
Frontiers in Oncology | www.frontiersin.org

Edited by:
Lorenzo Cobianchi,

University of Pavia, Italy

Reviewed by:
Daniele Piccolo,

University of Padua, Italy
Constantin Tuleasca,

Centre Hospitalier Universitaire
Vaudois (CHUV), Switzerland

*Correspondence:
Leonardo Tariciotti

leonardo.tariciotti@unimi.it;
leonardotariciottimd@gmail.com

†These authors share first authorship

‡These authors share
senior authorship

Specialty section:
This article was submitted to

Surgical Oncology,
a section of the journal
Frontiers in Oncology

Received: 16 November 2021
Accepted: 31 January 2022

Published: 24 February 2022

Citation:
Tariciotti L, Caccavella VM, Fiore G,
Schisano L, Carrabba G, Borsa S,

Giordano M, Palmisciano P, Remoli G,
Remore LG, Pluderi M, Caroli M,
Conte G, Triulzi F, Locatelli M and
Bertani G (2022) A Deep Learning

Model for Preoperative Differentiation
of Glioblastoma, Brain Metastasis and

Primary Central Nervous System
Lymphoma: A Pilot Study.
Front. Oncol. 12:816638.

doi: 10.3389/fonc.2022.816638

ORIGINAL RESEARCH
published: 24 February 2022

doi: 10.3389/fonc.2022.816638
A Deep Learning Model for
Preoperative Differentiation of
Glioblastoma, Brain Metastasis and
Primary Central Nervous System
Lymphoma: A Pilot Study
Leonardo Tariciotti 1,2*†, Valerio M. Caccavella3†, Giorgio Fiore1,2, Luigi Schisano1,2,
Giorgio Carrabba1, Stefano Borsa1, Martina Giordano2,4, Paolo Palmisciano5,
Giulia Remoli 6, Luigi Gianmaria Remore1, Mauro Pluderi 1, Manuela Caroli 1,
Giorgio Conte7,8, Fabio Triulzi 7,8, Marco Locatelli 1,8,9‡ and Giulio Bertani1‡

1 Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy, 2 Department of Oncology
and Hemato-Oncology, University of Milan, Milan, Italy, 3 Department of Paediatric Orthopaedics and Traumatology, ASST
Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy, 4 Department of Neurosurgery, Fondazione
IRCCS Istituto Neurologico Carlo Besta, Milan, Italy, 5 Department of Neurosurgery, Trauma Center, Gamma Knife Center,
Cannizzaro Hospital, Catania, Italy, 6 National Center for Disease Prevention and Health Promotion, Italian National Institute of
Health, Rome, Italy, 7 Unit of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy,
8 Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy, 9 Aldo Ravelli” Research Center for
Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy

Background: Neuroimaging differentiation of glioblastoma, primary central nervous
system lymphoma (PCNSL) and solitary brain metastasis (BM) remains challenging in
specific cases showing similar appearances or atypical features. Overall, advanced MRI
protocols have high diagnostic reliability, but their limited worldwide availability, coupled
with the overlapping of specific neuroimaging features among tumor subgroups,
represent significant drawbacks and entail disparities in the planning and management
of these oncological patients.

Objective: To evaluate the classification performance metrics of a deep learning
algorithm trained on T1-weighted gadolinium-enhanced (T1Gd) MRI scans of
glioblastomas, atypical PCNSLs and BMs.

Materials and Methods: We enrolled 121 patients (glioblastoma: n=47; PCNSL: n=37;
BM: n=37) who had undergone preoperative T1Gd-MRI and histopathological
confirmation. Each lesion was segmented, and all ROIs were exported in a DICOM
dataset. The patient cohort was then split in a training and hold-out test sets following a
70/30 ratio. A Resnet101 model, a deep neural network (DNN), was trained on the training
set and validated on the hold-out test set to differentiate glioblastomas, PCNSLs and BMs
on T1Gd-MRI scans.

Results: The DNN achieved optimal classification performance in distinguishing PCNSLs
(AUC: 0.98; 95%CI: 0.95 - 1.00) and glioblastomas (AUC: 0.90; 95%CI: 0.81 - 0.97) and
moderate ability in differentiating BMs (AUC: 0.81; 95%CI: 0.70 - 0.95). This performance
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may allow clinicians to correctly identify patients eligible for lesion biopsy or surgical
resection.

Conclusion: We trained and internally validated a deep learning model able to reliably
differentiate ambiguous cases of PCNSLs, glioblastoma and BMs by means of T1Gd-MRI.
The proposed predictive model may provide a low-cost, easily-accessible and high-speed
decision-making support for eligibility to diagnostic brain biopsy or maximal tumor
resection in atypical cases.
Keywords: brain metastases, deep learning, glioblastoma, machine learning, primary central nervous system
lymphoma (PCNSL), artificial intelligence
INTRODUCTION

Brain metastases (BM), glioblastomas and primary central nervous
system lymphomas (PCNSL) are amongst the most common
intracranial neoplasms in adults (17%, 14.6%, and 1.9%
respectively) (1, 2). Treatments and prognoses differ, and accurate
diagnosis is crucial to guide management strategies. Current
guidelines suggest maximal surgical resection plus chemoradiation
therapy for BMs and glioblastoma and methotrexate-chemotherapy
plus whole-brain radiotherapy for PCNSLs (3–6). Biopsy, especially
stereotactic, is the diagnostic gold- standard, but the overall
complication rate is up to 13% (7). In addition, the use of pre-
operative steroids in patients with BMs and glioblastomas, aimed at
relieving symptoms, may hinder histopathological diagnoses in
PCNSLs, leading to higher false-negative rates (8).

Conventional Magnetic Resonance Imaging (MRI) assists the
preoperative diagnostic assessment and guides treatment planning,
but lesions may show overlapping radiological features. On T1-
weighted gadolinium-enhanced (T1Gd) images, glioblastomas
often show peripheral rims of contrast-enhancement and central
necroses similar to solitary BMs, whereas PCNSLs frequently exhibit
homogeneous enhancement (9, 10). In atypical cases, glioblastomas
may display minimal or absent necroses and PCNSLs may show
central necrosesmimicking glioblastomas (11). Some advancedMRI
techniques may support the radiological assessment, for instance by
differentiating reduced cerebral blood volume (CBV), characteristic
of PCNSLs, from high CBV, frequently reported in glioblastomas
(12, 13). However, uncommon hypervascular PCNSLs may be
encountered, posing additional diagnostic challenges despite the
use of advanced multiparametric imaging. Finally, advanced MRI
protocols require greater expertise and expenses, affecting their
worldwide applicability (14).

Radiomics has been adopted in neuro-oncology for diagnostic
classification and prognostic prediction from the analysis of
textural or handcrafted radiological features (15). However, it
needs lengthy and meticulous preprocessing steps such as
imaging segmentation, manual features selection and
extraction. More recently, the introduction of machine learning
algorithms significantly improved classification performances
(16–18): deep learning methods, in particular deep neural
networks (DNN), may automatically perform several computer
visions tasks by extracting information directly from radiological
sequences (19, 20).
2

In this study we evaluated the discriminative ability of a deep
learning algorithm trained on T1-weighted gadolinium-
enhanced (T1-Gd) MRI scans to differentiate glioblastomas,
atypical PCNSLs, and BMs, and to improve both diagnostic
and interventional workflows.
MATERIAL AND METHODS

Patient’s Selection
Ethical approval was waived by the local Ethics Committee in
view of the retrospective nature of the study and all the
procedures being performed were part of the routine care.
Informed consent was obtained from all individual participants
included in the study. All procedures performed in studies
involving human participants were in accordance with the
ethical standards of the institutional and/or national research
committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

We retrospectively reviewed the records of 254 consecutive
patients with histologically confirmed glioblastoma, PCNSL with
atypical features (immunocompetent patients, central necrotic
core, no perivascular location/atypical anatomical location
according to the literature or increased rCBV) or BM, who
underwent preoperative brain MRI between June 2015 and
April 2021. Exclusion criteria included: 1) patients with absent
or inadequate MR images; 2) patients with previous intracranial
intervention (surgical intervention, gamma knife surgery, or
radiation therapy) and 3) the presence of multiple enhancing
lesions. Adult immunodeficiency syndrome-related or Epstein-
Barr virus-related PCNSL were excluded from our analysis as
both subtypes of PCNSL might have increased the heterogeneity
of the population investigated.

Following these criteria 121 patients were selected and split,
following a 70/30 ratio, into a training set, for deep learning
model training, and a balanced hold-out test set, to internally
validate the developed DNN model.

MR Acquisition and Image Preprocessing
All brain MRI studies were performed with a 3 Tesla scanner
(Philips® Achieva, Eindoven, Netherlands) using a conventional
32-channel head coil. The protocol included: axial T2-weighted
(T2w) sequence, three-dimensional (3D) Fluid Attenuated
February 2022 | Volume 12 | Article 816638
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Inversion Recovery (FLAIR) sequence, axial diffusion-weighted
images (DWI) with b-values of 0-1000 sec/mm2 and contrast-
enhanced (Gadovist 0.1 mL/kg; Prohance 0.2 mL/kg) axial and
three-dimensional (3D) T1-weighted sequences.

All MR images in the form of digital imaging and
communications in medicine (DICOM) were input to the Horos
DICOMViewer (version 3.3.5,www.horosproject.org) a free, open-
source medical imaging viewer and analytic tool. Using this
software, the regions of interest (ROIs) of these three types of
lesions were manually delineated on every section in which the
tumoral mass was visualized on preoperative axial CE-T1. After
volume acquisition, segmentation and signal intensity
normalization, all the ROIs were then centered in a 224x224
pixels black box and exported in PNG file format (Figure 1).

Convolutional Neural Network Model
A 2D convolutional neural networks (specifically the Resnet-101
model) with 101 layers consisting of 3-layer residual blocks pre-
trained with the ImageNet database was used (21, 22).
Hyperparameters of the fully connected layer of ResNet were
fine-tuned with the training set data while the convoluting and
pooling layers were frozen in order to preserve the features
extraction capability of the pretrained Resnet-101 model. The
batch size was 32, and a drop-out rate of 0.25 was applied with
rectifier linear unit as the activation function to minimize model
overfitting. The model was trained for 50 epochs with stochastic
gradient descent optimized with the Adam optimizer and the
initial learning rate set to 0.005 (23). Batch normalization was
used in each layer to improve learning stability (24). The
structure of the developed DNN model is depicted in Figure 1.

Each ROI was used as inputs for all the 3 channels expected
by the Resnet model and was treated as an independent image to
increase the number of input data even though a group of slices
belonged to the same patient. However, to prevent data leakage
Frontiers in Oncology | www.frontiersin.org 3
from the training to the hold-out test set, data splitting during
training of the model was done per patient and not per section
image. The predicted diagnostic class for each patient was the
most frequently voted one among its entire ROIs set. Gradient-
weighted class activation mapping (Grad-CAM) visualization
was used to evaluate which portion of the tumoral lesion the
developed DNN model was focusing on in order to make each
patient’s diagnostic prediction (an example is reported in
Figure 2) (25).

The final model was internally validated on the hold-out test
set. The performance metrics reported were computed
considering the number of mis considered per patient and not
per image.

Performance Metrics
The classification performance of the DNN model was evaluated
considering the following performance metrics: 1) Area Under
the Receiving Operative Characteristics curve (AUC-ROC); 2)
Accuracy; 3) Precision or Positive predictive value (PPV); 4)
Negative predictive value (NPV); 5) Recall or sensitivity; 6)
Specificity; 7) F-1 score.

A One-vs-the-Rest (OvR) multiclass strategy was employed to
extract performance metrics for each outcome class, then the
average value and its 95% bootstrap confidence interval were
computed for each of the above-mentioned performance metrics
on the hold-out test set. A grouped binary comparison was also
performed in order to investigate the reliability of the DNN
model in distinguishing surgically resectable lesions
(glioblastoma or BM) from non-resectable ones (PCNSL).

Finally, the retrospective diagnostic performance of
neuroradiologists with at least 10 years of dedicated experience
reviewed by means of radiological report charts was computed
and defined as “gold standard” for comparison with the
DL model.
FIGURE 1 | The overall Resnet-101 model architecture. The window size and the stride for convolutional, maxpooling and fully connected layers are also presented.
Conv, convolutional layer; FC, fully connected layer; GBM, glioblastoma multiforme; PCNSL, primary central nervous system lymphoma; BM, brain metastasis.
February 2022 | Volume 12 | Article 816638

http://www.horosproject.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tariciotti et al. Deep Learning Solutions in Neuro-Oncology
Statistics, Software and Hardware
Descriptive statistics, frequencies and percentages were used to
report tumor volume characteristics. A Shapiro-Wilk normality
test was used to assess normality. When appropriate, continuous
variables were reported as mean + standard deviation (SD) or
median and interquartile range (IQR). Statistical differences in
tumor volumes were tested using the ANOVA or Kruskall Wallis
test, according to normality of the sample. All the statistical
analyses were performed in Jupyter Notebook, using Python
v.3.7.6 (https://www.python.org/). The Python packages used for
this study included: ‘PyTorch v1.7’ to develop and train the DNN
model, ‘Numpy’ for Excel dataset handling; ‘Scikit-learn’ to
compute performance metrics and ‘Seaborn’ to plot ROC-
AUC. The workstation used to train the DNN model mounted
an Intel Core i7-10700K processor while the GPU was a Tesla
K80 12GB.
RESULTS

The cohort of selected patients included: 47 glioblastomas (age:
61.3 [48.9-73.7] years), 37 PCNSLs (age: 51.1 [43.3-58,9] years)
and 37 BMs (age 59.5 [49.9-69.1] years). The male-to-female
ratio was 50/71 (58.3% were female). Median tumor volumes
were as follows: glioblastoma (56.31[45.50-69.00], PCNSL (39.00
Frontiers in Oncology | www.frontiersin.org 4
[31.40-45.25] and BM (56.50 [44.01-65.25].A statistically
significant different in tumour volume was found (p=0.03). A
total of 3’597 axial slices/ROIs of tumors were extracted from 121
patients with: glioblastoma (1’481 ROIs), PCNSL (1’073 ROIs)
and BM (1’043 ROIs). No significant difference in age and sex
distribution was found between the three groups of patients.
Patients in the metastasis group included those with various
primary tumor subtypes: 14 (37.8%) lung cancers, 9 (24.3%)
breast cancers, 6 (16.2%) colorectal cancers, 5 (13.5%)
melanomas and 3 (8.1%) endometrial cancers.

DNNModel PerformanceMetrics Evaluation
The trained DNN model, evaluated on the hold-out test set,
achieved an AUC of 0.98 (95%CI: 0.95 - 1.00), 0.90 (95%CI: 0.81
- 0.97), 0.81 (95%CI: 0.70 - 0.95) respectively for PCNSL,
glioblastoma and BM diagnostic class demonstrating high
discriminative ability. High reliability was reported across all
performance metrics for atypical PCNSL and moderate for
glioblastoma and BM (Table 1).

In fact, the model reported 91.57% (76.92% - 100.00%) and
93.54% (87.38%-100.00%) PPV and NPV for PCNSL,
respectively, confirming high reliability in ruling in and out
candidates in a population-based scenario. By reviewing the
capacity to detect BM among all cases, the model was found to
be highly reliable in excluding the suspect of BM in favor of a
FIGURE 2 | Images of a 59-year-old woman with a histologically diagnosed GBM. (A) CE T1WI with the segmented region of interest (ROI). (B) Extracted ROI of the
segmented lesion. (C) Extracted ROI and the corresponding gradient-weighted class activation map (Grad-CAM) showing the salient tumor regions identified by
Resnet-10 and on which the DNN model relies to make its prediction.
February 2022 | Volume 12 | Article 816638
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different prediction outcome than confirming it [specificity:
88.46% (76.92% - 95.31%); NPV: 84.37% (74.78%-94.15%)].
Finally, a moderate absolute (sensitivity: 80.01% (71.23% -
100.00%); specificity: 81.84% (69.18% - 95.45%)) and clinical
performance was reported for glioblastomas among the cases the
model was tested on.

Moreover, the trained DNN model achieved an AUC of 0.92
(95%CI: 0.83 - 0.99) and an accuracy of 94.7% (95%CI: 89.19% -
100.0%) in distinguishing surgically resectable lesion
(glioblastoma or BM) from non resectable ones (PCNSL)
(Table 2). For each diagnostic outcome class the AUC-ROC
curves, achieved on both training and hold-out test set, and the
global confusion matrix are depicted in Figure 3.
DNN Model and Neuroradiological
Assessment (Gold Standard) Comparison
As gold standard reference, the classification performance of
neuroradiologists with at least 10 years of experience was
retrospectively conducted on the same population. Every
physician had access to the whole multi-sequence DICOM
package and independently classified each tumor according to
their knowledge. Overall, an optimal accuracy was reached on
each tumor type (atypical PCNSL: 84.38%; glioblastoma: 85.87%;
BM: 91.67%). The lowest performance was noted when an
atypical PCNL was to identify: the overall sensitivity and
specificity were 55.56% and 91.03% (PPV: 58.82%; NPV:
89.87%). Additional information are shown in Table 3.

The DL model yielded an increase in accuracy of +14% for
PCNSL, +5% for glioblastoma and a decrease of 10% for BM
compared to the gold standard. According to the performance
Frontiers in Oncology | www.frontiersin.org 5
metrics evaluation, the most reliable prediction computed by the
DL model was atypical PCNSL.
DISCUSSION

In the current study, we demonstrated the feasibility of a deep
learning model to differentiate glioblastomas, PCNSLs and BMs in
routine clinical settings. We found that our DNN model trained
on T1Gd-weighted volumetric MRI axial scans showed 83.08%,
94.65%, 81.07% accuracy rates in differentiating each lesion
(glioblastomas, PCNSLs and BMs respectively) against the other
two. Our model returned the highest accuracy (94.65%) in
identifying PCNSLs against the other classes and moderately
high diagnostic accuracy for glioblastomas (83.08%) and BMs
(81.07%). Moreover, when asked to define the tumor amenability
to maximal safe resection or diagnostic biopsy, the deep learning
model returned excellent performance (accuracy: 94.72%) and
high reliability (PPV: 91.88%; NPV: 94.76%). The algorithm
misclassified BMs more frequently than glioblastomas and
PCNSLs, probably due to their higher histological heterogeneity
and related variability in radiological features; higher accuracy
rates would have been obtained by using a larger dataset.

Finally, when the deep learning model and the gold standard
(diagnostic reports by neuroradiologists) were compared and
evaluated considering the prevalence of each tumor type in the
population investigated, a reliable classification performance of
the deep learning algorithm was denoted, especially for PCNSL.
The greater discriminative power of neuroradiological reports
concerning BMs was unsurprising: access to clinical data, history
and multiparametric MR imaging in the real-world clinical
TABLE 2 | Convolutional neural networks model’s performance metrics in suggesting lesion resectability.

Performance Metrics RESECTABLE (GBM or BM) vs NON-RESECTABLE (PCNSL)

AUC 0.92 (0.83 - 0.99)
Accuracy 94.72% (89.19% - 100.0%)
Precision (PPV) 91.88% (78.57% - 100.0%)
Negative predictive value (NPV) 94.76% (86.13% -100.00%)
Recall (Sensitivity) 90.84% (72.73% - 100.0%)
Specificity 96.34% (88.46% - 100.0%)
F1-Score 0.91 (0.82 – 1.00)
Performance metrics achieved by the trained CNN model on the hold-out test set in evaluating the resectability of the underlying lesion. Average value and 95% bootstrap confidence
interval are reported. PCNSL, primary central nervous system lymphoma; GBM, glioblastoma multiforme; BM, brain metastasis; AUC, area under the curve; PPV, positive predictive value;
NPV, negative predictive value.
TABLE 1 | Convolutional neural networks model’s performance metrics in differentiating PCNSL, Glioblastoma, and BM.

Performance Metrics PCNSL Glioblastoma BM

AUC 0.98 (0.95 - 1.00) 0.90 (0.81 - 0.97) 0.81 (0.70 - 0.95)
Accuracy 94.65% (89.19% - 100.00%) 83.08% (72.83% - 91.89%) 81.07% (70.27% - 91.89%)
Precision (PPV) 91.57% (76.92% - 100.00%) 75.50% (66.16% - 92.31%) 71.11% (59.42% - 93.7%)
Negative predictive value (NPV) 93.54% (87.38% -100.00%) 79.92% (69.34%-91.45%) 84.37% (74.78% - 94.15%)
Recall (Sensitivity) 91.03% (75.73% - 100.00%) 80.01% (71.23% - 100.00%) 63.61% (53.36% - 82.91%)
Specificity 96.23% (88.46% - 100.00%) 81.84% (69.18% - 95.45%) 88.46% (76.92% - 95.31%)
F1-Score 0.91 (0.84 - 1.00) 0.77 (0.69 - 0.91) 1.68 (0.54 - 0.83)
February 2022 |
Performancemetrics achievedby the trainedCNNmodel on the hold-out test setwerecomputedadopting aOne-vs-Rest (OVR)multiclass strategy. Average valueand95%bootstrapconfidence
interval are reported. PCNSL, primary central nervous system lymphoma; BM, brain metastasis; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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practice provided essential information the algorithm had no
access to. Glioblastomas were the most represented class in our
population (47 vs 37 vs 37 cases) and were more accurately
classified by the deep learning model than the gold standard,
although these results should be carefully reviewed: in fact,
though sensitivity and specificity were comparable between the
deep learning model and the reference gold standard, the PPV
and the NPV showed slightly lower reliability of these results.

Overall, these findings support the clinical experimentation
and applicability of the model in assisting physicians to decide
Frontiers in Oncology | www.frontiersin.org 6
whether to proceed with diagnostic biopsy when PCNSLs are
suspected or maximal surgical resection when glioblastomas or
BMs are more likely.

No single MRI modality is currently capable of differentiating
PCNSLs, BMs, and glioblastomas with absolute accuracy. Recent
radiomic studies focused on tumor histology prediction (which
showed fair performance rates - up to 75%) reported
contradictory results in terms of the most predictive MRI
sequences analyzed, limiting their applicability in routine
clinical practice (26, 27). Fruehwald-Pallamar et al. (28) found
TABLE 3 | Neuroradiologists (Gold standard) performance metrics in differentiating PCNSL, Glioblastoma and BM in the cohort examined.

Performance Metrics PCNSL Glioblastoma BM

Accuracy 84.38% 85.87% 91.67%
Precision (PPV) 58.82% 93.33% 78.26%
Negative predictive value (NPV) 89.87% 80.43% 95.89%
Recall (Sensitivity) 55.56% 82.35% 85.71%
Specificity 91.03% 80.43% 93.33%
F1-Score 57.46% 87.50% 81.80%
February 2022 | Volume 12 | Article
Performance metrics achieved by neuro-radiologists (defined as the gold standard) adopting a One-vs-Rest (OVR) multiclass strategy. The metrics were retrospectively computed by
examining patients report charts: all patients underwent conventional plus advanced (T1-weighted, T2-weighted, FLAIR, diffusion-weighted, conventional T1-contrast-enhanced, dynamic
contrast-enhanced and perfusion) MRI scans. Values were reported as single computation, so 95% bootstrap confidence interval were not defined. PCNSL, primary central nervous
system lymphoma; BM, brain metastasis; PPV, positive predictive value; NPV, negative predictive value.
A B

DC

FIGURE 3 | AUC-ROC curves (on both training and hold-out test sets) for each diagnostic outcome class [One-vs-Rest: (A–C)] and global confusion matrix (D).
GBM, glioblastoma; PCNSL, primary central nervous system lymphoma; METS, brain metastasis.
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that T2-weighted images were more predictive than FLAIR or
T1-weighted scans in differentiating benign from malignant
tumors. In contrast, Tiwari et al. (29) and Xiao et al. (30)
argued that T1Gd images might be superior by showing
distinct borders of contrast-enhancing tumors, increasing the
accuracy of ROIs segmentation compared to the unclear borders
exhibited in T2-weighted and FLAIR scans. Finally, although
advanced MRI techniques may improve classification and
differentiation of suspected brain neoplasms, their diagnostic
role is limited by the operator-dependent interpretation bias, the
high heterogeneity among brain tumors and the additional
hardware and set-up protocols required, which are available
only at major institutions (31, 32).

Previous studies investigated the role of machine learning
models to differentiate glioblastomas from PCNSLs. Kunimatsu
et al. (27) developed a support vector machine, which, by
analyzing radiomic features, returned a 0.75 accuracy in
classifying glioblastomas vs PCNSL. Likewise, Xia et al. (33)
designed a deep learning algorithm capable of classifying
glioblastomas and PCNSLs from multiple MRI sequences with
moderate outcomes (accuracy: 0.884). However, no machine
learning models aimed at differentiating glioblastomas,
PCNSLs and BMs have been reported yet.

Our deep learning algorithm detected with high discriminative
capacity specific microscopic parameters of glioblastomas,
PCNSLs and BMs and hidden radiological differences between
brain tumors. The rationale behind the use of T1Gd images stems
from their superior distinction of tumors borders and clear
representation of central necroses, which are pathological
hallmarks of most glioblastomas and BMs (34, 35).

The segmentation workflow represents a critical aspect of
machine learning and deep learning models’ development. As
recent computer-based automated segmentation algorithms need to
be clinically validated, manual segmentation is still the current gold-
standard, showing overall satisfactory results at the cost of intensive
work, task-induced fatigue, and extensive processing time. In a recent
study, McAvoy et al. (36) developed an EfficientNetB4 DNN with
high classification performance for glioblastoma (accuracy: 0.94) vs
PCNSL (accuracy: 0.95) on whole brain scan analysis with no prior
image segmentation. The authors advocated the superiority of their
model compared to previous machine learning studies, as the overall
preprocessing effort was sharply reduced. However, the use of non-
segmented whole-brain scans may lead to additional classification
bias, as DNNs might learn to accomplish their classification task by
relying on features (e.g., anatomical location and laterality)
determined by unbalanced and heterogeneous training sets instead
of clinically related radiological differences, hence limiting the general
applicability of the model (37). On the contrary, lesion segmentation
partitions each selected slice into a coherent region of interest (ROI)
that is extracted from the background and individually processed to
acquire overall lesion’s characteristics (either ROI or boundaries).
Hence, in our investigation, trained personnel performed manual
tumor segmentation.

In 2012 the MICCAI-Brain Tumor Segmentation Challenge
(BRATS) (38) was intended to collect the best performing
automated segmentation algorithms for brain tumors. The
Frontiers in Oncology | www.frontiersin.org 7
winning algorithm reported high performance in glioma
segmentation, but these results are still experimental as
automated tools might tend to overestimate volumes and suffer
from gross accuracy errors in delineating tumor boundaries (39,
40). In addition, the inclusion of different tumor types in our
study would have required several automated segmentation
algorithms bearing different and incomparable segmentation
performances, introducing larger biases in our training and
validation sets than manual segmentation.

We propose the first combined diagnostic “next-move”
support tool to assist neuroradiologists in differentiating
atypical tumor cases, and neurosurgeons in surgical decision-
making processes between resection or biopsy. We trained our
model, a low-cost decision-making support solution with
extremely high computation speed (within 10 seconds/patient),
on a large dataset of conventional T1Gd scans, enabling wider
clinical implementations even within institutions with limited
resources and restricted access to advanced MRI modalities.
Finally, our study design for DNN training and internal
validation was built on open-source python packages, and our
methodology could be reproduced and externally validated with
image datasets from other institutions.

Our study design has some limitations. The number of
included patients is larger than most other studies but remains
relatively limited and might not address the vast heterogeneity of
radiological features that glioblastomas, PCNSLs and BMs exhibit
in real clinical settings. Indeed, the limited sample size resulted
from selection and inclusion of selected radiologically atypical
tumors. We performed a monocentric analysis of images acquired
with a specific MRI scanner: for this reason, a validation at
different institutions must be run to test model generalizability.

The deep learning architecture itself might introduce some
downsides. First, generalizability is often mislead when input
data comes from different machines (vendor, models, protocols
etc.), as different parametrizations of the input data might alter
patterns of deep learning as a consequence of data distribution
shift: to minimize this limit, all patients underwent imaging
acquisition with a standardized protocol using the same MR
scan. Finally, several authors recognized the implicit “black-box”
computation as a methodological limitation restraining wider
application in clinical practice. In the current study, we deployed
a “human-intelligible” visualization method – the Grad-CAM
algorithm – to overcome this drawback. However, additional
intelligible algorithms have been proposed and comparison of
the latter was beyond the scope of the current investigation.

In this study, we trained and internally validated a deep
learning algorithm to differentiate atypical and radiologically
overlapping cases of glioblastomas, PCNSLs and BMs on T1Gd
sequences. A secondary analysis to define the best next-step
intervention was conducted with outstanding performance.
Other than externally validate our findings, further
investigation should prospectively compare the diagnostic and
management performances of neuroradiologists and
neurosurgeons whether they implement our DL algorithm or
not. The proposed model provides a low-cost, easily accessible
and high-speed decision-making support for eligibility to
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diagnostic brain biopsy or maximal tumor resection in atypical
tumor cases.
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