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A B S T R A C T

Stress affects the immune system and intestinal microbiota composition and can lead to imbalance between pro-
and anti-inflammatory cytokines or to uncontrolled production of cytokines. The effect of emotional stress on
secretory IgA levels also indicates that stress decreases mucosal integrity. Our aim was to evaluate whether a
probiotic product (Lactoflorene® Plus) can prevent alterations in the immune response associated with self-
reported stress and microbiota composition. Healthy adult volunteers who self-reported psychological stress
were enrolled and randomised into a placebo and a probiotic group. Salivary stress markers (α-amylase, cortisol,
chromogranin A) and immunological parameters (sIgA, NK cell activity, IL-8, IL-10, TNF-α) in feces and the
composition of intestinal microbiota were evaluated. Administration of the product did not exert a direct effect
on the salivary stress markers or NK cell activity but did reduce abdominal pain and increase faecal IgA and IL-10
levels. The probiotic product induced a moderate increase in Bifidobacterium and Lactobacillus spp., as expected,
and in Faecalibacterium spp., and decreased the size of the Dialister spp. and Escherichia and Shigella populations.
Administration of the product helped protect the mucosal barrier by supporting the number of short-chain fatty
acid producers and decreasing the load of potentially harmful bacteria, thus reducing intestinal inflammation
and abdominal discomfort.
ClinicalTrials.gov: NCT03234452.

1. Introduction

A significant increase in emotional health issues, such as depression,
stress and anxiety, has been recently reported (Bressert, 2006; Kessler
and Greenberg, 2009). Stress and anxiety are common feelings, with
stress being a response to a situational threat while anxiety is a reaction
to that stress.
It is difficult to estimate the economic burden of anxiety disorders,

but they were calculated to cost the US economy $47 billion in 2000

(Kessler and Greenberg, 2009). Consequently, stress and related con-
ditions are the focus of increased interest and are the subject of new
therapies based on traditional and alternative medicines (Asher et al.,
2017).
There is evidence that stress induces gut microbial dysbiosis and

resultant bowel dysmotility, inflammation and increased permeability,
including a substantial decrease in beneficial bacteria such as
Lactobacilli and Bifidobacteria and an increase in potentially pathogenic
microorganisms such as Escherichia coli (Hawrelak and Myers, 2004).
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Intestinal bacteria contribute to host metabolism, for example by
producing metabolites such as short-chain fatty acids (SCFAs) which
have neuroactive properties (Dinan et al., 2015; Russell et al., 2013).
Some species of Lactobacillus, Bifidobacterium, Escherichia and Bacillus
can also produce neurotransmitters and neuromodulators such as γ-
aminobutyric acid, norepinephrine and dopamine as reported by Lyte
(2011, 2013) and Wikoff et al. (2009). Moreover, some probiotics can
also modulate opioid and cannabinoid receptors in gut epithelium
(Rousseaux et al., 2007). Emerging evidence suggests that the gut mi-
crobiome can influence the core symptoms of neuropsychiatric dis-
orders, such as stress, depression and anxiety, giving rise to the concept
of ‘psychobiotics’, which are defined as probiotics that, when ingested
in appropriate quantities, confer mental health benefits (Dinan et al.,
2013).
Studies in Sprague–Dawley rats have demonstrated a link between

the gut microbiota and depressive-like behaviour (Abildgaard et al.,
2017). Similarly, Neufeld McVey et al. (2017) demonstrated that a diet
containing a mixture of prebiotic molecules and probiotic bacteria ad-
ministered to rats was able to reduce the anxiety-like behaviour caused
by early-life separation. Another intriguing finding was reported by
Vanhaecke et al. (2017) in a study on new-born rats with verified in-
testinal barrier integrity and permeability who were receiving Lacto-
bacillus fermentum CECT 5716. Positive results were also documented by
Cowan et al. (2016) and Takada et al. (2016), confirming that admin-
istration of Lactobacillus casei Shirota fermented milk or of a mixture of
Lactobacillus rhamnosus and L. fermentum could relieve long-term psy-
chological and physiological stress-associated symptoms. However,
despite the positive results found in animal models, clinical translation
to humans is still in uncertain.
Kelly et al. (2017) recently conducted a study to confirm in human

volunteers the promising results of preclinical tests conducted in an
anxious mouse model. On the other hand, Allen et al. (2016) tested a
potential psychobiotic, Bifidobacterium longum 1714, for its impact on
stress-related behaviours, physiology and cognitive performance with
very encouraging results.
In line with the increased attention given to stress and to the

treatment of mental disorders with non-pharmacological approaches,
other authors have recently studied psychobiotic administration with
varied results (Akkasheh et al., 2016; Bambling et al., 2017; Cepeda
et al., 2017; Colica et al., 2017; Steenbergen et al., 2015). A frequent
and interesting finding was that probiotic strains showed an anti-in-
flammatory effect due to increased production of anti-inflammatory
cytokines or a reduction in gut barrier dysfunction (Bambling et al.,
2017; Nishida et al., 2017; Vanhaecke et al., 2017).
Natural killer (NK) cell activity is affected by stress, with its al-

teration linked to both environmental signals and mental health.
Subjects who have experienced acute emotional stress show a marked
reduction in NK cell activity and in vitro response to antigens (Boscolo
et al., 2009, 2012; Duggal et al., 2015; Geiger and Sun, 2016; Kim et al.,
2017; Morikawa et al., 2005).
Many parameters may be affected by stress and related symptoms,

although the mechanisms are not yet fully understood. Evaluable hor-
monal markers of stress in the saliva include cortisol (He et al., 2010;
Thatcher et al., 2004), α-amylase (SAA) and chromogranin A, also
present in other biological fluids such as plasma and serum (Filaire
et al., 2009).
Cytokines, such as tumour necrosis factor-α, IL-8 and IL-10, play a

central role in modulation of the intestinal immune system and pro-
biotic microorganisms could have an influence on their activation.
(Dinan et al., 2013).
IgA as well plays a fundamental role in the defence against patho-

genic organisms by inhibiting bacterial adherence and promoting their
elimination from the gastrointestinal tract (Bunker et al., 2017;
Campos-Rodríguez et al., 2013).
Human studies have shown that acute stress may increase intestinal

permeability, which is related to a number of diseases including

gastrointestinal disorders such as inflammatory bowel disease (Crohn's
disease and ulcerative colitis), coeliac disease and irritable bowel syn-
drome (Dunlop et al., 2006; Gecse et al., 2012).
The aim of the present study was to explore the ability of a multi-

strain probiotic mixture to modulate inflammatory markers, intestinal
barrier function and gastrointestinal symptoms in healthy volunteers
with self-reported anxiety as an indirect indication of perceived stress.
The tested bacterial mixture contained in the product (Lactobacillus
acidophilus LA-5®, Bifidobacterium animalis subsp. lactis, BB-12®,
Lactobacillus paracasei subsp. paracasei, L. CASEI 431®, Bacillus coagulans
BC513) was selected based on their characteristics in vitro with respect
to acid- and bile tolerance, adhesion and the inflammatory response.
Strains were also selected on the basis of trans-epithelial resistance

(TER), which is an indicator of the ability of the probiotic strains to
increase the tight junction barrier between cells in a model of the
gastrointestinal barrier. The inflammatory response was assessed as the
IL-10/IL-12 ratio induced in human, isolated white blood cells (un-
published data, Chr. Hansen).

2. Methods

This study was a randomised, double-blind, placebo-controlled,
cross-over trial performed at a single centre (Centro Ricerche Cliniche
di Verona, CRC) in Italy between 23 March 2016 and 21 July 2016.
The study was performed in accordance with the principles of the

Declaration of Helsinki, good clinical practice and applicable national
regulatory requirements. All procedures involving human subjects were
approved by the Ethical Committee for Clinical Trials of the Provinces
of Verona and Rovigo. Written informed consent was obtained from all
subjects before enrolment. The study was registered at ClinicalTrials.
gov under registration number NCT03234452.

2.1. Study participants

The recruiting strategy involved searching the already populated
CRC healthy volunteer database and increasing public visibility by
announcing the study on the online CRC site and by posting adver-
tisements and flyers. Eligible subjects were healthy men and women,
20–35 years old, with a State-Trait Anxiety Inventory (STAI) scale, form
Y, module 1 (state anxiety) score of ≥35 for men and ≥40 for women.
The most important exclusion criteria were a history or diagnosis of
gastrointestinal disease, oral antibiotics within 30 days before the
screening visit, and use of drugs, food or herbal supplements for di-
gestive symptoms. A complete list of the inclusion and exclusion criteria
is provided in the supplementary file.

2.2. Study design

The study was conducted with a cross over design with the primary
aim to reduce the influence of confounding covariates because patients
can serve as their own control and, additionally, because of the effi-
ciency linked to this kind of designs, requiring fewer subjects than do
non-crossover studies (Jones and Kenward, 2003).
At the screening visit, eligible subjects were enrolled in a 2-week

run-in period to wash out potential pre-study probiotics. The run-in
period was followed by two treatment periods (probiotic and placebo)
of 45 days each separated by a wash-out period of 25 days. The total
length of the study was 129 days. Subjects with state anxiety as de-
termined by scores on the State-Trait Anxiety Inventory (STAI) form Y,
module 1 were included. Efficacy was evaluated at each of four visits:
visit 2 (start of first intervention, day 0), visit 3 (end of first interven-
tion, day 45), visit 4 (start of second intervention, day 70) and visit 5
(end of second intervention, day 115). Saliva, blood and faecal samples
were collected at visits 2, 3, 4 and 5.
Information on gastrointestinal symptoms (abdominal pain, aero-

phagia, diarrhea, constipation and alternating diarrhea/constipation)
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was collected at visits 4 and 5 using a modified version of the Subjective
Health Complaints Inventory.

2.3. Randomisation and treatment

A randomisation list was generated using the web program List
Randomizer from https://www.random.org. Randomisation to the two
groups was performed in a 1:1 ratio and study products were only
identified by their randomisation number. The investigator allocated
subject consecutively by assigning the first available randomisation
number to eligible subjects. All subjects, investigators, the contract
research organisation (CRO) and sponsor staff involved in the study
were blinded until the final database was locked. Only staff at the CRO
and the sponsor, who were not otherwise involved in the study, had
access to the randomisation list so they could label the study products.
Subjects were randomly assigned to receive 10ml of a liquid mix-

ture of either Lactobacillus acidophilus LA-5®, Bifidobacterium animalis
subsp. lactis, BB-12®, Lactobacillus paracasei subsp. paracasei, L. CASEI
431®, Bacillus coagulans BC513, zinc and B vitamins (niacin, B1, B2, B5,
B6, B12 and folic acid) with 2 billion CFU/10ml (Lactoflorene® Plus), or
an identical placebo liquid mixture containing no probiotics. The active
and placebo products were produced by Biofarma (Italy), had a similar
appearance, taste and smell and were provided in identical 10ml bot-
tles with identical labelling. Subjects consumed two 10ml bottles per
day. Compliance was evaluated at the end of each treatment period,
when the subjects were asked to return all treatment bottles and the
numbers of used and unused bottles were counted.

2.4. Outcome measures

The primary endpoint was NK cell activity, which was measured in a
sample of approximately 5ml of whole blood taken at set times from all
participants, using heparinised tubes.
Cortisol, α-amylase and chromogranin A were quantified in saliva

collected from each participant in the morning in 15ml tubes: samples
were taken at least 6 h after eating, before smoking, coffee consumption
or brushing the teeth.
Faecal IgA, IL-8, TNF-α and IL-10 were measured in faecal water

extracted from frozen stool samples collected at scheduled times in
disposable containers. The microbiota composition of the same samples
was also investigated after total bacterial DNA extraction.

2.5. Primary endpoint

The primary endpoint was NK cell activity defined as an effector:-
target ratio of 100:1. Significantly higher concentrations of NK cell
activity were expected from the group taking the probiotic compared
with the placebo group.

2.6. Secondary endpoints

Secondary endpoints included immunological markers quantified in
saliva, stool and blood: in the probiotic group, cortisol, α-amylase and
chromogranin A levels in saliva were expected to decrease, while IgA
levels in stool samples were expected to increase, as was IL-10. On the
other hand, a reduction in IL-8 and TNF-α was expected in the probiotic
group compared with placebo. Changes in microbiota composition were
also investigated using NGS technology: the probiotic product was ex-
pected to have an effect due to an increase in the Lactobacilli and
Bifidobacteria administered with the product, thus improving the pro-
tective function of the gut mucosa, which is frequently impaired by
stress conditions.
Gastrointestinal symptoms were assessed in both groups using a

questionnaire at the beginning and end of the second treatment period.
Symptoms were expected to improve in the probiotic group, with a
decrease in constipation, diarrhea, abdominal pain and aerophagia

after supplementation.
Data on adverse events (AE) were gathered from the beginning of

treatment to the end of the study. AEs were collected at each study visit
by asking the subjects the non-leading question ‘Have you had any
health problems since the previous visit/you were last asked?’. Subjects
were also free to report AEs at any time during the study. An AE was
defined as any untoward medical occurrence in a subject administered
the study product, whether or not considered related to the study
treatment. The study investigator rated the relatedness of any AE to the
study product.

2.7. Statistical analysis

2.7.1. Sample size
The sample size calculation was based on a two-sided α level of

0.05, SD of 0.6 and 80% power to detect a potential effect of the pro-
duct on NK cell activity. To allow for a potential 10% drop-out rate, 25
subjects in each group were needed, giving a total of 50 subjects (Reale
et al., 2012).

2.7.2. Statistical analysis of questionnaires and immunological output
A two-sided p value of 0.05 was considered to be significant.

Continuous variables were summarised, by treatment group, into their
means and SD.
For each outcome, paired t-tests were used to evaluate variations

within treatment from baseline (t0) to the end of follow-up (t1) in both
the placebo and the intervention group.
Linear regression models, adjusted for age, sex and STAI score at

baseline, were used to obtain β (Δ-change differences in treatment
versus placebo) over time (i.e., mean differences between treatments
over time).
All p values were two-tailed and considered to be statistically sig-

nificant if p < 0.05. Statistical analyses were performed using IBM®

SPSS® statistics for Windows 21.0.0.0 (IBM Corp.).

2.8. Sample collection and analysis

2.8.1. Saliva samples
Saliva samples were centrifuged at 13000 rpm for 1min and su-

pernatants were collected and stored at −20 °C until use. Cortisol, α-
amylase and chromogranin A levels were evaluated using ELISA kits.
Salivary IgA was also detected with an ELISA test as previously de-
scribed (Avanzini et al., 1992).

2.8.2. Faecal samples
Faecal supernatants for cytokine evaluation were extracted using a

procedure modified from Nielsen and Jahn (1999). Faecal supernatants
were obtained after resuspension of a small amount of faecal sample in
PBS buffer (1:2 wt:volume ratio, g/ml) and centrifugation at 13000 rpm
for 1min. The levels of IL-8, IL-10, TNF-α and IgA were measured using
ELISA tests (Avanzini et al., 1992).

2.8.3. Isolation of peripheral blood mononuclear cells from whole blood
For the isolation of peripheral blood mononuclear cells (PBMC),

blood samples were centrifuged on Ficoll-Hypaque density gradient
medium and resuspended in complete RPMI 1640 medium (Euroclone,
Italy), supplemented with heat-inactivated 10% FCS (Euroclone),
2.5 mmol/l L-glutamine (Gibco) and 50 μg/ml gentamycin (Gibco).
Cells were then resuspended in FCS+10% DMSO (Edwards

Lifesciences) and cryopreserved in a programmable controlled-rate cell
freezer.

2.8.4. Quantification of sIgA levels in saliva samples and IgA in faecal
supernatants
96-well microtiter plates (Greiner) were coated with polyclonal

rabbit anti-human IgA (Dako) and incubated for 3 h at 37 °C and then
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overnight at 4 °C. On the second day, saliva samples or faecal super-
natants were incubated for 2 h at 37 °C and then secondary rabbit anti-
human IgA antibody conjugated to horse-radish peroxidase (HRP)
(Dako) was added. The plate was read at 492 nm in a Sunrise micro-
plate reader (Tecan) and the concentration of sIgA was extrapolated
from a standard curve included in each plate and expressed in ng/ml.

2.8.5. Quantification of salivary stress markers
Cortisol, α-amylase and chromogranin A in saliva samples were

evaluated using ELISA kits.

2.8.6. Quantification of cytokine levels in faecal supernatants
Microtiter plates were briefly coated with purified monoclonal an-

tibody anti-human IL-10, IL-8 and TNF-α (Endogen-Tema, USA). After
stabilisation with 2% BSA (Sigma) in PBS (Euroclone) for 1 h, the
samples were added. Monoclonal anti-human biotinylated antibody IL-
10, IL-8 and TNF-α were used. The reproducibility and specificity of the
assay had been verified previously. The plate was read at 450 nm in a
Sunrise microplate reader (Tecan) and the concentration of cytokines
was extrapolated from a standard curve included in each plate and
expressed in ng/ml.

2.8.7. NK cell activity
The PBMC of the probiotic and placebo groups were isolated from

whole blood after centrifugation on a Ficoll-Hypaque gradient. NK cy-
totoxic activity was evaluated after incubation of PBMC with K562 cells
(human chronic myelogenous leukaemia cells) previously labelled with
51Cr (Perkin Elmer, USA). The PBMC and K562 cells were incubated in
RPMI 1640 + 10% FCS for 4 h. NK cell activity was determined as the
percentage of K562 lysed by NK cells, and was evaluated with a
TOPCount counter (Packard).

2.8.8. Microbiota identification by 16S rRNA gene amplification,
sequencing and data analysis
A stool sample consisting of 6–10 g of fresh faecal material was

obtained from each subject and cooled to 4 °C immediately after col-
lection. All samples were then transferred to GenProbio Srl
(Probiogenomics Laboratory, University of Parma) and maintained at
−80 °C until processing. DNA was extracted from each stool sample
using the QIAamp DNA Stool Mini kit following the manufacturer's
instructions (Qiagen).
Partial 16S rRNA gene sequences were amplified from extracted

DNA using primer pair Probio_Uni/Probio_Rev, which targets the V3
region of the 16S rRNA gene sequences (Milani et al., 2013). 16S rRNA
gene amplification and amplicon checks were then carried out as pre-
viously described (Milani et al., 2013). 16S rRNA gene sequencing was
performed using a MiSeq sequencer (Illumina) at the DNA sequencing
facility of GenProbio Srl according to the protocol previously reported
(Milani et al., 2013). After sequencing, the individual sequence reads
obtained were filtered using Illumina software to remove low-quality
and polyclonal sequences. All Illumina quality-approved, trimmed and
filtered data were exported as.fastq files which were processed using a
custom script based on the QIIME software suite (Caporaso et al.,
2010). The sequence data have been submitted to the GenBank data-
bases under accession number SRP126232.

3. Results

Fifty subjects were eligible to participate in the study and were
randomised into a probiotic and placebo group. Three subjects dis-
continued the study: two withdrew because of inability to collect the
last sample of the second treatment period and one because of a need to
take antibiotics during the wash-out period. A flowchart of participant
involvement is shown in Fig. 1. The characteristics of the two study
groups were similar at baseline (Table 1). Regarding the carry-over
effect, although the wash-out period lasted 25 days, we found

significant differences in NK cells (p= 0.014) and in cortisol
(p= 0.025) between the two sets of baseline data.

3.1. Primary efficacy analysis

NK cell activity did not show any significant variation in the in-
tervention group, as shown in Table 2. Three different target: effector
ratios were used and the same behaviour was observed in all three
cases. NK cell activity was slightly lower in the probiotic group than in
the placebo group: NK 1:10, Δ=−1.25; p=0.21; NK 1:30,
Δ=−0.86; p= 0.51; and NK 1:100, Δ=−1.70; p=0.34.

3.2. Secondary efficacy analysis

When differences between the data before and after the intervention
were examined, the salivary stress markers did not display any sig-
nificant variations between the probiotic and placebo groups: sIgA
+11.91 (−41.17, 17.35; p = 0.42) for intervention subjects versus
+12.41 (−38.9, 16.07; p = 0.35) for placebo subjects; α-amylase
+16.21 (−52.87, 20.45; p = 0.32) versus 4.24 (−17.27, 16.07;
p = 0.35); chromogranin A 290.52 (−806.74, 225.69; p = 0.26)
versus 335.82 (−765.27, 93.62; p = 0.12); and cortisol −0.13
(−24.50; 6.88; p = 0.76) versus −0.45 (−22.14, 64.8; p = 0.13). The
results showed significant individual variability.
As reported in Table 2, faecal IgA showed an increase in the inter-

vention group compared with placebo: IgA +8.81 (−0.7, 0.25;
p = 0.27).
Regarding cytokine quantification, the Δ-change observed in the

probiotic group revealed an increase in IL-10 (+9.45; p = 0.12), IL-8
(+0.22; p = 0.35) and TNF-α (+0.77; p = 0.22). In addition, we
observed a reduction in abdominal pain (p = 0.45), only suggested in
this elaboration but more strongly supported by the subsequent data
analysis.
No significant changes were observed in either symptoms or in-

flammation in the intra-group analyses.
Table 3 displays the results of analysis of data from the treatment

and placebo groups over time which showed a statistically significant
reduction in abdominal pain (−1.16; p < 0.05) and an increase in
faecal IgA (+12.38; p < 0.05). These were the only two statistically
significant results of the analyses.
Table 4 shows the correlations between Δ-change (the difference

between the beginning and end of the study) for each variable in the
probiotic group. The correlations showed that reductions in aerophagia,
abdominal pain and constipation were associated with an increase in IL-
8 (p < 0.05). In addition, the increase in SAA appeared to be linked to
an increase in IL-10 (r= 0.466; p < 0.05). A similar correlation was
found between cortisol reduction and TNF increase (r= 0.311;
p < 0.05).
No statistically significant variations in microbiota composition

following probiotic administration were detected.
Alpha diversity was calculated using the Chao I and Shannon in-

dexes, but no significant difference was seen, indicating that intra-
sample diversity was not particularly influenced by either the probiotic
or the placebo.
When between-group and intra–group differences were examined,

no significant changes in average bacterial group composition were
seen following administration of the two products, even when the
probiotic was compared with the placebo.
Data obtained from the sequencing elaboration are displayed in

Fig. 2, which shows the absolute percentage differences in the samples
between T0 and T45. The bar chart summarises the increasing/de-
creasing taxa with a prevalence>80% (those taxa that have been
identified in at least 80% of the samples considered in the comparison)
and an absolute percentage difference>0.1%.
No statistically significant changes were seen between the beginning

and the end of the study for either treatment, but some interesting
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trends were observed that suggest the probiotic mixture exerted an anti-
inflammatory effect. When the probiotic is compared to placebo,
Δ–change calculated for specific populations revealed the following: an
increase of 3.04% and 0.13%, respectively, in Bifidobacterium and
Lactobacillus spp., as expected; a decrease of 2.49% in Dialister spp., an
increase of 4.83% in Faecalibacterium spp.; and a decrease of 1.08% in
the Escherichia and Shigella group.

3.3. Adverse events

No serious adverse events (SAEs) were reported. However, seven
subjects reported nine AEs, ranging from mild to moderate, none of
which were judged to be related to the investigated product.
Eight subjects reported concurrent medication. Only one subject

(code 2582) took a prohibited drug (Augmentin 1000mg, twice daily)
from 23 to 28 May 2106 during the wash-out period (from 17 May to 06
June 2016).

4. Discussion

The present study was designed to investigate whether a probiotic
product administered to subjects experiencing stress-related symptoms

Fig. 1. Study design scheme with all the samples provided by subjects for each timepoint.

Table 1
Baseline characteristics of the study population.

Characteristics Intervention (n̂25) Placebo (n̂24) p-value

Aerophagia (SCORE) 0.04 (0.95) 0,04 (0,47) 0.99
Diarrhea (SCORE) 0.08 (0.41) −0.04 (0.71) 0.45
Costipation (SCORE) 0.00 (0.83) −0.30 (0.88) 0.29
Abdominal pain (SCORE) 0.00 (0.66) 0.09 (0.29) 0.56
Diarrhea-Costipation

((SCORE)
- 0.08 (0.28) 0.09 (0.52) 0.16

sIgA (μg/ml) 137.52 (70.87) 149.64 (109.46) 0.47
sAA (ng/gr of feces) 59.1 (30.19) 84.18 (25.41) p< 0,05
CgA (pg/gr of feces) 1848.19 (1027.56) 1366.36

(786.22)
0.31

Cortisol (ng/gr of feces) 5.72 (2.39) 5.87 (2.61) 0.77
IgA (μg/gr of feces) 30.29 (35.64) 50.91 (142.34) 0.35
IL8 (pg/gr of feces) 0.29 (1.02) 0.24 (1.05) 0.81
IL10 (pg/gr of feces) 12.57 (16.20) 40.90 (80.42) p< 0,05
TNFa (pg/gr of feces) 0.96 (2.43) 1.79 (3.49) 0.21
NK (%lysis) 7.08 (8.77) 4.90 (6.21) 0.67

Bold characters highlight the statistically different values obtained from para-
meters investigation.
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could induce an improvement of the immunological markers associated
to inflammation and negative somatic effects related to stress such as
gut symptoms or possible microbiota imbalance. For a quantitative
approach to the aim of the study we measured several immunological
markers in blood, saliva and fecal water, being supported by previous
works of many authors who have correlated these parameters to stress.
On the other hand, possible effects exerted by the product on the
fluctuations in gastrointestinal symptoms were investigated by the ad-
ministration of a questionnaire.
As documented by many authors, an emerging application for pro-

biotics is their use as psychobiotics to help treat mental disorders and
stress/anxiety symptoms (Bambury et al., 2017; Foster et al., 2017;
Misra and Mohanty, 2017).
One of the limitations of our study was the fact that at baseline

subjects self-reported stress, which was not confirmed by serological
parameters; however, the administration of questionnaires to identify
eligible subjects also serves to screen volunteers in case of bias asso-
ciated with self-assessed activity, as reported in a study conducted on
stress symptoms by Fischer et al. (2016).
The lack of NK cell activity impairment meant a true stress

condition could not be confirmed in subjects who did not show sig-
nificant changes following product/placebo intake. This output was
unexpected and three different problems could have influenced the
result: the self – reported stressed condition of the subjects; patients’
individual characteristics, not directly linked to the study, but de-
termined by intra and interindividual variability; the relatively small
number of enrolled subjects.
Administration of the probiotic mixture to healthy volunteers with

psychological stress did not directly affect stress salivary markers but
did stimulate the immune system.
It was not possible to detect an overall effect on microbiota com-

position since microbial populations in healthy subjects are usually well
balanced and, for this reason, intervention with probiotics is not ex-
pected to interfere dramatically in absence of specific or precise per-
turbations.
Fluctuations in different bacterial populations at the beginning and

end of the study in both groups did not reach statistical significance but
did suggest a trend, which was further supported by the immunological
data.
The influence of the probiotic on Bifidobacteria and Lactobacilli po-

pulations was slight but, as explained above, probiotic administration
will not always have clear effects in a stable environment.
The microbiological data suggest the probiotic supported anti-in-

flammatory bacteria which can protect the intestinal mucosa through
SCFA production (Faecalibacterium spp.) and reduced pro–inflammatory
populations, such as Dialister spp., which have been correlated with gut
inflammation (Thorkildsen et al., 2013; Tito et al., 2017). This result
was in agreement with the observational study of Jiang et al. (2015) in
which patients with major depressive disorders showed reduced Fae-
calibacterium and increased Enterobacteriaceae, with a negative corre-
lation between Faecalibacterium and the severity of depressive symp-
toms.
Comparison of subjects taking placebo with those taking the pro-

biotic revealed that the placebo group showed an increase in potentially
detrimental or pro-inflammatory bacteria, while subjects taking the
probiotic did not.
Further supporting this effect, probiotic treatment resulted in a re-

duction in abdominal pain and an increase in IL-10 and faecal IgA le-
vels. The faecal IgA increase implies the product supports mucosal
immune efficiency. This result, consistent with microbiological ob-
servations, may reflect a stronger intestinal mucosa which is less prone
to infections and colonisation by pathogenic bacteria, and agrees with
the work of Bambling et al. (2017), Fukushima et al. (1998) and

Table 2
Effect of treatment versus placebo on variables.

Variable (unit) Intervention Placebo

Baseline After 45 days Δ change (pre-post) p-value Baseline After 45 days Δ change (pre-post) p-value

Aerophagia (SCORE) 0.04 (0.95) 0.08 (0.58) 0.04 (−0.53; 0.45) 0.86 0,04 (0,47) 0.00 (0.30) −0,04 (−0.2; 0.3) 0.71
Diarrhea ((SCORE) 0.08 (0.41) 0.17 (0.38) 0.08 (−0.33; 0.16) 0.49 −0.04 (0.71) 0.09 (0.60) 0,13 (−0.5; 0.22) 0.45
Constipation ((SCORE) 0.00 (0.83) 0.00 (0.66) 0.00 (−0.47; 0.47) 1 −0.30 (0.88) 0.04 (0.64) 0,35 (−0.9; 0.16) 0.18
Abdominal pain ((SCORE) 0.00 (0.66) −0.17 (0.76) −0.17 (0.28; 0.61) 0.45 0.09 (0.29) 0.09 (0.29) 0 (−0.13; 0.13) 1
Diarrhea-Costipation

(SCORE)
- 0.08 (0.28) −0.08 (0.50) 0.00 (−0.25; 0.25) 1 0.09 (0.52) −0.04 (0.48) −0.13 (−0.17; 0.43) 0.38

sIgA (μg/ml) 137.52 (70.87) 149.43 (120.70) 11.91 (−41.17; 17.35) 0.42 149.64 (109.46) 162.06 (146.73) 12,41 (−38.9; 16.07) 0.35
sAA (ng/gr of feces) 59.1 (30.19) 75.31 (42.89) 16.21 (−52.87; 20.45) 0.32 84.18 (25.41) 88.42 (29.46) 4.24 (−17.27; 8.80) 0,50
CgA (pg/gr of feces) 1848.19

(1027.56)
2138.72
(1148.22)

290.52 (−806.74;
225,69)

0.26 1366.36
(786.22)

1702.18
(1083.46)

335,82 (−765.27;
93.62)

0.12

Cortisol (ng/gr of feces) 5.72 (2.39) 5.59 (3.12) −0.13 (−24.50; 6.88) 0.76 5.87 (2.61) 5.42 (2.47) −0.45 (−22.14;
64.8)

0.13

IgA (μg/gr of feces) 30.29 (35.64) 39.10 (40.26) 8.81 (−0.7; 0.25) 0.27 50.91 (142.34) 29.58 (33.42) −21.33 (−0.2; 0.15) 0.33
IL8 (pg/gr of feces) 0.29 (1.02) 0.51 (1.28) 0.22 (−21.47; 2.57) 0.35 0.24 (1.05) 0.26 (1.13) 0.02 (−33; 31.77) 0.79
IL10 (pg/gr of feces) 12.57 (16.20) 22.02 (35.58) 9.45 (−1.10; 0.46) 0.12 40.90 (80.42) 41.75 (111.60) 0.85 (−0.94; 1.55) 0.96
TNFa (pg/gr of feces) 0.96 (2.43) 1.72 (3.10) 0.77 (−0.68; 2.06) 0.22 1.79 (3.49) 1.49 (2.77) −0.30 (−1.77; 0.75) 0.63
NK 1:10 (%lysis) 4.08 (4.84) 3.39 (6.10) −0.69 (−0.66; 2.67) 0.32 2.43 (3.04) 2.95 (3.71) 0.51 (−2.47; 1.69) 0.42
NK 1:30 (%lysis) 7.08 (8.77) 6.08 (8.09) −1 (−1.07; 3.10) 0.23 4.90 (6.21) 5.28 (5.67) 0.39 (−2.53; 3.8) 0.71
NK 1:100 (%lysis) 11.12 (12.48) 9.67 (9.70) −1.45 (−4.42; 3,32) 0.25 9.94 (10.20) 9.31 (8.95) −0.63 (−9.23; 8.34) 0.69

Table 3
Difference between treatment and placebo.

Variable (unit) Mean differences
treatment A versus B

CI 95% p value

Aerophagia 0.08 −0.92; 1.08 0.87
Diarrhea 0.17 −1.35; 1.39 0.98
Costipation 0.02 −1,35; 1,40 0.98
Abdominal pain −1.16 −2.38; 0,04 p< 0.05
Diarrhea-Constipation −0.07 −1.12; 0.97 0.89
sIgA (μg/ml) −1 −43.75; 41.76 0.96
sAA (ng/gr of feces) 7.75 −24.84; 40.33 0.62
CgA (pg/gr of feces) 130.30 −564.55;

825.13
0.71

Cortisol (ng/gr of feces) 0.41 −0.76; 1.58 0.48
IgA (μg/gr of feces) 12.38 −0.18; 1.35 p< 0.05
IL8 (pg/gr of feces) 0.22 - 0.28; 0.73 0.38
IL10 (pg/gr of feces) 6.70 −30.63; 44.03 0.72
TNFa (pg/gr of feces) 0.21 −1.17; 1.58 0.77
NK 1:10 (%lysis) −1.25 - 3.23; 0.73 0.21
NK 1:30 (%lysis) −0.86 - 3.42; 1.70 0.51
NK 1:100 (%lysis) −1.7 −5.20; 1.79 0.34

Bold characters highlight the statistically different values obtained from para-
meters investigation.
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Nishida et al. (2017).
As demonstrated by Dong et al. (2012), Bifidobacterium strains are

good inducers of IL-6, IL-10 and MCP-1. IL-10 is a regulatory cytokine
which can inhibit the synthesis of other pro-inflammatory cytokines
(IFN-γ, IL-2, IL-3, TNF-α and GM-CSF) produced by T helper lympho-
cytes (Th1). This cytokine down-regulates the inflammatory response
and induces an antibody-mediated immune response. For these reasons,
the recorded IL-10 increase is a positive result.
The probiotic strains tested, as demonstrated for Lactobacillus GG

(Rautava et al., 2006) and Saccharomyces boulardii (Rodrigues et al.,
2000), have been shown to enhance IgA production and secretion
through changes in the cytokine milieu of the gut mucosa. Probiotic
bacteria, in general, have been reported to induce epithelial cell ex-
pression of IL-10 and IL-6, supporting IgA production through B-cell
maturation (He et al., 2007; Shang et al., 2008; Wells et al., 2017).
There are several examples in the literature of studies on the effects

of probiotic modulation of the gut–brain axis. Results are often con-
tradictory regarding the applicability of results obtained in animal
models to humans: in a randomised, placebo-controlled study of
healthy men and women, psychological stress and anxiety improved
following intake of a Lactobacillus/Bifidobacterium-containing probiotic
compared with taking a control product, but another study using a
different Lactobacillus strain failed to confirm these findings (Benton
et al., 2007; Kelly et al., 2017; Messaoudi et al., 2011).
Nevertheless, anti-inflammatory activity was consistently observed

following the administration of probiotics in cases of mental disorder in
animal models and in human trials (Bambling et al., 2017; Nishida
et al., 2017; Vanhaecke et al., 2017; Vlainić et al., 2016). It has also
been shown that treatment with the probiotic bacterium Lactobacillus
farciminis attenuated the HPA stress response through prevention of
intestinal barrier impairment (Ait-Belgnaoui et al., 2012; Bercik et al.,
2010).
In our trial, the product's efficacy seemed to be more indirect,

supporting and protecting the mucosal barrier against possible im-
balance and lowering intestinal inflammation, as indicated by the
symptom questionnaire which showed a decrease in abdominal dis-
comfort.
Regarding the correlation between inflammation and mood/mental

disorders, it has been established that pro-inflammatory cytokines in-
duce neuropsychological symptoms in vulnerable individuals, sug-
gesting that the brain–cytokine system is involved in depression
(Dantzer et al., 2008; Vlainić et al., 2016).
The present work also showed increased faecal IgA im-

munoglobulins which play an important role in protecting mucosal
surfaces against pathogens, fortifying the barrier for the compartmen-
talization of the bacteria in the lumen (Wells et al., 2017).
In light of the above, the anti-inflammatory trend and im-

munological stimulation displayed by the microbiota, and positively
influenced by probiotic intake, could also be related to the decreased
incidence in stressed subjects of common conditions typically related to
stress, and their repercussions on physical health.
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