can 
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provide the structural basis needed to advance the design of molecules targeting amyloidogenic 
diseases. 

Significance Statement 

Alzheimer’s and Parkinson’s diseases are uncurable pathologies associated to the aberrant 
aggregation of specific proteins into amyloid fibrils. Understanding the mechanism leading to 
protein aggregation, by characterizing the structures of the oligomeric species populated in the 
process, would have a tremendous impact on the design of therapeutic molecules. We propose 
that a structure-based approach to molecular dynamics simulations can allow following at high 
resolution the aggregation kinetics of thousands of monomers. Having shown that simulations can 
describe the aggregation of a Transthyretin amyloidogenic peptide, we demonstrate how their 
efficiency allows acquiring a wealth of structural information. We foresee that integrating the latter 
with the many techniques developed to study protein aggregation will support the design of 
molecules to modulate amyloidogenesis.  

 

Introduction 
 

Amyloid fibril formation is a highly specific self-assembly process, requiring a large degree of 
similarity between the interacting amino acid sequences (1). Amyloids, resulting from the 
uncontrolled transition of normally soluble proteins, were originally found in association with 
neurodegenerative diseases (2, 3) only more recently they have been also associated to several 
physiologic functions (4, 5). Amyloid fibrils share a cross-β architecture. β-strands are oriented 
perpendicularly to the fibril axis allowing the formation of a dense network of intermolecular 
hydrogen bonds. Sidechains, instead, contribute to both intra and inter-molecular interactions (6, 
7). In vitro, the amyloid fold seems to be accessible to a very large number, if not all, proteins 
(ordered or disordered) or even short sequences of amino acids (8, 9). Thermodynamic 
considerations, indeed, suggest that native proteins are metastable species in physiological 
conditions, with the global free-energy minimum corresponding to their amyloidogenic state (10). 

Protein aggregation into amyloid fibrils is inherently a dynamic process. Many interconverting 
species of differing sizes and structures can be populated over multiple time scales (11). The 
description of amyloid fibrils formation thus requires understanding not only the properties of the 
end states, i.e., monomers and fibrils, but also of the different oligomeric species transiently 
populated in between. Remarkably, in diseases like Parkinson’s, Alzheimer’s, type 2 diabetes 
mellitus and cardiac amyloidosis, some oligomeric species may be the primary pathogenic agents 
(12–16). Furthermore, toxic oligomers have been found in model proteins and associated to specific 
physico-chemical properties like size and hydrophobicity, even if it is not yet clear if these are 
relevant for all amyloidogenic diseases (17–19). Structural approaches based on solid-state 
nuclear magnetic resonance (ssNMR) and cryogenic electron microscopy (cryo-EM) are revealing 
the atomic structure of amyloid fibrils formed by different proteins in diverse conditions (6, 7, 20–
22). The aggregation process itself can be only studied at very low resolution, by aggregation 
kinetics assay, where experimental conditions are tuned to let a solution of monomeric protein 
interconvert into amyloid fibrils. Seeds obtained by previously formed fibrils can also be employed 
to catalyze the interconversion (23). 

Chemical kinetics analysis provides a framework to dissect the microscopic mechanisms at play in 
fibril formation (24). Aggregation is described by a network of microscopic processes like primary 
nucleation and elongation, as well as secondary nucleation processes, like fragmentation and 
surface induced nucleation. By globally fitting multiple accurate aggregation kinetic traces obtained 
for multiple initial monomer concentration it is possible to estimate the rates for the different 
microscopic processes and use these to interpret the macroscopic observations. Such analysis 
highlighted how proteins associated with amyloidogenic diseases seem to prevalently aggregate 
through secondary nucleation mechanisms while physiological amyloids may be mainly controlled 
by primary nucleation (25, 26). Drug design strategies are being implemented based on the kinetic 
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modulation of such mechanisms (27). Nonetheless, despite its power, chemical kinetics fails to 
provide detailed structural information of the species at play along the process. 

Given the inherently transient and dynamic nature of the species populated in an assembly 
process, molecular dynamics (MD) simulations naturally complement current experimental 
approaches (27). Simulations of the aggregation kinetics have been mainly employed to 
characterize the early events in the oligomerization of few peptides at high concentrations because 
of the combination of challenges resulting from system sizes and relevant time scales. Implicit 
solvent models have been employed to mitigate these problems and allowed studying the 
oligomerization of 20 monomers of Aβ40 and Aβ42 for hundreds of ns (28). Simulating larger 
systems on longer time scales requires coarse grain models (CG). Notably, fibrils may easily be 
formed by tens of thousands of monomers.  

CG simulations have been important to shed light on the role played by kinetics, thermodynamics, 
and other physico-chemical properties in protein aggregation, but they have been employed only 
for very qualitative studies (29–31). In the field of protein folding simulations, the most used CG 
models are structure-based (SB), also known as Gō, models (32–34). SB models are an 
implementation of the principle of minimal frustration (or the folding funnel (35)): attractive 
interactions are defined only between amino acids or atoms close in space in the native crystal 
state, consequently the minimum energy configuration is the native crystal configuration. This 
allows studying very efficiently folding and unfolding transitions by dramatically decreasing the cost 
to evaluate interactions and speeding up the overall diffusion in conformational space, e.g., the 
folding time of a protein can be rescaled from milliseconds to hundreds of nanoseconds.  

In keeping with the observation that the amyloid structure is the global free-energy minimum of a 
protein at high concentration (10), here we introduce multi-eGO, a novel hybrid SB model including 
non-bonded interactions derived from both the dynamics of the soluble protein as well as from the 
structure of the amyloid fibril, and transferable bonded interactions optimized to reproduce the 
results of state-of-the-art explicit solvent molecular force fields. While SB models including more 
than one reference structure have been employed to study large conformational changes in 
proteins as well as metamorphic proteins (33, 36–40), here we show that multi-eGO can be used 
to follow at high resolution the aggregation of thousands of monomers as a function of their initial 
concentration. Our results are qualitatively in agreement with experiments and enable the structural 
investigation of the aggregation of proteins into amyloid fibrils. 

 
Results 
 
To develop multi-eGO, we used the Transthyretin 105-115 amyloidogenic peptide (TTR105-115) (41, 
42). Transthyretin is a well-studied amyloidogenic protein responsible for both sporadic and genetic 
cardiac and systemic amyloidosis (43). TTR105-115 has been often used as a model system to study 
aggregation and three amyloid polymorphisms were determined at atomic resolution by a 
combination of multiple techniques including ssNMR and cryo-EM (20). NMR analysis of 
monomeric TTR105-115 in solution indicates that it populates primarily random-coil structure with a 
low percentage of turns or helical elements (44). Multi-eGO is built including information from the 
structure or the dynamics of the end states and uses them to infer the properties of the intermediate 
oligomeric states (Figure S1). To have a realistic reference conformational ensemble of monomeric 
TTR105-115 we performed an explicit solvent MD simulation using the AMBER99SBDisp force-field 
(45). This simulation well represented the behavior of TTR105-115 in solution, showing a broad 
flexibility and sporadic turns, as reported by the radius of gyration distribution and the per-residue 
contact probability map in Figure 1, and overall agrees with previous NMR studies (44). 
 
Multi-eGO reproduces the conformational dynamics of TTR105-115 in solution 
Following previous works on metamorphic proteins (38, 39), we first defined the multi-GO SB force 
field, at all heavy atom (non-hydrogens) resolution, as a combination of terms obtained from two 
reference structures (cf. Material and Methods), namely the protein in its native monomeric state 
(extracting TTR105-115 coordinates from pdb 4TLT) and the amyloid fibril (pdb 2M5K), cf. Figure S1 
in the Supplementary Information. A Multi-GO simulation of a TTR105-115 monomer explored only 
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extended configurations with an average radius of gyration of 1.05 nm, in comparison with 0.83 nm 
of the AMBER one (Figure 1A) and the conformational ensemble did not show long range contacts, 
cf. Figure S2 in the Supplementary Information. The multi-GO ensemble described above did not 
capture the conformational freedom of the monomeric state, and consequently may not capture 
that of early intermediate oligomeric states.  
 
To increase the descriptive power of the model we introduced multi-eGO as a hybrid 
transferable/SB model (cf. Materials and Methods). The most relevant differences are that all 
bonded interactions, and in particular proper dihedral angles, are transferable, while non-bonded 
interactions are learned from a reference simulation for the monomeric state, i.e., the AMBER force-
field simulation introduced above, and a reference amyloid fibril structure (pdb 2M5K). Remarkably, 
while the multi-GO simulation explored only extended configurations, the multi-eGO model could 
better recapitulate TTR105-115 dynamics in solution with an average radius of gyration of 0.90 nm. In 
Figure 1B is reported the contact probability map for AMBER and multi-eGO that shows how multi-
eGO could also qualitatively describe the transient interactions. 
 
Multi-eGO can simulate TTR105-115 aggregation 
Using multi-eGO, a total of 15 simulations (each involving 4000 TTR105-115 monomers) as a triplicate 
of five different concentrations (between 7 and 13 mM) were produced. The resulting aggregation 
kinetics are shown in Figure 2A as the number of monomers forming assemblies, from decamers 
to larger ones, at a given time. Of note, the time scale of the simulations is only nominal and may 
be corrected a posteriori by direct comparison with experimental data. The simulations displayed 
sigmoidal concentration dependent kinetics, where an increase in monomer concentration resulted 
in a reduction of the lag phase. We also observed that the variability of the curves increased 
inversely with the initial monomer concentration (46). From the resulting curves we obtained the 
half time, 𝜏1/2, as function of the initial monomer concentration, shown as a double log plot (Figure 
2B), and the growth rate, r, as the slope of the straight line fitting the region of the curve around 𝜏1/2 
(Figure S3 in the Supplementary Information). The 𝜏1/2 double log plot showed a bilinear trend with 
a change of slope at concentrations lower that 8.5 mM, suggesting that at high monomer 
concentration a dominant aggregation mechanism becomes saturated (47). 
 
To test the ability of multi-eGO to capture differences between seeded and unseeded aggregation 
kinetics, we also performed three seeded simulations at 7 mM by adding as seed a 10 monomers 
oligomer (obtained from previous 13 mM simulations, see also the section in the following on the 
Structural details of TTR105-115 aggregation kinetics). In Figure 2C it is shown that the addition of 
the seed resulted in a marked decrease of 𝜏1/2 as well as in a marked reduction of its variability. 
The growth rate, r, was instead the same observed for the unseeded simulations at the same 
concentration (i.e., 7 mM).  
 
Multi-eGO TTR105-115 fibrils display polymorphism in agreement with the reference model 
The 18 simulations performed at 5 different concentrations yielded a total of 41 distinct fibrils. These 
fibrils grew in length from 163 Å to 515 Å with an average length of 360 Å (Table 1 and Table S1 
in the Supporting Information). All fibrils displayed the expected cross-β topology with a parallel 
and in-register stacking of chains in the same β-sheet as shown in Figure 3. The average distance 
between β-strands in the cross β-sheet was ~4.7 Å. Facing β-sheets were antiparallel and shifted 
by 2.5 Å, resulting in the even-numbered side chains of one peptide interacting with the odd-
numbered side chains of two opposite peptides. Following previous nomenclature, we define 
protofilament a structure made of two antiparallel β-sheets, the further addition of two β-sheets in 
a protofilament determines a filament (Figure 3A). Here, the β-sheet content in a filament could 
vary from 4 to 17 with an average of 10. A filament could grow in the peptide chain direction through 
interactions between the N- and C- terminal residues (Figure 3B), determining then a fibril. This 
head-to-tail interaction resulted from Y105 side chain interacting with both S115 carboxyl group 
and Y105 side chain of the facing β-sheet. The number of filaments in a fibril could vary from 2 to 
6 with an average of 4. Mature fibrils displayed a twist per monomer between -0.1° and -0.85° 
measured as the torsion angle between two vectors obtained from Y105-Cα and S115-Cα carbons 
of subsequent molecules in the same β-sheet. Single filaments displayed a more pronounced twist 
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of -5° compared to mature fibrils (Figure 3). At higher concentration we saw the formation of more 
fibrils indicating that more nuclei are produced compared to lower concentration (Figure S4). Since 
the number monomer was fixed at 4000, the fibrils grown at higher concentration were shorter in 
length than the one obtained at lower concentration (cf. Table 1 and Table S1 in the Supporting 
Information). We also observed, at higher concentration, fibrils adhering together (Figure 3C). 
Again, given the fixed and relatively small number of monomers, some protofilaments were not 
able to become fibrils due to monomers depletion. We did not observe any specific difference in 
the fibrils formed at 7 mM seeded and unseeded simulations. 
 
Compared to the reference model determined by ssNMR and Cryo-EM, the only remarkable 
difference is that our fibrils do not display any wet cavity within filaments. The cavity should 
accommodate structured water interacting with exposed sidechains. In our model all sidechains in 
a filament are tightly packed, therefore we also observed a variable number of β-sheets in a filament 
where the reference model contained always four of them. However, there are evidence of such 
variations (48, 49). The reference model described a structural polymorphism, based on the 
number of filaments, from doublet to quadruplet. In our simulations we observed up to six filaments 
in a single fibril. 
 
TTR105-115 in vitro aggregation experiments recapitulate multi-eGO simulations. 
To validate the in-silico aggregation kinetics, we performed aggregation assays monitored by 
Thioflavin T (ThT) fluorescence (Figure 4). TTR105-115 peptide was incubated at 37 °C at different 
concentrations (i.e., 13 mM, 10 mM, and 7 mM) and ThT fluorescence was monitored for 150 h. 
ThT fluorescence increased over time indicating (Figure 4A) concentration dependent kinetics of 
aggregation. The lag phase of at 13 mM was considerably shorter compared to the ones at 10 or 
7 mM. The fluorescence plateau was reached faster in the most concentrated samples, whereas 
at the lowest concentration tested (i.e., 7mM) the plateau was not observed during the overall 
incubation time. The mean values of three independent experiments were subjected to nonlinear 
regression analysis, using Boltzmann sigmoidal equation. From the regression we derived 
experimental 𝜏1/2 of 33.7±4.3 h, 62.0±16.6 h and 125.7±10.2 h for 13 mM, 10 mM, and 7 mM, 
respectively. Figure 4B shows in double log plot a linear correlation between peptide 
concentrations and half times, with a slope comparable to the one obtained from simulations in the 
range 8.5 to 13 mM (namely, -2.0 and -2.2 for the experiments and simulations, respectively, cf. 
Figure 2B). 
 
The aggregates of TTR105-115 peptide obtained by the aggregation kinetics experiments were 
negatively stained and analyzed by transmission electron microscopy (TEM). As reported in Figure 
4, we observed remarkable polymorphism in all the conditions tested. Morphological analysis 
identified six main different types of structures (Figure 4C-E and Table S2 in the Supporting 
Information). The mean width at the crossover is 37.3±4.2 Å like what previously observed by 
Fitzpatrick et al. (20). The fibrils crossover in the six polymorphs ranges from 1041.3 ± 23.9 Å to 
1185.0 ± 43.0 Å; the diameter varies considerably ranging from 115.0 ± 11.0 Å to 326.0 ± 21.2 Å. 
Representative pictures of each identified morphology are reported in Figure 4F, and the main fibril 
parameters in Table S2. Notably, the observed widths between crossovers correspond to multiples 
of the peptide chain length, suggesting the presence of up to 8 aligned filaments (Table S2).  
 
Multi-eGO can provide structural details for TTR105-115 aggregation kinetics 
Having shown that multi-eGO could simulate the aggregation of TTR105-115 from monomers to fibrils, 
we could then look in details at the structures populated along the self-assembly process. In Figure 
5 and Figure S5 in the Supporting Information, is shown the number of monomers, dimers, and 
trimers for our aggregation kinetics as a function of time. We observed that monomers number 
displayed a sigmoidal behavior symmetric with respect to that of the fibril size. The number of 
dimers and trimers showed instead a noisy but relatively constant trend till the end of the lag phase 
(tlag), defined as the intersection between a straight-line, tangent to aggregation kinetic curve at 𝜏1/2 
with slope r, and the time axis, and quickly dropped after this time, suggesting that once fibrils start 
to grow, most monomers contributed to the fibril growth instead of forming new oligomers and the 
ones already formed before tlag dissolve over time. 
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In Figure 6A is shown the time resolved distribution of oligomer sizes of the first 13 mM simulation 
before tlag (cf. Figure S6 for all simulations). This analysis allows to follow the emergence and 
growth of primary nuclei and suggested that fibrils stem from primary nuclei made of ~10 
monomers. Assuming the simulations prior to tlag at equilibrium, and thus averaging over this time 
window, we observed how, at all concentrations, dimers and trimers were the most represented 
oligomeric species with populations in the 5-10% and 0.5-2% range, respectively (cf. Figure 6B). 
Higher order oligomers were scarcely populated stressing the need to simulate large numbers of 
monomers to study aggregation (cf. Figure 6B). 
  
The structures of oligomers involved in primary nucleation are shown in Figure 7. All primary nuclei 
displayed two antiparallel β-sheets. Observing the trajectory, we were able to describe their 
formation. Free monomers spontaneously assembled into small oligomers forming a first β-sheet. 
Once the β-sheet reached a size of 5-6 monomers, other monomers could interact with the β-sheet 
surface triggering the formation of a second β-sheet docked by sidechain/sidechain interactions. 
 
Once a primary nucleus was formed, we could follow its growth. Each β-sheet provides two ends 
for elongation (Figure 8A), so primary nuclei have four of them. We observed elongation with 
peptides generally docking from the N-terminus towards the C-terminus (Figure 8A). A cross-β 
protofilament, generally highly twisted, exposes sidechains and termini for secondary nucleation, 
but we observed that only the sidechains faces could trigger the formation of further β-sheets thus 
forming a filament (Figure 8B). Of note, the addition of each β-sheet decreased the twist. 
Filaments, made of at least 4 β-sheets, could further growth both through their sidechains faces 
(Figure 8B) as well as through their termini (Figure 8C). Growth could occur by N- to N-terminus 
(head-to-head) as well as N- to C-terminus (head-to-tail) interactions. Importantly, a newly N- to C- 
β-sheet could grow into a new protofilament, while a newly formed N- to N- β-sheet needed first to 
shift into an N- to C- one before further growth could occur. A fibril is thus formed when two filaments 
are linked head-to-tail. Remarkably, the formation of new β-sheets always happened with 
monomers sliding on the surface before eventually docking. In none of the simulations we observed 
fragmentation events. Eventually, at high monomer concentration, we also observed interactions 
between fibrils. This description of the TTR105-115 aggregation process is consistent with the 
hierarchy proposed by Fitzpatrick et al. (20). 
 
Eventually, one can wonder if the aggregation mechanisms observed in the simulations could be 
extrapolated from the macroscopic traces (Figure 2A) by chemical kinetics approaches. Analysis 
of our simulated aggregation kinetics at different concentrations was performed using Amylofit (50–
52). Following the protocol provided (52), our data could only be globally fitted using a “multi-step 
secondary nucleation, unseeded model” as shown in Figure 9. This is compatible with the positive 
curvature with an increased slope at lower concentration displayed by 𝜏1/2 in double log plot (cf. 
Figure 2B) that can be interpreted as the saturation of secondary nucleation (47) at high monomer 
concentration (e.g., all the catalytic fibril surface is occupied by monomers). Furthermore, our 
seeded simulations do not showed variations in the rate constant r (cf. Figure 2C), supporting the 
hypothesis that secondary nucleation is a multi-step process with a first step (monomer attachment 
on the surface) that is concentration dependent and a second step (monomers rearrangement on 
the surface) that is concentration independent (47). Amylofit analysis correlates with our 
observations where the addition of molecules on the cross-β surface implies the exploration of 
different conformations prior to lock and start forming a new oligomer.  
 
Discussion 
 
Amyloidogenesis, being the result of an out-of-equilibrium, concentration dependent process, 
cannot be easily followed by high-resolution structural biology techniques (6). Indeed, while NMR, 
X-ray crystallography and Cryo-EM have been instrumental to investigate at high resolution both 
the early steps associated with protein misfolding, as well as the resulting amyloid fibril structures, 
they have only provided low-resolution information about the transient oligomers populated along 
the process (53, 54). In this respect, most of the fundamental mechanical understanding of protein 
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aggregation is based on the combination of multiple low-resolution techniques, in particular 
aggregation kinetics studied by ThT fluorescence, and chemical kinetics analysis (19). 
 
MD simulations could provide the resolution in time and space to observe the emergence of 
oligomers, nuclei, and fibril from a solution of monomeric proteins (55). This would provide 
enormous help first to understand the determinants of the different aggregation mechanisms at 
play, to observe the effect of mutations, and then towards a structure-based design of drugs 
targeting specific oligomeric specie. Unfortunately, computer power is far from close to enable such 
simulations using conventional classical mechanics transferable force fields (55). Simulations have 
thus been employed to study the oligomerization of few peptides (28), the interactions of peptides 
with preformed fibrils (56), and, in most of the cases, to try to understand the determinants of protein 
aggregation by studying protein monomers only (57–62). These studies, while valuable, fall short 
in providing indications about oligomers that are by their nature extremely unlikely and short-lived. 
 
Here we set to develop a simplified force field that could allow studying protein aggregation of 
thousands of monomers with nowadays state-of-the-art computer resources. Our force field builds 
on the success of structure based (Gō) models to study protein folding (33, 63). The multi-eGO 
force field introduced here, is 1) at atomic resolution (excluding hydrogens); 2) locally transferable, 
with bonded and excluded volume interactions derived from a transferable force field or optimized 
consequently; 3) structure (or ensemble) based using multiple references and symmetrized so to 
be able to form interactions both intramolecularly as well as intermolecularly. We have shown, in 
Figure 1, that this combination allowed us to describe the conformational ensemble of a disordered 
peptide in qualitative agreement with more accurate conventional explicit solvent MD simulations. 
Most importantly multi-eGO can describe the aggregation kinetics of thousands of monomers 
showing concentration dependent features compatible with experiments, Figure 2-4. Indeed, the 
comparison of the double log-plots from experimental and simulated 𝜏1/2 data (Figure 2B and 
Figure 4B) showed very similar slopes of the interpolating straight lines, confirming the robustness 
of the model, with a difference observed only for the lowest concentration. TEM morphological 
analysis of the final fibrils highlighted a remarkable degree of polymorphism. Specifically, we 
classified six main fibril morphologies with highly variable crossover and width ranging between 
1041.3±23.9 - 1185.0±43.0 Å and 115.0±11.0 - 326.0.0±21.2 Å, respectively (Figure 4F and Table 
S2). Considering that the extended peptide is 38 Å long, these data indicate that each fibril is formed 
by 3 to 8 filaments, similarly to what observed in in-silico fibrils (Figure 3, Table 1, Table S1 and 
S2). On the contrary all morphologies share a mean width at the crossover of 37.3±4.2 Å, 
compatible with previous measure, and resulting in a hydrated cavity that is not observed in silico 
(20). Overall, our model can qualitatively reproduce some of the kinetics and structural features of 
TTR105-115 aggregation, leaving space for future improvements. 
 
The simulations can then be used to make hypothesis about the oligomeric specie populated along 
the process and provide a structural model for the mechanisms of primary and secondary 
nucleation. Interestingly, we can show how primary nuclei are in the order of 10 monomers and 
organized in two opposed β-sheets, Figure 7. These nuclei are populated for less than 0.1% in the 
lag phase of the kinetics, in comparison to dimers and trimers that are populated around 9 and 1%, 
respectively (cf. Figures 5-6). This indicates how relevant is to simulate aggregation using large 
numbers of monomers. Oligomers population drops immediately after the formation of the first 
nuclei. Following the growth of primary nuclei, our model also shows that elongation happens 
through the preferential binding of the N-terminus region of the peptide, Figure 8. Once a 
protofilament is formed, secondary nucleation can be observed. Secondary nucleation happens 
first by the formation of nuclei on the exposed sidechains surface of the filament, then monomers 
can slide over the surface and eventually dock into it and start the formation of an additional β-
sheet layer, Figure 8. Once at least four β-sheet layers are formed, we observe additional 
secondary nucleation events catalyzed by interactions with the N- and C- termini, Figure 8. Here, 
secondary nucleation contributes to the overall growth of fibril while it does not show the formation 
of independent oligomers that detach to form new protofibrils. We hypothesize that this is a size 
effect resulting from the still very small number of monomers that is immediately depleted by the 
formation of the fibril. Nonetheless the secondary nucleation observed here is still the main effect 
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that contributes to the exponential growth of the fibril mass. Of note, the mechanisms inferred by 
applying a chemical kinetics analysis of the trace generated in silico agrees with the actual 
mechanisms observed in the simulation, Figure 9, suggesting that multi-eGO may be used in the 
future to calculate in detail the different rates of the processes contributing to the global aggregation 
kinetics and complement and integrate experimental chemical kinetics models to provide a high-
resolution time-resolved description of the microscopic processes at play during aggregation. 
 
In conclusion, we have presented the initial development of multi-eGO, a novel structure-based 
model tailored to study amyloid-type protein aggregation. The model is promising in describing at 
least qualitatively the spontaneous aggregation of monomers into amyloid fibrils as a function of 
the initial monomer concentration and thus provide a structural picture of the oligomeric specie 
populated and of the associated aggregation mechanisms. We anticipate that our model can benefit 
from methodologies that allow integrating simulations with the many complementary experimental 
techniques deployed to study protein aggregation (64–67). Eventually, the computational efficiency 
of multi-eGO, combined with the availability of the structures of amyloid fibrils of proteins in multiple 
conditions, will allow to improve our understanding of the mechanisms and the associated 
oligomeric structures at play in different pathogenic and non-pathogenic self-assembly processes. 
 
Materials and Methods 
 
MD simulations in this work were performed with GROMACS (68). Models’ parameterization and 
preparation was developed in python, all scripts, including ad hoc analysis tools, are freely available 
on GitHub (https://github.com/emalacs/multi-eGO/tree/TTR_paper). Simulations are available on 
Zenodo (cf. Dataset S1 and S2 in the Supporting Information). 
 
Multi-GO: A multi-reference Gō-like model for protein aggregation 
Multi-GO is a multi-reference structure-based force field, at all heavy atom (non-hydrogens) 
resolution, defined as a combination of terms obtained from two reference structures, namely the 
protein in its native monomeric state and the amyloid fibril. This was originally developed to study 
metamorphic proteins (38, 39) using the SMOG software (69). In this model, distances between 
covalently bonded atoms, as well as angles formed by three subsequent covalently bonded atoms 
are derived only from the monomeric structure because they describe the local geometry that is 
generally independent from the specific configuration. Dihedral angles are defined as in SMOG but 
obtained from both structures and halving the force constant to account for the double counting. 
Native pairs are obtained from both reference structures following SMOG rules; if two atoms are in 
contact in both structures, then the distance is defined as the minimum distance. All native pairs 
are symmetrized so that if atom i and atom j are in contact in one reference structure, they can 
interact irrespectively of whether the two atoms belong to the same monomer or to two different 
monomers; such approach has been successfully employed to describe domain swapped dimers 
(70, 71), and is needed to make intra- and inter-molecular interactions indistinguishable. 
 
Multi-eGO: an enhanced Gō-like model for protein aggregation 
At odds with multi-GO, multi-eGO force-field is partitioned so that while non-bonded interactions 
are structure-based, bonded interactions are instead transferable. The multi-eGO Hamiltonian 
given a reference monomer Xm and a reference amyloid structure Xa, is defined as: 
 

𝐻(𝑋; 𝑋 , 𝑋 ) = 𝐾 (𝑟 − 𝑟 ) + 𝐾 (𝜃 − 𝜃 ) + 𝐾 [1 + cos(𝑛𝜙 − 𝜙 )]

+ 𝐾 [1 + cos(𝑛𝜓 − 𝜓 )] + 𝜀
𝑟 , ,

𝑟
− 2

𝑟 , ,

𝑟
+

𝐶
( )

𝑟
, 

 
where the parameters for bonds, angles, improper and proper dihedrals are obtained from a 
transferable force-field, specifically GROMOS54A7 (72) that is a united atom force-field already 
optimized without non-polar hydrogens. Thus, the local geometry no longer depends on the 
monomeric structure as in multi-GO. Proper dihedrals terms describing the ϕ and ψ backbone 
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angles were re-optimized as describe in the next section. Interactions between native pairs are 
defined for couple of atoms farther than 2 residues (if they belong to the same molecule) and closer 
than 5.5 Å in either the native monomeric or amyloid structure. In the case of the monomeric state, 
pairs are obtained from a MD simulation as those forming a contact with a population P larger than 
a threshold Pthreshold. The interaction length is then defined as the average contact length, while the 
interaction strength, εn, is heuristically rescaled with respect to a reference ε value as: 

𝜀 =  𝜀  1 −
ln 𝑃

ln 𝑃
 

this approach has the merit to give an interaction strength equal to ε if the contact population is 1, 
like in a static structure, and to smoothly go to 0 when reaching the chosen threshold. 
 
As above all native pairs were symmetrized and if two atoms are in contact in both reference 
structures, then only the shorter rij distance is retained. Care must be taken so that if a native 
interaction is defined between two atoms belonging to the same, the neighbor or next to neighbor 
residue, this interaction applies only intermolecularly. Finally, excluded volume interactions for all 
other pairs, that is all pairs of atoms that are not native and that are separated by more 3 
consecutive covalent bonds, are defined as in the GROMOS54A7 force field. Among the excluded 
volume interactions, we include all i-i+3 interactions involving a backbone nitrogen, in this case the 
C(12) Lennard-Jones parameter is scaled down by a factor 0.15. This is needed to effectively 
account for the missing amide hydrogen, and it is critical to avoid non-physical configurations. Of 
note, in multi-eGO masses are correctly set to include hydrogens; also, since force constants 
obtained from GROMOS are tuned to work at room temperature, i.e., ~300 K, ε, the reference 
interaction strength between all native pairs, is a free parameter to be set in a system dependent 
manner. 
 
Multi-eGO backbone dihedrals optimization 
In the multi-eGO Hamiltonian, the intramolecular interactions between atoms belonging to three 
consecutive amino acids are described only by transferable terms. Therefore, a dipeptide simulated 
with multi-eGO should closely mimic the conformational freedom of a dipeptide simulated at room 
temperature using a transferable force field in explicit solvent. Due to the structure-based non 
bonded addition, parameters for the proper dihedral angles have been optimized building on the 
former hypothesis. Alanine, glycine, and proline dipeptides were simulated using CHARMM22* (73) 
and TIP3P (74) at 300 K for 1 µs each and the resulting Ramachandran distribution was set as our 
target. 
  
The same dipeptides were simulated using multi-eGO, initially setting the force constant K of the 
potential VD describing proper dihedrals for the backbone ϕ and ψ angles to zero. VD is defined as 
𝑉 (𝜗) = 𝐾(1 + cos(𝑛𝜗 − 𝜙 )), with force constant K, multiplicity n, and phase ϕ0. 
 
Target and multi-eGO Ramachandran distribution are then compared calculating the following 
scoring function S (i.e., the cross-entropy): 

𝒮 = 𝑃(𝑇) log
𝑃(𝑇)

𝑃(𝐸)
 

where P(E) and P(T) are the multi-eGO and target Ramachandran distributions. To optimize the 
parameters K, n, and ϕ0 for the proper dihedral angles, we then followed an iterative procedure 
combining a Monte-Carlo (MC) optimization followed by MD (75, 76). In detail, the effect of a given 
choice of the parameters is estimated by analytically reweighting the last multi-eGO MD simulations 
as: 

𝑤(𝜑, 𝜓) = exp −
(𝑉 (𝜑) + 𝑉 (𝜓)) − (𝑉 (𝜑) + 𝑉 (𝜓))

𝑘 𝑇
 

where Vi
D is the potential energy from the ith iteration written as the sum of multiple proper dihedral 

terms; kB is the Boltzmann constant and T the temperature of the MD simulation. Optimal 
parameters are searched by MC under the constraint that the effective information Neff, calculated 
over the N configurations generated by the last MD, as  
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N =
[∑ 𝑤 ]

∑ 𝑤
 

is greater than 0.6. This allows to choose parameters that do not alter dramatically the starting 
distribution. A new MD simulation is then performed with the chosen parameters and the procedure 
is repeated till convergence of the scoring function (75, 76). 
 
Simulations details: TTR105-115 monomer in explicit solvent 
TTR105-115 peptide in solution does not possess a unique well-defined structure being too short, 
consequently we performed a reference simulation using the AMBER99SBDisp (45) force field. 
The starting structure was obtained from pdb 4TLT and the simulation was set to resemble the 
experimental conditions of TTR105-115 aggregation, therefore, to be at pH 2.0 we protonated the N- 
and C- termini. The molecule was solvated with 3408 water molecules in a dodecahedron box 
initially 0.9 nm larger than the chain in each direction. One chlorine ion was added to neutralize the 
charges. Short range interactions were cut-off at 1 nm, with long range electrostatic handled using 
the particle mesh Ewald scheme (77). Lincs constraints were applied only to bonded hydrogens 
(78). 
 
Following energy minimization, a positional restraint step was performed under NVT conditions at 
300K temperature for 500 ps using the velocity-rescale thermostat (79); then the cell-rescale 
barostat (80) was used to equilibrate the system in the NPT ensemble to the target pressure of 1 
atm for 1000 ps. A production MD simulation under NPT ensemble was run for 1.5 µs.  
 
This reference simulation was then analyzed to obtain the monomer native pairs and their 
corresponding interaction strength. These were defined as all the couples of atoms, distant more 
than 2 residues, forming a contact with a population P larger than a threshold Pthreshold, 0.09 in this 
case. 
 
Simulations details: Multi-eGO TTR105-115 fibril 
The strength of the native interactions ε is the only parameter to be set empirically based on the 
knowledge of the system. To find an optimal value for TTR105-115, we performed multiple simulations 
at fixed temperature using a pre-formed fibril. The fibril model was obtained extracting 64 chains 
from pdb 2M5K (20). Multiple simulations were performed testing a range of ε values between 
0.265 and 0.295 kJ/mol at 315 K using a Langevin dynamics with an inverse friction constant of 50 
ps and a timestep of 5 fs. The structure was placed in a cubic box 10 nm larger than the fibril in 
each direction. After the energy minimization and a positional restraint simulation of 1 ns, 
production simulations were performed for 200 ns. The optimal ε value was chosen to be the 
highest at which the structure of the fibril was stable with fibril ends monomers showing some 
flexibility and ability to partially detach from the fibril. An ε value of 0.275 kJ/mol has then been used 
for all subsequent simulations.  
 
Simulations details: Multi-eGO TTR105-115 aggregation kinetics 
To setup the simulations for aggregation kinetics a monomer model was extracted from Y105 to 
S115 using pdb 4TLT (81) as reference and then, the C-terminal oxygen was added. Four thousand 
molecules were randomly placed in a cubic box whose side length depends on the desired 

concentration as 𝑙𝑒𝑛 [𝑛𝑚] =  10
[ ]

, where nmol is the number of molecules to add in the 

system, NA is the Avogadro Number, and [C] is the concentration. The resulting volumes are in the 
range of 1 attoliter. The system energy was minimized and then thermalized at a constant 
temperature of 310 K using positions restraint for 1 ns. Simulations were then performed at 5 
different concentration, 13 mM, 11.5 mM, 10 mM, 8.5 mM, and 7 mM in triplicate and evolved long 
enough to form stable fibrils including most of the monomers. Furthermore, three seeded 
simulations were performed at 7 mM using as a seed a structure of a 10 molecules protofilament 
obtained at 13 mM. To analyze the simulations, we used a modified version of the GROMACS 
clustsize tool and homemade python scripts involving MDTraj (82) and MDAnalysis (83, 84). 
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clustsize provides a matrix of clusters-sizes as a function of time. The kinetic curves were built by 
multiplying the number of clusters at every frame by the cluster dimension. 
 
TTR105-115 peptide synthesis 
TTR105-115 peptide (YTIAALLSPYS) was prepared by microwave assisted Fmoc solid-phase peptide 
synthesis on Wang resin (0.4 mmol/g loading) using the CEM Liberty Blue synthesizer. The 
coupling reaction was performed with 5 eq excess of the amino acid (0.2 M in DMF), DIC (0.5 M in 
DMF) and Oxyma Pure (1M in DMF) as coupling reagents. The MW cycle was as following: 15s at 
75°C, 170W followed by 110s at 90°C, 40W. N-Fmoc deprotection was performed using 20% 
piperidine in in DMF with a MW cycle of 15s at 75°C, 155 W, followed by 60 s at 90°C, 50 W. Full-
cleavage from the resin was performed by shaking the resin for 3 hours in a mixture of 
TFA/TIPS/H2O/phenol 90:2.5:2.5:5. After cleavage, the peptide was precipitated and washed using 
ice-cold diethyl ether. TTR105-115 was purified in reverse-phase by using RP-HPLC with a ADAMAS 
C-18 column from Sepachrom (10 μm, 250 × 21.2 mm, phase A 0.1% TFA in water, phase B: 1% 
TFA in ACN with a gradient of 20-100% phase B over 40 min at a flow rate of 20 mL/min.).  
 
TTR105-115 aggregation assays 
Lyophilized TTR105-115 peptide was dissolved at 13 mM in 10% acetonitrile/water solution and pH 
adjusted to 2.5 with HCl. The solution was sonicated on ice for 15 min and then centrifugated at 4 
°C for 15 min at 20800 x g. The stock solution was eventually diluted to the final concentrations for 
the experiments (13 mM, 10 mM, and 7 mM) in 10% acetonitrile/water solution. Freshly prepared 
ThT was added to a final concentration of 20 µM. 50 µL of each condition was then pipetted into 
black polystyrene 96-well half-area plates with clear bottoms and polyethylene glycol coating 
(Corning). Each condition was performed in duplicate in each experiment. Plates were sealed to 
prevent evaporation and incubated at 37 °C under quiescent conditions in a Varioskan Lux plate 
reader (Thermo Fisher Scientific). Upon excitation at 450 nm, fluorescence at 480 nm was recorded 
through the bottom of the plate every 120 min. All the experiments were performed in triplicates, 
except for the 10 mM condition that was done in duplicate. The mean ThT fluorescence values 
from the independent experiments were normalized and subjected to nonlinear regression analysis, 
using Boltzmann sigmoidal equation.  

TEM analysis on TTR105-115 fibrils 
Freshly prepared TTR105-115 fibrils were analyzed by TEM. 4-μl droplet of sample was applied onto 
a 400-mesh copper carbon-coated grids (Agar Scientific) glow discharged for 30 s at 30 mA using 
a GloQube system (Quorum Technologies). After 1-min incubation, excess of sample was removed 
and the grid was stained with 2% (wt/v) uranyl acetate solution, blotted dry, and imaged on a Talos 
L120C transmission electron microscope (Thermo Fisher Scientific) operating at 120 kV. 
Morphological characterization of the fibrils was performed using the software ImageJ (85). 
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Figures and Tables 
 

 
 
 
 
Figure 1. TTR105-115 peptide monomer dynamics. (A) Gyration radius distribution of TTR105-115 
peptide conformational ensemble according to multi-GO (green), multi-eGO (orange), and AMBER 
(blue) simulations, respectively. The multi-GO distribution describes an open conformation with a 
single peak at 1.07 nm. The AMBER simulation shows multiple peaks over a broad range of values. 
The multi-eGO distribution is shifted towards more extended conformations than AMBER but still 
shows a broad range of value in qualitative agreement with the former. (B) Per residue probability 
contact map for the AMBER (lower left) and multi-eGO (upper right) simulations. 
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Figure 2. (A) Simulated aggregation kinetics. Curves represent the number of monomers involved 
in an aggregate of at least 10 monomers as a function of nominal simulation time. (B) log-log plot 
of the half times, 𝜏1/2, as a function of the initial monomer concentration. The points are fitted with 
two straight lines with a resulting slope of -5.1 in the range 7 to 8.5 mM and -2.2 between 8.5 and 
13 mM. (C) Aggregation kinetics of seeded and unseeded 7 mM simulations. Curves represent the 
number of monomers involved in an aggregate of at least 10 monomers as a function of nominal 
simulation time. The addition of the seeds reduces and makes less variable 𝜏1/2 compared to the 
unseeded simulations, while the slope of the growth is unaffected. 
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Figure 3. (A) A filament model observed at the end of a simulation. Colors indicate the 5 different 
β-sheets composing the filament. (B) Top and side view of a mature fibril with colors indicating the 
different filaments. From the top view It is possible to a peptide which is about to attach to the fibril 
and a protofilament which is perpendicular to the main fibril. (C) Multiple mature fibrils (each 
represented with a different color) interacting with each other from one of the 13 mM simulations. 
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Figure 4. TTR peptide aggregation kinetics in vitro. (A) Aggregation kinetics of the TTR105-115 
peptide at 13 mM, 10 mM and 7 mM are shown in magenta, orange and green, respectively. TTR 
peptide at 37 °C were obtained by monitoring of ThT fluorescence. The mean value of three 
independent experiments analyzed by linear regression using Boltzmann sigmoidal equation is 
reported. (B) Log-log plot of the in vitro half times, 𝜏1/2, as a function of the initial monomer 
concentration. (C-E) Electron micrographs of fibrils formed by TTR105-115 peptide incubated at 13 
mM (C), 10 mM (D) or 7 mM (E) at 37 °C for 150 h. Scale bars correspond to 100 (C) or 200 (D 
and E) nm. (F) Representative TEM images of the six main fibrillar morphologies. The detailed 
structural parameters of each morphology are reported in Table S2. 
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Figure 5. Number of monomers, dimers, and trimers over time of the first 13 mM simulation. In 
each plot is reported tlag (solid thick line) and 𝜏1/2 (dashed thin line). The monomer decrease is 
symmetrical compared to fibril growth (cf. Figure 2A). The number of dimers and trimers is relatively 
constant till tlag and quickly drops after this time. 
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Figure 6. (A) Time resolved evolution of oligomers order of the first 13 mM simulation before tlag. 
(B) Oligomer order populations in the time window from 0 to tlag and averaged over the three 
replicates. The different colors represent the different concentrations, while the error bars represent 
the standard deviation over the three simulations. In this time window only monomer and dimers 
are significantly populated, nonetheless one can observe the emergence of two fibrils. 
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Figure 7. Five representative structures of primary nuclei extracted from five different simulations. 
The β-sheets colored in blue is the initial oligomer that is then stabilized into a primary nucleus by 
the interaction with the second β-sheet in red. 
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Figure 8. Fibril growth secondary processes. (A) Elongation: the docking of a single monomer in 
red at one end of a β-sheet in blue. (B) and (C) Surface induced secondary nucleation can happen 
both on the front surface of a β-sheet (B) as well as on the side surface (C). Peptides can slide on 
the surface before locking and at least three peptides are required to form a secondary nucleus. 
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Figure 9. Chemical kinetics analysis by Amylofit of the 15 simulated aggregation kinetics traces. 
The data are fitted using the multi-step secondary nucleation, unseeded model. 
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Table 1. Summary of the main fibrils’ morphologies. The ranges of the main structural features of 
the fibrils formed in our simulations are reported and compared with structural models determined 
by ssNMR (pdb codes 2M5K, 2M5M, and 3ZPK). 
 

Concentration # Fibrils Length (Å) 
# β-sheets in 

filaments 
# Filaments in 

fibril 
Twist (°) 

13 mM 16 163-368 4-10 2-5 -0.18- -0.73 

11.5 mM 9 210-390 5-13 2-6 -0.23- -0.85 

10 mM 6 170-415 4-9 2-6 -0.24- -0.79 

8.5 mM 4 260-515 6-14 2-4 -0.15- -0.54 

7 mM 3 435-480 7-17 4-6 -0.11- -0.48 

7 mM seeded 3 443-485 13-14 5 -0.10- -0.80 

ssNMR model   4 2-4 -0.85 

TEM   4 3-8 -0.71- -0.81 
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