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Modelling The Interaction Between Wild And 

Cultivated Species. 

Abstract 

Yield losses due to wild species are relevant for a variety of cropping systems 

worldwide, e.g., in the case of rice weeds they can reach 60%. However, in 

the broader sense, wild species may also have positive effects on cropping 

systems for their capability to provide environmental benefits. In fact, they 

are fundamental to maintain high levels of biodiversity and, in the context of 

grassland communities, they are crucial for the provision of ecosystem 

services like those involved with pollination and recreational experiences. A 

quantitative understanding of the complex and dynamic interactions among 

species within agro-environmental systems is thus crucial to better analyze, 

for instance, the possible effects of climate change on community dynamics 

and to timely define effective adaptation strategies. In this context, the aim of 

this thesis was the development of new models for the simulation of the 

interaction between cultivated and wild species. 

Biophysical models are powerful tools to analyze the interactions between 

plants and environmental variables as well as to optimize crop management. 

However, one of their main weakness is the lack of algorithms for simulating 

the interactions between cultivated and wild species. The few examples 

available that consider these interactions are mainly related to fungal 

pathogens, whereas approaches considering weeds, insects and multi-species 

plant communities are extremely rare and insufficiently validated. 

To fill this gap, this PhD Thesis focused on the modelling of three categories 

of communities of increasing complexity: crop-weed (two plant species), 

grasslands (multi-species plant communities) and crop-insect-insect 

predators (different kingdoms). For the three categories, agroecosystems of 

worldwide importance were identified as case studies: paddy rice (chapter 2), 

grasslands (chapter 3 and 4) and olive trees (chapter 5). In particular, in 

chapter 2 a new model was developed for simulating the interaction between 

rice and two weeds (barnyardgrass and red rice); chapter 3 and 4 are focused 

on the extension of a model for the simulation of plant community dynamics 

in the context of mountain grassland systems, with case studies in temporary 

grasslands in the Apennine and in natural pastures in the Alps. The third 

chapter, in particular, focuses on the definition of strategies for adapting 
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grasslands management to climate change by explicitly considering their 

floristic composition, whereas the fourth chapter presents initial results on the 

effects of grazing and climate change on the productivity and floristic 

composition of pasture communities. Chapter 5 shows a new model of 

interactions among olive trees, the olive fruit fly (Bactrocera oleae (Rossi, 

1790)) and its predators, whereas chapter 6 refers to the general conclusions 

of the researches carried out in this PhD Thesis. 

Although the new models developed in this work are process-based to reflect 

the complexity of interactions occurring in agroecosystems, they assume 

simplified descriptions of biophysical processes through a limited number of 

parameters to make them usable in operational contexts. 

Keywords 

Simulation models, Interactions, Crops, Management, Wild species, 

Agroecosystems, Ecosystem services. 
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1. Background 

Wild species have a deep impact on qualitative and quantitative aspects of 

crop production as well as on the ecosystem services provided by 

agroecosystems. Interactions between cultivated and wild species play indeed 

a major role in the reduction of crop productivity (Oerke and Dehne, 2004). 

Conversely, in specific cropping systems, such as those involved with forage 

production, wild plant species may positively affect the quality and quantity 

of forage (Argenti et al., 2021; Daget and Poissonet, 1971) and the provision 

of other ecosystem services (Oliver et al., 2015). For example, when alfalfa 

(Medicago sativa L.) is sown in monoculture, Lolium multiflorum Lam. and 

Dactylis glomerata L. often naturally enrich the community as weeds, and – 

during the life of the temporary grassland – they can support the production 

of forage earlier in the spring and later in the autumn. 

Wild species represent most of the biodiversity in agroecosystems and this 

biodiversity can be threatened by climate change, which may deeply modify 

the spatial distribution and behavior of plants (Mooney and Hobbs, 2010) and 

insects (Gutierrez et al., 2009), both for the way they interact with the physical 

environment and for their capability to compete for resources with other 

species. It is thus crucial to better understand in quantitative terms the 

complex interactions between wild and cultivated species. Farmers’ 

experience may be not enough to avoid reductions in the quantity and quality 

of yields while minimizing the use of chemicals to preserve biodiversity and 

environment in a context increasingly characterized by global challenges like 

those dealing with climate change. 

Crop simulation models are powerful tools to support agroecosystems 

management at different spatial and temporal scales. However, when multi-

species communities need to be simulated, they are often too complex, 

empirical or insufficiently tested under operational conditions to provide 

effective support. For this reason, this PhD Thesis focused on the 

development of new models for the interaction among plant species and 

between plants and insects. Fungal pathogens and other microorganisms like 

virus were not explicitly considered given some examples suitable for 

operational contexts are already available for the former (e.g., Bregaglio and 

Donatelli, 2015), whereas viruses are considered as less relevant in affecting 

crop productivity (Oerke and Dehne, 2004). 
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1.1. Models for the interaction among plant species 

1.1.1. Crop-weed interactions 

Different models for the simulation of crop-weed interactions are available in 

the literature (e.g., Graf et al., 1990, Kropff et al., 1992; Debaeke et al., 1997; 

Caton et al., 1999). However, they are often insufficiently evaluated using 

experimental data and, in some cases, they incorporate empirical factors that, 

to some extent, make them site- or context-specific (Holst et al., 2007). In 

other cases, crop-weed interaction models are too complex to be successfully 

transferred to operational farming conditions (Caton et al., 1999; Colbach et 

al., 2014), or are limited to simulating the interaction between a crop and a 

single weed species. 

Eco-physiological models for the simulation of crop-weed interactions can be 

classified according to different criteria, e.g., the level of abstraction in the 

representation of plants (individual, species or field level models), the degree 

of empiricism (empirical, process-based or mixed approaches), the spatial 

resolution (virtual field, large-area or spatially explicit) and the temporal 

resolution (seasonal or multi-annual). Despite these major differences, there 

is no one-model category that is better than another. Colbach (2010) 

underlined that it is impossible to identify a priori best categories of models, 

the choice of a model depending on the specific objectives and the context of 

application. 

To improve these interaction models, some authors (e.g., Renton, 2013) 

suggested moving from field-level to individual-based models. Despite the 

theoretical reasons for the shift towards more detailed approaches, increased 

complexity has often limited the usability of models (e.g., Park et al., 2003), 

due to the increasing effort required for model parameterization and the 

uncertainty associated with it (Colbach, 2010). For this reason, some of the 

models potentially available for their use within decision support systems are 

in fact often too complex to be calibrated or initialized, or are too sensitive to 

uncertainty in parameter values (Freckleton et al., 2008; Colbach et al., 2014). 

This makes many of these models unsuitable for being implemented in 

decision support systems (DSS), which are increasingly needed for tactical 

weed management and for the strategic comparison of management scenarios 

to identify medium- to long-term weed management strategies (Beltran et al., 

2011). Other approaches are potentially suitable for being used as simulation 
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engines within operational DSSs but they are not yet sufficiently evaluated 

(Freckleton and Stephens, 2009). 

To fill this gap, a new model suitable for the tactical and strategic support to 

weed management was developed and evaluated (chapter 2), with a case study 

on rice and two of its most relevant weeds. 

1.1.2. Grassland models 

Available approaches for the simulation of multi-species plant communities 

can be classified into two categories depending on how plants are modelled: 

(i) generic crop-like models and (ii) interspecific competition models. 

The first category of models estimates the grassland community as a 

monoculture. In other words, this category of models (e.g., LINGRA, 

Rodriguez et al., 1999; STICS grassland, Brisson et al., 2008) does not 

explicitly consider interactions among herbaceous species. The pros of these 

solutions are the limited effort during model parameterisation and the 

parsimony in terms of hardware resources needed. However, changes in 

botanical composition during the season or in the medium term cannot be 

simulated. For this reason, this solution cannot offer any guarantee of 

robustness when environmental conditions change. This makes these 

approaches unsuitable for, e.g., climate change or management support 

studies. 

The second category of models such as INTERCOM (Kropff and Van Laar, 

1993), GEMINI (Soussana et al., 2012) and DynaGraM (Moulin et al., 2018), 

explicitly accounts for inter- and intra-specific competition, thus considering 

the various types of interaction among herbaceous species and also among 

individual plants, through multi-instance simulation systems, one per species 

or individual plant present in the community. This allows the growth and 

development of each entity (species or individual) of the plant community to 

be simulated by means of a detailed parameterisation. This category of 

models is potentially able to dynamically estimate botanical composition and 

its changes during the season. However, their complexity makes them very 

demanding in terms of computational power and inputs. In addition, the 

difficulties of initialisation and parameterisation make these models 

unsuitable for operational contexts, especially for regional analyses (Röhrig 

and Stützel, 2001). In fact, examples of application and evaluation are limited 

to a few species growing in controlled environments (Susanna at al., 2012). 
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Before starting this PhD, a compromise solution between the two categories 

just mentioned was developed (CoSMo; Confalonieri, 2014). CoSMo uses a 

single instance of a generic crop simulator to reproduce the growth and 

development of plant communities, with the parameters of a generic crop 

simulator dynamically changing depending on the simulated relative 

abundance of the different species in the community. This is possible thanks 

to hierarchically-arranged suitability functions that allow estimating the 

interactions and the suitability of each species to the environmental and 

management conditions explored at each time step. Suitability factors mimic 

changes in the ability to compete in case of perturbing events (e.g., mowing, 

grazing), and according to plant status (phenology) and environmental 

conditions (temperature, solar radiation, water and nitrogen availability). 

In chapters 3 and 4, the CoSMo model was improved and extended to allows 

accounting for new drivers, and it was evaluated – including the quality of 

forages – for temporary grasslands in the Apennine and natural pastures in 

the Alps, in this case accounting also for grazing animals. 

1.1.2.1. Grassland quality estimation 

The forage quality is very complex to simulate: approach as PaSim (Ben 

Touhami et al., 2013, Ma et al., 2015) has parameter to describe the 

percentage of legume to fix at the beginning of simulation, a better approach 

is ModVege (Calanca, 2016; Jouven et al., 2006) that dynamically estimate 

the digeriblity of the forage tanks the plant aging. But both models do not 

dynamically estimate the florisc composition. Thanks CoSMo model and its 

dynamic floristic composition it is possible to estimate dynamically the forage 

quality (in term of crude protein content or grazing vale) easily appling the 

Argenti et al. (2021) equation or the Daget and Poissonet (1971) equation. A 

possile application will be using a mixed approach ModVege – CoSMo. 
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1.2. Modelling crop-insect interactions: a case study for olive trees, olive 

fruit fly and fly predators 

Examples of models for olive tree growth are available (Morales et al., 2016; 

Villalobos et al., 2006; Abdel-Razik, 1989, Moriondo et al., 2019), as well as 

for olive fruit fly population dynamics (Gutierrez et al., 2009). However, the 

formers are either too simplified or too complex for being effectively used 

within applied researches, whereas the latter is not well documented. In 

particular, according to Moriondo et al. (2019), the model from López-Bernal 

et al. (2018) is too complex and needs specific inputs that are hardly available 

outside experimental conditions. On the contrary, the models proposed by 

Moriondo et al. (2019), Morales et al. (2016), Villalobos et al. (2006) and 

Abdel-Razik (1989) are oversimplified, missing specific algorithms for key 

processes deeply influencing the underlying system. As an example, the 

approach proposed by Moriondo et al. (2019) does not consider tree reserves. 

Moreover, all these models do not consider the interaction with the olive fruit 

fly, which can severely affect olive tree productivity. The dynamics of olive 

fruit fly populations are instead considered by the model proposed by 

Gutierrez et al. (2009), which however does not consider water stress (crucial 

for the simulated system) and is not well documented. 

For these reasons, a new model for the simulation of the interaction between 

olive trees, olive fruit fly and fly predators was developed and evaluated 

during this PhD Thesis (chapter 5). 
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1.3. Aim of the thesis 

The aim of this PhD Thesis was to develop new models for the simulation of 

the interaction between cultivated and wild species. Attention was paid to 

agroecosystems productivity (including quality and quantity of products) and 

to ecosystem services dealing with biodiversity, as well as to the interactions 

between simulated communities and the physical environment (including 

climate change) and management. 

In particular, the specific objectives addressed in this PhD Thesis were: 

• developing and evaluating a new model to estimate crop-weed 

interactions; 

• demonstrating its suitability to support management; 

• improving the CoSMo model to quantify climate change impact on 

temporary grasslands in the Apennines (central Italy) and to identify 

adaptation strategies; 

• developing approaches to dynamically derive forage quality from 

species characteristics and botanical composition of the community 

• quantifying climate change impact on high altitude, actively grazed 

natural pastures in the Alps; 

• developing and evaluating a new model for the simulation of the 

interaction of olive trees, olive fruit flies and fly predators. 

 

1.4. Outline of the thesis  

Chapters 2 to 4 deal with the modelling of the interaction within plant 

communities. In particular, chapter 2 deals with simple 2-species 

communities, where the interactions between rice and weeds are simulated. 

Chapters 3 and 4 refer to the development of new approaches for the 

simulation of multi-species plant communities in different environments 

(including climate change scenarios), with and without the presence of 

grazing animals. Chapter 5 refers to the development of a new model for the 

simulation of the interactions between olive trees, olive fruit fly and fly 

predators. Chapter 6 derive general conclusions on the activities carried out 

during this PhD Thesis. 
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In particular: 

• The second chapter presents a new crop-weed interaction model, 

namely WeedyCoSMo, derived from the generic plant community 

model CoSMo. The interaction is daily estimated based on various 

suitability functions (e.g., to temperature, water availability, light) 

aggregated hierarchically. The model, unlike the original CoSMo, 

considers the states of coexisting plant species distinctly. The new 

model was linked to WARM, a rice growth model able to estimate the 

interactions of the crop with fungal pathogens. The model was 

calibrated and evaluated using data from the literature on rice in 

interaction with two major rice weeds: red rice and barnyardgrass. The 

performance of WeedyCoSMo was satisfactory for all variables 

assessed (aboveground biomass, leaf area index, yield and plant 

height) and regardless of the simulated species, with R2 values always 

above 0.80. 

• The third chapter presents the results of an assessment of CoSMo in 

alfalfa grasslands grown in the Tuscan-Emilian Apennines (northern 

Italy). Dedicated measured data were used to extend CoSMo by 

including an existing model that uses the simulated percentage of 

legumes in the grassland as input to derive forage quality (CP: crude 

protein content). The assessment of the possible effects of climate 

change was conducted by using two general circulation models 

(GISS-ES and HadGEM2) and two representative concentration 

pathways (RCP4.5 and RCP8.5). Model indicated that CP could 

increase (+0.9/+2.6%), accompanied by a projected decrease in forage 

production (-3.6/-14.3%). Using the model, we derived adaptation 

strategies to optimize the system in the coming decades, based on the 

postponing of the last cut and on the sowing of a specific mixture of 

herbaceous species. 

• The fourth chapter presents the first test of CoSMo on natural, grazed 

pastures. The model was extended with new suitability functions and 

calibrated using field data collected during the 2019 growing season 

in Alpine sites at 2200 m a.s.l. First, the model was calibrated and 

evaluated to properly simulate observed aboveground biomass and 

floristic composition (R2>0.9). Then, the impact of climate change 

was estimated using two general circulation models (GISS-ES and 

HadGEM2) and two representative concentration pathways (RCP4.5 

and RCP8.5). It resulted an increase in forage production (+10.7% on 
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average) but a decrease in forage quality (grazing value -11.1% on 

average). 

• The fifth chapter presents a new daily time-step model for simulating 

the interactions among olive trees, olive fruit flies and fly predators. 

The model estimates: 

o for the olive trees: plant phenology, yield alternation, 

photosynthesis, partitioning among organs, growth in canopy 

diameter and height, senescence, fruit drop, 

evapotranspiration, lignification, winter hardening, self-

shading and abiotic damages; 

o for olive fruit fly: the interaction between the fly and olive 

trees, fly phenology, predators, oviposition, mortality, 

immigration and emigration and the main limitations to 

oviposition.  

The model error was low (MAE<1 t in fruit dry biomass; and ~5% in 

the percentage of olive fruits infected by the olive fruit fly). 

The last chapter (#6) presents the general conclusions of the Thesis. 
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2.1. Abstract 

Despite their potential to support the optimization of weed management, 

available ecophysiological models for the simulation of crop-weed interaction 

are still not adopted in operational contexts. For some of them the reasons 

deal with the insufficient validation in farming conditions, whereas others are 

either too complex for being used in operational contexts or too empiric for 

being free from site- or context-specific effects. Here we present a new 

approach (WeedyCoSMo) to support strategic decisions on weed 

management, derived from the CoSMo process-based model for the 

simulation of phytocoenosis dynamics. The model dynamically reproduces 

on a yearly basis the interaction between crop and weeds at canopy level 

through the daily quantification of the suitability of each species to weather 

conditions and management practices, as well as to the simulated system state 

variables. Dynamically predicted outputs are the relative abundance of crop 

and weeds and state variables for each species like, e.g., aboveground 

biomass, biomass of different plant organs, grain yield, leaf area index, plant 

height. WeedyCoSMo was calibrated and validated using data from different 

sites (in the Jiangsu province, China, and in Arkansas, USA) and years (from 

1982 to 2014), where different rice varieties and two major rice weeds – i.e., 
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red rice (Oryza sativa L., var. sylvatica) and barnyardgrass (Echinocloa crus-

galli L.) – were grown in monoculture or mixture. Model performances were 

satisfying: for rice crops grown in interaction with weeds, relative root mean 

square error never exceeded 25.2%, regardless of the variable considered, and 

Nash-Sutcliffe modelling efficiency was always higher than 0.63. Despite the 

low number of inputs and parameters needed to run the simulations, the 

degree of accuracy was similar to the ones achieved with other models for 

crop-weed interaction. This allows considering WeedyCoSMo as a promising 

approach in light of the possible integration in decision support systems 

targeting operational farming conditions. 

Keywords 

Echinochloa crus-galli, inter-specific competition, Oryza sativa var. 

sylvatica, WARM, WeedyCoSMo. 

2.2. Introduction 

Optimizing the use of pesticides is a priority in agricultural management 

because of their impact on the environment, on biodiversity (Fletcher et al., 

1988; Freemark and Boutin, 1995), on the health of farmers (Lopez et al. 

2007) and consumers (Ascherio et al. 2006; Stillerman et al. 2008), as well as 

on farmers’ income. However, since it is hard imagining to satisfy global food 

demand without using pesticides (Seufert et al., 2012; Leifeld, 2016), the 

optimization of pesticide management largely relies on limiting unnecessary 

applications. 

Despite differences due to the crops and contexts considered, weeds are 

worldwide responsible for about 32% of yield losses, thus representing one 

of the most severe biotic factors limiting global food production (Oerke and 

Dehne, 2004). In the case of important staple food like rice, incorrect 

management of weeds can lead to yield losses that can exceed 60%, with even 

higher values in case of direct sowing under aerobic conditions (Dass et al., 

2017). 

Farmers’ experience may be not enough to avoid yield losses while 

minimizing the use of herbicides because of the complex dynamics that 

characterize the interactions between crops, weeds, environmental conditions 

and other management practices. For this reason, tools for optimizing 

herbicides application were developed. They range from simple rule-based 
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systems to equations relating the number of weed individuals or damaged area 

to the treatment timing, up to complex systems based on mathematical 

simulation models (Park et al., 2003). Ecophysiological models for the 

simulation of crop-weed interaction (e.g., Graf et al 1990, Kropff et al., 1992; 

Debaeke et al., 1997; Caton et al., 1999) can be classified according to 

different criteria, e.g., the degree of empiricism, leading in this case to the 

identification of empiric, mechanistic and mixed approaches. Other 

classifications are based on the level of abstraction in the way plants are 

represented (individual level, species level or field level models), or on the 

spatial (virtual field, large-area, spatially explicit) and temporal (seasonal, 

multi-annual) extent of the simulation. Despite such large differences, many 

authors underlined that it is impossible to identify a priori a category of 

models that is better than the others, the choice of a model depending on the 

specific objectives and conditions of application (Colbach, 2010). As an 

example, some authors (e.g., Renton, 2013) suggested to shift from field level 

models to individual-based ones in case the objective is the analysis of the 

effects of tillage on weed populations in the medium-long term, or in case the 

effects of pesticides on resistance phenomena need to be investigated. Despite 

the theoretical reasons behind shifting towards modelling approaches more 

detailed in the way underlying processes are represented, the increase in 

complexity has often limited the use of models for decision-making (e.g., 

Park et al., 2003), given increasing the detail in process representation often 

translates into huge effort and uncertainty during model parameterization 

(Colbach, 2010). Some of the models potentially available to support 

decision-making, indeed, are often too complex (i.e., too many parameters 

and input variables) to be calibrated or initialized, and too sensitive to 

uncertainty in parameter values (Freckleton et al., 2008) for being 

successfully transferred to operational farming conditions (Colbach et al., 

2014). Other models for the simulation of crop-weed interaction are not 

suitable for being implemented in decision support systems (DSS) targeting 

the tactical (in-season) management of weeds, although they can be 

successfully used to compare management scenarios to identify strategies for 

weed management in the medium-long term (Beltran et al., 2011). Other 

approaches are instead potentially suitable to be used as simulation engines 

within operational DSS but are still insufficiently validated (Freckleton and 

Stephens 2009). Moreover, one of the factors that often limit the adoption of 

models within decision support systems is their insufficient capability to 

reproduce long-term effects of weed management strategies (Park et al., 

2003). 
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One of the solutions to overcome these limitations is extending cropping 

system models already used within operational or pre-operational DSS (e.g., 

Thorp et al., 2008; Kadiyala et al., 2015; Busetto et al., 2017; Bonfante et al., 

2019) by providing them with algorithms for the simulation of key dynamics 

of crop-weed interaction. Some of these models have indeed been used for 

years in a variety of contexts and they have been validated under operational 

conditions for a variety of purposes. Moreover, their functioning and outputs 

are often simple enough to be understood by farmers directly (Thorp et al., 

2008) or after their implementation in dedicated software platforms (e.g., 

Busetto et al., 2017). The main strength of this kind of models is the 

favourable relationship between the effort needed to run simulations 

(parsimony for inputs) and the capability to capture key aspects of the system 

of interest. This allows obtaining outputs at canopy scale (clearly 

understandable and suitable for decision making) by relying – at least 

partially – on existing spatially-distributed sources of weather, soil and 

management data. Another advantage of extending existing operational crop 

models is the possibility to reuse the parameterizations available to estimate 

growth and development of cultivars and hybrids for the crops of interest, 

thus limiting the calibration effort to weed parameters. 

The objectives of this study were: (i) developing a new model – annual in the 

current configuration – for crop-weed interaction suitable for operational 

contexts, i.e., a simulation engine for DSS targeting strategic decisions, and 

(ii) evaluating the model for rice and two of the most important rice weeds 

worldwide, i.e., barnyardgrass (Echinocloa crus-galli L.) and red rice (Oryza 

sativa L. var. sylvatica). The approach we propose extends the CoSMo 

(Confalonieri, 2014; Movedi et al., 2019) algorithms for the simulation of the 

interaction among different species in phytocoenosis, and it uses the WARM 

model (Confalonieri et al., 2009) for the simulation of growth and 

development of rice and weeds. WARM has been used since it was 

demonstrated to be suitable for being used in operational contexts. Indeed, 

after being extensively evaluated under a variety of conditions, it is already 

adopted for large area applications dealing with yield forecasts (Pagani et al., 

2019) and with supporting the distribution of fertilizers (Busetto et al., 2017) 

and fungicides (Nettleton et al., 2019). The reason for starting from the 

CoSMo principles for inter-specific dynamics derives from its capability of 

extending cropping system models already used within operational DSS. 

 



23 

2.3. Materials and methods 

2.3.1. A new approach for simulating rice-weed interaction 

2.3.1.1. Principle 

The proposed approach for rice-weed interaction (WeedyCoSMo) derives 

from the generic plant community model CoSMo (Confalonieri, 2014; 

Movedi et al., 2019). CoSMo is a process-based, virtual field model that 

simulates at a daily time step annual dynamics of phytocoenosis in terms of 

productivity of the community and relative abundance of the different 

species, by using weather data, physical and chemical soil properties and 

management information. It simulates community dynamics based on two 

assumptions: (i) inter-specific competition and changes in species relative 

abundance are derived from species-specific responses (by means of sets of 

suitability functions) to hierarchically-arranged environmental and 

management drivers; (ii) parameter values of the community as a whole are 

daily derived from the relative abundance of each species and from the 

parameter values of the different species when grown in monoculture. In 

practice, the suitability of each species to the conditions explored each day is 

used to drive changes in the characteristics of the community (changes in the 

relative abundance of the different species reflect in changes in the parameter 

values of the community), which are daily used to estimate the rate variables 

(i.e., changes in the values of state variables within the time step) of the 

phytocoenosis as a whole using a single instance of a crop model. Using this 

approach, the traits of the plant community – codified in the parameters of the 

generic crop model – dynamically change at each time step as a function of 

the suitability of each species in the community to environmental and 

management conditions, and the only state variables that are daily integrated 

are those referring to the community. 

In the case of crop-weed interaction, rate and state variables of crop and 

weeds need to be explicitly simulated to allow, e.g., quantifying the impact 

of weeds on crop yields and identifying infestation thresholds to trigger 

herbicide distribution. Moreover, keeping track of rate and state variables of 

crop and weeds allows the explicit simulation of the competition for resources 

between the different species. For this reason, contrarily to the original 

CoSMo approach, in WeedyCoSMo one instance of crop model is used for 

simulating growth and development of each of the crop and weed species 

present in the field. 
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2.3.1.2. The WARM model 

The crop model used in this study is the daily time step version of WARM 

(Confalonieri et al., 2009). This model was used for estimating rice and weeds 

rate and state variables at each time step. In particular, two instances of the 

model were run, given only rice and one weed species (either barnyardgrass 

or red rice) were simultaneously available in the datasets used for model 

evaluation (Table 1). Plant emergence is estimated when a species-specific 

thermal time threshold is reached, with thermal time being cumulated 

between base and maximum temperatures starting from the sowing day. 

WARM simulates species development as a function of the thermal time 

accumulated between base and maximum temperatures, with an option to 

account for the effect of photoperiod. Biomass accumulation is reproduced 

using a canopy-level net photosynthesis approach (Monteith, 1977), with 

radiation use efficiency (g dry biomass MJ-1) modulated by temperature, 

senescence, diseases, light saturation of enzymatic chains, and atmospheric 

CO2 concentration. Daily cumulated aboveground biomass (AGB; kg ha-1) 

is partitioned to the different plant organs as a function of development stage, 

with differences among genotypes reproduced by modulating the value of a 

parameter that represents the fraction of photosynthates that are daily 

partitioned to leaves at early phenological stages. Grain yield (kg ha-1) is the 

cumulated biomass partitioned to reproductive organs at physiological 

maturity. Plant height is estimated as a function of biomass partitioned to 

stems (Confalonieri et al., 2011), whereas green leaf area expansion (m2 m-2 

day-1) is simulated as a function of the biomass daily partitioned to leaves 

and of a development-dependent specific leaf area. Daily-emitted leaf area 

index units are considered senescent once they reach a thermal time threshold. 

The amount of intercepted radiation is derived from green leaf area index 

(LAI; m2 m-2) and canopy extinction coefficient for solar radiation using the 

Beer’s law (Monsi and Saeki, 1953). Concerning agro-management practices, 

the model simulates the effect of fertilization, fungicide distribution, and 

water management (in terms of water availability due to irrigation and effect 

on the vertical thermal profile in case of flooding). Details on WARM 

algorithms are available in reference papers (e.g., Confalonieri et al., 2009; 

Pagani et al., 2014). 

2.3.1.3. WeedyCoSMo 

In order to explicitly simulate the state variables of each crop and weed 

species, the CoSMo approach has been modified to allow using an instance 
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of a generic crop model (in this study WARM) for each of the species in the 

simulated field. This allowed keeping track of species state variables 

separately without preventing WeedyCoSMo from simulating the state 

variables of the community, which are derived as the average of the species 

state variables weighted by their relative abundance (Fig. 1). 

 

 

Figure 1: WeedyCoSMo flowchart; i represents the ith species in the field; t 

is the time step (daily), with t0 and t1 representing two consecutive time steps. 

Blue, green and red shapes refer to drivers, parameters and state/rate 

variables, respectively; white shapes indicate models. WeedyCoSMo 

estimates crop and weeds suitability (to be used at t1 for estimating changes 

in the relative abundance of the different species) based on environmental 

drivers and on the state and rate variables of the community at t0. Rate and 

state variables of the different species are updated using the WARM model. 

Similarly to the original CoSMo approach, WeedyCoSMo estimates at each 

time step changes in the relative abundance of each crop and weed species 

using a set of hierarchically-arranged unitless suitability functions. This 

allows reproducing the response of each species to environmental (e.g., 

temperature, flood tolerance and nitrogen contents) and management (e.g., 

chemical treatments) factors by accounting for the state variable of the 

community and for the features of the different species (Fig. 1). 
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The relative abundance of the 𝑖th species (𝑆𝐶𝑃𝑖, 0-1, AGB AGB-1) in the 

community is derived at each time step (𝑡) according to Eq. 1, whose meaning 

is changing the relative abundance of each of the species in the community 

according to its suitability to the conditions explored during the time step 

compared to the suitability of the community as a whole during the same time 

step: 

𝑆𝐶𝑃𝑖(𝑡) = 𝑆𝐶𝑃𝑖 (𝑡−1) + (
𝑆𝑓𝑠𝑖−

𝐶𝑆𝑓

𝑛 

𝐼∙𝑧
)     (1) 

where 𝑆𝐶𝑃𝑖 (𝑡−1) (0-1, unitless) is the relative abundance at time step 𝑡-1, 

𝑆𝑓𝑠𝑖 (unitless; Eq. 2) is the overall suitability of the species 𝑖, 𝐼 (parameter, 

unitless; set here to 40 according to the experience in previous studies) is an 

inertial replacement coefficient (used to implicitly represent the system 

resilience to changes in environmental conditions), 𝑧 is the number of 

drivers, 𝑛 is the number of species in the community, and 𝐶𝑆𝑓 (unitless) is 

the community suitability (Eq. 3). 

𝑆𝑓𝑠𝑖 = ∑ 𝐻𝑆𝑓𝑖 𝑞
𝑧
𝑞=1        (2) 

 

𝐶𝑆𝑓 = ∑ 𝑆𝑓𝑠𝑖
𝑛
𝑖=1        (3) 

 

In practice, Eq. 2 is used to derive the overall suitability for the species i as 

the sum of the hierarchy-corrected suitability factors (Eq. 4) obtained for the 

z drivers, whereas Eq. 3 is used to derive the suitability of the community as 

a whole as the sum of the suitability of the different species in the community. 

In Eq. 2, 𝑞 is the position of a driver in the drivers’ hierarchy and 

𝐻𝑆𝑓𝑖 𝑞 (unitless) is the hierarchy-corrected suitability of the 𝑖th species to the 

𝑞th driver, estimated as: 

𝐻𝑆𝑓𝑖 𝑞 = {

𝑆𝑓𝑖 𝑞 𝑞 = 1

√𝑆𝑓𝑖 (𝑞−1) ∙ 𝑆𝑓𝑖 𝑞 𝑞 = 2

√𝐻𝑆𝑓𝑖 (𝑞−1)  ∙ √𝑆𝑓𝑖 (𝑞−1) ∙  𝑆𝑓𝑖 𝑞 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 (𝑞 > 2)

 (4) 
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where 𝑆𝑓𝑖 𝑞 (unitless) is the suitability of the 𝑖th species to the driver in the 

𝑞th position in the hierarchy. In this study, according to the knowledge on 

plant responses to different categories of drivers and to the studies from 

Lindquist and Kropff (1997) and Hattori et al. (2009), the drivers were 

arranged in the following hierarchy: herbicide treatments, global solar 

radiation (competition for light), floodwater level (tolerance to submergence), 

and mean air temperature (different response to thermal regimes of the 

different species). Other drivers available in WeedyCoSMo (e.g., soil water 

and nitrogen contents) were switched off for this study since the datasets used 

for model evaluation referred to experiments where fields were fully irrigated 

and fertilized (no competition for water and nutrients). 

For solar radiation, the original CoSMo suitability function (Confalonieri, 

2014) was slightly modified to increase the relative importance of plant height 

compared to leaf area index (LAI). The new function (𝑓𝑟; 0-1, unitless) is 

calculated for each species in the rice-weeds community according to Eq. 5: 

𝑓𝑟 = 0.5 +
(
𝐿𝐴𝐼𝑚𝑎𝑥−𝐿𝐴𝐼𝑐𝑜𝑚𝑚
𝐿𝐴𝐼𝑚𝑎𝑥+𝐿𝐴𝐼𝑐𝑜𝑚𝑚

+2∙
𝐻𝑚𝑎𝑥−𝐻𝑐𝑜𝑚𝑚
𝐻𝑚𝑎𝑥+𝐻𝑐𝑜𝑚𝑚

)

6
    (5) 

where 𝐿𝐴𝐼𝑐𝑜𝑚𝑚 (m2 m-2) and 𝐻𝑐𝑜𝑚𝑚 (cm) are the LAI and height of the 

community as a whole at time step 𝑡, whereas 𝐿𝐴𝐼𝑚𝑎𝑥 (m2 m-2) and 𝐻𝑚𝑎𝑥 

(cm) are parameters defining the maximum LAI and height that the species 

(or cultivar or population in case of weeds) can reach under unlimiting 

conditions. In practice, Eq. 5 is used to compare the community state 

variables at a certain time step and the potential of each of the species in the 

community for the same variables. 𝐿𝐴𝐼𝑐𝑜𝑚𝑚 and 𝐻𝑐𝑜𝑚𝑚 are estimated as an 

average of the corresponding rice and weeds state variables at time step 𝑡 
weighted by the relative abundance of the different species at the same time 

step. The hypothesis behind Eq. 5 is that – at each time step – the higher the 

maximum height (or maximum LAI) of a species compared to the current 

height (or LAI) of the community, the higher the suitability of that species for 

competing for radiation. 

For the water suitability function, the CoSMo approach for the species 

capability to uptake water from soil is used for unflooded conditions, whereas 

a new function (𝑓𝑠𝑏, 0-1, unitless; Eq. 6) was developed to consider species 

tolerance to floodwater (Hattori et al., 2009) as a function of water depth and 

plant height. 
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𝑓𝑠𝑏 = 𝐻𝑠𝑢𝑏 ⋅ √𝑇       (6) 

𝐻𝑠𝑢𝑏 (0-1, unitless) is calculated according to Eq. 7, whereas 𝑇 (Eq. 8) is a 

species-specific tolerance factor (0-1, unitless). 

𝐻𝑠𝑢𝑏 = 0.5 +  0.5 ∙
𝐻𝑎𝑐𝑡−𝑊𝑎𝑐𝑡

𝐻𝑎𝑐𝑡+𝑊𝑎𝑐𝑡
      (7) 

𝑇 = 1 + 0.5 ∙
𝑊𝑐𝑟𝑖𝑡−1

𝑊𝑐𝑟𝑖𝑡+1
       (8) 

where 𝑊𝑎𝑐𝑡 (cm) is the actual floodwater level; 𝐻𝑎𝑐𝑡 (cm) is the actual plant 

height; 𝑊𝑐𝑟𝑖𝑡 (parameter, unitless, 0 to 1) represents the percentage of 𝐻𝑚𝑎𝑥 

corresponding to the floodwater level at which gas exchanges are arrested. In 

practice, according to Eq. 7, the larger the actual plant height compared to the 

floodwater level, the higher the tolerance to floodwater; Eq. 8 modulates the 

tolerance according to species-specific factors such as the presence and 

development of aerenchyma. 

A triangular approach is used for the suitability to temperature ( 𝑓𝑇, 0-1, 

unitless, Eq. 10): 

𝑓𝑇 = 

{
 
 

 
 

𝑇𝑎 − 𝑇𝑏

 𝑇𝑜𝑝𝑡− 𝑇𝑏
𝑇𝑎 > 𝑇𝑏  ∩  𝑇𝑎 ≤ 𝑇𝑜𝑝𝑡 

1 − (
𝑇𝑎 − 𝑇𝑜𝑝𝑡

𝑇𝑐𝑜𝑓𝑓 − 𝑇𝑜𝑝𝑡
) 𝑇𝑎 > 𝑇𝑜𝑝𝑡  ∩  𝑇𝑎 ≤ 𝑇𝑐𝑜𝑓𝑓

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

  (10) 

where 𝑇𝑎 (°C) is the mean air temperature, 𝑇𝑏, 𝑇𝑜𝑝𝑡 and 𝑇𝑐𝑜𝑓𝑓 (°C) are 

parameters representing minimum, optimum and cutoff temperatures for 

photosynthesis and development, respectively, which are set to the same 

values of the corresponding parameters of the crop model WARM. 

The impact of weed chemical treatments is reproduced by using a coefficient 

that quantifies the efficiency of specific chemicals in reducing the presence 

of the different weed species. In practice, in case of a single weed species, 

weed and crop relative abundance after the treatment are calculated according 

to Eqs. 11 and 12: 

𝑆𝐶𝑃𝑤(𝑎𝑡) = 𝑆𝐶𝑃𝑤(𝑏𝑡) ∙ (1 − 𝐸𝑓𝑓𝑇)     (11) 
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𝑆𝐶𝑃𝑐(𝑎𝑡) = 𝑆𝐶𝑃𝑐(𝑏𝑡) + (𝑆𝐶𝑃𝑤(𝑏𝑡) − 𝑆𝐶𝑃𝑤(𝑎𝑡))   (12) 

where 𝑆𝐶𝑃𝑤(𝑎𝑡) and 𝑆𝐶𝑃𝑤(𝑏𝑡) (0-1, unitless) are the relative abundance of the 

weed before and after the treatment, respectively; 𝑆𝐶𝑃𝑐(𝑎𝑡) and 𝑆𝐶𝑃𝑐(𝑏𝑡) (0-

1, unitless) are the corresponding values for the crop (which, for the sake of 

simplicity, is assumed to be not affected by treatments); 𝐸𝑓𝑓𝑇 (parameter, 0-

1, unitless) is the chemical treatment efficiency. The same approach is applied 

in case of more weed species. 

State variables of the weeds (e.g., AGB, LAI) and of the community are then 

reduced accordingly. 

 

2.3.2. Experimental data, model calibration and evaluation 

WeedyCoSMo was evaluated for rice crops including two major rice weeds 

(Kraehmer et al., 2016), i.e., barnyardgrass (Echinocloa crus-galli) and red 

rice (Oryza sativa var. sylvatica), using datasets published by Zeng et al. 

(2011) and Zhang et al. (2017) for barnyardgrass, and datasets from Diarra et 

al. (1985) and Kwon et al. (1992) for red rice (Table 1). In these datasets, rice 

and weeds were grown both individually and in mixture, in this case with rice 

and a single weed species at a time (Table 1). 

For all the datasets, rice and weeds were grown under unlimiting conditions 

for water and nutrients. Fields were continuously flooded (2-5 cm water level) 

in the datasets from Zeng et al. (2011) and Zhang et al. (2017), whereas 

irrigation or temporary flooding were applied in the other datasets. 

Simulations were performed from 13 June to 11 October for dataset with ID 

1, from 10 May to 7 October for ID 2-5 and 13-16, from 28 May to 25 October 

for ID 6-11 and 17-18, from 8 June to 5 November for ID 19-22, and from 18 

May to 15 September for ID 12 and 23. Further details on the management of 

experimental fields are provided in the reference literature (Table 1). 

Weather data were derived from the European Center for Medium-Range 

Weather Forecasts (ECMWF) Era-Interim database (Dee et al., 2011). Given 

nutrients were unlimiting in all the datasets, the model suitability functions 

for nitrogen and water limitation were switched off during the simulations. 

The relative abundance of weed and rice was initialized at sowing according 

to the information made available with the datasets. 
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Table 1: Datasets used for model calibration and evaluation. ID 1 refers to 

dataset collected in Yangzhou (119°42′ E, 32°35′ N; Jiangsu, China), ID 2-5 

and 13-16 to datasets collected in Nanjing (32°18′ N, 118°52′ E; Jiangsu, 

China), ID 6-12 and 17-23 to datasets collected in Stuttgart (34°29’ N, 91°33’ 

W; Arkansas, USA). Dataset name is composed of an acronym for rice 

varieties (J: Japonica 9915; Lo: Liangy-oupeijiu; N: Nanjing 9108; L: 

Lebonnet; M: Mars), sowing year, percentage of weed species at sowing, and 

weed acronym (E: barnyardgrass; R: red rice). AGB: aboveground biomass; 

LAI: leaf area index. 

Dataset name 

ID Rice Weed 

R
ef

er
en

ce
 

Symbol 

used in 

Figs. 2 and 

3 a 

  

A
G

B
 

L
A

I 

Y
ie

ld
 

A
G

B
 

L
A

I 

H
ei

g
h

t 

Y
ie

ld
 

Calibration 

J 2006 25% E 1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ Zeng et al. (2011) (3) 
 

Lo 2013 2 ✔ ✔ ✔         

Zhang et al. 

(2017) 

 (2) 

N 2013 3 ✔ ✔ ✔     
 (2) 

Lo 2013 20% E 4 ✔ ✔ ✔ 

  
✔ 

 

 (3) 

N 2013 20% E 5 ✔ ✔ ✔     ✔    (3) 

L 1982 6     ✔         

Diarra et al. 

(1985) 

 (2) 

1982 7 
  

✔ 

    

 (2) 

L 1982 4% R 8 
  

✔ 

    

 (3) 

L 1982 45% R 9 
  

✔ 

    

 (3) 

M 1982 4% R 10 
  

✔ 

    

 (3) 

M 1982 45% R 11     ✔          (3) 

1987 100% R 12       ✔       Kwon et al. (1999)  (2) 

Evaluation 
 

Lo 2014 13 ✔ ✔ ✔         

Zhang et al. 

(2017) 

 (2) 
 

N 2014 14 ✔ ✔ ✔     
 (2) 

Lo 2014 20% E 15 ✔ ✔ ✔   ✔  
 (3) 

N 2014 20% E 16 ✔ ✔ ✔     ✔    (3) 

L 1983 17     ✔         

Diarra et al. 

(1985) 

 (2) 

M 1983 18   ✔     
 (2) 

L 1983 4% R 19   ✔     
 (3) 

L 1983 45% R 20   ✔     
 (3) 

M 1983 4% R 21   ✔     
 (3) 

M 1983 45% R 22     ✔          (3) 

1988 100% R 23       ✔ ✔     Kwon et al. (1999)  (2) 
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a Numbers in brackets (i.e., 1 and 2) refer to Fig. 2 and Fig. 3. 

Calibration and evaluation were carried out using different datasets (Table 1) 

and in two steps, focusing first on the parameters of the WARM model for 

the rice varieties and the two weeds, and then on the WeedyCoSMo 

parameters involved with inter-specific dynamics (Appendix A). Model 

parameters were calibrated using the trial and error approach, with trials 

carried out after analysing time trends of different state variables with respect 

to available observations from the calibration datasets (Table 1). The 

procedure is considered as complete when satisfying values of agreement 

metrics are reached. The trial and error approach has been preferred to the use 

of automatic optimization algorithms because of the presence of some 

inconsistencies in data pattern over time, which can be better interpreted by 

expert users rather than by automatic algorithms, to the benefit of the 

robustness of parameterization (Confalonieri et al., 2016). The values of 

maximum height and maximum LAI were instead set to the values published 

by Zeng et al. (2011), Zhang et al. (2017), Diarra et al. (1985), and Kwon et 

al. (1992). Then, model evaluation was performed on the remaining datasets 

(Table 1). 

Model performance was evaluated using the dataset presented in Table 1 with 

the following metrics: mean absolute error (MAE; Eq. 13; minimum and 

optimum 0, maximum +∞), relative root mean square error (RRMSE; Eq. 14; 

%; minimum and optimum 0, maximum +∞), modelling efficiency (EF; Eq. 

15; from -∞ to +1, optimum +1; Nash and Sutcliffe, 1970), coefficient of 

residual mass (CRM; Eq. 16; if positive it indicates underestimation and vice 

versa; Loague and Green, 1991), and the R2 and the slope of the linear 

regression equation between observations and simulated data. 

𝑀𝐴𝐸 =
∑ |𝑆𝑖−𝑂𝑖|
𝑛
𝑖=1

𝑛
       (13) 

𝑅𝑅𝑀𝑆𝐸 =

√∑ (𝑆𝑖−𝑂𝑖)
2𝑛

𝑖=1
𝑛

�̅�
∙ 100      (14) 

𝐸𝐹 = 1 −
∑ (𝑆𝑖−𝑂𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖−�̅�)
2𝑛

𝑖=1

       (15) 

𝐶𝑅𝑀 = 1 −
∑ 𝑆𝑖
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

       (16) 



32 

where 𝑛 is the number of observations, 𝑂𝑖 and 𝑆𝑖 are the 𝑖th observation and 

simulated value, respectively. 

2.3.3. Evaluating weed management scenarios 

In order to evaluate the potential use of the model as a management support 

tool, a scenario analysis was run to evaluate the model sensitivity to changes 

in management practices and in the characteristics of the rice cultivar. 

Rice (cultivar Liangy-oupeijiu) and barnyardgrass parameters were those 

calibrated and evaluated (Table 1), the only exception being the growing 

degree days to flowering and from flowering to maturity for rice, which were 

decreased by 30% because of the lower temperatures and higher latitude in 

Milan compared to those that characterize the Jiangsu area where the Zhang 

et al. (2017) experiments were carried out. 

A base scenario was defined where growth and development of rice and 

barnyardgrass were simulated in a paddy field close to Milan (45°22’ N, 9°12’ 

E; Lombardy, northern Italy) under unlimiting conditions for water 

(continuous flooding) and nutrients. Simulations were run using 20 years of 

weather data (1986 - 2005) to account for differences in weather among 

seasons. Weather data were retrieved from the European Center for Medium-

Range Weather Forecasts (ECMWF) Era-Interim database (Dee et al., 2011). 

Each year was considered as independent, simulations being re-initialized 

with barnyardgrass at 30% relative abundance (initial infestation) at the 

beginning of each season. Sowing for the management strategy in the base 

scenario was on 30 May, with the field kept flooded (5 cm water level) 

throughout the season. Two broad-spectrum herbicide (penoxsulam; 40 g a.i. 

ha-1, 92% efficiency against Echinochloa spp.; Cavanna et al., 2004) 

treatments were applied 15 and 35 days after sowing. 

The base scenario was compared with four alternative scenarios that differed 

from the base one for: (i) the first herbicide treatment was applied when rice 

was at the 2nd-leaf stage and the second was not fixed but triggered by the 

model when barnyardgrass relative abundance exceeded 6.5% (scenario 1), 

(ii) floodwater level at 10 cm instead of 5 cm (scenario 2), (iii) higher thermal 

requirements for rice to emerge (+50 growing degree days) (scenario 3), (iv) 

taller rice plants (135 cm instead of 125 cm) (scenario 4). Analysis of variance 

(followed by the Tukey test) was run to evaluate the significance of the 
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differences among scenarios. For each scenario, the 20 yields simulated using 

the 20 years of weather data were used as replicates. 

2.4. Results 

2.4.1. Model calibration 

Calibrated values for all parameters are available in Appendix A. For all rice 

cultivars, parameter values of the WARM model are in the range of those 

used by Confalonieri et al. (2009) and Pagani et al. (2014) for rice cultivars 

grown in Chinese and Italian rice districts. Cardinal temperatures are 

consistent with the values used by Casanova et al. (1998) for modelling rice 

growth and development in Spain, whereas calibrated values for maximum 

radiation use efficiency and extinction coefficient for solar radiation fall in 

the range of the values estimated by Campbell et al. (2001) and Dingkuhn et 

al. (1999), respectively. Specific leaf area at emergence and at mid tillering 

are close to the values measured by Dingkuhn et al. (1998) for different rice 

genotypes in Cote d'Ivoire. Main differences among rice cultivars deal with 

radiation use efficiency, which is lower for the US cultivars, and with the 

growing degree days needed to reach emergence, flowering and maturity, 

with the cultivars grown in the experiments performed in China presenting 

higher thermal requirements. Other differences deal with canopy 

development, with the Chinese cultivars being characterized by higher values 

for maximum leaf area index and maximum plant height, and by lower 

specific leaf area at emergence. 

Model results were overall satisfactory, R2 being always higher than 0.81 and 

the slope of the linear regression between simulated and observed data 

ranging from 0.77 to 1.37. Time dynamics of the different state variables were 

reliably reproduced for all rice varieties and for both weeds, regardless they 

were grown in monoculture or in mixture (Figs. 2 and 3, Table 2). 

Concerning the simulation of rice and red rice in monoculture (Fig. 2, Table 

2), the model accurately estimated aboveground biomass (AGB). In 

particular, the values achieved by the agreement metrics for the simulation of 

rice (  and  in Fig. 2a) and red rice (  in Fig. 2b) AGB, and rice LAI (  

and  in Fig. 2c) were always in ranges considered as full y satisfactory, 

i.e., < 20%, > 0.5, < |0.2| for RRMSE, EF and CRM, respectively (Chung et 

al., 1999; Bellocchi et al., 2002; Moriasi et al., 2007). The good performances 

achieved for red rice were – to a certain extent – expected, given the 
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similarities between red rice and cultivated rice in terms of morphological and 

physiological features and the known suitability of the WARM model for rice. 

The accuracy in simulating time trends of rice AGB and LAI reflected in 

reliable yield estimates ( , ,  and  in Fig. 2e), regardless of the cultivar 

and of the experimental site and year. 

Observations referring to rice grown with barnyardgrass and red rice (Fig. 3) 

were accurately reproduced by the model, which showed performances very 

similar to those achieved for the datasets where rice was grown in 

monoculture. In particular, agreement metrics for AGB (  and  in Fig. 3a) 

were consistent with monoculture ones, whereas those calculated for LAI (  

and  in Fig. 3c) were slightly better, with EF equal to 0.87. Results were 

satisfactory (EF = 0.87) also for yield simulation, although in this case model 

performances were lightly poorer compared to what achieved for rice in 

monoculture ( , , , ,  and  in Fig. 3e). The model capability to 

reproduce rice growth in monoculture and in interaction with barnyardgrass 

and red rice led to a good simulation of the yield losses due to the competition 

from the two grass weeds, with EF equal to 0.79, respectively, and CRM close 

to 0, indicating the absence of systematic under- or over-estimations (Table 

2). 

The low number of observations available for calibrating barnyardgrass 

parameters affected the values of some of the performance metrics (Table 2), 

although the agreement between observed and simulated variables was 

overall satisfactory. LAI values (Fig. 3.d) were accurately reproduced by the 

model, with MAE and RRMSE very close to their optima, whereas the 

negative value for EF is due to the low variability in measured data (Criss and 

Winston, 2008). Concerning AGB (Fig. 3b), barnyardgrass simulations 

presented a marked overestimation for the first sampling event, whereas good 

agreement was achieved for the others. The accuracy in the simulation of 

barnyardgrass height is demonstrated by the good values achieved for all the 

metrics (Table 2). 
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2.4.2. Model evaluation 

No relevant worsening in model performance were noticed while moving 

from calibration to evaluation datasets (Table 2), regardless of the simulated 

species and of the growing conditions (monoculture vs mixtures). 

The only exception was for LAI of rice grown in monoculture (  and  in 

Fig. 2c), for which the values of the agreement metrics were less satisfying 

compared to those achieved for the same variable during calibration and, in 

general, for the other variables. For LAI values higher than 3, the model 

overestimated LAI of rice (Fig. 2c) and underestimated the one of red rice 

(Fig. 2d), with overall CRM values of -0.33 and 0.21, respectively (Table 2). 

The underestimation of LAI values in the second part of the red rice cycle is 

due to the fact that the model does not simulate new leaf emergence after the 

flowering stage, contrarily to what happens in reality. 

Compared to what achieved during calibration, rice AGB was simulated with 

the same degree of accuracy when the crop was grown in monoculture (  and 

 in Fig. 2a), whereas better values for all the metrics were obtained for the 

same variable when rice was competing with weeds (  and  in Fig. 3a). 

Good results were achieved also for rice yield simulations, with the crop 

grown in monoculture ( , , ,  in Fig. 2e) and in mixture with weeds ( , 

, , , ,  in Fig. 3e). 
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Figure 2: Comparison between observed and simulated aboveground 

biomass (AGB), leaf area index (LAI) and yield data for rice and red rice in 

monoculture. Symbols refer to the datasets presented in Table 1, where 

information on calibration and evaluation datasets is also provided; black 

line is the y=x line, indicating the theoretical perfect agreement between 

observations and model outputs. 
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Figure 3: Comparison between observed and simulated aboveground 

biomass (AGB), leaf area index (LAI) and yield data for rice (competing with 

weeds) and barnyardgrass (competing with rice) in mixture. For the latter, 

plant height data are also compared. Symbols refer to the datasets presented 

in Table 1, where information on calibration and evaluation datasets is also 

provided; black line is the y=x line, indicating the theoretical perfect 

agreement between observations and model outputs. 
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Table 2: Agreement metrics (Eqs. 11-14) calculated on observed and 

simulated yield, yield losses due to weeds (Yield-W), aboveground biomass 

(AGB), leaf area index (LAI), plant height (H). 

Species Variable Conditions MAE RRMSE (%) EF CRM R2 Slope 

Calibration 

Rice 

AGB 
Monoculture 1.23 t ha-1 16.10 0.95 -0.10 0.97 0.95 

Mixture 1.29 t ha-1 20.50 0.91 -0.14 0.95 0.93 

LAI 
Monoculture 0.70 m2 m-2 16.50 0.78 -0.10 0.95 0.77 

Mixture 0.45 m2 m-2 11.70 0.87 0.01 0.92 0.82 

Yield 
Monoculture 0.24 t ha-1 4.40 0.96 0.02 0.99 1.14 

Mixture 0.80 t ha-1 21.20 0.87 0.01 0.88 1.05 

Yield-W Mixture 9.10% 25.30 0.79 0.06 0.81 0.95 

Red rice AGB Monoculture 0.94 t ha-1 9.20 0.98 -0.08 1.00 0.94 

Barnyard grass 

AGB 

Mixture 

1.37 t ha-1 39.30 0.72 -0.28 0.93 1.37 

LAI 0.39 m2 m-2 4.40 -0.30 0.11 -a
 

-a
 

Yield 1.00 t ha-1 90.10 -a
 -0.90 -a

 
-a

 

H 3.0 cm 3.80 0.99 -0.02 1.00 1.10 

Evaluation 

Rice 

AGB 
Monoculture 1.55 t ha-1 18.70 0.93 -0.16 0.98 1.03 

Mixture 0.69 t ha-1 10.40 0.97 -0.04 0.98 1.08 

LAI 
Monoculture 1.60 m2 m-2 36.70 -0.19 -0.33 0.91 0.73 

Mixture 0.39 m2 m-2 13.00 0.83 -0.08 0.92 0.86 

Yield 
Monoculture 1.25 t ha-1 15.40 0.16 0.15 0.98 1.28 

Mixture 0.90 t ha-1 25.50 0.78 0.16 0.89 1.21 

Yield-W Mixture 9.63% 25.10 0.84 -0.04 0.86 1.17 

Red rice 
AGB 

Monoculture 
1.27 t ha-1 20.20 0.93 -0.18 0.98 1.01 

LAI 1.40 m2 m-2 33.70 0.74 0.21 0.94 1.49 

Barnyard grass H Mixture 2.0 cm 0.70 - 0.01 -a -a
 

-a Not enough data to calculate the metric. 

 



39 

2.4.3. Evaluating weed management scenarios 

Means and standard deviations of the outputs from the 20 annual simulations 

run for the scenario analysis are shown in Fig. 4. Compared to the base one, 

scenario 1 led to a light increase in rice yield (+3.1%) that resulted non-

significant. However, considering the 20 seasons, it was characterized by a 

lower number of herbicide treatments per year (1.55 treatments year-1 versus 

2.00 treatments year-1). This means that, one the one hand, differences in the 

weather conditions among seasons allowed avoiding the second treatment in 

nine years out of 20, given the weed relative abundance never exceeded the 

threshold triggering the second treatment (maximum relative abundance after 

the first treatment in those nine years was 6.4%). On the other hand, the higher 

mean yield demonstrates that triggering the second treatment based on the 

weed relative abundance instead of applying it a constant number of days after 

sowing allowed increasing the treatment efficiency in the years when the 

second treatment was applied. 

Results from scenario 2 demonstrate the model sensitivity to floodwater level: 

increasing floodwater level from 5 cm to 10 cm allowed penalizing the weeds, 

which are less tolerant than rice to partial submergence of culm tissues 

(Hattori et al., 2009). Indeed, the mean of the daily floodwater level suitability 

factors for rice decreased by 5.3% because of the increase in floodwater level, 

whereas it decreased by 36.0% for the weed. This translated into higher 

competitiveness of rice, with a 11.8% increase in mean yield compared to the 

base scenario. However, the large variability among seasons made the 

increase non-significant. 

Scenarios 3 and 4 are instead based on changes to the values of two of the 

traits of the simulated rice cultivar: increased thermal requirements for 

emergence (scenario 3) led the weed establishing faster than rice, thus making 

more pressure on the crop, with an effect that was only partially mitigated by 

the two herbicide treatments (the weed relative abundance before the second 

treatment was 25% higher compared to the base scenario). This led to a mean 

rice yield that was 21.2% lower (p < 0.05) compared to the value simulated 

for the base scenario. On the contrary, the 10 cm taller rice plants that 

characterized the scenarios 4 allowed achieving slightly higher – although the 

difference was not significant – yields compared to the base scenario (+2.7%) 

because of a higher capability to compete for radiation. The mean of the weed 

daily suitability factors for radiation was indeed 2% less compared the base 

scenario. 
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Figure 4: Grain rice yield (mean of 20 annual simulations) achieved for the 

base scenarios compared to the rice yield obtained by triggering the second 

herbicide treatment when weed relative abundance exceeded 6.5% (scenario 

1), by increasing floodwater level from 5 cm to 10 cm (scenario 2), by 

simulating a rice cultivar with higher thermal requirements for emergence 

(scenario 3) and with a higher value for maximum height (scenario 4). 

 

2.5. Discussion 

2.5.1. Novelty of the proposed approach 

WeedyCoSMo is a new model for the simulation of crop-weed interaction, 

based on hierarchically-arranged factors daily accounting for the suitability 

of the different species to environmental and management drivers. The model 

– derived from the CoSMo approach for the simulation of phytocoenosis 

dynamics – can be coupled with any generic crop model, allowing users to 

work with the crop model they are more familiar with, or for which parameter 

sets for local cultivars are already available. This allows upscaling from 
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single-species canopies to multi-species ones with a reduced effort compared 

to other approaches. 

The model is characterized by a good compromise between applicability 

(parsimony in terms of information needed for calibration and application) 

and biophysical adherence to the underlying system. Indeed, despite the 

algorithms used for crop-weed interaction are decidedly simpler than in other 

approaches, good performances were achieved for the simulation of time-

dynamics of key state variables and for the estimation of yield losses caused 

by weeds when the model was evaluated using datasets collected under 

different environmental and management conditions. This translates into a 

high usability while successfully capturing key dynamics of crop-weed 

interaction. 

2.5.2. Reliability, domain of validity and limits 

Despite the potential risks due to the calibration method and to the 

relationship between the number of parameters and the number of 

observations available for model parameterization, the absence of worsening 

in model performance during the evaluation against independent datasets 

revealed an overall good robustness of the modelling approach and of the 

defined parameter sets. 

The simulation of rice aboveground biomass (AGB) and leaf area index (LAI) 

in monoculture (Fig. 2a; Table 2) revealed a degree of accuracy consistent 

with previous studies where rice growth was estimated using different models 

(Bouman and van Laar, 2006; Belder et al., 2007) or the same crop simulator 

(e.g., Confalonieri et al., 2009; Pagani et al., 2014). The higher uncertainty in 

LAI simulation (compared to other variables) was already observed by 

different authors (Yu et al., 2006; Confalonieri et al., 2009; Tartarini et al., 

2019), and it can be partly due to the larger uncertainty in the methods used 

for estimating this variable. 

Despite early stages are crucial for crop-weed interaction (Martin et al., 

2001), Deen et al. (2003) observed during this phase a larger uncertainty in 

crop and weed (grown in mixture) LAI estimates in a comparative study 

where four crop-weed models were evaluated for wheat and Lolium rigidum. 

In this study, the authors underlined a general tendency of the models to 

decrease their accuracy while moving from species in monoculture to crop-

weed mixtures. This phenomenon was not observed during the evaluation of 
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WeedyCoSMo, which correctly reproduced observed time dynamics of LAI 

in the post emergence phase and throughout the season for rice and the two 

weed species, whereas it underestimated observations for this variable for red 

rice in monoculture only for values larger than 6 m2 m-2. In general, the 

overall good model performance while estimating LAI should be considered 

of primary importance, given the role of this variable in quantifying the 

response of rice and weeds to radiation. This is indeed crucial for correctly 

reproducing changes in the relative abundance of the different species 

throughout the season. 

WeedyCoSMo performances in estimating rice yield losses due to weeds 

were better than those obtained using empirical approaches based on relative 

leaf area (Kropff and Spitters, 1991), and similar to what achieved for the 

same crop and weed by Bastiaans et al. (1997) and Kropff et al. (1993) using 

the INTERCOM model. In particular, Kropff et al. (1993) reported that 

INTERCOM allowed explaining 93% of the variance in observations, 

whereas WeedyCoSMo – in spite of lower requirements in terms of inputs 

needed to run the simulation – explained only 10% variance less. 

However, the model evaluation for barnyardgrass should be considered as 

decidedly preliminary, given the few data available. Indeed, despite the good 

performances achieved for rice in mixture with this weed species could be 

considered an indirect guarantee of the functioning of the whole system (and, 

thus, of the reliability of barnyardgrass parameterization), related parameter 

values need to be further evaluated. 

One of the main limits of the current version of WeedyCoSMo is the absence 

of algorithms for simulating phenotypic plasticity driven by inter- and intra-

specific competition (Colbach et al., 2019). This choice was due to the need 

of limiting model complexity to increase the potential of the model for being 

adopted in operational farming contexts. The quest for limiting the 

complexity of the model also led to design WeedyCoSMo in such a way to 

reproduce crop-weed interaction at canopy level, without downscaling to 

individual-based architectures. The good performances obtained during 

model evaluation further demonstrate that the model design could strictly 

depend on the specific objective and conditions of application (Colbach, 

2010), and that increasing model complexity – when not strictly needed – 

could prevent models from being used for decision making under operational 

conditions (Park et al., 2003). 
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Another limit of the approach we propose deals with the absence of 

algorithms for simulating weed seed survival and, thus, multi-annual weed 

dynamics. This requires initializing the model at the beginning of each 

seasons. However, modelling approaches for the simulation of weed 

seedbank processes are available (e.g., Otto et al., 2007; Bohan et al., 2011) 

and will be integrated in the next version of WeedyCoSMo. 

2.5.3. Application and implications for weed management support 

Despite some simplifications suggest to further investigate the model 

behavior in response to treatments (e.g., the effect of canopy density on 

herbicide efficiency is not considered), the scenario analysis demonstrated the 

suitability of the model as a tool to support strategic decisions regarding when 

and how often to apply herbicides. Indeed, its capability of optimizing the 

timing of treatments led to an overall increase in the treatment efficiency and 

in avoiding the second treatment in 45% of the simulated seasons. Moreover, 

the model capability of reproducing the lower tolerance of weeds to the partial 

submersion of tissues (Hattori et al., 2009) makes the model suitable to 

support weed control strategies based also on the modulation of water 

management. 

Moreover, the model sensitivity to changes in the traits of the simulated rice 

cultivar opens to the possibility to perform ideotyping studies for supporting 

breeding programs targeting an increase of rice competitiveness against 

weeds. This would be important especially for production contexts moving 

towards the reduction of the use of chemicals or their abandonment (e.g., 

organic farming). Indeed, despite the increasing demand for breeding 

programs targeting a higher competitiveness against weeds (Fontaine et al., 

2009), very few studies are available where crop-weed interaction models 

were used to identify in a quantitative way plant traits able to maximize 

potential crop productivity while minimizing yield losses due to weeds (e.g., 

Colbach et al., 2019). 

However, the model potential for being used to support decision making is 

limited – in its current configuration – by the absence of algorithms for the 

estimation of seed production and survival. This limits the types of analysis 

the model can be used for, although the capability to reproduce seasonal 

dynamics of crop-weed interaction with a low number of inputs opens to 

further extensions of the model that will broaden its usefulness for 

management support under operational farming conditions. 
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2.5.4. Perspectives 

Thanks to the good balance between usability and capability of capturing key 

processes involved with crop-weed interaction, WeedyCoSMo opens up new 

opportunities for extending existing DSS towards the possibility to support 

weed management under operational farming conditions. 

Further activities will refer to tests on other crops and weeds and to the model 

linkage to modelling approaches for the simulation of weed seedbank 

processes like seed mortality and dormancy (e.g., Otto et al., 2007; Bohan et 

al., 2011) and weed germination/emergence (e.g., Masin et al., 2010; 

Gardarin et al., 2012; Borgy et al., 2015), and the evaluation of the model for 

designing rice ideotypes more competitive against weeds (Bastiaans et al., 

1997). Moreover, approaches for the simulation of the effect of mechanical 

weed control will also be implemented. 

2.6. Conclusions 

We proposed a new approach, namely WeedyCoSMo, to simulate the time 

dynamics involved with crop-weed interaction, based on the quantification of 

the suitability of the different species to the environmental and management 

conditions explored each day. The model was developed by targeting 

operational contexts, thus we paid particular attention to limit its requirements 

in terms of data needed for calibration and application. WeedyCoSMo can be 

coupled with any generic crop model, thus allowing to extend existing 

modelling approaches – e.g., those already implemented in operational 

simulation platforms – for being used to support strategic decisions on weed 

management. 

WeedyCoSMo demonstrated its suitability in simulating the interactions 

between different rice cultivars and two major rice weeds, i.e., red rice and 

barnyardgrass, whose time trends of aboveground biomass and leaf area index 

were accurately reproduced, as well as rice yield losses due to weed presence. 

The model demonstrated its suitability also for scenario analysis, showing a 

good potential for being used to identify context-specific management 

strategies. 

As demonstrated by the results achieved during model evaluation, the novel 

approach to upscale from single-species to multi-species canopies allows 

simulating crop-weed interaction without the need to implement individual-
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based architectures. This makes the model easy to use because of the limited 

number of parameters, most of which are shared with many crop models 

widely used worldwide. However, despite its low complexity, the good 

performances achieved seem to further demonstrate what observed by Deen 

et al. (2003), who concluded a comparative study suggesting the absence of 

clear relationships between model complexity and the capability to capture 

most of the dynamics involved with crops response to weed competition. 

The capability of WeedyCoSMo to simulate changes in the relative 

abundance of crops and weeds on a daily basis encourages its evaluation as a 

tool to support the optimization of weed management practices. 
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Appendix A: WeedyCoSMo parameters for red rice (R), Barnyardgrass (E), 

and for the rice varieties Japonica 9,915 (J), Liangy-oupeijiu (Lo), Nanjing 

9108 (N), Lebonnet (L), and Mars (M). 

Parameter name Units Weeds Rice varieties  

    R E J Lo N L M 

Parameters of the WARM model (simulation engine used within WeedyCoSMo) 

Extinction coefficient of solar 

radiation 
- 0.5 0.55 0.5 0.45 0.45 0.45 0.45 

Full canopy coefficient - 1.05 1.05 1.05 1.05 1.05 1.05 1.05 

Full canopy maximum water 

uptake 
mm 10 10 10 10 10 10 10 

Growing degree days to reach 

mid emergence 
°C-d 80 50 150 150 150 70 70 

Growing degree days to reach 

mid flowering 
°C-d 1000 1250 1200 1300 1300 1150 1150 

Growing degree days to reach 

harvest 
°C-d 50 50 50 50 50 80 80 

Growing degree days to reach 

mid maturity 
°C-d 450 350 650 550 550 450 450 

Leaf life °C-d 800 800 950 900 900 550 600 

Maximum radiation use 

efficiency 
g MJ-1 2.5 3 3.2 3 2.9 2.6 2.7 

Fraction of photosynthates 

partitioned to leaves at 

emergence (0-1) 

- 0.55 0.8 0.75 0.6 0.6 0.65 0.65 

Specific leaf area (leaf area to 

leaf dry mass ratio) at emergence 
m2 kg-1 23 30 18 25 25 29 29 

Specific leaf area (leaf area to 

leaf dry mass ratio) at mid 

tillering 

m2 kg-1 22 20 13 18 18 14 14 

Threshold radiation for 

saturation (above which 

radiation use efficiency 

decreases) 

MJ d-1 m-2 32 30 30 30 30 32 32 

Parameters used by WARM and by the crop-weed interaction component 

Base temperature for 

photosynthesis and development 
°C 11 11 11 11 11 11 11 

Cutoff temperature for 

photosynthesis and development 
°C 42 43 43 43 43 40 40 

Maximum leaf area index m2 m-2 11 10 10 10 8 6 8 

Maximum height m 1.8 1.5 1.25 1.25 1 1 1.1 

Optimal temperature for 

photosynthesis and development 
°C 28 27 28.5 28.5 28.5 27 28 

Parameters used by the crop-weed interaction component 

Percentage of maximum plant 

height corresponding to the 

floodwater level at which gas 

exchanges are arrested 

- 0.33 0.27 0.6 0.72 0.7 0.5 0.55 
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3. Adaptation strategies to alleviate climate change impacts on 

grasslands productivity and forage quality. A case study in 

northern Apennines. 
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3.1. Abstract 

Grasslands are environments characterized by an elevated biodiversity in 

plant species, which dynamically evolves over time as response to 

management practices, soil proprieties, and climate conditions. Climate 

change can locally affect grassland growth and floristic composition and, in 

turn, the quality and quantity of provided ecosystem services. We focused on 

mountain areas in the northern Apennines where temporary alfalfa (Medicago 

sativa L.)-dominated grasslands are sown for the production of Parmesan 

cheese, to evaluate climate change impacts on grassland growth and 

composition as well as alternative management scenarios to improve 

adaptation in the mid-term. The plant community CoSMo model as coupled 

with the crop model CropSyst was used, to explicitly account for dynamics 

of floristic composition. Five sites and four alternative climate scenarios 

(RCP4.5 and RCP8.5 projections as provided by the HadGEM2 and GISS 

general circulation models) were considered, to explore a wide range of agro-

environmental conditions. Results showed that the observed dynamics of 
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floristic composition and biomass accumulation were successfully simulated, 

with a mean absolute error lower than 10% for floristic composition and less 

than 1 t ha-1 for total biomass. Climate change impacts were globally negative, 

with a clear decrease of forage production as compared to the baseline (from 

-3.6 % to -14.3% according to the climate scenario). The biodiversity of the 

phytocenosis also declined (inverse of Simpson index decreased of -12.5% 

on average), due to the increase in alfalfa dominance. The latter, however, led 

to preserve the forage crude protein content (+0.9% on average). Guidelines 

for optimizing grassland productivity and forage protein under future climates 

were defined, mainly focused on reducing the alfalfa field duration, sowing 

grass-legume mixtures, and delaying the last cut. These practices can be 

easily adopted in real farm contexts, to support the adaptation of temporary 

grassland systems to a changing climate. 

Keywords:  

Ecosystem services; CoSMo; Relative abundance; Alfalfa; CropSyst; 

Adaptation. 

3.2. Introduction 

Grasslands play a key role in the context of ecosystem services, by providing 

material and not material products and services that affect human activities, 

including economy, health, and quality of life (Tribot et al., 2018). 

Grasslands are crucial for biodiversity protection, carbon and nitrogen 

sequestration, pollination, improvement of landscape value for tourism 

activities, and protection of soil from erosion (Marriott et al., 2004; Giustini 

et al., 2007; Schulze et al., 2009; Argenti et al., 2011; Cong et al., 2014; Hao 

et al., 2017; Pulina et al., 2017; van Oijen et al., 2018; Bengtsson et al., 2019; 

van Oijen et al., 2020; Viira et al., 2020). One of the most important 

ecosystem service that grasslands provide is forage production (Suttie et al., 

2005), which is often linked to the production of local and traditional 
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delicacies. For example, temporary grasslands dominated by alfalfa 

(Medicago sativa L.) are the main forage source for more than 100 dairy farms 

that produce local Parmesan cheese in the mountain areas of northern 

Apennine (Mancini et al., 2019). Alfalfa is one the most adapted species to 

the local environmental conditions and, by providing forage with high 

nutritional value (high crude protein content) and stable yields even in low-

input contexts, it plays a key role to improve the economic and environmental 

sustainability of dairy farms in the area (Tabacco et al., 2018; Kic, 2019). 

Grasslands are environments characterized by the coexistence of a large 

number of herbaceous species and, therefore, by a high biodiversity (Habel at 

al., 2013). This richness of species has a large influence on the type and 

quality of ecosystem services that grasslands provide (Oliver et al., 2015), to 

the point that grassland floristic composition can be used as a proxy of 

codominance and resilience of grassland ecosystems (Simpson, 1949, Mackie 

et al., 2018) and, when evaluated in terms of percentage of legumes species, 

as a reliable indicator of quality of forage (Argenti et al., 2021). 

Grassland floristic composition is highly variable as function of multiple 

environmental factors, such as climate conditions, soil proprieties, and 

management regimes (Jeangros et al., 1999; Ziliotto et al., 2004; Buxton and 

Fales, 1994). Agronomic practices play a relevant role especially in case of 

temporary grasslands, where different species are sown for hay production. 

These grassland evolves over time due to the settlement of wild species and 

are thus periodically renewed to ensure satisfactory production and quality of 

forage. Crop management markedly affect the dynamics of these plant 

communities, through the increase of water and nutrients availability 

(irrigation and fertilization), the frequency of mowing, the composition of the 

sown mixture, and the field duration before renewal (Matches, 1992; Ren et 

al., 2012, Argenti et al., 2021). 

Variation in climate also deeply affects grassland floristic composition and 

growth (Mooney and Hobbs, 2010), although the impacts can largely vary as 

a result of heterogeneity in plant communities and local climates. By 

conducting an extensive meta-analysis, Dellar et al. (2018) estimated an 

increase of grassland productivity as response to climate change in northern 

Europe and, on the contrary, a decrease in central and southern areas. 

Despite crop models are widely used for estimating the effects of climate 

change on multiple crops (Tubiello et al., 2007), only few of them can 
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explicitly reproduce the floristic composition of plant communities and its 

dynamics over time (Confalonieri, 2014). Modelling approaches accounting 

for inter-species competition and plant community evolution as response to 

environmental drivers would allow to analyse climate change impacts on 

grasslands floristic composition and related ecosystem services. By explicitly 

considering management factors, they would also allow to identify strategies 

to improve the adaptation of agro-ecosystems to future climate projections 

(Franke et al., 2022). 

The focus of this study was to evaluate the impact of climate change on 

temporary alfalfa-dominated grasslands by explicitly considering their 

floristic composition. To this end, the CoSMo plant community model 

(Confalonieri et al., 2014) was used, focusing on the mountain northern 

Apennine as study area. Adaptation strategies to optimize forage production 

and quality under future conditions were also evaluated and discussed, to 

provide farmers with guidelines preserving grasslands productivity in the 

mid-term. 

3.3. Materials and methods 

3.3.1. The modelling approach 

The community model CoSMo (Community Simulation Model; 

Confalonieri, 2014) was used to dynamically simulate the floristic 

composition of the plant community as response to environmental and 

management factors and ‒ coupled with the generic crop model CropSyst 

(Stöckle et al., 2003) ‒ the grassland productivity (Movedi et al., 2019). 

CoSMo daily estimates the variation in the relative abundance of the different 

species in the community (floristic composition) according to their suitability 

to environmental (E) and management (M) drivers, which account for both 

continuous variables (e.g., global solar radiation, soil water content) and 

events (e.g., cut, grazing). Drivers are used to estimate species-specific 

suitability factors to the conditions (E, M) explored at each time step. The 

overall suitability of each species is then calculated by aggregating the 

suitability factors estimated for each driver through a hierarchical weighting 

procedure, which allows to differentiate the drivers according their actual 

impact on the overall species suitability. Drivers representing grazing or 

cutting are top-ranked given the marked effect of these events on grassland 

composition due to the heterogeneity in species capability to restart growth 

after these disruptive events. Phenological development is the second high-
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impact driver because after maturity annual self-seeding species do not 

compete anymore until the germination and emergence of the next generation 

of individuals. The remaining drivers are ranked in decreasing order (as air 

temperature, global solar radiation, soil water and nitrogen availability) in line 

with other modelling approaches dealing with inter-specific competition 

(Confalonieri et al., 2014). The overall species-specific suitability value is 

then used to estimate the relative abundance of the different species at the 

following time step. The relative abundance allows to weight the crop model 

parameters that describe the growth of each species in monoculture, in order 

to derive the crop model parameters representing the plant community as a 

whole. Community parameters are thus dynamic, evolving alongside 

phytocenosis composition. The crop model uses these parameters to simulate 

biophysical processes at the level of plant community at each time step, 

providing key variables for grassland productivity (e.g., aboveground 

biomass, leaf area index). 

In this study the crop model CropSyst (Stöckle et al., 2003) was used as 

simulation engine to daily estimate the plant community growth and 

development as a function of weather variables, chemical and physical soil 

properties, and crop management. It was chosen because of its proven 

effectiveness for alfa-alfa (Medicago sativa L.) simulation in the study area 

(Confalonieri e Bechini, 2004) and its reliability in reproducing growth and 

development of plant communities when coupled with CoSMo (Movedi et 

al., 2019). CropSyst estimates the daily accumulation of aboveground 

biomass (AGB, t ha-1) with a net photosynthesis approach, based on the 

minimum value between that derived as a function of radiation use efficiency 

as limited by temperature, and that estimated according to the transpiration 

use efficiency as corrected by vapour pressure deficit. Green leaf area 

expansion is simulated according to the daily aboveground biomass 

accumulation, the early-stages specific leaf area, and an empiric stem/leaf 

partition coefficient. The Beer’s law approach is used to estimate the radiation 

intercepted daily as a function of the green LAI and of the light extinction 

coefficient for solar radiation. Phenological development is simulated 

according to the mean air daily temperature and parameters defining 

minimum and optimum thermal requirements, with an option to account for 

photoperiod. For the simulation of soil water dynamics, a cascading model 

with travel time (Neitsch et al.. 2002) was used together with pedotransfer 

functions (van Genuchten et al., 1985) to estimate hydrological soil 

proprieties. More details on CropSyst can be found in the reference literature 
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(Stöckle et al., 2003). Concerning the simulation of forage quality in terms of 

crude protein content on dry matter basis (CP, %), the empiric model 

developed by Argenti et al. (2021) for the same study area was used, which 

derives forage crude protein as a function of the relative abundance of 

legumes in the grassland. In this study, the simulated relative abundance of 

wild or sown legumes (alfalfa and Trifolium spp.) as provided by CoSMo was 

used. 

3.3.2. Model parameterization 

Field data for model parameterization were collected at five sites (Table 1) in 

the northern Apennine (Emilia-Romagna region) with temporary alfalfa-

dominated grasslands as described by Argenti et al. (2021). In this mountain 

and unfavourable area, temporary grasslands and meadows represent a key 

support for the production of local Parmesan cheese by the about 100 farms 

of the consortium “Terre di Montagna” (Mancini et al., 2019). Alfalfa is one 

the most adapted species to local environmental conditions and, given its 

good productivity and high nutritional value of the forage (high protein 

content). The five sites were chosen as representative of the heterogeneity 

characterizing the area in terms of environmental conditions, presence of 

species, and age of the meadows. Three samplings were conducted at each 

site during 2019, before mowing (Appendix A). Variables measured referred 

to the floristic composition (visual method; Boob et al., 2019), the 

aboveground biomass dry matter (AGB, t ha-1; oven-dried until constant 

weight), the leaf area index (LAI, unitless; ceptometer estimation), and the 

crude protein on dry matter basis (CP, %; Kjeldhal method) as a key 

component of forage quality. More details on the field experiments can be 

found in Argenti et al. (2021). 
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Table 1: Description of the experimental fields (from Argenti et al., 2021).  

Site Altitude 

(m a.s.l.) 

Latitude (°) Longitude (°) Sown 

crop 

Years 

since 

sowing 

A 740 44.313808 11.031986 Alfa-Alfa 2 

B 870 44.331032 10.987424 Alfa-Alfa 4 

C 750 44.285525 10.946268 Alfa-Alfa 8 

D 780 44.234906 10.922269 Mixturea 2 

E 740 44.218132 10.909049 Mixturea 4 
a
: grasses-legumes mixture 

For each site, daily minimum and maximum temperature, net solar radiation, 

and rainfall were retrieved from the weather service of the University of 

Milan Cassandra Lab, which provides historical daily weather data for the 

whole Europe with a spatial resolution of 0.016° × 0.016°. This weather 

service is based on the spatial downscaling of data from international 

networks (NOAA-GSOD, METAR, and SYNOP) conducted by integrating 

data from regional networks of agrometeorological stations and by using 

dedicated geo-statistical and modelling techniques also accounting for the 

effect of elevation (USGS Gtopo30). Reference evapotranspiration was 

estimated at runtime based on the Penman-Monteith method (Allen et al. 

1998). 

Simulations were conducted by considering crop growth and development 

only limited by water availability (rainfed grasslands), whereas non-limiting 

nitrogen supply was assumed because the experimental sites were fertilized 

and the presence of legumes ensures benefits from symbiotic N fixation. 

Data from the first day of sampling were used for initializing the community 

LAI, AGB and floristic composition. For the latter, only species with a mean 

relative abundance higher than 2% over the three sampling events were 

considered (Piseddu et al., 2019). Concerning soil moisture, volumetric field 

capacity was assumed because of snow melting and abundant rainfall events 

during the early spring. Root depth were initialized to 150 cm. Concerning 

simulation of management, the observed mowing schedule was used. 

Model evaluation was conducted by using different indices of agreement: 

coefficient of determination (R2, from 0 to 1 [optimum]; Addiscott and 

Whitmore, 1987), slope of the regression line, relative root mean square error 
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(RRMSE, from 0 [optimum] to +∞; Jørgensen et al., 1986), mean absolute 

error (MAE, from 0 [optimum] to +∞; Jørgensen et al., 1986), and modelling 

efficiency (EF, from -∞ to 1 [optimum]; Nash and Sutcliffe, 1970).  

3.3.3. Evaluation of climate change impacts on grasslands productivity 

Future climate projections for two representative concentration pathways 

(RCPs, RCP4.5 and RCP8.5; IPCC 2013) as provided by two general 

circulation models (GCMs), HadGEM2 (Collins et al., 2011) and GISS-ES 

(Schmidt et al., 2006), were used to assess the impact of global warming on 

grasslands productivity. The use of multiple RCPs×GCMs combinations 

allow to handle the uncertainty in future climate projections, by considering 

alternative pathways of CO2 emission in the mid-term – RCP4.5 assumes the 

implementation of policies for curbing GHGs emission while RCP8.5 

envisages business as usual storylines – as well as GCMs with a different 

equilibrium climate sensitivity that can lead to alternative climate projections 

for the same RCP. The uncertainty in the downscaling process was accounted 

for by using two stochastic weather generators (WGs), LARS-WG (Semenov 

and Barrow, 1997) and CLIMAK (Danuso, 2002). Historical weather series 

for the baseline (1986 – 2005, IPCC 2013) were retrieved from the ECMWF 

database (Hennessy, 1986). For each of the eight climate scenarios (2 RCPs 

× 2 GCMs × 2 WGs), twenty-year series centred on 2040 were generated at 

each site. For each site and weather file, 16 independent simulations were 

executed simulating a sowing each 1st of October and a 5 year of field 

duration. 

Regarding management, three main mowing events were considered (1st of 

June, 20th of July and 1st of October), as representative of early, medium, and 

late mowing periods.  

The impact of climate variations on grassland productivity was evaluated by 

comparing the model outputs (20-year mean) obtained for the baseline and 

the future climate projections. Seven synthetic output variables describing the 

length of the growing season, the forage production, its composition and 

quality were analysed: the total aboveground biomass harvested yearly 

(𝐴𝐺𝐵𝑦𝑒𝑎𝑟, t ha-1) and its distributions on different mowing events (𝐴𝐺𝐵𝑗, t ha-

1, aboveground biomass harvested on the j-th mowing event), the vegetative 

restart day and the dormancy day (day of the year in which the plant 

community begins and stops, respectively, to accumulate AGB), the relative 

abundance of plant species (𝑝𝑖, from 0 to 1, i representing the ith species in 
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the community), the Simpson-based diversity index (𝐷 = 1/𝜆, the larger the 

value of D, the highest the diversity, with 𝜆 calculated according to Eq. 1; 

Simpson, 1949; Jost, 2006), and the forage crude protein (CP, %, estimated 

according to Eq. 2; Argenti et al., 2021). 

𝜆 =  ∑ (𝑝𝑖)
2𝑛

𝑖=1        (1) 

where 𝜆 is the Simpson concentration index; 𝑛 is the number of herbaceous 

species coexisting in the grassland; 𝑖 is the ith herbaceous species. As in the 

parameterization, only species with a relative abundance higher than 2% were 

considered. 

𝐶𝑃 =  4.9085 ∙ ln(𝑥) + 0.8017                                                 (2) 

where 𝐶𝑃 is the crude protein content (%) in the aboveground biomass 

estimated as a function of the relative abundance of legumes in the grassland 

(𝑥, %). To account for the dynamics of legume presence during the season 

affecting forage CP on different mowing events, 𝑥 was derived according to 

Eq. 3: 

𝑥 =  
∑ 𝑝𝑙𝑗∙𝐴𝐺𝐵𝑗
𝑚
𝑗=1

𝐴𝐺𝐵𝑦𝑒𝑎𝑟
       (3) 

where 𝑚 is the number of mowing events (in this study three); 𝑗 is the j-th 

mowing event; 𝑝𝑙𝑗 is the relative abundance of legumes (Medicago sativa L. 

and Trifolium spp.), and 𝐴𝐺𝐵𝑗 is the aboveground biomass harvested at each 

cut. 

Since the analysis concerned temporary alfalfa-dominated grasslands (in most 

case sown in purity and then allowed to evolve with the settlement of wild 

grass species), the starting value of the relative abundance of Medicago sativa 

L. was set to 100% on 1st of October and that of the other relevant species 

initialized to 0. The simulated field duration was equal to 5 years, which is 

the observed optimal duration of temporary alfalfa meadows in the study area 

(Argenti at al., 2021). Soil moisture was initialized to field capacity. 

Plant dormancy was simulated according to the approach proposed by 

Confalonieri and Bechini (2004). The entire plant community is considered 

dormant after seven consecutive days with mean air temperature below a 

given threshold (8°C, calibrated by Movedi et al, 2019, in a similar context) 
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and night length longer than 13h. In spring, plant community restarts growing 

when night lasts less the 13h and mean air temperature is higher than the 

dormancy threshold for more than seven consecutive days. In case other 

factors interfere with plant growth (e.g., water stress), the vegetative restart 

day is postponed until conditions become favourable again. 

3.3.4. Definition of adaptation strategies based on management practices 

Four possible adaptation strategies were tested, by considering only those 

highly feasible under operational farm contexts: i) modifying the mowing 

schedule, by testing all the possible combinations of 5, 10, and 15 days 

variation (bring the date forward or delay it) for each of the three mowing 

events and by adding a fourth cut, ii) change the initial mixture of sown 

species (60% Medicago sativa L., 20% Dactylis glomerata L. and 20% 

Lolium multiflorum L.; 100% alfalfa; 70% Medicago sativa L., 15% Dactylis 

glomerata L. and 15% Lolium multiflorum L., named Mix1, Mix2, and Mix3 

hereafter), iii) testing different alfalfa field durations among those currently 

in use in many farms (4 years and 5 years) and iv) all the possible 

combinations of the aforementioned strategies. 

Since the objective of the study was to support forage production in milk dairy 

farms in the long term, the alternative adaptation strategies were evaluated in 

terms of forage quality (crude protein) and biomass production under future 

climate scenarios and in each of the five sites considered. 

3.4. Results 

3.4.1. Model evaluation 

Results highlighted a good agreement between observed and simulated values 

for all the variables analysed (Table 2). Concerning the dynamics at the level 

of plant community, the model correctly reproduced the grassland floristic 

composition, with a MAE lower than 10% and both EF and R2 equal to 0.87. 

Although the RRMSE was slightly higher than 50%, the very good 

performance obtained for the Simpson index underlines how the error mainly 

affects non-dominant species with a very low presence in the phytocenosis. 

This is clear in Figure 1, where the model capability of reproducing the 

floristic composition is evaluated by comparing observed and simulated 

relative abundance of single species. Values of relative abundance higher than 
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20% are indeed well simulated, being most of them close to the 1:1 line that 

indicates perfect agreement. 

 

Table 2: Model performance. Error metrics forvariables describing 

grasslands floristic composition and growth. 

Variable Units MAEa 
RRMSE 

(%) 
EF R2 Slope p-value 

Floristic 

composition 
(%) 6.04 55.84 0.87 0.87 0.99 <0.001 

Simpson 

Index 
(-) 0.38 22.03 0.78 0.79 1.03 <0.001 

AGBcut
b (t ha-1) 0.83 41.39 0.00 0.57 0.53 0.01 

AGByear
c (t ha-1) 0.96 23.09 0.57 0.76 1.23 0.05 

LAI (m2 m-2) 0.94 34.84 -0.70 0.61 0.46 0.01 

a Mean absolute error: same units of the variable. 
b Aboveground biomass harvested at each cut. 
c Total aboveground biomass harvested during the year. 

 

Figure 1: Comparison between observed and simulated relative abundance 

(%) for the species detected in the five sites. Only species with a relative 

abundance higher than 2% were considered. 

The simulation of grassland growth was successfully captured, both in terms 

of AGB accumulation during the year and of AGB harvested at each cut. 
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MAE was less than one t ha-1 in both cases, EF was always positive and the 

average R2 was equal to 0.67 (Table 2). Similar considerations apply to the 

model performance for leaf area index, although in this case the modelling 

efficiency was negative. However, this is due to the fact that the variability 

in observations was very low (standard deviation was equal to 0.95), which 

makes the mean of observations a very good estimator of single values. 

This, in turn, led to negative EF values even for small error in the 

simulations (e.g., MAE lower than 1 m2 m-2). 

Parameterizations obtained for both CropSyst and CoSMo are available in 

appendix B and appendix C, respectively. 

3.4.2. Climate change impact on forage production and quality 

A clear increase in mean temperature was projected under all GCMs × RCPs 

combinations, regardless of the weather generator used (Fig. 2). The 

HadGEM2 projection showed the highest temperature increase, close to +2.1 

°C for RCP 4.5 and to +2.4 °C for RCP8.5. The GISS realizations were milder 

for both RCPs, with values ranging from 1.0 °C to 1.2 °C. The variability due 

to the weather generator was clear in terms of rainfall patterns, with more 

evenly distributed precipitation in case of CLIMAK (Fig. 2c) and larger 

heterogeneity between months in case of LARS-WG (Fig. 2d). 
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Figure 2: Monthly average air temperature and cumulated rainfall for the 

baseline (black) and each GCMs × RCPs combinations (yellow: RCP4.5-

GISS, orange RCP8.5-GISS, red: RCP4.5-HadGEM2, dark red: RCP8.5-

HadGEM2) as downscaled with the stochastic weather generator CLMAK (a, 

c) and LARS-WG (b, d). 
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The increase in mean temperature reflected on grassland dormancy patterns 

(Figure 3), with an extension of the period of active growth (+22 days on 

average) due to both an earlier vegetative restart day (Fig. 3, left panels) and 

a delay in the beginning of dormancy in winter (Fig 3, right panels). A clear 

variability was found among climate scenarios, with the highest impact 

observed for the HadGEM2 projections and the high-emissions storyline 

described by the RCP 8.5. On average, the vegetative restart day occurred 10 

days earlier than the baseline (Fig. 3a), with values ranging from 4 days to 13 

days for, respectively, the mildest (RCP4.5-GISS) and the warmest scenario 

(RCP8.5-HadGEM2). A similar pattern was found for the dormancy day, with 

an average delay equal to 12 days and values ranging between those observed 

for the RCP4.5-GISS scenario (9 days) and the RCP8.5-HadGEM2 (16 days). 

Results highlighted a marked inter-season variability (size of the boxplots in 

Fig. 3), whereas no clear differences among sites were observed (mean 

variability due to the site was less than 2%). These patterns were not affected 

by the weather generator used (variability in mean values due to this factor 

were less than 5%), which instead mainly affected the inter-season 

heterogeneity but without a clear pattern (Fig. 3). 
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Figure 3: Effect of climate change on the vegetative restart day (left panels) 

and the dormancy day (right panels) for each site and climate scenario (RCP 

× GCM combination) as downscaled by the two weather generators, 

CLIMAK (light grey) and LARS-WG (dark grey). The baseline is reported for 

sake of comparison. Results are shown on yearly basis as day of the year 

(DOY), calculated on a two-year period for dormancy day.  
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Concerning the impact of climate change on grassland growth, the increase 

in mean temperatures was not beneficial for total biomass accumulation (Fig. 

4a), which showed an average reduction of 5.7% under future scenarios as 

compared to the baseline. The extent of the negative impact markedly varied 

across climate scenarios, ranging from -3.6% (RCP4.5-GISS) to -7.4 % 

(RCP4.5-HadGEM). However, the decrease in biomass accumulation was not 

evenly distributed over mowing events. The earlier vegetative restart day 

(Fig.3) turned indeed into more biomass harvested at the first cut (Fig. 4b) 

with an average increase of +17.7% (mean of all the climate scenarios). On 

the contrary, biomass available at the second and third cut (Fig. 4c and Fig. 

4d, respectively) under future climate projections was markedly lower than 

the baseline, likely due to higher temperatures and less precipitations during 

the summer months projected for 2040 (Fig.1). The average reduction for all 

the climate scenarios was equal to -29.4% and to – -31% for, respectively, the 

second and the third cut. Small variability related with the site was found, 

whereas differences due to the weather generator clearly affected grassland 

growth, although to a limited extent as compared to the climate scenario. 
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Figure 4: Effect of climate change on grasslands growth. Percentage 

variation as compared to the baseline of the aboveground biomass 

accumulated during the entire season (a) and that harvested during the first 

(b), second (c), and third (d) cut. Results are reported for each climate 

scenario (RCP × GCM combination) as downscaled by the two weather 

generator, CLIMAK (light bars) and LARS-WG (dark bars). Error bars 

represent the variability (standard deviation) among sites. 

The analysis of plant community dynamics as response to the climate 

conditions highlighted a clear reduction of the grassland biodiversity, with a 

general decrease in Simpson index (-11.7%; Fig. 5a). As expected, alfalfa 

increased its relative presence (+6.8% as average of all scenarios; Fig. 5b), 

thanks to its macro-thermal features and its deep root system that prevented 

drought stress during summer months. Microthermal species (mainly grasses 

as Dactylis glomerata L.; Poa pratensis L. and Lolium multiflorum Lam.) 

were instead negatively affected (-8.2% on average, Fig. 5c), although a 

marked variability induced by the weather generator was found (average of 

all climate scenario equal to -12% for CLIMAK, and –4.4% for LARS-WG). 

Despite the increase in the relative presence of alfalfa, the overall forage 

protein content only slightly improved (+ 1.5% on average across scenarios, 

Fig. 5d). This is due to the combined effect of (i) the concentration of alfalfa 

growth in summer because of thermal reasons and (ii) the general reduction 
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of biomass harvested at the second and third cuts. This turned into less alfalfa 

biomass harvested yearly that counterbalanced the increase in alfalfa relative 

abundance in terms of overall forage quality. This highlights the relevance of 

dynamically simulating the plant community composition and growth to 

properly evaluate the effect of changing climates on forage quality. 

The heterogeneity among sites in terms of floristic composition was higher 

than observed for other variables (e.g., biomass accumulation, Fig. 4). This is 

in line with the variability in plant communities characterizing the five sites, 

which turns into different dynamics of relative abundance according to the 

species-specific response to temperatures and water availability. 

 

Figure 5: Effect of climate change on grassland floristic composition and 

forage quality for each RCP × GCM combination as downscaled by two 

weather generators, CLIMAK (light grey) and LARS-WG (dark grey). Results 

are reported as percentage variation as compared to the baseline of the 

Simpson index (a), the relative abundance of alfalfa (b), the relative 

abundance of microthermal species (c), and the forage crude protein (d). 

Error bars represent the variability (standard deviation) among sites. 
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3.4.3. Testing of management adaptation strategy 

Of all the adaptation strategies tested (35 combinations of mowing schedule 

× initial mixture of sown species × and field duration), only those providing 

the best results in terms of total aboveground biomass accumulation (AGB, t 

ha-1) and forage quality (crude protein concentration, CP, %) are here reported 

and discussed (Table 3). 

Given the negative correlation between biomass accumulation and forage 

protein content, in general it was not possible to define a unique strategy able 

to optimize both factors simultaneously. Nevertheless, results were always 

better than those achievable with a standard management (also reported in 

Table 3 for sake of comparison), thus supporting the adoption of the strategies 

defined. 

In all the climate conditions analysed, sowing pure alfalfa at the beginning of 

the temporary grasslands and varying the mowing schedule (moving the first 

cut earlier, and delaying the second and third cuts) allowed to increase the 

forage crude protein under future climates to an extent more than double that 

achievable with standard management (average for all scenarios equal to +2% 

CP as compared to baseline with adaptation, +0.9% with standard practices). 

Moreover, optimizing CP did not negatively affect the other variables, with a 

stable reduction of both AGB and Simpson index (average of all scenarios 

equal to, respectively, -6.3% and -12.1% with CP adaptation, -7% and -12.5% 

with standard management). As expected, a clear correlation between forage 

CP and relative abundance of alfa-alfa was found (Pearson’s r of 0.99), given 

the primary role of Medicago sativa L. among the legume species detected in 

the five sites. For the same reason, the CP was negatively correlated with the 

Simpson index (Pearson’s r of -0.91), since the increase in alfalfa presence 

turns into a reduction of species biodiversity. 

Adaptation strategies aiming at minimizing the negative effects of climate 

change on forage production (total biomass) were mainly based on sowing a 

mixture that includes grass species (Dactylis glomerata L. and Lolium 

multiflorum L.) and delaying the last cut (Table 3). 
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Table 3: Adaptation strategies to preserve forage production and quality 

under future climate projections. Percentage variation as compared to the 

baseline for total aboveground biomass (𝐴𝐺𝐵𝑦𝑒𝑎𝑟, t ha-1) , crude protein (CP, 

%), Simpson index (-), and relative abundance of alfalfa (%) is reported for 

both the standard management and the best adaptation strategies identified 

for each climate scenario (RCP × GCM combination) and weather generator 

(WG) used. Values are averaged over the five sites. 

W
G

 

Climate 

scenario 

T
a

rg
et

 

Adaptation strategy Variation (%) as compared to baseline 

C
ro

p
 

d
u

ra
ti

o
n

 

(y
ea

rs
) 

Change in 

mowing 

schedule 

(days)b S
o

w
n

 

sp
ec

ie
sa

 

CP AGByear 
Simpson 

index 

Alfalfa 

relative 

abundance 

C
L

IM
A

K
 

RCP4.5 

GISS 

- c - - - 0.71 -3.55 -5.83 4.76 

AGB 4 0/0/+10 Mix1 -9.04 1.41 18.46 -27.70 

CP 4 -5/+5/+10 Mix2 1.97 -3.13 -5.86 11.08 

RCP8.5 

GISS 

- - - - 0.71 -4.54 -9.02 5.05 

AGB 4 0/0/+10 Mix1 -8.09 -0.08 14.76 -24.72 

CP 4 -5/+5/+10 Mix2 1.89 -3.75 -8.78 10.99 

RCP4.5 

HadGEM2 

- - - - 1.72 -7.44 -15.52 9.98 

AGB 4 0/0/+10 Mix1 -5.65 -4.40 7.14 -16.46 

CP 4 -5/+5/+10 Mix2 2.48 -6.87 -14.95 14.10 

RCP8.5 

HadGEM2 

- - - - 2.00 -7.16 -16.72 11.30 

AGB 4 0/0/+10 Mix1 -5.73 -4.97 6.03 -16.71 

CP 4 -5/+5/+10 Mix2 2.65 -6.92 -15.92 14.91 

L
A

R
S

-W
G

 

RCP4.5 

GISS 

- - - - 0.63 -5.18 -6.70 5.29 

AGB 4 -5/+5/+10 Mix1 -9.81 -0.11 15.28 -28.01 

CP 4 -5/+5/+10 Mix2 1.87 -3.90 -6.28 11.55 

RCP8.5 

GISS 

- - - - 0.26 -4.04 -9.03 4.31 

AGB 4 -5/+5/+10 Mix3 -9.71 0.61 11.77 -27.43 

CP 4 -5/+5/+10 Mix2 1.42 -3.00 -8.44 10.06 

RCP4.5 

HadGEM2 

- - - - 0.24 -14.23 -18.78 5.36 

AGB 4 0/0/+10 Mix1 -9.02 -11.37 4.76 -25.28 

CP 4 -5/+5/+10 Mix2 1.58 -13.85 -18.18 12.10 

RCP8.5 

HadGEM2 

- - - - 0.70 -9.70 -18.74 7.47 

AGB 4 -5/+5/+10 Mix1 -6.78 -7.03 1.63 -17.54 

CP 4 -5/+5/+10 Mix2 2.02 -8.71 -18.51 14.22 
a: Mix1: 60% Medicago sativa L., 20% Dactylis glomerata L. and 20% Lolium multiflorum 

L.; Mix2: 100% alfalfa; Mix3: 70% Medicago sativa L., 15% Dactylis glomerata L., and 

15% Lolium multiflorum L. 
b: slash-separated values refer to variation in the day of first, second and third cut, 

respectively, as compared to the current schedule.  
 c: standard management practices (no adaptation), see materials and methods for details. 
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This allowed to reduce the AGB decline under future climates of more than a 

half (-3.2% with adaptation and -7% without adaptation, on average for all 

scenarios), while even reversing the decline of Simpson index thanks to the 

introduction of multi-species sowing mixture. The average variation of 

Simpson index was indeed equal to -12.5% without adaptation, and to +10% 

with the adaptation strategies defined. 

For both CP and AGB optimization, the best crop duration was slightly lower 

than the current one (4 years instead of 5), although the general effect of this 

management practice was limited as compared to a change on mowing 

schedule and in sowing mixture. 

3.5. Discussion 

3.5.1. Model performance 

The model error in estimating floristic composition and AGB was similar to 

that observed in other studies, both those where the same model was used 

(Movedi et al., 2019) and studies based on different modelling approaches 

(Soussana et al., 2012). Also, the model error for the relative abundance of 

species (MAE < 10%) was comparable with the error found in the 

observations themselves (average standard deviation of observation: was 

equal to 5.2%, with maximum value of 27.8%), due to the high uncertainty in 

eye estimation of percentage presence of the two species and their relative 

biomass in the field. The poor agreement between simulated and observed 

values for the dynamics of Agropyron repens (L.) Beauv. and Arrhenatherum 

elatius (L.) P. Beauv. ex J. & C. Presl. were explained by the large similarity 

in the two species, in particular during the vegetative phase (when 

reproductive organs are not present), which turned into the highest standard 

deviation of eye-detected relative abundance (27.8%). 

Concerning leaf area index, the negative modelling efficiency can be due to 

both the elevated uncertainty in the observations and in the simulation 

process, as observed by other authors (e.g., Yu et al., 2006; Tartarini et al., 

2019), although the other metrics were satisfactory (MAE<1). 

3.5.2. Climate change impacts and adaptation strategies 

The negative impact of climate change on grassland forage production found 

in this study is in agreement with the meta-analysis conducted by Dellar et al. 
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(2018), who found a general reduction of pasture yield in terms of 

aboveground dry biomass as results of reduced rainfall amounts and increased 

temperatures. In this study the largest reduction in biomass production was 

observed in the summer cuts (the second and the third mowing events). This 

reduction was due to the increase in temperatures and the limited water 

availability that characterized the summer months, in particular July (when 

the second and the third mown are growing) which led to a clear reduction in 

photosynthetic efficiency. This turns into an increase of alfalfa relative 

abundance under future climates because this species is more resistant to high 

temperature and water stress as compared to the other species (Huang et al., 

2018; Tang et al., 2014). The increase in the relative abundance of alfalfa had 

positive effects on the quality of forage (higher crude protein content; Argenti 

et al., 2021) but also a negative trade-off on the Simpson index, due to less 

diversified plant communities, and on the potential soil capability to 

withstand erosion, because species with tap roots are less effective in reducing 

the soil detachment as compared to fibrous roots (Wang and Zhang, 2017; 

Mackie et al., 2018). 

The adaptation strategies tested in this study were defined by considering (i) 

the dynamics of grassland growth projected in the study area (e.g., the decline 

in AGB production during summer led to bringing the first cut forward and 

delaying the second and third cut), and (ii) the practices currently adopted by 

the farmers in the area, to ensure the suitability of the strategies to operational 

contexts. Despite the large availability of modelling studies aiming at 

alleviate the negative effects of climate change through crop management ‒ 

e.g., by optimizing the cultivar (Zabel et al., 2021) or the crop choice 

(Cappelli et al., 2015), the sowing window (Zhang et al., 2012) or the 

irrigation techniques used (Wang et al., 2021) ‒ studies targeting the 

optimization of grassland management are still scarce. The potential of crop 

management to counterbalance the negative impacts of climate variation on 

yield and food security at global scale is huge (Franke et al., 2022). Extending 

this approach to managed grasslands can be crucial to support their role as 

providers of key ecosystem services, especially in marginal areas. 

3.6. Conclusions 

The community model CoSMo allowed to evaluate the dynamics of growth 

and floristic composition of temporary alfalfa-dominated grassland as 

response to changes in climate projected in the northern Apennine in the mid-

term. This allowed to estimate grassland-related ecosystem services (forage 



69 

production and quality, preserving biodiversity) and to suggest adaptation 

strategies to preserve them in the mid-term. Results highlighted a clear 

decline in forage production and an increase in alfalfa dominancy, due to the 

higher suitability of this species to warm and dry conditions. Given the key 

role of grasslands for forage production in the local dairy farms, adaptation 

strategies were evaluated by prioritizing the suitability of the proposed 

solutions in real farm contexts. Guidelines for optimizing grassland 

productivity and forage quality under future climates can be summarised in 

three key points: reduce the alfalfa field duration, sown mixtures including 

microthermal grass species and delay the third cut. These are practices that 

can be easily adopted and tested by farmers, to support the adaptation of 

agricultural systems to a changing climate. 
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Appendix A. Mowing and sampling events. 

Site A B C D E 

Sampling 1 5/30/2019 5/30/2019 5/30/2019 5/31/2019 5/31/2019 

Mowing 1 6/15/2019 6/15/2019 6/4/2019 6/6/2019 6/15/2019 

Sampling 2 7/16/2019 7/16/2019 7/15/2019 7/15/2019 7/15/2019 

Mowing 2 8/1/2019 7/20/2019 7/20/2019 7/20/2019 8/1/2019 

Sampling 3 8/29/2019 8/28/2019 8/28/2019 8/28/2019 8/28/2019 

Mowing 3* - 9/14/2019 - 9/2/2019 9/2/2019 

* not available for site A and site C. 
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Appendix B. CropSyst parameters for different species (A: Agropyron 

repens (L.) Beauv., A1; Arrhenatherum elatius (L.), P. Beauv. ex J. & 

C. Presl., B: Bromus hordeaceus L., D: Dactylis glomerata L., L: 

Lolium multiflorum L., M: Medicago sativa L., P: Poa pratensis L., P1: 

Poa trivialis L., R: Rumex obtusifolius L., T: Taraxacum sect. 

Taraxacum F.H. Wigg., T1: Trifolium pratense L.) 

Parameters 
Species 

Units Description 
A A1 B D L M P P1 R T T1 

BT 4 2 2 3 2 5 2 5 6 5 5 °C 

Minimum 
temperature 

to 

development 

OT 38 33 25 28 34 38 27 25 30 33 29 °C 

Optimal 

temperture to 

development 

k 0.35 0.35 0.4 0.45 0.4 0.5 0.5 0.45 0.5 0.9 0.5 - 

Ligth 

extintion 

coefficint 

CF 0.95 0.95 0.95 0.95 0.8 1 0.95 0.9 1 0.9 0.95 - 
Full canopy 

coefficient 

MWU 8 8 8 8 8 7 8 8 8 9 8 
mm 
d-1 

Maximum 
water uptake 

LAIini 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 
m2 

m-2 
Initial LAI 

Leaflive 600 550 500 500 1500 400 1000 400 900 800 500 °C-d 
Gdd to end 

single leaf 

NTC 18 15 18 18 18 18 18 15 25 18 18 °C 

Minimum 
nigth 

temperature 

to 
translocation 

NTM 24 24 24 24 24 25 24 24 30 24 24 °C 

Maximum 
nigth 

temperature 

to 
translocation 

RUE 2.5 2.5 2.7 2.7 3 3.3 2.7 2.2 3 2.9 4 
g 

MJ-1 

Rariation use 

efficiency 

SLA 20 20 27 23 26 28 20 26 30 30 30 
m2 

kg-1 

Specific leaf 

area 

STP 4.5 2.5 3 4.5 1.2 3.5 1.5 3 2 0.2 1.5 - 
Steam/leaf 
coefficient 

GDDf 1000 1400 650 650 600 800 1200 1200 900 1200 800 °C-d 
Gdd to 

flowering 

TBC 4 4.5 4 4 4 4 4 5 4 4 4 

kg 

m-2  

kPa 

m-1 

Traspiration 

coefficent to 

biomass 
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Appendix C. CoSMo parameters for different species (A: Agropyron 

repens (L.) Beauv., A1; Arrhenatherum elatius (L.) P. Beauv. ex J. & C. 

Presl., B: Bromus hordeaceus L., D: Dactylis glomerata L., L: Lolium 

multiflorum L., M: Medicago sativa L., P: Poa pratensis L., P1: Poa 

trivialis L., R: Rumex obtusifolius L., T: Taraxacum sect. Taraxacum 

F.H. Wigg., T1: Trifolium pratense L.) 

Parameters 
Species 

Units Description 
A A1 B D L M P P1 R T T1 

WCC 1 0.2 0.4 0.7 0.4 0.88 0.8 0.4 0.8 0.75 0.65 - 

Drought 
tolerance: 1 

tollerant, 0 

sensible 

RT 0 0 0 0 0 1 0 0 1 1 1 - 

Root type 1 

tap root; 0 

fibrous root 

MinT 4 2 2 3 6 5 2 5 6 5 5 °C 

Minim 

temperature 

to 
competition 

MaxT 38 33 25 28 30 38 27 24 30 33 29 °C 

Maximum 

temperature 
to competion 

GDDres 0 0 100 0 0 0 0 0 0 0 0 °C-d 

Growing 

degree days 
to emergence 

after resowing  

GDDdie - - 2000 - - - - - - - - °C-d 
Growing 

degree day to 

die 

LAImax 5 4 4 7.5 6.5 5 5 4 3.5 5 4 
m2 
m-2 

Maximum 
LAI 

MaxH 1.2 1.6 1.3 1.5 1 1 0.8 0.9 0.7 0.35 0.8 m 
Maximum 

plant height 

OptT 22 16 13 14 15 25 15 11 16 19 16 °C 
Optimal 

temperature 

MaxRD 160 140 120 140 100 180 80 40 140 100 160 cm 
Maximum 

rooting dept  

Common             

I 80           - 

Inertia 
coefficient of 

species 

replacement  

WFMin 0.15           m3 

m-3 

Minimum 

water 

available for 
fibrous roots 

growth 

WFMax 0.5           m3 

m-3 

Maximum 
water 

available for 
fibrous roots 

growth 

WTMin 0.1           
m3 

m-3 

Minimum 
water 

available for 
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tap roots 

growth 

WTMax 0.4           
m3 

m-3 

Maximum 
water 

available for 

tap roots 
growth 

DWT 8                     °C 

Average air 

temperature 
to reach after 

winter to 

restart to 

growth 
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4.1 Abstract 

Climate change impact on pasture floristic composition needs to be carefully 

assessed, given its key role for the resilience of pastoral systems and related 

ecosystem services. Nevertheless, variations in floristic composition are 

rarely taken into account in climate change impact studies. Here, we used the 

plant community model CoSMo to simulate future dynamics of biomass 

accumulation and floristic composition for high-altitude alpine pastures. 

Dedicated multi-site field activities were conducted to collect data for model 

calibration. Simulations were run for four 20-year climate scenarios centred 

on 2040, resulting from the combination of two general circulation models 

(GISS-ES and HadGEM2) and two representative concentration pathways 

(RCP4.5 and RCP8.5). Results highlighted the capability of CoSMo to 

successfully reproduce the productivity and floristic composition of grazed 

pastures, modeling efficiency and R2 being higher than 0.90 for aboveground 

biomass accumulation and relative abundance of species. CoSMo simulated 

an overall positive effect of increasing temperatures on pasture productivity 

(+10.7% on average), due to higher biomass accumulation rates and longer 

growing seasons. However, these benefits were highly heterogeneous among 

the monitored pastures (ranging from -2.5% to +16.2%), because of 

differences in floristic composition and in species-specific thermal response 

that led to complex, non-linear reactions to climate variations. A negative 

impact of climate change was simulated for grazing value (-11.1% on 

average), due to the higher suitability to future conditions of species with low 
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palatability. Our results highlight that floristic composition must be explicitly 

considered while assessing climate change impacts on pasture productivity 

and connected ecosystem services. 

Keywords: 

 Biodiversity; CoSMo; ecosystem services; grassland; grazing value; plant 

community. 

4.2. Introduction 

Grasslands are among the major ecosystems worldwide, covering more than 

40% of the terrestrial area (Suttie et al. 2005). Along with their relevance for 

wildlife habitat and biodiversity reservoir (Marriott et al. 2004), one of the 

primary role played by grasslands is forage production for livestock feeding 

(Suttie et al. 2005). Given that pastures often cover areas unsuitable for 

conventional agriculture, the resulting livestock grazing system represents a 

key source of income in many areas worldwide (Godfray et al. 2010). Other 

benefits that grasslands provide deal with their role for carbon sequestration 

(Schulze et al. 2009, Cong et al. 2014), reduction of pollution and soil erosion, 

increase of pollination, and improvement of landscape value for tourism 

activities (Bellocchi et al. 2018). Grasslands thus play a pivotal role in the 

context of ecosystem services, which can be defined as all the material and 

not material benefits provided by an ecosystem that affect human activities in 

terms of economy, health, and quality of life (Tribot et al. 2018). 

Grasslands are environments characterized by the coexistence of many 

different herbaceous plant species and, as such, by an elevated biodiversity 

(Habel at al. 2013). The floristic composition of grasslands is a key factor for 

the quality of the ecosystem services they provide (Oliver et al. 2015), 

because it can markedly affect forage quality (Daget and Poissonet 1971), as 

well as the resilience of the plant community to environmental constraints 

(Simpson 1949; Mackie et al. 2018). However, pasture floristic composition 

is highly variable in relation to multiple environmental factors like latitude, 

elevation, light intensity and quality, soil proprieties, availability of nutrients 

and water, and climate conditions (Buxton and Fales 1994; Jeangros et al. 

1999). In the case of pasture, management also plays a key role, by defining 

water and nutrient availability (through irrigation and/or fertilization), the 

kind of grazing livestock, and the grazing intensity (Matches 1992; Ren et al. 

2012). The different species of grazing animals are indeed known to have 
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clear preferences for some plant species, thus affecting pasture floristic 

composition through selective grazing (Daget and Poissonet 1971). 

Ongoing and forecasted changes in climate are expected to influence the 

productivity and floristic composition of grasslands (Mooney and Hobbs 

2010) and, in turn, the related ecosystem services (Oliver et al. 2015). 

However, whether this influence will be positive or negative is something still 

debated and likely heterogeneous across different contexts. Dellar et al. 

(2018) indicated a reduction of grasslands productivity as response to climate 

change in center and southern Europe and an opposite trend for the North of 

Europe. Dibari et al. (2020) estimated a general reduction of grassland 

suitability and a loss of biodiversity in the Alps in the coming decades, 

whereas Riedo et al. (2000) highlighted a positive trend in net biomass 

accumulation of managed grasslands at different altitudes in response to 

climate change. Nevertheless, most of these studies did not explicitly 

reproduce the climate-induced variations in grassland floristic composition, 

thus overlooking the effect of species-specific adaptation to climate change 

on the dynamics of plant competition and related pasture productivity and 

quality. A seminal work in this sense was conducted by Liu et al. (2018) who 

analyzed variations in plant community composition of alpine grasslands as 

response to climate variability, although the analysis was limited at the level 

of plant functional groups (grasses, forbs, and sedges). 

Eco-physiological models are powerful tools for estimating climate change 

impact on cropping systems (Tubiello et al. 2007; Soussana et al. 2010) and 

for investigating the complex dynamics characterizing multi-species plant 

communities (e.g., Soussana et al. 2012; Sàndor et al. 2018). Among the 

models suitable for large-area applications, the CoSMo plant community 

model (Confalonieri, 2014) is one of the few approaches able to explicitly and 

dynamically simulate changes in the floristic composition of grasslands as a 

function of environmental and management drivers, thus allowing a 

comprehensive quantification of climate change impacts on pasture 

productivity and related ecosystem services. 

The objective of this study was to assess climate change impacts on high-

altitude alpine pastures productivity and floristic composition. This will allow 

to extend the analysis of climate change effects on pasture by accounting for 

aspects dealing with pasture quality and biodiversity. 
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4.3. Materials and methods 

4.3.1. Experimental data 

Field observations were carried out in 2019 at three pastures (site 1, 2, and 3, 

hereafter) at 2200 m above sea level on the Rhaetian Alps in the Sondrio 

province (site 1: 46.419° N, 10.200° E; site 2: 46.421° N, 10.198° E; site 3: 

46.422° N, 10.198° E). The area is a wide moraine hollow of Val Dosdè 

characterised by important and typical forms left by morphogenetic agents of 

glacial, periglacial, fluvial and fluvioglacial origin. From a vegetational point 

of view, there are: acidophilous Nardus stricta-dominated grasslands 

(Nardion strictae Br.-Bl. in Br.-Bl. & Jenny 1926), which are being studied, 

silicicolous, alpine heaths dominated by nano-phanerophytes and lichens 

(Loiseleurio procumbentis-Vaccinion microphylli Br.-Bl. in Br.-Bl. & Jenny 

1926), communities composed of oligotrophic to mesotrophic small sedges 

and bryophytes that grow in acid fens (Caricion nigrae Koch 1926 em. Klika 

1934) and acidophilous, mesophilous and xerophilous shrub communities 

dominated by Rhododendron ferrugineum L. (Rhododendro ferruginei-

vaccinion myrtilli A. Schnyd. 1930). These phytocoenoses form a complex 

mosaic reflecting the morphological and pedological micro-variations of the 

hollow. The phytosociological nomenclature follows the rules of the 

International Code of Phytosociological Nomenclature (Weber et al. 2000). 

For the definition of the syntaxa, the Prodrome of Italian Vegetation was 

followed (Biondi et al. 2014; see the specific interactive site of the Italian 

Botanical Society: http://www. prodromo-vegetazione-italia.org/), with 

reference to the Prodrome of European Vegetation (Mucina et al. 2016). 

The nomenclature of the species follows Bartolucci et al. (2018). 

For each site, aboveground biomass (AGB, t ha-1) for the different species, 

canopy leaf area index (LAI, -) and height (H, cm), and floristic composition 

were estimated twice during the season (July 25th and August 29th). The 

sample size for AGB and floristic composition was 0.5 m2, whereas LAI and 

canopy height were determined by using the AccuPAR ceptometer (Decagon, 

Pullman, WA, USA) and a ruler, respectively. All the measurements were 

replicated at three points randomly identified at the beginning of the season 

in each site. Information concerning the management of the pastures in terms 

of grazing period (from end of June to mid-September) and grazing pressure 

(around 1.4, 0.8, and 2.8 adult cattle ha-1 in site 1, 2, and 3, respectively) were 

also collected. For each site, soil texture was derived from the WISE database 

http://www/
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(Batjes, 2016). Daily minimum and maximum temperature, net solar radiation 

and rainfall were retrieved from the weather service of the University of 

Milan Cassandra Lab, which provides historical, near real-time and 

forecasted daily weather data at 0.016° × 0.016° spatial resolution for the 

whole Europe. The service is based on the integration of data from regional 

networks of agrometeorological stations and dedicated geo-statistical and 

modelling techniques (accounting for the effect of elevation; USGS Gtopo30) 

to spatially downscale data from international networks (NOAA-GSOD, 

METAR, and SYNOP) (Mariani et al. 2012, 2016; Cola et al. 2020). 

Reference evapotranspiration was estimated at runtime based on the Penman-

Monteith method (Allen et al. 1998). 

4.3.2 The modelling approach 

The grassland model CoSMo (Community Simulation Model; Confalonieri, 

2014) was used to simulate the dynamics of the different species in the 

phytocoenosis, and it was coupled with the generic crop model CropSyst 

(Stöckle et al. 2003) for the simulation of the physiological processes 

involved with plant growth and development (Movedi et al. 2019). 

CoSMo is a daily time step model that dynamically simulates changes in the 

composition of a phytocoenosis and ‒ coupled with a generic crop model ‒ 

its productivity. While CoSMo estimates the variations in the relative 

abundance of different species as a function of the species suitability to 

environmental and management drivers, the crop model daily reproduces soil 

and plant biophysical processes as a function of weather and soil properties 

and of the phytocoenosis composition. CoSMo represents an intermediate 

solution between complex individual-based models and simplified 

approaches relying on the calibration of a single set of parameters of a crop 

model to mimic the behaviour of a plant community, and it has proved to 

successfully reproduce the dynamics of grasslands composition and 

productivity (Movedi et al. 2019) and of crop-weed interaction (Movedi et al. 

2022). 

Basically, at each time step CoSMo estimates the suitability of each species 

in the community to the explored environmental and management conditions, 

and the overall suitability of each species is used to dynamically reproduce 

the changes in their relative abundance. The overall suitability is derived from 

factors defining the response of each species to drivers (Table 1) that may 

affect inter-specific competition. Drivers account for both continuous 
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variables (e.g., global solar radiation, soil water content) and events (e.g., cut, 

grazing). The overall suitability of each species is then calculated by 

aggregating the suitability factors ‒ estimated for each driver ‒ while 

accounting for a hierarchical weighting procedure, which allows to reduce the 

impact of drivers at the bottom of the hierarchy (Table 1). 

The effect of grazing or cut events is top-ranked because their impact on the 

overall species suitability is so marked that the role of other drivers becomes 

negligible. Phenology is ranked second given that, for annual self-seeding 

species, once maturity is reached the species is considered not competing 

anymore until germination and emergence of the next generation of 

individuals. The hierarchy of the remaining drivers is consistent with other 

modelling approaches dealing with inter-specific competition (e.g., Kropff 

and van Laar, 1993). The overall suitability value for the different species is 

then used to derive the relative abundance of the different species at the 

following time step, which is in turn used to weight the species-specific 

parameter values of the crop model (derived for the species in monoculture) 

while deriving the parameter values of the crop model for the community as 

a whole. The resulting community parameter values – which dynamically 

change at each time step as the phytocoenosis evolves – allow the crop model 

to simulate key biophysical processes of the community at each time step. As 

a result, rate and state variables from the crop model (e.g., AGB, LAI) are 

available at the level of whole plant community, whereas the relative 

abundance of species – needed to update the crop model parameter values for 

the phytocoenosis at each time step – is provided by CoSMo. 

The effect of grazing livestock is accounted for by CoSMo both directly ‒ by 

estimating the amount of AGB daily grazed (Eq. 1) (Minson and McDonald, 

1987) ‒ and indirectly, because grazing affects the community LAI and thus 

light interception and photosynthesis. Grazing, also, affects the relative 

abundance of the different species, thanks to functions representing (i) the 

degree of the liking of different categories of animals for the different species 

(𝑓[𝑙𝑖𝑘𝑖𝑛𝑔]; Table 1), (ii) the species-specific capability to restart after a grazing 

event (𝑆𝐿; Table 1), and (iii) the effect of LAI and height on the species 

competitiveness for light (𝑓[𝑟𝑎𝑑]; Table 1). 
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(1) 

𝐴𝐺𝐵𝑔 = {

0.108 ∙ 𝐴𝑊0.719 𝐴𝐺𝐵 ≥ 0.108 ∙ 𝐴𝑊0.719 + 𝐴𝐺𝐵𝑚𝑖𝑛
𝐴𝐺𝐵 − 𝐴𝐺𝐵𝑚𝑖𝑛 𝐴𝐺𝐵𝑚𝑖𝑛 < 𝐴𝐺𝐵 < 0.108 ∙ 𝐴𝑊0.719 + 𝐴𝐺𝐵𝑚𝑖𝑛

0 𝐴𝐺𝐵 ≤ 𝐴𝐺𝐵𝑚𝑖𝑛

 

where 𝐴𝐺𝐵𝑔 (kg ha-1 day-1) is the daily grazed AGB, 𝐴𝑊 is the livestock live 

weight per unit surface (kg ha-1), and 𝐴𝐺𝐵𝑚𝑖𝑛 is the minimum AGB to allow 

grazing (set to 50 kg ha-1). In this study, the value of 𝐴𝑊 was derived by 

assuming an average weight of an adult cattle of 800 kg and the site-specific 

animal pressure (adult cattle ha-1) collected during the field activities. The 

same percentage reduction of community AGB due to grazing is applied to 

the community LAI and height. 

For the description of the remaining CoSMo equations, readers may refer to 

Confalonieri (2014) and Movedi et al. (2019). 

Concerning the crop model to be coupled with CoSMo, CropSyst (e.g., 

Stockle et al. 2003) was chosen because of its favorable relationship between 

parsimony (in terms of number of parameters) and reliability, as shown in 

previous studies dealing with mown grasslands (Movedi et al. 2019). 

CropSyst is a generic, daily time-step model that reproduces crop growth and 

development as a function of weather variables, physical and chemical soil 

properties, and crop management practices. Phenological development is 

simulated as a function of mean air daily temperature and of parameters 

defining minimum and optimum thermal requirements, with an option to 

account for photoperiod. Light interception is estimated from LAI and 

extinction coefficient for solar radiation according to the Beer’s law analogy, 

and daily biomass accumulation (net photosynthesis) is derived as the 

minimum between the two values estimated using a temperature-limited 

radiation use efficiency approach and a vapor pressure deficit-corrected 

transpiration use efficiency one. Green leaf area expansion is calculated from 

AGB daily rate and state, the early stages specific leaf area and the empiric 

stem/leaf partition coefficient. Leaf senescence is simulated when daily-

emitted LAI units reach a specific thermal time threshold. Concerning the 

simulation of soil water dynamics, a cascading model with travel time 

(Neitsch et al. 2002) was used, whereas hydrological soil proprieties were 

estimated by using the van Genuchten et al. (1985) pedotransfer functions. 
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Table 1: Drivers affecting the competition capability of different species in 

the CoSMo model, with their category, hierarchical position, and associated 

suitability factor (from Confalonieri, 2014; Movedi et al. 2019). 

Driver Category Hierarchical 

position 

Suitability factors 

Grazing/cut Event 1 𝑓[𝑙𝑖𝑘𝑖𝑛𝑔] (liking of 

the grazing 

animals), 𝑆𝐿 

(length of the 

shock period after 

the event) 

Phenology  

(maturity reached) 

2 𝑀 (is maturity 

reached?) 

Air temperature Continuous 3 𝑓[𝑡𝑒𝑚𝑝] 

Global solar 

radiation 

4 𝑓[𝑟𝑎𝑑] 

(competition for 

light) 

Soil water 

availability/excess 

5 𝑓[𝑤𝑎𝑡𝑒𝑟] 

(competition in 

case of 

insufficient water 

availability or in 

case of water 

excess) 

Nitrogen availability 6 𝑓[𝑁] (competition 

for soil N) 

4.3.2.1. Model initialization and parameterization 

Simulations were carried out by considering plant growth as limited by water 

‒ given the experimental sites were not irrigated ‒ but not by nitrogen 

availability because of the continuous livestock presence. Concerning model 

initialization, the first observed values of floristic composition, AGB, LAI 

and plant height were used. The initial soil moisture was assumed to be at 
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field capacity, considering the autumn and spring rainfalls characterizing the 

area and the contribution of melting snow to soil moisture. 

Model parameters (Table S1, Online Resource 1) were set to values from the 

literature for the same species, to values determined on the species in 

monoculture in experimental plots or – in case of unavailability of 

observations – to values from similar species or to values defined by 

calibration within the parameters biophysical range. The parametrization was 

carried out independently for the two models (Tables S2 and S3, Online 

Resource 1) and, for the calibrated parameters, the trial-and-error approach 

was used, by targeting the highest agreement between observed and simulated 

state variables. The parameterization was performed only for the species 

representing more than 0.75% of the sampled AGB (average of the two 

sampling events). 

The agreement between observed and simulated floristic composition, AGB, 

LAI and plant height was quantified by using the relative root mean square 

error (RRMSE, from 0 to +∞, optimum: 0; Jørgensen et al. 1986), the mean 

absolute error (MAE, from 0 to +∞, optimum: 0), the modelling efficiency 

(EF, from -∞ to 1, optimum: 1; Nash and Sutcliffe, 1970), the R2 and the slope 

of the linear regression equation between observed and simulated values. 

4.3.2.2. Evaluation of climate change impacts 

The impact of projected changes in climate on each of the three sites was 

evaluated by running the model for two 20-year time frames, representing the 

baseline (1986-2005) and near future (centred on 2040) climate conditions. 

This allowed considering the effect of seasonality on yearly trends of weather 

variables. For each weather series, five additional years were considered to 

initialize the model (spin-up period) (Movedi et al. 2019). The uncertainty in 

future climate projections was handled by using the realizations of two 

representative concentration pathways (RCPs) ‒ RCP 4.5 and RCP 8.5 (IPCC, 

2013) ‒ as provided by two general circulation models (GCMs) ‒ HadGEM2 

(Collins et al. 2011) and GISS-ES (Schmidt et al. 2006). The two RCPs were 

selected to explicitly consider a wide range of potential future climate 

evolution, given they represent an optimistic (RCP 4.5; moderate increase in 

CO2 emissions in response to the adoption of mitigation strategies) and a 

pessimistic (RCP 8.5; no reduction in CO2 emissions) scenarios. Spatial and 

temporal downscaling of GCM outputs was carried out using the stochastic 

weather generator LARS WG (Semenov and Barrow, 1997) and the historical 
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weather series (1986-2005) retrieved from the European Center for Medium 

Range Weather Forecasts database (ECMWF). LARS-WG was used given its 

proved reliability for climate change studies (e.g., Höglind et al. 2013; Vesely 

et al. 2019). Beside variations in temperature and rainfall, the projected 

increase in atmospheric CO2 concentration for each climate scenario was 

provided to the model to account for the CO2-fertilization effect on AGB 

accumulation. 

The model outputs obtained for the four climate change scenarios (RCP4.5-

HadGEM2, RCP4.5-GISS-ES, RCP8.5-HadGEM2, and RCP8.5-GISS-ES) 

were compared with those simulated for the baseline using the following 

synthetic variables: the 20-year mean cumulated AGB, including grazed AGB 

(𝐴𝐺𝐵𝑎𝑣𝑔, t ha-1), the 20-year mean daily rate of AGB during the period of 

active growth (𝐴𝐺𝐵𝑟, t ha-1 day-1), the 20-year mean relative active growth 

duration (TAG, from 0 to 1; fraction of days in a year when the community 

AGB rate is not null), the 20-year mean relative abundance of plant species 

(𝑝𝑖, from 0 to 1, i representing the ith species in the community), the Simpson-

based diversity index (𝐷 = 1/𝜆, the larger the value of D, the highest the 

diversity, with 𝜆 calculated according to Eq. 2; Simpson, 1949; Jost, 2006), 

and the grazing value (GV, the larger, the better, indicating forage value and 

palatability; Eq. 3; Daget and Poissonet, 1971): 

𝜆 =  ∑ (𝑝𝑖)
2𝑛

𝑖=1        (2) 

𝐺𝑉 =  ∑ (𝑝𝑖  ∙  𝐺𝑉𝑖)
𝑛
𝑖=0        (3) 

where 𝜆 is the Simpson concentration index; 𝑛 is the total number of 

herbaceous species that coexist in the pasture; 𝑖 is the ith herbaceous species; 

𝐺𝑉𝑖 is an empiric parameter to evaluate the single herbaceous species. In this 

study, the relative abundance daily estimated by CoSMo was used for each 

time frame (average of the 20-year simulation), and the values of 𝐺𝑉𝑖 reported 

by Daget and Poissonet (1971) were used (Tables S4, Online Resource 1). 

4.4. Results 

4.4.1. Floristic composition, growth dynamics and grazing value 

The floristic composition and the relative abundance of species detected 

during the two sampling events are reported in Table 2, whereas Table 3 

shows pasture productivity and quality by reporting AGB, LAI, plant height, 
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grazing value and Simpson diversity index. Overall, 88 herbaceous species 

were detected in the three sites, but only ten of them presented a relative 

abundance higher than 0.75% in at least one of the two sampling events 

(Table 2). Field observations highlighted a marked variability among the 

three monitored sites in terms of relative abundance of species (Table 2). The 

pasture in site 2 was a peat bog with prevalence of Trichophorum cespitosum 

(first part of the season) and Eriophorum sp.pl., whereas sites 1 and 3 were 

largely characterized by Deschampsia cespitosa and Nardus stricta, 

respectively. In site 3, the prevalence of N. stricta is explained by its low 

palatability and by the high grazing pressure that characterized the site. In site 

1, the presence of N. stricta was relevant but the dominant species was D. 

cespitosa likely because the lower grazing pressure generated conditions less 

penalizing for this species as compared to site 3. 

The relative abundance of the species changed to large extent over time, with 

an increased diversity in the second sampling event (Table 2) because of the 

presence of species not previously detected or whose relative abundance was 

negligible (e.g., Carex nigra and Poa alpina in site 3, Eriophorum 

angustifolium in site 2). These temporal dynamics in the community 

composition reflected in the Simpson diversity index, which increased from 

1.33 to 2.03 (average of the three sites) while moving from the first to the 

second sampling event (Table 3). 

The mean AGB observed in the three sites ranged from 1.07 t ha-1 in site 2 to 

6.84 t ha-1 in site 1, with small variability between the two sampling events. 

The lower grazing pressure in site 1 as compared to site 3 clearly reflected in 

the sampled AGB, which was 83% higher in the first site (mean of the two 

sampling events). The difference between AGB values in these two sites 

increased over time, with the largest difference observed during the second 

event (114% higher in site 1). This is likely due to the continuous presence of 

the grazing livestock in site 3 starting from the end of June. The pasture in 

site 2 showed instead an overall low productivity, due to the peculiar edaphic 

conditions (peat bog soil) that favored the presence of species with a low 

potential in terms of AGB accumulation (T. cespitosum and Eriophorum 

sp.pl.). 

To a certain extent, a similar pattern was found for LAI and height, with the 

largest and lowest values observed in site 1 and 2, respectively, although AGB 

was poorly correlated with both LAI (R2 = 0.51; p = 0.11) and height (R2 = 

0.57; p = 0.08). The differences in the species relative abundance observed in 
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the two sampling events explain the different temporal dynamics observed for 

AGB and LAI. Indeed, despite LAI was always decidedly lower in the second 

sampling event, AGB was more stable in sites 2 and 3 and increased in site 1, 

likely because of a lower LAI to AGB ratio in N. stricta compared to D. 

cespitosa (Table 2). 

The highest diversity was observed in site 2 at the second sampling event, 

because of the largest homogeneity in the relative presence of T. cespitosum, 

E. angustifolium and E. vaginatum, whereas the pasture in site 1 had the 

highest grazing value, regardless of the sampling time (Table 3). 
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Table 2: Floristic composition and relative abundance (%) of the species 

detected in the three sites during the two sampling events. Only the species 

with more than 0.75% of the sampled AGB are reported and were used to 

calculate the relative abundance. 

Site Species 25 July 2019 8 August 2019 

1 Deschampsia cespitosa (L.) P. 

Beauv. 

85.96 64.64 

Nardus stricta L. 10.25 34.47 

Anthoxanthum nipponicum Honda 3.06 0.00 

Mutellina adonidifolia (J. Gay) 

Gutermann 

0.73 0.89 

2 Trichophorum cespitosum (L.) 

Hartm. 

87.30 26.24 

Eriophorum angustifolium Honck. 0.00 50.89 

Eriophorum vaginatum L. 12.70 22.87 

3 Nardus stricta L. 84.45 77.44 

Anthoxanthum nipponicum Honda 8.35 11.47 

Mutellina adonidifolia (J. Gay) 

Gutermann 

4.59 3.40 

Scorzoneroides helvetica (Mérat) 

Holub 

2.61 2.23 

Poa alpina L. 0.00 3.30 

Carex nigra (L.) Reichard 0.00 2.16 
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Table 3: Observed dry aboveground biomass (AGB), leaf area index (LAI), 

height (H), grazing value, and Simpson diversity index of the pastures in the 

three sites at each sampling event. The grazing value and the Simpson 

diversity index were calculated considering only the species listed in Table 2. 

 

Sampling 

event 

Site AGB (t 

ha-1) 

LAI (m2 

m-2) 

H 

(m) 

Simpson 

diversity 

index 

Grazing 

value 

25 July 

2019 

1 5.99 2.17 0.46 1.33 2.23 

2 1.17 0.80 0.30 1.28 1.00 

3 4.03 1.23 0.32 1.39 0.51 

29 August 

2019 

1 7.68 1.37 0.37 1.85 1.68 

2 0.96 0.22 0.24 2.63 1.00 

3 3.44 1.20 0.26 1.61 0.69 

4.4.2. Model evaluation 

The agreement between observed and simulated variables describing pasture 

growth, composition and grazing value was overall satisfactory (Table 4), 

with the values of all metrics achieving values close to their optima for all the 

variables and sites. The only exception was the relative abundance in site 2, 

for which the values of the agreement metrics were less satisfactory. CoSMo 

successfully reproduced pasture productivity: the values of MAE and 

RRMSE for AGB were 0.42 t ha-1 and 15.55%, EF and R2 were higher than 

0.95, and systematic under- or over-estimations were not observed. Despite 

the capability of CoSMo to reproduce community LAI and height was never 

evaluated before against observations, the results obtained are promising, 

especially for canopy height (MAE equal to 0.03 m and EF higher than 0.5). 

The simulation of community LAI was instead affected by higher uncertainty 

and – despite the overall trend in LAI values was successfully captured 

(positive EF, R2 and MAE equal to 0.73 and 0.4 m2m-2, respectively), the 

model presented a certain tendency to overestimate observations. 
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The model accurately reproduced the relative abundance of species in site 1 

and site 3 (Table 4): MAE was lower than 3%, EF and R2 were equal to 0.99 

and RRMSE was always lower than 17%. The peculiarities of site 2 (peat bog 

and periods with few cm standing water) that clearly defined its floristic 

composition (prevalence of species not detected in the other sites) were 

instead not properly interpreted by the model, this leading to poorer results 

with respect to the other two sites. 

The comparison between observed and simulated relative abundance for all 

the single species is reported in Fig. 1. Most of the points are close to the 1:1 

line, emphasizing the capability of CoSMo to successfully reproduce the time 

dynamics of floristic composition in the three pastures. The model reliability 

while simulating the relative abundance of the single species in the 

phytocoenosis clearly reflected on the agreement obtained for the grazing 

value and the Simpson diversity index, which were both successfully 

simulated, with all the metrics close to their optima (Table 4). 

Parameter values are presented in Tables S2 and S3, Online Resource 1. 

Figure 1: Observed and simulated relative abundance of single species 

(percentage contribution of each species to the community AGB). The small 

chart zooms in the range 0 to 5% to increase readability for values close to 

zero. Solid line: 1:1 line, representing the perfect agreement between 

observed and simulated values. Dotted line: linear regression equation 

between simulated and observed data. 
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Table 4. Agreement between observed and simulated variables describing 

pasture growth, floristic composition and grazing values in the three sites. 

AGB, LAI and H are the community aboveground biomass, leaf area index 

and height, respectively. The relative abundance represents the percentage 

contribution of each species to the community AGB. 

Variable MAE a RRMSE (%) EF R2 Slope 

AGB (t ha-1) 0.42 15.55 0.95 0.97 1.02 

LAI (m2 m-2) 0.40 53.80 0.03 0.73 0.71 

H (m) 0.03 13.91 0.53 1.00 0.61 

Grazing value (-) 0.08 8.73 0.94 1.00 1.30 

Simpson diversity index (-) 0.21 10.52 0.75 1.00 0.90 

Relative abundance (%), Site 1 2.65 12.23 0.99 0.99 1.08 

Relative abundance (%), Site 2 12.11 40.89 -0.19 0.00 0.08 

Relative abundance (%), Site 3 2.48 16.97 0.99 0.99 1.08 

Relative abundance (%), All sites 4.76 30.47 0.92 0.93 1.06 

a units for MAE are the same as reported in the first column. 

4.4.3. Climate change impacts 

According to the climate change scenarios considered, the mean annual 

temperature in the study area is expected to increase from the 3.99 °C of the 

baseline to 4.76, 5.18, 5.76 and 5.93 °C, respectively, for the scenarios 

RCP4.5-GISS-ES, RCP8.5-GISS-ES, RCP4.5-HadGEM2, and RCP8.5-

HadGEM2. In general, the increase in temperature was more marked during 

the summer months, with the maximum monthly increase in temperature 

(+3.09 °C) achieved in September for the scenario RCP8.5-HadGEM2. 

Concerning precipitations, the total annual rainfall was equal to 1270 mm in 
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the baseline and to 1304 mm, 1300 mm, 1155 mm and 1217 mm for, 

respectively, the scenarios RCP4.5-GISS-ES, RCP8.5-GISS-ES, RCP4.5-

HadGEM2, and RCP8.5-HadGEM2. A small increase in annual rainfall was 

thus projected by the GCM GISS-ES, whereas HadGEM2 indicated a 

decrease ‒ especially for RCP 4.5 ‒ with the largest reduction during summer 

months. 

Simulations highlighted how these climate variations will have an overall 

positive impact on pasture productivity (Fig. 2a), with an expected increase 

in cumulated AGB regardless of the climate scenario considered (+10.7% on 

average). This positive effect on biomass accumulation is explained by the 

average increase in the number of days in which pastures are actively growing 

(+6.7% on average, Fig. 2a) and by the higher daily rate of AGB accumulation 

during the growing season (+4.1% on average, Fig. 3) as compared to current 

climate conditions. The differences in the temperature increase projected by 

the four climate scenarios reflected in the extent of the changes simulated for 

both biomass accumulation and duration of the active growth period, with 

warmest scenarios (RCP4.5-HadGEM and RCP8.5-HadGEM) achieving the 

higher daily rate of AGB accumulation (Fig. 3) and the lowest extension of 

active growth period (Fig. 2a), the latter being explained by the faster 

accumulation of thermal time as compared to the scenarios characterized by 

milder temperature increase (GISS-ES realizations of RCP4.5 and RCP8.5). 

The heterogeneity in the results obtained for the different sites (Figs. from 2b 

to 2d) highlighted how changes in climate will not affect the different pastures 

in the same way, since their different floristic composition (Table 2) and the 

heterogeneity in the response to temperature of the species in the communities 

(Tables S2 and S3, Online Resource 1) will turn into complex, non-linear 

responses to changes in climate. The geographical position of the three 

pastures excludes indeed that the variability between sites is due to 

differences in future climate projections. Site 3 (Fig. 2d) showed the most 

positive variation of pasture productivity under climate change scenarios, 

with an average increase in biomass accumulation and length of active growth 

period equal to 16.2% and 7.2%, respectively (mean of the four climate 

scenarios). On average, no benefits due to climate change were instead 

simulated for Site 1 in the mid-term, with daily rate of AGB accumulation 

ranging from -11.1% to +4.6% as compared to the baseline (-2.5% was the 

mean for the four climate scenarios). In this site, the climate scenario with the 

largest reduction of daily AGB accumulation (RCP4.5-HadGEM2) was also 

the only one for which a shortening – although negligible – in the active 
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growth period was simulated (-1.5%). For all the other combinations site × 

climate scenario, in fact, the active growth duration is expected to increase, 

to an extent that ranges from 1.8% (site 1, RCP8.5-HadGEM2) to 15.8% (site 

2, RCP8.5-GISS-ES). 

Considering climate change impact on floristic composition, no marked 

variations were simulated, with an average (all site × climate scenario 

combinations) variation of the Simpson diversity index equal to -1.0%, with 

values ranging between -4.1% (Fig. 2d) and +3.4% (Fig. 2b). This indicates 

a similar level of codominance between the different species under future 

climate projections. On the contrary, the grazing value showed a clear 

decrease under climate change scenarios (-11.1% on average; Fig. 2a), with 

values ranging from -5.5% to -15.7% (average of all sites). This negative 

trend was especially marked in site 1 (-22.9%; Fig. 2b), and this can be 

explained by the fact that N. stricta ‒ which has a poor value for livestock 

feeding (Table S4, Online Resource 1) ‒ is expected to increase its relative 

abundance under future climate conditions (Fig. 4), thus leading to a 

worsening of the overall pasture grazing value. A similar trend was observed 

for site 3 (Fig. 2d), although to a lesser extent (-6.5% on average), given N. 

stricta is already dominant in this site under baseline conditions (Table 2), 

thus leading to lower relative worsening under future climate projections. 

Concerning site 2 (Fig. 2c), no changes in the grazing values under future 

climate conditions were simulated, given the three species that coexist in this 

site have the same specific grazing value (Table S4, Online Resource 1). This 

means that any changes in the floristic composition will not affect the grazing 

value of the pasture in site 2. 
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Figure 2: Climate change impacts quantified in terms of percentage variation 

of aboveground biomass accumulation (black bars), length of the active 

growth period (checkered bars), grazing value (white bars), and Simpson 

diversity index (grey bars) with respect to the baseline. Panel a, b, c, and d, 

refer to the results obtained for, respectively, the three sites (averaged 

together), site 1, site 2, and site 3. 

 

Figure 3: Daily rate of aboveground biomass accumulation during the active 

growth period simulated for the current conditions (baseline) and the four 

climate scenarios. 
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Figure 4: Relative abundance (%) of Nardus stricta simulated for current 

conditions (baseline) and for future climate scenarios in the two sites where 

this species is currently present (sites 1 and 3). For each climate scenario, 

the mean (error bars indicate the standard deviation) of the values from the 

two sites is reported. 

4.5 Discussion 

The modelling solution developed by coupling the CoSMo plant community 

model and the crop model CropSyst demonstrated its suitability for 

reproducing key dynamics involved with biomass accumulation and floristic 

composition in alpine pastures. Concerning the simulation of pasture 

productivity, the model performance can be regarded as satisfactory, 

especially if compared to results from other grassland models (e.g., Soussana 

et al. 2012) and from previous works where the CoSMo model was used 

(Movedi et al. 2019). Despite the higher complexity compared to single-

species system, the degree of accuracy in the simulation of pasture AGB was 

consistent with most studies where single crops were simulated (e.g., Belder 

et al. 2007, Coucheney et al. 2015). The only variable involved with pasture 

growth for which the agreement with observations was – to a certain extent – 

less satisfying was LAI. Besides the uncertainty intrinsic in whatever 

modelling approach, the lower accuracy in LAI simulation is often underlined 

in modelling studies (e.g., Yu et al. 2006; Tartarini et al. 2019) and it is partly 

due to the larger uncertainty in the methods for estimating this variable as 
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compared to methods for estimating, e.g., AGB or plant height (e.g., 

Confalonieri et al. 2009). 

The changes in the relative abundance of the different species were 

successfully captured, thus allowing to extend the evaluation of climate 

change impacts at the level of changes in floristic composition and related 

ecosystem services provided by pastures (e.g., feeding grazing livestock). The 

results obtained in this study highlighted how this is a key point for a 

comprehensive evaluation of climate change effects, given the complex 

interactions between the current floristic composition, the heterogeneity in 

the response to environmental drivers of the different species in the 

community, and the variability in pasture management. All these factors can 

lead to divergent dynamics in the mid-term for pasture biomass accumulation 

and grazing value. A better understanding of the drivers at the basis of climate 

change impacts on pasture productivity is indeed a crucial prerequisite for 

developing effective adaptation strategies (Soussana et al. 2010). 

Our estimates of a general increase in pasture biomass accumulation as 

response to expected climate variation are in partial agreement with other 

studies. They are in line with results reported by Riedo et al. (2000), who 

outlined a positive trend in net biomass accumulation for managed grasslands, 

but differ from other authors who highlighted a reduction in pasture 

productivity in the mid-term (Dellar et al. 2018; Dibari et al. 2020). However, 

the heterogeneity in the results we obtained for the different sites suggests 

that the variability in floristic composition can markedly affect the dynamics 

of pasture growth under future climate projections, thus partly explaining the 

variability in results from different studies. The increase in the length of the 

active growth period also varied across the different sites, in line with the 

expected variability in the occurrence of vegetative restart in spring and the 

end of the growing season in autumn outlined by different authors (e.g., 

Schwartz et al. 2006; Ren et al. 2018). Concerning the floristic composition, 

the projected reduction of forage quality under future climate conditions due 

to the increase in the relative presence of N. stricta is in agreement with the 

findings from Dibari et al. (2020), who underlined how pastures macro-types 

dominated by this species will expand in the Alps in the coming decades. 
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4.6. Conclusions 

We showed how the plant community model CoSMo can successfully 

reproduce the dynamics of grazed pastures in terms of biomass accumulation, 

growing season duration, floristic composition, biodiversity and, in turn, 

forage quality. This – together with the low requirements in terms of data 

needed to parameterize the model and running simulations – makes CoSMo 

a valuable tool to support the estimate of forage production in pastures, which 

is one of the most important ecosystem service provided by grasslands. 

Our results highlighted that the projected mid-term increase in temperatures 

will favor high-altitude pastures in two ways: by increasing the daily biomass 

accumulation rate and by extending the length of the active growth period. 

However, despite the biodiversity is expected to increase, the quality of the 

forage could be negatively affected because of the positive response to future 

climate conditions of species with a low grazing value. This underlines once 

more how the evaluation of climate change impacts on pastures cannot 

overlook the effects on the floristic composition of the community, this being 

a crucial issue to obtain a comprehensive evaluation of pasture responses to 

climate change and to target the definition of effective adaptation strategies. 

Moreover, this study opens to new opportunities in the analysis of ecological 

scenarios involved with the mid-term assessment of the capability of plant 

species to persist in a given site or to successfully invade new areas. 
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4.7. Electronic Supplementary Material 

ESM 1 - Supplementary Tables 

Table S1. Description of parameter acronyms. 

Acronym Description Unit 

k Radiation extinction coefficient  - 

LeafLife single leaf life duration °C-d 

RUE Maximum radiation use efficiency g MJ-1 

SLA Specific leaf area m2 kg-1 

SLP Stem leaf partitioning - 

GDDFl Growing degree day to flowering °C-d 

TUE Maximum water transpiration use efficiency (kg m-2)kPa m-1 

WST Water stress tolerance - 

WCF Water competition factor - 

R Root type (0 fibrous, 1 tap) - 

BT Base Temperature °C 

CoffT Cut-off temperature °C 

AL Animal liking - 

LAImax Maximum leaf area index m2 m-2 

Hmax Maximum plant height m 

OptT Optimal temperature °C 

RD Maximum rooting depth cm 
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Table S2. Calibrated CropSyst parameters (see Table S1 for parameter 

acronyms). 

  k 

Leaf 

Life RUE SLAa SLP GDDFlb TUE WSTb 

Anthoxanthum 

nipponicum 0.35 450 1.5 13.0 4.00 650 3.0 0.50 

Carex nigra 0.35 400 1.6 9.0 3.00 550 3.0 0.00 

Descampsia 

cespitosa 0.35 600 1.8 11.0 5.00 650 3.5 0.50 

Eriophorum 

angustifolium 0.35 500 1.0 8.0 5.50 400 2.0 0.00 

Eriophorum 

vaginatum 0.35 500 0.9 8.0 5.00 400 3.0 0.00 

Mutellina 

adonidifolia 0.80 500 1.2 12.0 2.00 650 3.0 0.50 

Nardus stricta 0.30 500 1.7 8.0 3.50 650 3.0 0.50 

Poa alpina 0.35 400 1.8 12.0 3.00 400 3.0 0.20 

Scorzoneroides 

helvetica 0.80 450 1.7 14.0 2.00 650 3.0 0.50 

Trichophorum 

cespitosum 0.35 500 0.7 8.0 5.00 400 2.0 0.00 

a: from Turtureanu et al. (2020) for Nardus stricta. 

b: from Longo et al. (2021) for all the species. 
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Table S3: Calibrated CoSMo parameters (see Appendix A for parameter 

acronyms). 

  WCFa R BTa OptTa CoffTa ALb 

LAI 

max 

H 

maxc RD 

Anthoxanthum 

nipponicum 0.50 0 2 11 20 0.70 2.0 0.25 150 

Carex nigra 0.00 1 2 12 25 0.70 2.0 0.25 100 

Descampsia 

cespitosa 0.72 0 3 12 25 0.70 4.0 0.70 150 

Eriophorum 

angustifolium 0.00 0 -1 10 25 0.10 3.0 0.30 100 

Eriophorum 

vaginatum 0.00 0 2 13 25 0.20 3.0 0.30 100 

Mutellina 

adonidifolia 0.50 1 0 10 21 0.82 2.0 0.25 150 

Nardus stricta 0.70 0 1 11 24 0.30 4.0 0.30 150 

Poa alpina 0.50 0 1 11 21 0.75 2.5 0.30 150 

Scorzoneroides 

helvetica 0.50 0 1 11 18 0.77 3.5 0.20 150 

Trichophorum 

cespitosum 0.00 0 3 18 25 0.80 3.0 0.25 100 

a: from Longo et al. (2021) for all the species. 

b: estimated from the grazing value reported by Daget and Poissonet (1971) for all 

the species but Eriophorum angustifolium, Eriophorum vaginatum, and 

Trichophorum cespitosum (calibrated value in that case). 

c: from Longo et al. (2021) for all the species but Nardus stricta, which is from 

Turtureanu et al. (2020). 
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Table S4: Grazing value for each of the species considered as reported 

by Daget and Poissonet (1971). 

Species 
Grazing value 

(from 0 to 7) 

Anthoxanthum nipponicum 1.0 

Carex nigra 1.0 

Descampsia cespitosa 2.5 

Eriophorum angustifolium 1.0 

Eriophorum vaginatum 1.0 

Mutellina adonidifolia 7.0 

Nardus stricta 0.0 

Poa alpina 7.0 

Scorzoneroides helvetica 4.0 

Trichophorum cespitosum 1.0 
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5.1. Abstract 

Olive groves (Olea europea L.) play a significant role in Mediterranean 

agriculture, where the olive fruit fly (Bactrocera oleae (Rossi, 1790)) is the 

major pest. Plant–pest interaction models do exist in this context but are 

poorly documented or oversimplified. In this study, starting from the 

literature, we have developed, documented and evaluated a new, biologically 

interpretable and operationally usable model. Field-scale canopy layers (not 

individual olive trees) are dynamically simulated on a daily time step. The 

behaviour of the model was assessed by sensitivity analysis and its 

performance was tested on measured data from the scientific literature and 

alert bulletins. The optimum temperature for olive-tree growth and 

development and the maximum pupae death temperature for olive fly 

population and infection are the most relevant parameters. The model error 

was low (MAE <1 t in the simulation of fruit dry biomass and ~ 5% in the 

percentage of olive fruits infected by olive fruit fly). The new model is usable 

in operational context. 

Keywords: 

Olive trees, olive fruit flies, crop model, plant-pest interactions, process 

based, plant organs, fly population 
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5.2. Introduction 

The olive tree (Olea europea L.) is a long-lived and water-stress tolerant 

species, endemic to the Mediterranean basin, where olive groves are widely 

distributed and play an important economic role (Vossen, 2007; Iraldo et al., 

2013; Palese et al., 2013). In fact, 95% of the 20.7 million tonnes of 

worldwide olive production and 97% of the 10.7 million hectares of 

worldwide olive groves (on average between 2010 and 2020) are concentrated 

in Mediterranean countries (FAOSTAT database; Kasnakoglu, 2006). In this 

region, the olive fruit fly (Bactrocera oleae (Rossi, 1790)) is the major pest 

of olive trees (Manousis and Moore, 1987; Tzanakakis, 2003; Tzanakakis, 

2006). 

The host plant and the pest coexist in the same environment and both interact 

with each other and other species (Gutierrez et al., 2009). For example, 

(Lasioptera berlesiana (Paoli, 1907)) is a predator of olive fruit fly larvae and 

eggs, but it affects olive fruits with a fungus, Sphaeropsis dalmatica (Thüm.) 

Zachos & Tzav.-Klon., the agent of olive drop and rot. 

Olive fruit fly damage is a lesion on the fruit mainly due to the holes dug by 

the larvae’s bites and also the lesion of the female ovipositor. Subsequently, 

the lesions of the olive fruit fly are used as access to the olive fruits by various 

microorganisms. The damage to harvested olives is twofold, both in terms of 

quantity (Rojnić et al., 2015) due to the fall of some infected fruits and the 

portion of fruit eaten (reduction of olive fruit weight), and in terms of quality 

(Kyriakidis and Dourou, 2002) of the harvested fruits (fly-infected), which 

are often rotten and acidic due to the microorganisms. 

Climate change could influence species interactions (e.g. Saier, 2007) and 

modify the olive fruit fly range (Gutierrez et al., 2009). In this changing 

context, crop simulation models are powerful tools to estimate biotic 

dynamics, interactions and crop damage (Tubiello et al., 2006). However, 

available olive crop models may not be suitable for accurate simulations and 

operational use. According to Moriondo et al. (2019), the model of López-

Bernal et al. (2018) is too complex and needs a lot of specific inputs, which 

make it difficult to use in large-scale applications. At the same time, models 

by Moriondo et al. (2019), Morales et al. (2016), Villalobos et al. (2006) and 

Abdel-Razik (1989) are available, but these are simplistic representations of 

olive-tree physiology and often lack explicit host-plant interaction. For 

example, tree reserves are not considered in Moriondo et al. (2019), whose 

https://it.wikipedia.org/w/index.php?title=Guido_Paoli&action=edit&redlink=1
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model does not take into account the damaging effect of olive fruit fly. The 

latter is considered in the model of Gutierrez et al. (2009), which, however, 

does not consider water stress in olive trees and is not well documented. 

Our aim was to develop a new process-based crop model estimating the 

interaction between olive trees and olive fruit fly population dynamics (also 

considering the predator population), able to consider water and other abiotic 

stresses and the dynamic partitioning of reserves during olive tree growth. 

The new model had to be well documented and easy to understand, in order 

to consider using it in an operational context: as a decision support system or 

in a parametric insurance. 

5.3. Materials and methods 

5.3.1. Model description 

 

Figure 1: Model diagram: olive tree model (green boxes), olive fruit fly 

model (blue boxes) and fly predators (orange box). Environmental drivers 

summarise management, weather and soil factors. 
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The new model, “Olive trees olive fruit flies and predators - interactions 

process-based, dynamic model” (OOPS), summarises the current knowledge 

by implementing and summarising equations from Moriondo et al. (2019), 

López-Bernal et al. (2018) and Gutierrez et al. (2009). It works on a daily 

time step and field level. Model inputs (environmental drivers) are (Figure 1): 

soil properties (organic carbon, depth and texture); weather variables 

(minimum and maximum air temperature, cumulated rain, average wind, 

evapotranspiration and solar radiation); latitude and day of the year. Other 

inputs are the management events: harvesting, pruning, irrigation and 

chemical treatment on the olive fruit fly and the initialisation values (e.g. leaf 

area index, plant biomass, number of flies). The main outputs of the model 

are woody, green and fruit biomass, number of olive fruit flies and their 

predators, infected fruits, fallen fruits, leaf area index (LAI) and phenological 

state of olive trees and flies. Output variables refer to one hectare. 

The model is divided into three independent sub-models (Figure 1): a 

biophysical model for olive tree growth and development, and two population 

models for estimating the dynamics of the olive fruit fly and its natural 

predators. 

All equations are available in the supplementary material. 

5.3.1.1. Olive plant sub-model (biophysical model) 

This sub-model works at the field level; at the individual plant level, it only 

estimates the canopy radius and the number of dead plants (in the case of 

severe damage), in order to estimate the canopy gap and overlap to correct for 

daily photosynthesis. 

Only the aboveground part of the plant is considered. For roots, a parameter 

is considered that manages the maximum rooting depth, which is constant for 

all simulations and consists of the maximum depth at which soil water is 

available to the plant. 

The main biophysical processes simulated are: plant phenology; 

photosynthesis; partitioning; organs, canopy, diameter and height growth; 

senescence; fruit drop; evapotranspiration; respiration (only in specific 

cases); lignification; winter hardening; yield alternation; shading; and abiotic 

damage (Sanzani et al., 2012). The abiotic damage simulated are: thermal 

shock (heat or cold), excess rainfall, water stress, wind limitation during 
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flowering and excess light (photosynthetic reduction). Thermal shock causes: 

flower sterility or death of the organs or the plant, depending on the severity; 

excess rainfall causes flower sterility; water stress causes: photosynthetic 

reduction, flower sterility, death of the organs or the plant depending on the 

severity (Sanzani et al., 2012). Abiotic damage could be turned off by users. 

If the wind limitation is off, wind speed is not required by the sub-model; the 

same for rainfall if both the excess rainfall and water constraint are turned off. 

Figure 1 reports only a simplification of the process estimated by sub-model 

to better show the interaction with the olive fruit fly. 

In detail, plant phenology encompasses various sub-processes, including: 

winter dormancy, chilling unit accumulation, bud differentiation, regrowth, 

thermal time accumulation, gradual flowering, seed harness, fruit demand and 

maturity, and twig lignification. Plant phenology is primarily driven by 

temperature, day length and water deficit; for bud differentiation, the plant 

reserves play a crucial role. Vice versa, twig lignification is only driven by 

the age in term of number of spring regrowths: at the beginning of the second 

regrowth, the twig is considered lignified and this mass is considered in the 

woody mass (Gutierrez et al., 2009). 

Photosynthesis is based on the interception of light from all photosynthetic 

surfaces and we adopted the Lambert-Beer law (Swinehart, 1962) and the net 

radiation use efficiency as in Moriondo et al. (2019). Photosynthesis 

production is limited by temperature (via a beta function - not switchable off, 

always on) and water (switchable off). In case of exceptional heat events, 

photosynthesis is automatically turned off and respiration is simulated with a 

general loss of biomass, limited by temperature (using a beta function - not 

switchable off, always on). 

Partitioning, remobilisation and fruit accumulation are mainly driven by 

phenology, photosynthesised mass and the availability of reserves. The sub-

model considers five organs plus constant roots: leaves, woody organs, twigs, 

reserve organs and reproductive organs (the olive fruit). 

In detail, a mobilisation of reserves is estimated after regrowth, and the 

reserves and the new photosynthesised mass are partitioned between 

vegetative (leaves and twig) and woody organs. After mobilisation of the 

reserves and before flowering, partitioning occurs between leaves, twigs, 

woody organs and reserves. Starting from flowering until the harvest or 
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physiological maturity of fruits, the olive trees sub-model tries to satisfy the 

mass demand of the fruits. If the photosynthesised mass is enough, it also 

breaks down into reserves and, if the plant is not in winter dormancy, also 

into woody and vegetative organs, otherwise the reserves are mobilised until 

the fruit demand is satisfied or the reserves are ended. If the photosynthesised 

mass and reserves do not satisfy at least a certain quote of fruit demand, an 

olive fruit drop is estimated. After harvesting or full maturation, if the plant 

is actively growing, the photosynthesised mass is partitioned into reserve, 

woody and vegetative organs, else only in reserves. 

The partitioning, utilisation of reserves and the role of reserves in the 

diversification of buds is crucial in the sub-model for the indirect estimation 

of alternation in production and have an effect on the memory of previous 

damage. 

The leaves are organised into coeval daily cohorts, characterised by a number, 

a leaf area index (LAI), a thermal age, and for each leaf there is a bud, and 

for each leaf pair an internode is estimated with an increase in height and 

length. 

Flowering is estimated in a scalar way: there is a thermal time period in which 

a quota of flower bods bloom, which depends on the thermal time 

accumulation relative to the total thermal time length in this period. The 

flowers of the quota of the bloomed flower bods last only one day and the 

sub-model estimates a fruit set that depends on wind speed, rain, water stress 

and temperature limitations (cold or/and hot). 

The effects of pruning consist mainly of a reduction in the biomass of all 

organs (AGB), LAI, height and canopy diameter, and a variation in the ration 

of flower buds to vegetative buds through a reduction in the total number of 

buds. 

5.3.1.2. Olive fruit fly sub-model (population model) 

The olive fruit fly population is organised in coeval cohorts, and cohort 

phenology is estimated. The phenology is driven by two process: dormancy 

and thermal time accumulation (Figure 1). Seven phenological phases are 

considered: egg, larva I, larva II, larva III, pupae, non-reproductive adult and 

reproductive adult. 
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The insect population is driven daily by deaths and emigrations that reduce 

the number of flies, and by ovipositions and immigrations that increase the 

number of flies.  

Death can occur due to exceeding a threshold of thermal time accumulation 

or due to various external factors: temperature (too cold or too hot), predators, 

olive fruit drops, dry condition at the time o to ecdysis and unknown causes 

(Giglioli and Pasquali 2007; Genc and Nation, 2008). The effects of 

management on fly mortality in terms of fruit harvesting and chemical 

treatments are also simulated (by applying a chemical abatement efficiency 

to the fly population, varying by phenological phase). 

Oviposition is limited by temperature, wind speed, day length, fly phenology 

and population, and interactions between olive trees and fruits. 

There are five estimated interactions between olive trees and olive fruit fly 

(Figure 1) by: i) the oviposition of the olive fruit fly and thus the olive 

infection; ii) a limit on oviposition related to the number of olive fruits and 

the level of infection (if there was or is an egg in an olive, this olive is 

considered infected); iii) a limit of oviposition related to the hardness of olive 

seeds; iv) a limit on the fly population during olive drop and harvest; and v) 

the dropping of an infected portion of the olives. 

The immigration or emigration approach only acts on adult flies and starts 

below or above a threshold value of the fly population: if the number of flies 

is too high, migration is estimated, if it is too low, immigration. 

The effects of rain on disrupting the flight of adults and thus oviposition were 

not taken into account because in the Mediterranean environment summer 

most rain events are short-lived (e.g. Saaroni and Ziv, 2000). 

The olive tree sub-model requires initialisation, while for the olive fruit fly 

sub–model, initialisation is optional. 

5.3.1.3. Olive fruit fly predator sub-model (population model) 

The predator sub-model estimates at the daily time step the number of flies 

eaten (for each phenological phases as a function of different liking function) 

in a delay function of the fly population (Gutierrez et al., 2009). This sub-

model does not require initialisation. 
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5.3.2. Reference data 

The reference data have a double bibliographic source: for the olive sub-

model states: aboveground biomass (AGB), LAI, total fruit weight (yield), 

plant height (H) and canopy radius (R) the source is scientific journals 

(Hernandez-Santana et al., 2017; Fernández et al., 2013; Villalobos et al., 

2006; Di Vaio et al., 2012; Mariscal et al., 2000; Table 1); for olive plant 

phenology and infected olive fruits (by flies), the health service of the Apulia 

region of Italy (Assopropoli Bari).  

A complete dataset in which olive trees and olive fruit fly states were 

measured together was not find. 

Table 1: Number of available observations in olive groves by variable and 

their sources. 

Source LAI Yield AGB 

Plant 

height 

(H) 

Canopy 

radius 

(R) 

Hernandez-Santana et al. 

(2017); Fernández et al. 

(2013)  

31 5 - - - 

Villalobos et al. (2006) 23 4 4 25 25 

Di Vaio et al. (2012)  5 - - - - 

Mariscal et al. (2000) - - 12 48 48 

5.3.2.1. Olive tree data 

For the olive tree conditions, we focused on data from orchards without 

growth limitation, in order to avoid confusion in the evaluation of the 

parameters involved in the simulation of stress intensity and plant 

productivity.  

The works of Hernandez-Santana et al. (2017) and Fernández et al. (2013) 

(years 2010–2012 and 2014–2015; 37° 15’ N, 5° 48’ W; Seville, Spain) 

concerned the same olive grove composed by young but adult trees. The 

works of Villalobos et al. (2006) (years 1998–2002; 37° 52’ N, 4° 49’ W; 
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Cordoba, Spain), Di Vaio et al. (2012) (year 2004; 40° 49’ N, 14° 20’ E; 

Naples, Italy) and Mariscal et al. (2000) (years 1995-1997; 37° 52’ N, 4° 49’ 

W; Cordoba, Spain),were about young trees. 

Daily weather data were derived from the European Centre for Medium-

Range Weather Forecasts (ECMWF) Era-Interim database (Hennessy, 1986; 

Dee et al., 2011). They spanned the entire data collection period plus five 

years before, with a spatial resolution cell of 0.25° including the study sites 

plus one site in the Apulia region (years 2011-2020; 40° 38’ N, 17° 38’ E). 

The parameter ranges used in the sensitivity analysis (SA) and calibration 

were derived from the literature (Villalobos et al., 2006; Connor et al., 2012, 

Mohammed and Noori 2008; López-Bernal et al., 2018; Gutierrez et al., 2009; 

Moriondo et al., 2019). For the new parameters, the adopted ranges were set 

based on the coherence of the output provided by the equation in question. 

5.3.2.2. Olive phenology and fly data 

The dataset counted 141 data on olive fruit infected by the fly in the seasonal 

peak and 292 data on plant phenology. The monitoring service started in 2015 

and ended in 2020, in 31 experimental farms (the time series in not continuous 

in all farms and the monitored field might change from year to year). 

For these farms, daily weather data were derived from the Cassandra Lab 

weather service at the University of Milan (Italy), which provides historical, 

near real-time and forecast daily weather data with a resolution of 0.016° × 

0.016° for the whole Europe. This system (Mariani et al., 2012, 2016; Cola et 

al., 2020) uses geo-statistics and modelling to spatially downscale rough data 

retrieved from international networks (NOAA-GSOD, METAR and 

SYNOP). 

Finer weather data were adopted because of often more than one fields, were 

physically located in a 0.25° × 0.25° cell so with the same model input but 

with different state of fly infection; the reason probably is the complex 

orography of the zone (47% are hills and mountains) and thus the weather 

micro-variability derived. 

Finer data were not available for olive states and rates because the finer 

weather system is temporally lacking. 



109 

5.3.3. Sub-models sensitivity analysis and calibration 

Sensitivity analyses (SA) were carried out separately for the model and a 

three-step calibration was carried out, two automatic and one manual. 

E-Fast (Saltelli et al., 1999) total order index (Homma and Saltelli, 1996) was 

adopted as the SA method to detect the most influential parameters to support 

the calibration and to understand the model behaviour. This method relies on 

the variance ratio to quantify the relevance of the parameters and provides a 

measure of the overall effect on the selected output of one parameter at a time, 

considering interactions with all others. We used 450 iterations for each 

parameter tested (the list of model parameters, the description of the 

distribution used in SA and the values used in the parametrisation phase can 

be found in Appendix A). 

The automatic calibration method used is a bounded version (for parameter 

ranges) of the downhill simplex (Nelder and Mead, 1965). The simplex has 

N+1 vertices interconnected by line segments and polygon faces in an N-

dimensional parameter hyperspace and moves in this space according to three 

basic rules: reflection, contraction and expansion. Although other 

optimisation methods are available (e.g., Kirkpatrick et al., 1983; Glover, 

1986), simplex guarantees a balance of performance and complexity 

(Matsumoto et al., 2002; Press et al., 2007). Relative root mean square error 

(RRMSE, from 0 to +∞, optimum: 0; Jørgensen et al., 1986) was optimised 

(minimised). 

5.3.3.1. Olive trees sub-model SA and calibration 

The SA was performed on 36 parameters (16200 iterations). All five available 

daily weather series were used in the SA. The five additional weather data 

before the start of data collection were used to initialise the sub-model 

(Movedi et al., 2019). To avoid the overlapping of the effect of a single 

weather year and total fruit weight alternation, three simulation runs a weather 

series was carried out, recombining the weather series. Each series consisted 

of the first five years of the weather series and three additional years (6th, 7th 

and 8th / 7th, 8th and 9th /8th, 9th and 10th).. The SA was carried out 

averaging a set of nine simulated years: the last three years of the three 

simulation runs. The variables tested was leaf area index (m2 m-2), olive 

number (#), olive dry weight (kg ha-1) and olive dry weight standard deviation 

(kg ha-1). The initial values used were to simulate young but productive trees: 
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canopy radius: 1.5 m; plant height: 3.5 m; dry mass of twigs: 2000 kg ha-1; 

dry mass of woody organs: 15000 kg ha-1; reserve woody organ ratio: 0.15; 

percentage of flowering buds: 50%; leaf area index: 2.5 m2 m-2 (split into 400 

leaf cohorts of different ages on regular scale). Considering the features of 

the dataset, in the sub-model, plant growth limitations were turned off, with 

the exception of rain and wind speed in flowering, self-shading and excess 

light. Management included automatic pruning (at spring regrowth) and 

harvesting at the day of year (DOY) 300. 

The calibration of the sub-model was carried out only on the parameters that 

had more than 0.05 in the SA index for at least one variable and one site. The 

average RRMSE of LAI, AGB, olive fruit weight and canopy height and 

radius was optimised. 

All simulations lasted from the planting of the olive trees to the end of data 

collection, with no re-initialisation in between. Initialisation and management 

were set based on field data or estimated if measured data were not available. 

5.3.3.2. Olive fruit fly and their predator sub-models SA and calibration 

The parametrised version of the olive tree sub-model was adopted. In order 

to correct for seed hardening and thus the appearance of the first fly 

infections, a manual adjustment of the plant phenology was performed using 

phenological data from Assopropoli Bari.  

The SA was carried out on 23 parameters (10350 iterations). The same 

(weather) procedure of the olive tree sub-model was used, but only on a point 

in Apulia; management included automatic pruning (at spring regrowth) and 

harvesting at the day of the year (DOY) 300. The olive fruit fly population 

was initialised at 900 pupae and 10% of olive fruit remained in the field after 

harvest. The variables tested through SA were: total numbers of flies (#), 

olives dropped due to the fly (%) and infected olives (%). 

The calibration of the sub - model was only carried out on the parameters that 

had more than 0.05 in the SA index for at least one variable. The RRMSE of 

infected olive fruits was optimised. 

The sub-model, in the calibration phase, started on the 1st of January and 

ended on the yearly end date of data collection. The simulation was re-

initialized every year because between the end of data collection and the 
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restart we do not know whether the monitored field was the same, and even 

if it was, whether the farmers carried out some chemical treatments. To avoid 

this uncertainty, we considered each simulation (location x year) as totally 

independent and initialised with a unique calibrated value of the fly 

population at the pupae stage.  

5.3.4. Model evaluation 

The agreement between the observed and simulated variables was quantified 

using: i) mean absolute error (MAE, from 0 to +∞, optimum: 0; Jørgensen et 

al., 1986), ii) coefficient of determination (R2; from 0 to 1, optimum: 1; 

Addiscott and Whitmore, 1987) – considering slope, intercept and 

significance of regression –, iii) relative root mean squared error (RRMSE, 

from 0 to +∞, optimum: 0; Jørgensen et al., 1986), iv) modelling efficiency 

(EF, from -∞ to 1, optimum: 1; Nash and Sutcliffe, 1970), and v) coefficient 

of residual mass (CRM, from -∞ to + ∞, optimum: 0; negative values indicate 

model overestimation, positive values underestimation; Loague and Green, 

1991). A graphical comparison was also carried out. 

5.3.5. Model test 

To test the behaviour of the three sub-models and their interactions, the OOPS 

model was tested on the same cell in the Apulia region where the SA was 

carried out. No modifications were made to the model set and 

parameterisation. The daily outputs were analysed graphically and compared 

with the output of an unpruned model run for the olive tree sub–model for 

eight years, and only the last year of the pruned version for the olive fruit fly 

sub-model. 

5.4. Results 

5.4.1. Sensitivity analysis 

The most influential parameters of the olive sub-model is, in the majority of 

the tested sites and variables, the optimal temperature for growth and 

development. 

For the single year variables (Figure 2 a, d), the olive sub-model is mainly 

sensitive to a few parameters, especially the optimum temperature (2) and the 

maximum radiation use efficiency (17), and the order of the parameters that 
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have an SA >0.05 is similar among sites. For the variables that are highly 

correlated for the previous year (number of olives; Figure 2 c) and years (yield 

variation; Figure 2 b), on the other hand the sub-model is sensitive to various 

parameters and the parameters involved to reserve use and translocation (from 

10 to 15 included) have become relevant. For the yield variation, the 

behaviour is different among sites in terms of the order of the most sensitive 

parameters (Figure 2b). 

The cut-off temperature of respiration, all parameters involved in 

vernalisation and the leaf area index for maximum self-shading were never 

relevant (SA index > 0.05). The latter probably for the estimation of pruning, 

and the former two for the climate in which the model was tested: warm but 

not too hot to influence respiration and vernalisation. 

 

Figure 2: Sensitivity analysis total order results for olive sub-model: the 

results are ordered by the mean SA index in all sites and the parameters are 

drown until at least one site has a value is greater than 0.05 (5%). The number 

of parameters is reversible in parameter name according to the ID in 

Appendix A. Blue bars for the site of Mariscal et al. (2000); orange bars for 

the site of Di Vaio et al. (2012); grey bars for Villalobos et al. (2006); yellow 

bars for Hernandez-Santana et al. (2017) and Fernández et al. (2013); green 

bars for a site in Apulia region. a) annual olive fruit yield, b) interannual 

variation of olive fruit yield; c) number of olive fruits; d) leaf area index. 

For the olive fruit fly model, the total order was above 0.05 for all the 

parameters in all variables excluding for the higher optimum number of adults 
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for oviposition in the infected olive percentage estimation (Appendix B). The 

most sensitive parameter for the first order in all variables is the maximum 

temperature threshold for pupae death (Appendix C). 

5.4.1. Model calibration 

The results of the olive-tree sub-model were overall satisfactory with 

EF>0.45, R2>0.7, a significant regression of the estimates versus observations 

(p<0.01) with intercept and slope close to 0 and 1, respectively, for each 

variable (Table 2). 

Following the results of the new model on the data found in literature are 

commented in detail. 

The sub-model is able to estimate fruit production in young olive trees 

(dataset of Villalobos et al., 2006) and the interannual trend of production in 

adult olive trees (dataset of Hernandez-Santana et al., 2017 and Fernández et 

al., 2013 - Figure 3a, Table 2). For LAI (Figure 3c and Table 2), the sub-

model estimated well the growth of young plants (dataset of Villalobos et al., 

2006 and Di Vaio et al., 2012) but underestimated the value in the adult plants 

and not follow the LAI growth trend for this plant (low R2 and negative EF), 

but the absolute and relative error was low (MAE = 0.4; RRMSE = 32.4% in 

Hernandez-Santana et al., 2017 and Fernández et al., 2013). The overall AGB 

was well simulated (Figure 3b and Table 2; EF and R2=0.85), but in both 

datasets of Mariscal et al. (2000), the sub-model overestimated the observed 

values of biomass, while in contrast sub-model performed satisfactorily in 

Villalobos et al. (2006). For plant height (Table 2, Figure 3e), the sub-model 

performed well in all datasets used. There was only one underestimation of 

dataset of Mariscal et al. (2000) (low density; CRM=0.28). For canopy radius 

(Figure 3d and Table 2), there was an overall underestimation of the observed 

values (CRM=0.26), higher in Mariscal et al. (2000) low density 

(CRM=0.46). 
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Figure 3: Model parameterisation results for the olive sub-model: black line: 

1:1 line; dotted line: overall trend line; filled triangles: Villalobos et al. 

(2006); empty squares: Hernandez-Santana et al. (2017) and Fernández et 

al. (2013); empty diamonds: Mariscal et al. (2000) high density; filled 

diamonds: Mariscal et al. (2000) low density; filled circles: Di Vaio et al. 

(2012). 
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Table 2: Model performance 

Variable / dataset MAE 
RRMSE 

(%) 
EF CRM R2 Slope Intercept Signif. 

LAI / Villalobos et al. 

(2006) 

0.24 

m2 m-2 
59.05 0.44 0.38 0.80 1.64 -0.01 0.00 

LAI / Hernandez-

Santana et al. (2017) 

and Fernández et al. 

(2013) 

0.45 

m2 m-2 
32.41 

-

0.51 
0.22 0.26 0.64 0.75 0.00 

LAI / Di Vaio et al. 

(2012) 

0.05 

m2 m-2 
35.61 0.44 0.04 0.97 3.74 -0.43 0.00 

LAI / overall 
0.33 

m2 m-2 
40.29 0.58 0.25 0.76 1.12 0.18 0.00 

R / Villalobos et al., 

(2006) 

0.28  

m 
29.55 0.52 0.13 0.82 0.67 0.45 0.00 

R / Mariscal et al. 

(2000) high density 

0.13 

 m 
24.65 0.74 0.17 0.97 1.51 -0.19 0.00 

R / Mariscal et al., 

(2000) low density 

0.40  

m 
54.42 0.13 0.46 0.91 1.68 0.08 0.00 

R / overall 0.27 m 38.46 0.45 0.25 0.70 0.84 0.32 0.00 

H / Villalobos et al. 

(2006) 

0.37  

m 
20.23 0.30 -0.05 0.92 0.56 1.02 0.00 

H / Mariscal et al. 

(2000) high density 

0.20  

m 
15.24 0.85 0.07 0.94 1.33 -0.41 0.00 

H / Mariscal et al. 

(2000) low density 

0.47  

m 
30.83 0.40 0.28 0.97 1.42 -0.04 0.00 

H / overall 0.35 m 22.47 0.64 0.08 0.80 0.73 0.65 0.00 

AGB / Villalobos et al. 

(2006) 

0.63 

t ha-1 
14.38 0.94 0.12 0.98 0.99 0.68 0.01 

AGB / Mariscal et al. 

(2000) high density 

1.16 

t ha-1 
74.06 0.10 -0.27 0.32 0.64 0.36 0.24 

AGB / Mariscal et al. 

(2000) low density 

0.36 

t ha-1 
59.94 0.53 -0.29 0.71 0.77 0.00 0.04 

AGB / overall  
0.73 

t ha-1 
41.93 0.85 -0.06 0.85 1.04 -0.23 0.00 

Fruit dry mass / 

Villalobos et al. (2006) 

0.74 

t ha-1 
35.11 0.69 0.22 0.82 0.92 0.80 0.09 

Fruit dry mass / 

Hernandez-Santana et 

al. (2017) and 

Fernández et al. (2013) 

1.00 

t ha-1 
11.27 0.24 0.10 0.87 0.92 1.73 0.02 

Fruit dry mass / overall 
0.88 

t ha-1 
15.77 0.92 0.12 0.97 1.03 0.64 0.00 

Percentage of olive 

infected by olive fruit 

fly / Apulia region 

5.50 

% 
90.11 

-

0.03 
0.53 0.52 0.62 5.70 0.00 
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After a recalibration of the phenology on the available data of Apulia region 

(overall MAE=8.57 d and CRM=0.00), the sub-model of the olive fruit fly 

population was tested on the percentage of infected olives. The result was 

satisfactory, with MAE =5.5% and R2>0.5. The sensitivity of the sub-model 

is low for low values of infection (Figure 4). 

 

Figure 4: Parameterisation results for the olive fruit fly sub-model: black 

line: 1:1 line; dotted line: trend line. 

5.4.3. Model test 

The main differences between the management (pruning - Figure 5a - or not 

- Figure 5b) are the higher non-wooded mass and the presence of an 

alternating production of olive fruit mass in the unpruned olive groves. For 

both types of management, the plasticity of the mass production of olive fruits 

is visible: in years of low production, the mean weight of an olive is higher 

than in years of high production. It is also apparent that reserves are estimated 

to be replenished in low production years and depleted in high production 

years. This behaviour is followed by the non-wooded mass (more accentuated 

in unpruned management). 

The non-wooded mass in the pruning simulation example shows a decrease 

in tree steps at the end of the year or the beginning of the new one: olive 

harvesting, twig lignification and removal of pruning (Figure 5a); and only 

two steps without pruning (Figure 5b). 
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Figure 5: Olive tree sub-model test: a) pruned conditions, b) unpruned 

conditions. Green line: non-woody mass (leaves, fruits, reserves and non-

woody twigs; right axis; t ha-1); orange line: olive fruit mass (left axis; t ha-

1); yellow line: reserve mass (left axis; t ha-1); black line: single mean olive 

fruit mass (left axis; g). 

After seven years of initialisation, the olive fly population starts with adults, 

pupae and larvae III (Figure 6).  

A first generation, DOY 100-200, borne by olive fruit residual and three other 

generations (DOY: 200-250; 250-300; 300-350) are responsible of the 

infection of more than 30% of seasonally produced olive fruits (Figure 6). 

The population is divided into consecutive phenological phases: egg, larva 

(from I to III), pupa and adult. Not all individuals reach the following 
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phenological phases, for prey simulation (Figure 6) and for other causes. For 

example, pupae do not become adults and the adult population is declining 

(Figure 6) for the absence of rain in summer (during ecdysis; data not shown). 

 

Figure 6: Olive fruit fly sub-model test 

 

5.5. Discussion 

The new model has fewer parameters than other models (e.g. López-Bernal 

et al., 2018), which facilitates meta-modelling (Colbach, 2010) and a possible 

future use in operative context as parametric insurance, or decision support 

systems (DSS) to support the manage olive fruit fly. 

5.5.1. Olive trees sub-model 

The model is able to simulate the interannual fluctuation of olive dry mass 

production (Figure 5), not simulated in López-Bernal et al. (2018), in which 

the outputs of a biennium were averaged, as there is an empirical but explicit 

approach to estimate the reserves. The relevance of this approach can also be 

seen through the sensitivity analysis, as variables such as the number of olives 

and the variation of olive mass are sensitive to the parameters of this sub-

model, whereas the mean olive mass (subject to compensation over the years) 

is not sensitive to these parameters. 
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The errors in the parameterisation of AGB, canopy radius and plant height 

could be explained by the simulation of pruning, which in the model is 

performed on the day the plant grows back after winter dormancy, whereas 

we do not know when it was done in the observed data. Furthermore, we used 

the same set of parameters for all sites, but the varieties and pruning 

management were different. For final yield, with R2=0.95, the model 

performed as well as Moriondo et al. (2019). 

For LAI, plant growth was well simulated as in Moriondo at al. (2019), but at 

full canopy, the model was not able to follow the LAI trend. This variable is 

difficult to measure in tree plants (Jonckheere et al., 2004) and is variable 

over space. It is thus difficult to estimate with modelling approaches (Yu et 

al., 2006; Confalonieri et al., 2009; Tartarini et al., 2019). 

5.5.2. Olive fruit fly and their predator sub-models 

Considering the limitations of the model: migration/emigration is only related 

to the number of adult olive fruit flies in the model and not to weather, 

management and plant conditions, the model is point-like with no relation to 

nearby points, the model does not consider wild plants in which the olive fruit 

flies might lay eggs. Despite these limitations, the olive fruit fly model 

performed well and contrariously to other models (Gutierrez et al., 2009) a 

comparison whith observation was carried out. 

The slightly negative EF (-0.03) and the relatively high RRMSE (90.1%) and 

CRM (0.53) values are mostly due to the limited sensitivity of the model to 

the low observed infection values: the majority of the observed values are 

below 15% but the model for this value estimated an infection near 0%. The 

high presence of a low measured value resulted in a very low observed mean 

(about 8%) and the small mean absolute error (MAE=5.5%) resulted in a 

negative EF (Criss and Winston, 2008) and a high RRMSE. The highest value 

was well simulated, but the underestimation of the low value is high, resulting 

in a high CRM.  

5.6. Summary and concluding remarks 

The model developed here includes a set of empirical equations, which make 

it relatively simple and usable for the estimation of several processes. The 

substantial agreement between the simulations and experimental data, 

obtained under a range of environmental and management conditions in olive 



120 

groves representative of Mediterranean areas, demonstrates that the new 

model is an appropriate approach for estimating the dynamic behaviour of 

olive trees and olive fruit fly populations.  

This study is one of the few to consider explicit and dynamic modelling of 

olive trees and the main pest of olive groves and, although its limitations, it 

holds potential (with a different calibration or small modifications) for 

extension to the estimation of the interaction between other tree crops and 

insect species. However, the point-like nature of the model and the situations 

used for modelling raise the need for a broader assessment. First, this means 

that solutions based on the new model may potentially be suitable for 

applications at other olive grove areas if the model parameters are 

documented for those areas other than the ones investigated here. Then, it is 

desirable to better understand the evolution of olive grove functioning in the 

current context of global change in order to study whether the interaction 

between olive trees and its main pest can be modelled at the local scale, 

projected to the long term and extended to other regions. 

In conclusion, this study confirms that the new olive tree-olive fruit fly 

modelling solution can be easily implemented, although some basic 

knowledge is needed to parametrize each individual sub-model in an olive 

grove. As the biophysical structure of the model reflects important 

determinants of the functioning of olive tree systems, we advocate its use to 

predict the behaviour of relevant olive grove outputs. We recommend that 

further tests be carried out in different areas, given the need to evaluate the 

modelling approach in contrasting biogeographical regions (beyond the 

Mediterranean region), where the olive fly is also present. Further research 

aimed at developing scalable and open solutions for a wide range of olive 

groves, while addressing issues of reuse and interconnection of model 

components, can be seen as the natural evolution of this study. Not negligible 

is the possibility use the model in operative context for the tested region to 

support the olive grove directly as DSS or indirectly as parametric insurance 

via metamodeling techniques.  
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5.7. Supplementary material 

Appendix A., Model parameters: Parameters: is the name used in equation; 

Default: the value used as default and as average of a normal distribution 

(with 5% -of average- as standard deviation and queue trunked to 0.1- 

exceptions are reported in footnotes); Value: parametrized value; ID: 

sensitivity analysis number: not used for fly model; if it is “-” this parameter 

are not used in sensitivity analysis. 

Parameters Description Default Value Units ID 

Olive trees 

𝐷𝑙𝑃𝐴𝑜 
Threshold daylength to 

dormancy or regrowth 
10.5f 10.5 f Hours 20 

𝑇𝑃𝐴𝑜 

Threshold temperature 

to dormancy or 

regrowth 

9.1 f 9.1 f °C 21 

𝑇𝑚𝑎𝑥,𝑜𝑑 
Cut-off temperature to 

development 
37 f 39.2734 °C 1 

𝑇𝑜𝑝𝑡,𝑜𝑑 
Optimal temperature to 

development 
32 f 31.8521 °C 2 

𝑇𝑣𝑜𝑝𝑡 
Optimal temperature to 

vernalize 
7.3 f 7.3 °C 22 

𝑇𝑣𝑚𝑎𝑥 
Maximum temperature 

to vernalize 
20.7 f 20.7 f °C 23 

𝑑𝑒𝐶𝑈 
Maximum de-

vernalization rate 
-0.56 f -0.56 f °C d 24 

𝐶𝑈𝑣 
Chilling unit to 

vernalization 
469 f 469 f °C d 25 

𝐺𝐷𝐷𝑜,𝑓𝑙 
Thermal time to 

flowering 
400 f 550 °C d 3 

𝐺𝐷𝐷𝑜,𝑚𝑎𝑡 
Thermal time to fruit 

maturity 
3200 f 2600 °C d 4 

𝑘 Extinction coefficient 0.578 0.49651 (-) 5a 

𝑇𝑚𝑎𝑥,𝑃ℎ𝑂 
Cut-off temperature to 

growth 
37 f 39.2734 °C 1 

𝑇𝑏,𝑃ℎ𝑂 
Base temperature to 

growth 
9.1 9.1 °C 21 

𝑇𝑜𝑝𝑡,𝑃ℎ𝑂 
Optimal temperature to 

growth 
32 f 31.8521 °C 2 

𝑊𝑆𝑡𝑜𝑙 Water stress tolerance 3 3 (-) - 
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𝑅𝐴𝐷𝑡 
Threshold of radiation 

to photosystems 

saturation 

30 30 
MJ m-

2 
26 

𝑆𝐿𝐴 Specific leaf area 4.5 f 5.52717 
m2 kg-

1 
6 

𝐿𝐴 Average single leaf area 0.00048 0.00052 m2 7b 

𝐺𝐷𝐷𝑠,𝑜𝐶𝐿𝑑𝑖𝑒 
Thermal time for leaves 

senescence 
10000 10229.2 °C d 8 

𝑆𝑂𝑊 
Single olive fruit dry 

weight 
0.0005 f 0.00621 kg 9 

𝑃𝐵𝑢𝑑 
Normal percentage of 

flowering buds 
0.5 0.5 (-) 10 

𝑅𝑔𝑀𝑖𝑛𝐹𝑙 
Minimum percentage of 

reserves to flowering 
0.07 0.29708 (-) 11 

𝑅𝑚𝑖𝑛,𝑚 
Minimum percentage of 

reserves to allocate 

them 

0.05 0.04968 (-) 12 

𝑅𝑞 
Maximum reserve 

quote translocated in a 

day 

0.1 0.1 (-) 13 

𝐺𝐷𝐷𝑜,𝑅𝑒𝑛𝑑 
Thermal time to end 

initial reserve 

remobilization 

100 66.793 °C d 14 

𝐸𝑓𝑓𝑅 
Reserve translocation 

efficiency 
0.55 0.54225 (-) 15 

𝑟𝐻𝑟 
Relation between radius 

and height of canopy 
0.45 0.69793 (-) 18 

𝐾𝑐 
Crop evapotranspiration 

coefficient 
1 1 (-) - 

𝑇𝑚𝑎𝑥,𝑅𝑒𝑠𝑝𝑂 
Cut-off temperature to 

respiration 
40 40 °C 27 

𝑆𝐹𝐴 Specific fruit area 0.00001 0.00001 
m2 kg-

1 
28 

𝑆𝑇𝐴 Specific twig area 0.00002 0.00002 
m2 kg-

1 
29 

𝐺𝐷𝐷𝑜,𝑓𝑙𝑖𝑛𝑖 
Thermal time to start 

flowering 
340 490 °C d - 

𝐺𝐷𝐷𝑜,𝑓𝑙𝑒𝑛𝑑 
Thermal time to end 

flowering 
640 790 °C d - 
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𝐴𝑙𝑙𝐶 Allegation coefficient 0.07 0.14593 (-) 16 

𝐵𝑢𝑑𝑁𝐹𝑙 
Number of flowers a 

bud 
12 12 # 30c 

𝑇ℎ𝑜𝑡,𝑑𝑖𝑒 
Maximum temperature 

for total defoliation 
55 55 °C - 

𝑇𝑆𝑡𝑒𝑟,ℎ𝑜𝑡,𝑐𝑟𝑖𝑡 
Threshold maximum 

temperature for hot 

sterility 

33 33 °C - 

𝑇𝑆𝑡𝑒𝑟,ℎ𝑜𝑡,𝑑𝑖𝑒 
Critical maximum 

temperature for hot 

sterility 

37 37 °C - 

𝑇𝑆𝑡𝑒𝑟,𝑐𝑜𝑙𝑑,𝑑𝑖𝑒 
Threshold minimum 

temperature for cold 

sterility 

8 8 °C - 

𝑇𝑆𝑡𝑒𝑟,𝑐𝑜𝑙𝑑,𝑐𝑟𝑖𝑡 
Critical minimum 

temperature for hot 

sterility 

15 15 °C - 

𝑇ℎ𝑜𝑡,𝑐𝑟𝑖𝑡 
Critical maximum 

temperature for 

defoliation 

40 40 °C - 

𝑝, 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑝𝑙 
Critical consecutive 

days of drouth for plant 

die 

30 30 d - 

𝑊𝑆𝑐𝑟𝑖𝑡,𝑝𝑙 
Water strass threshold 

to plant die 
0.01 0.01 (-) - 

𝑝, 𝑝𝑒𝑟𝑖𝑜𝑑,𝑤𝑜 

Critical consecutive 

days of drouth for 

branch die 

20 20 d - 

𝑊𝑆𝑐𝑟𝑖𝑡,𝑤𝑜 
Water strass threshold 

to branch die 
0.02 0.02 (-) - 

𝑝, 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑡𝑠 

Critical consecutive 

days of drouth for twigs 

death 

10 10 d - 

𝑊𝑆𝑐𝑟𝑖𝑡,𝑡𝑠 
Water strass threshold 

to twigs death 
0.1 0.1 (-) - 

𝑝, 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑙𝑒 

Critical consecutive 

days of drouth for 

leaves death 

10 10 d - 
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𝑊𝑆𝑐𝑟𝑖𝑡,𝑙𝑒 
Water strass threshold 

to leaves death 
0.3 0.3 (-) - 

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑡𝑤,𝑑𝑖𝑒 
Minimum temperature 

for twigs death 
-12 -12 °C - 

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑝𝑙,𝑐𝑟𝑖𝑡 
Threshold minimum 

temperature for plant 
-10 -10 °C - 

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑙𝑒,𝑐𝑟𝑖𝑡 
Threshold minimum 

temperature for leaves 
-2 -2 °C - 

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑙𝑒,𝑑𝑖𝑒 
Minimum temperature 

for leaves death 
-7 -7 °C - 

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑡𝑤,𝑐𝑟𝑖𝑡 
Threshold minimum 

temperature for twigs 
-3 -3 °C - 

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑝𝑙,𝑑𝑖𝑒 
Minimum temperature 

for plant death 
-20 -20 °C - 

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑤𝑜,𝑐𝑟𝑖𝑡 
Threshold minimum 

temperature for branch 
-8 -8 °C - 

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑤𝑜,𝑑𝑖𝑒 
Minimum temperature 

for branch death 
-18 -18 °C - 

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑜𝑓,𝑑𝑖𝑒 
Minimum temperature 

for fruit death 
-4 -4 °C - 

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑜𝑓,𝑐𝑟𝑖𝑡 
Threshold minimum 

temperature for olive 
0 0 °C - 

𝐿𝐴𝐼𝑆𝐶  
Leaf area index for 

maximum self-shading 
8 8 m2 m-2 31 

𝐿𝐴𝐼𝑆𝑇 
Threshold leaf area 

index to self-shading 
3 3 m2 m-2 33 

𝑅𝑈𝐸 
Maximum radiation use 

efficiency 
2h 2.22216 g MJ-1 17 

𝐺𝐿𝐴𝐼𝑟 
Minimum leaf area 

index to re-growth 
0.8 0.8 m2 m-2 32 

𝑂𝐷𝑃𝑇ℎ 
Minimum rate of olive 

demand to olive drop 
0.5 0.5 (-) 34 

𝑂𝐷𝑟𝑅 Olive drop tolerance 0.05 0.05 (-) 35 

𝐼𝑑 Internode distance 20 11.8413 cm 19 

Olive fruit fly 

𝑁𝐸𝑀 

Max daily number of 

egg produced by a 

female 

15 g 15 g # d 
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𝑊𝑡 
Threshold of wind to 

limit the fly 
5 4.86779 m s-1  

𝑊𝑚 
Threshold of wind to 

stop the fly 
20 18.6187 m s-1  

𝑇𝑏,4 
Base temperature for 

adult development 
8 g 8 g °C  

𝑇𝑚𝑎𝑥,4 
Maximum temperature 

for adult development 
33 g 33 g °C  

𝑇𝑜𝑝𝑡,4 
Optimal temperature for 

adult development 
29 g 29 g °C  

𝑇𝑏,1 
Base temperature for 

egg development 
6.3 g 6.3 g °C  

𝑇𝑚𝑎𝑥,1 
Maximum temperature 

for egg development 
35 g 35 g °C  

𝑇𝑜𝑝𝑡,1 
Optimal temperature for 

egg development 
31 g 31 g °C  

𝑇𝑏,2 
Base temperature for 

larvae development 
6.3 g 6.3 g °C  

𝑇𝑚𝑎𝑥,2 
Maximum temperature 

for larvae development 
35 g 35 g °C  

𝑇𝑜𝑝𝑡,2 
Optimal temperature for 

larvae development 
29 g 29 g °C  

𝑇𝑏,3 
Base temperature for 

pupae development 
8 g 8 g °C  

𝑇𝑚𝑎𝑥,3 
Maximum temperature 

for pupae development 
33 g 33 g °C  

𝑇𝑜𝑝𝑡,3 
Optimal temperature for 

pupae development 
29 g 29 g °C  

𝑇𝐶𝐻,4 
Maximum temperature 

for adult 
36 g 35.6729 °C  

𝑇𝑇𝐻,4 
No damage maximum 

temperature for adult 
29 g 29.3711 °C  

𝑇𝐶𝐶,4 
Minimum temperature 

for adult 
-9.75 g -9.3849 °C  

𝑇𝑇𝐶,4 
No damage minimum 

temperature for adult 
0 g 0 g °C e 

𝑇𝐶𝐻,2 
Maximum temperature 

for larvae 
40 g 34.6804 °C  
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𝑇𝑇𝐻,2 
No damage maximum 

temperature for larvae 
29 g 30.4271 °C  

𝑇𝐶𝐶,2 
Minimum temperature 

for larvae 
-12 g -12 g °C  

𝑇𝑇𝐶,2 
No damage minimum 

temperature for larvae 
0 g 0 g °C e 

𝑇𝐶𝐻,3 
Maximum temperature 

for pupae 
36 g 38.8763 °C  

𝑇𝑇𝐻,3 
No damage maximum 

temperature for pupae 
29 g 29.7902 °C  

𝑇𝐶𝐶,3 
Minimum temperature 

for pupae 
-12 g -12 g °C  

𝑇𝑇𝐶,3 
No damage minimum 

temperature for pupae 
0 g 0 g °C e 

𝑇𝐶𝐻,1 
Maximum temperature 

for egg 
42 42 °C  

𝑇𝑇𝐻,1 
No damage maximum 

temperature for egg 
35 g 35 g °C  

𝑇𝐶𝐶,1 
Minimum temperature 

for egg 
-1 -1 °C  

𝑇𝑇𝐶,1 
No damage minimum 

temperature for egg 
0 0 °C e 

𝐹𝑁𝑚𝑖𝑛 
Minimum number of 

adult for oviposition 
3 3 # d 

𝐹𝑁𝑜𝑝𝑡 
Optimal number of 

adult for oviposition 
6 6 # d 

𝐹𝑁𝑜𝑝𝑡1 
Optimal 2 number of 

adult for oviposition 
700 700 #  

𝐹𝑁𝑚𝑎𝑥 
Maximum number of 

adult for oviposition 
800000 800000 #  

𝑇𝑚𝑎𝑥,𝑜 
Maximum temperature 

for oviposition 
33 33 °C  

𝑇𝑚𝑖𝑛,𝑜 
Minimum temperature 

for oviposition 
12 12 °C  

𝑇𝑜,𝑜 
Optimal temperature for 

oviposition 
29 29 °C  

𝐷𝑙𝑜𝑣 
Threshold day-length 

for oviposition 
13.4 13.4 Hours  
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𝑐𝑢𝑚, 𝑝𝑥 

Number of day to 

consider the rain to 

pupae metamorphosis 

15 15 d d 

𝑅𝐶𝑀 

Critical cumulated rain 

to pupae 

metamorphosis 

5 8.13541 mm  

𝑅𝑇𝑀 

No damage cumulated 

rain to pupae 

metamorphosis 

15 36.7238 mm  

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ1 
Predation coefficient 

egg 
0.1 0.1 (-)  

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ2 
Predation coefficient 

larvae I 
0.3 0.3 (-)  

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ3 
Predation coefficient 

larvae II 
0.3 0.3 (-)  

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ4 
Predation coefficient 

larvae III 
0.4 0.4 (-)  

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ5 
Predation coefficient 

pupae 
0.4 0.4 (-)  

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ6 
Predation coefficient 

adult 
0.05 0.05 (-)  

𝑓𝑀 
Minimum death daily 

coefficient 
0.0001 0.0001 (-)  

𝐷𝑀𝑃ℎ1 
Drop death coefficient 

egg 
0.8 0.8 (-)  

𝐷𝑀𝑃ℎ2 
Drop death coefficient 

larvae I 
0.75 0.75 (-)  

𝐷𝑀𝑃ℎ3 
Drop death coefficient 

larvae II 
0.55 0.55 (-)  

𝐷𝑀𝑃ℎ4 
Drop death coefficient 

larvae III 
0.15 0.15 (-)  

𝐷𝑀𝑃ℎ5 
Drop death coefficient 

pupae 
0.01 0.01 (-)  

𝑡 − 𝑥 
Day of delay of 

predator population 
5 15 d d 

𝐸𝐹𝑝𝑃𝑜𝑟 

Optimal number of fly 

daily eaten by a 

predator 

0.2 1 #  



128 

𝑇𝐹𝑃𝐸 
Theoretical fly predator 

ratio at equilibrium 
50 50 #  

𝐷𝑙𝑃𝐴 
Day-length to 

dormancy 
11 11 hour  

 𝑇𝑃𝐴 
Temperature to 

dormancy 
7 7 °C  

𝐺𝐷𝐷ℎ𝑎𝑡 
Thermal time to reach 

larvae I 
56.55 g 56.55 g °C d  

𝐺𝐷𝐷𝑙2 
Thermal time to reach 

larvae II 
118.8 g 118.8 g °C d  

𝐺𝐷𝐷𝑙3 
Thermal time to reach 

larvae III 
181.2 g 181.2 g °C d  

𝐺𝐷𝐷𝑝𝑢 
Thermal time to reach 

pupae 
243.55 g 243.6 g °C d  

𝐺𝐷𝐷𝐴𝐷1 
Thermal time to reach 

adult 
491.6 g 491.6 g °C d  

𝐺𝐷𝐷𝑑𝑖𝑒 
Thermal time to reach 

die 
1503.8 g 1119.6  °C d  

𝑃𝑂𝑡 
Predisposition to do 

only a single egg to 

olive 

0.3 0.00848 (-)  

𝑂𝐷𝐶𝑓 
Coefficient of infected 

olive fruit drop 
0.001 0.001 (-)  

𝐺𝐷𝐷𝐴𝐷2 
Thermal time to reach 

sexual maturity 
573.75g 573.75g °C d  

a: used standard deviation of 0.089044 and average (default value) from 

Villalobos et al., 2006 and Connor et al., 2012. 

b: used standard deviation of 0.000041 and average (default value) from 

Villalobos et al., 2006 and Mohammed and Noori 2008 

c: uniform, only the integer included in the average ±2 range (extreme and 

average included). 

d: uniform, only the three integers of average ±1. 

e: used standard deviation of 0.05. 

f: value from López-Bernal et al., 2018. 
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g: value from Gutierrez et al., 2009. 

h: value from Moriondo et al., 2019. 

Appendix B., First order of sensitivity analysis indices for olive fruit fly 

model. 

Parameters 
Fly population 

(#) 

Infected olive 

fruit (%) 

Dropped olive 

fruit (%) 

𝑁𝐸𝑀 0.01 0.01 0.01 

𝑊𝑡 0.00 0.00 0.00 

𝑊𝑚 0.00 0.00 0.00 

𝑇𝑏,4 0.01 0.02 0.01 

𝑇𝑚𝑎𝑥,4 0.01 0.02 0.01 

𝑇𝑜𝑝𝑡,4 0.02 0.03 0.03 

𝑇𝑏,1 0.00 0.00 0.00 

𝑇𝑚𝑎𝑥,1 0.00 0.00 0.00 

𝑇𝑜𝑝𝑡,1 0.00 0.00 0.00 

𝑇𝑏,2 0.00 0.00 0.00 

𝑇𝑚𝑎𝑥,2 0.00 0.00 0.01 

𝑇𝑜𝑝𝑡,2 0.00 0.00 0.00 

𝑇𝑏,3 0.00 0.00 0.01 

𝑇𝑚𝑎𝑥,3 0.00 0.00 0.01 

𝑇𝑜𝑝𝑡,3 0.00 0.00 0.01 

𝑇𝐶𝐻,4 0.00 0.00 0.00 

𝑇𝑇𝐻,4 0.07 0.13 0.02 

𝑇𝐶𝐶,4 0.00 0.00 0.01 

𝑇𝑇𝐶,4 0.00 0.00 0.01 

𝑇𝐶𝐻,2 0.00 0.00 0.01 

𝑇𝑇𝐻,2 0.19 0.14 0.03 

𝑇𝐶𝐶,2 0.00 0.00 0.00 

𝑇𝑇𝐶,2 0.00 0.00 0.00 

𝑇𝐶𝐻,3 0.00 0.00 0.00 

𝑇𝑇𝐻,3 0.22 0.24 0.07 

𝑇𝐶𝐶,3 0.00 0.00 0.00 

𝑇𝑇𝐶,3 0.00 0.00 0.00 

𝑇𝐶𝐻,1 0.00 0.00 0.00 
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𝑇𝑇𝐻,1 0.00 0.00 0.00 

𝑇𝐶𝐶,1 0.00 0.00 0.00 

𝑇𝑇𝐶,1 0.00 0.00 0.00 

𝐹𝑁𝑚𝑖𝑛 0.00 0.00 0.01 

𝐹𝑁𝑜𝑝𝑡 0.00 0.00 0.00 

𝐹𝑁𝑜𝑝𝑡1 0.00 0.00 0.00 

𝐹𝑁𝑚𝑎𝑥 0.00 0.00 0.00 

𝑇𝑚𝑎𝑥,𝑜 0.00 0.00 0.00 

𝑇𝑚𝑖𝑛,𝑜 0.00 0.00 0.00 

𝑇𝑜,𝑜 0.02 0.01 0.00 

𝐷𝑙𝑜𝑣 0.01 0.00 0.00 

𝑐𝑢𝑚, 𝑝𝑥 0.04 0.03 0.06 

𝑅𝐶𝑀 0.00 0.00 0.00 

𝑅𝑇𝑀 0.00 0.00 0.00 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ1 0.00 0.00 0.00 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ2 0.00 0.00 0.00 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ3 0.00 0.00 0.01 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ4 0.00 0.00 0.00 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ5 0.00 0.00 0.00 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ6 0.00 0.00 0.00 

𝑓𝑀 0.00 0.00 0.00 

𝐷𝑀𝑃ℎ1 0.00 0.00 0.00 

𝐷𝑀𝑃ℎ2 0.00 0.00 0.00 

𝐷𝑀𝑃ℎ3 0.00 0.00 0.00 

𝐷𝑀𝑃ℎ4 0.00 0.00 0.00 

𝐷𝑀𝑃ℎ5 0.00 0.00 0.01 

𝑡 − 𝑥 0.00 0.00 0.00 

𝐸𝐹𝑝𝑃𝑜𝑟 0.00 0.00 0.01 

𝑇𝐹𝑃𝐸 0.00 0.00 0.00 

𝐷𝑙𝑃𝐴 0.02 0.04 0.01 

 𝑇𝑃𝐴 0.01 0.01 0.00 

𝐺𝐷𝐷ℎ𝑎𝑡 0.00 0.00 0.00 

𝐺𝐷𝐷𝑙2 0.00 0.00 0.00 

𝐺𝐷𝐷𝑙3 0.00 0.00 0.01 

𝐺𝐷𝐷𝑝𝑢 0.02 0.01 0.00 
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𝐺𝐷𝐷𝐴𝐷1 0.06 0.02 0.01 

𝐺𝐷𝐷𝑑𝑖𝑒 0.05 0.12 0.02 

𝑃𝑂𝑡 0.01 0.00 0.00 

𝑂𝐷𝐶𝑓 0.00 0.00 0.00 

𝐺𝐷𝐷𝐴𝐷2 0.00 0.00 0.00 

Appendix C., Total order of sensitivity analysis indices for olive fruit fly 

model. 

Parameters 
Fly population 

(#) 

Infected olive 

fruit (%) 

Dropped olive 

fruit (%) 

𝑁𝐸𝑀 0.13 0.09 0.46 

𝑊𝑡 0.07 0.06 0.43 

𝑊𝑚 0.12 0.10 0.53 

𝑇𝑏,4 0.12 0.10 0.52 

𝑇𝑚𝑎𝑥,4 0.13 0.12 0.51 

𝑇𝑜𝑝𝑡,4 0.14 0.14 0.62 

𝑇𝑏,1 0.11 0.07 0.47 

𝑇𝑚𝑎𝑥,1 0.13 0.09 0.48 

𝑇𝑜𝑝𝑡,1 0.10 0.08 0.36 

𝑇𝑏,2 0.10 0.07 0.38 

𝑇𝑚𝑎𝑥,2 0.12 0.09 0.58 

𝑇𝑜𝑝𝑡,2 0.13 0.09 0.56 

𝑇𝑏,3 0.13 0.09 0.52 

𝑇𝑚𝑎𝑥,3 0.12 0.09 0.43 

𝑇𝑜𝑝𝑡,3 0.11 0.07 0.46 

𝑇𝐶𝐻,4 0.10 0.07 0.48 

𝑇𝑇𝐻,4 0.23 0.24 0.55 

𝑇𝐶𝐶,4 0.10 0.08 0.47 

𝑇𝑇𝐶,4 0.11 0.09 0.45 

𝑇𝐶𝐻,2 0.11 0.08 0.46 

𝑇𝑇𝐻,2 0.34 0.24 0.55 

𝑇𝐶𝐶,2 0.12 0.08 0.49 

𝑇𝑇𝐶,2 0.10 0.07 0.55 

𝑇𝐶𝐻,3 0.09 0.06 0.41 

𝑇𝑇𝐻,3 0.39 0.37 0.62 

𝑇𝐶𝐶,3 0.13 0.08 0.54 
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𝑇𝑇𝐶,3 0.10 0.06 0.44 

𝑇𝐶𝐻,1 0.09 0.06 0.38 

𝑇𝑇𝐻,1 0.12 0.09 0.49 

𝑇𝐶𝐶,1 0.10 0.07 0.45 

𝑇𝑇𝐶,1 0.11 0.07 0.36 

𝐹𝑁𝑚𝑖𝑛 0.10 0.06 0.45 

𝐹𝑁𝑜𝑝𝑡 0.11 0.07 0.39 

𝐹𝑁𝑜𝑝𝑡1 0.07 0.04 0.40 

𝐹𝑁𝑚𝑎𝑥 0.10 0.09 0.42 

𝑇𝑚𝑎𝑥,𝑜 0.13 0.09 0.46 

𝑇𝑚𝑖𝑛,𝑜 0.12 0.08 0.46 

𝑇𝑜,𝑜 0.16 0.08 0.45 

𝐷𝑙𝑜𝑣 0.12 0.10 0.45 

𝑐𝑢𝑚, 𝑝𝑥 0.15 0.12 0.54 

𝑅𝐶𝑀 0.12 0.09 0.51 

𝑅𝑇𝑀 0.12 0.09 0.48 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ1 0.10 0.06 0.41 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ2 0.10 0.07 0.39 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ3 0.12 0.08 0.43 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ4 0.11 0.08 0.36 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ5 0.09 0.07 0.49 

𝑃𝐿𝑖𝑘𝑐,𝑝ℎ6 0.10 0.07 0.43 

𝑓𝑀 0.10 0.07 0.46 

𝐷𝑀𝑃ℎ1 0.09 0.07 0.49 

𝐷𝑀𝑃ℎ2 0.09 0.06 0.40 

𝐷𝑀𝑃ℎ3 0.07 0.05 0.42 

𝐷𝑀𝑃ℎ4 0.09 0.05 0.45 

𝐷𝑀𝑃ℎ5 0.13 0.09 0.48 

𝑡 − 𝑥 0.11 0.08 0.53 

𝐸𝐹𝑝𝑃𝑜𝑟 0.09 0.06 0.44 

𝑇𝐹𝑃𝐸 0.11 0.07 0.40 

𝐷𝑙𝑃𝐴 0.15 0.14 0.50 

 𝑇𝑃𝐴 0.13 0.12 0.43 

𝐺𝐷𝐷ℎ𝑎𝑡 0.15 0.11 0.47 

𝐺𝐷𝐷𝑙2 0.08 0.06 0.43 

𝐺𝐷𝐷𝑙3 0.11 0.08 0.46 

𝐺𝐷𝐷𝑝𝑢 0.15 0.10 0.42 



133 

𝐺𝐷𝐷𝐴𝐷1 0.17 0.10 0.46 

𝐺𝐷𝐷𝑑𝑖𝑒 0.24 0.28 0.74 

𝑃𝑂𝑡 0.12 0.07 0.43 

𝑂𝐷𝐶𝑓 0.09 0.06 0.33 

𝐺𝐷𝐷𝐴𝐷2 0.11 0.08 0.48 

Olive fruit fly sub-model 

The Model is a population model as in Gutierrez et al., 2009. It divides the 

population in cohorts of fly that are born contemporaneously at same time 

step (daily). 

Thermal time 

The model starts the simulation updating olive fruit fly (Bactrocera oleae 

(Gmelin)) phenology (eq. 2) basing on temperature 𝐺𝐷𝐷𝑟,𝑖 using a no linear 

function (Gutierrez et al., 2009) the equation used was a beta function as in 

plant phenology of WOFOST_GT2 (Stella et al., 2014 - eq. 1) 

Equation 1 

 
Where 𝑖, is the considered phenological stage that have different phenology 

parameters (table 1), 𝑇𝑎𝑣𝑔 is the average daily air temperature is a weather 

variable, 𝑇𝑏,𝑖 is the base temperature to develop at a specific phenological 

stage, 𝑇𝑜𝑝𝑡,𝑖 is the optimal temperature to develop at a specific phenological 

stage, 𝑇𝑚𝑎𝑥,𝑖 is the maximum temperature to develop at a specific 

phenological stage the lasts are parameters and the value are derived from 

Gutierrez et al., 2009 and Giglioli and Pasquali 2007; 𝑠 is an empiric shape 

coefficient and its value is set to 1.8. If 𝑇𝑎𝑣𝑔 is below 𝑇𝑏,𝑖 or above 𝑇𝑚𝑎𝑥,𝑖, 

there is not accumulation of thermal time for the selected phenological stage. 

The dormancy status is described tanks the equation 3. 

  

∀𝑖=1
4

{
 
 

 
 

𝐴𝑐𝑡𝑖𝑣𝑒 𝐺𝐷𝐷𝑟,𝑖 =

 

 
 𝑇𝑎𝑣𝑔 − (𝑇𝑏 ,𝑖 − 2)

𝑇𝑜𝑝𝑡 ,𝑖 − (𝑇𝑏 ,𝑖 − 2)
∙  

(𝑇𝑚𝑎𝑥 ,𝑖 + 2) − 𝑇𝑎𝑣𝑔

(𝑇𝑚𝑎𝑥 ,𝑖 + 2) − 𝑇𝑜𝑝𝑡 ,𝑖

(𝑇𝑚𝑎𝑥 ,𝑖+2)−𝑇𝑜𝑝𝑡 ,𝑖

𝑇𝑜𝑝𝑡 ,𝑖−(𝑇𝑏 ,𝑖−2)

 

 

 
 

𝑠

∙ (𝑇𝑜𝑝𝑡 ,𝑖 − 𝑇𝑏 ,𝑖)

𝐷𝑜𝑟𝑚𝑎𝑛𝑐𝑦 𝐺𝐷𝐷𝑟,𝑖 = 0
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Table 1: Phenological stage that use different temperature for development: 

the whole list of phenological phasis are available in table 2 according to 

Gutierrez et al., 2009 

Code (i) Phenological stage 

1 Egg 

2 Larva 

3 Pupae 

4 Image or adult 

At each time step (day) the accumulation of thermal time (𝐺𝐷𝐷𝑠,𝑖,𝑐) is updated 

according the equation 2 

Equation 2 

∀𝑖=1
4 ⟦∀𝑐=1

𝑐=𝑛⟦𝐺𝐷𝐷𝑠,𝑖,𝑐 = 𝐺𝐷𝐷𝑠,𝑖,𝑐,𝑡−1 + 𝐺𝐷𝐷𝑟,𝑖 

Where 𝑐, is the cohorts of the olive fruit flies that belong to the same 

phenological stage, 𝑛 is the total number of cohorts and 𝐺𝐷𝐷𝑠,𝑖,𝑐,𝑡−1 is the 

thermal time of the previous day 

Dormancy 

The effect of dormancy is a stop of phenological development and of 

reproductive activities. Dormancy effects and estimation are transversal to all 

phenological phases. It is estimated according temperature and day length (eq. 

3). 

Equation 3 

{

𝐴𝑐𝑡𝑖𝑣𝑒     {
𝐷𝑙 <  𝐷𝑙𝑃𝐴 & 𝑇𝑎𝑣𝑔7 <  𝑇𝑃𝐴 𝐷𝑜𝑟𝑚𝑎𝑛𝑐𝑦

𝑒𝑙𝑠𝑒 𝐴𝑐𝑡𝑖𝑣𝑒

𝐷𝑜𝑟𝑚𝑎𝑛𝑐𝑦 {
𝐷𝑙 >  𝐷𝑙𝑃𝐴 & 𝑇𝑎𝑣𝑔7 >  𝑇𝑃𝐴 𝐴𝑐𝑡𝑖𝑣𝑒

𝑒𝑙𝑠𝑒 𝐷𝑜𝑟𝑚𝑎𝑛𝑐𝑦
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In were 𝐷𝑙 is the day length 𝐷𝑙𝑃𝐴 is the threshold of day length to 

phenological activity, 𝑇𝑎𝑣𝑔7 is the average temperature of the current day and 

six previous days and  𝑇𝑃𝐴 is the threshold temperature to phenological 

activity. 

Phenological phases 

For each cohort, the accumulation of thermal time is compared to a threshold 

parameter to estimate the phenological progress at the next phenological 

phase as in table 2 

Table 2: Considered phenological phases and relative parametres to 

reaching 

Criteria Phenological phase (𝑝ℎ) 

0 ≤ 𝐺𝐷𝐷𝑠,𝑐 < 𝐺𝐷𝐷ℎ𝑎𝑡 Egg (𝑝ℎ1) 

𝐺𝐷𝐷ℎ𝑎𝑡 ≤ 𝐺𝐷𝐷𝑠,𝑐 < 𝐺𝐷𝐷𝑙2 Larva 1st stage (𝑝ℎ2) 

𝐺𝐷𝐷𝑙2 ≤ 𝐺𝐷𝐷𝑠,𝑐 < 𝐺𝐷𝐷𝑙3 Larva 2nd stage (𝑝ℎ3) 

𝐺𝐷𝐷𝑙3 ≤ 𝐺𝐷𝐷𝑠,𝑐 < 𝐺𝐷𝐷𝑝𝑢 Larva 3rd stage (𝑝ℎ4) 

𝐺𝐷𝐷𝑝𝑢 ≤ 𝐺𝐷𝐷𝑠,𝑐 < 𝐺𝐷𝐷𝐴𝐷1 Pupae (𝑝ℎ5) 

𝐺𝐷𝐷𝐴𝐷2 ≤ 𝐺𝐷𝐷𝑠,𝑐 < 𝐺𝐷𝐷𝐴𝐷2 Not reproductive adult (𝑝ℎ6) 

𝐺𝐷𝐷𝐴𝐷2 ≤ 𝐺𝐷𝐷𝑠,𝑐 < 𝐺𝐷𝐷𝑑𝑖𝑒  Reproductive adult (𝑝ℎ6) 

𝐺𝐷𝐷𝑠,𝑐 ≥ 𝐺𝐷𝐷𝑑𝑖𝑒  Death  

Where 𝐺𝐷𝐷ℎ𝑎𝑡 is the thermal time to egg hatching, 𝐺𝐷𝐷𝑙2 is the minimum 

thermal time to have larva of 2nd stage, 𝐺𝐷𝐷𝑙3 is the minimum thermal time 

to have larva of 3rd stage, 𝐺𝐷𝐷𝑝𝑢 is the minimum thermal time to have pupae, 

𝐺𝐷𝐷𝐴𝐷1 is the minimum thermal time to have adult forms, 𝐺𝐷𝐷𝐴𝐷2 is the 

minimum thermal time to have reproductive adult forms and 𝐺𝐷𝐷𝑑𝑖𝑒 is the 

average thermal time of flies death. 
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Reproduction 

The daily eggs production (eq. 4, 𝐸𝑡) is estimated by the sum of the eggs 

produced by all the cohorts in reproductive adult phases. 𝐸𝑡 value is 

considered the number of individuals of a new cohort (𝐹𝑁𝑎) of eggs. 

Equation 4 

𝐸𝑡 = ∑𝐸𝑎

𝑛

𝑎=1

 

Where 𝑎 are the cohorts that are in active reproductive phase and 𝐸𝑎 (eq. 5) 

is the number of eggs produces by a specific cohort. 

Equation 5 

𝐸𝑎 = 𝑀𝐸𝑇 ∙ 𝐶𝑚,𝑎 ∙ 𝐶𝑎𝑔𝑒,𝑎 ∙ 𝐹𝑁𝑎 

Where 𝑀𝐸𝑇 is a variable that describe the actual eggs production per olive 

fruit fly at the today environmental conditions (eq. 7) 𝐶𝑚,𝑎 is the coefficient 

of males in the cohort (it is set for each cohort to 0.5), 𝐶𝑎𝑔𝑒,𝑎 is the age 

coefficient of the cohort (eq. 6) introduced also in Gutierrez et al., 2009 and 

𝐹𝑁𝑎 is the total flies number of the cohort. 

Equation 6 

 

Where 𝐺𝐷𝐷𝑜,𝐸 is a parameter to the optimum thermal time to eggs production 

and 𝐺𝐷𝐷𝑎is the thermal time accumulated by the specific cohort of 

reproductive adults. 

Equation 7 

𝑀𝐸𝑇 = 𝑁𝐸𝑀 ∙ (1 − 𝑓𝑊𝑂) ∙ (1 − 𝑓𝑃𝑂𝑂) ∙ (1 − 𝑓𝑃𝑂) ∙ (1 − 𝑓𝑃𝑂𝐷𝑂)
∙ (1 − 𝑓𝐹𝑃𝑂) ∙ (1 − 𝑓𝑇𝑂) 

𝐶𝑎𝑔𝑒 ,𝑎

{
  
 

  
 
𝐺𝐷𝐷𝑎 <   𝐺𝐷𝐷𝑜𝑝𝑡𝐸

 

 
𝐺𝐷𝐷𝑎 − (𝐺𝐷𝐷𝐴𝐷2 − 2)

𝐺𝐷𝐷𝑜,𝐸 − (𝐺𝐷𝐷𝐴𝐷2 − 2)
∙  

(𝐺𝐷𝐷𝑑𝑖𝑒 + 2) − 𝐺𝐷𝐷𝑎
(𝐺𝐷𝐷𝑑𝑖𝑒 + 2) − 𝐺𝐷𝐷𝑜 ,𝐸

(𝐺𝐷𝐷𝑑𝑖𝑒 +2)−𝐺𝐷𝐷𝑜 ,𝐸

𝐺𝐷𝐷𝑜 ,𝐸−(𝐺𝐷𝐷𝐴𝐷 2−2)
 

 

 

𝑠

𝐺𝐷𝐷𝑎 ≥   𝐺𝐷𝐷𝑜𝑝𝑡𝐸 1−
𝐺𝐷𝐷𝑎 − 𝐺𝐷𝐷𝑜,𝐸

𝐺𝐷𝐷𝑑𝑖𝑒 − 𝐺𝐷𝐷𝑜 ,𝐸
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Where 𝑁𝐸𝑀 is a parameter that describe the pick of possible number of eggs 

produced by a female, 𝑓𝑊𝑂 is the wind effect on oviposition (eq. 8), 𝑓𝑃𝑂𝑂 

is the effect of the olive phenology on oviposition (eq. 9), 𝑓𝑃𝑂 is the effect 

of the photoperiod on oviposition (eq. 11), 𝑓𝑃𝑂𝐷𝑂 is the effect of the 

percentage of infected olive fruits on oviposition (eq. 12), 𝑓𝐹𝑃𝑂 is the effect 

of the olive fruit fly population on oviposition (eq.14) and 𝑓𝑇𝑂 is the effect 

of air temperature on oviposition (eq. 15). 

Equation 8 

𝑓𝑊𝑂{

𝑊 < 𝑊𝑡 0

𝑊𝑡 ≤ 𝑊 ≤ 𝑊𝑚
𝑊 −𝑊𝑡

𝑊𝑚 −𝑊𝑡

𝑊 > 𝑊𝑚 1

 

Where 𝑊 is the daily average wind speed 𝑊𝑡 is the threshold of wind speed 

to disturb the flight of flies and 𝑊𝑚 is the maximum wind speed to the flight 

of flies. The wind effect is to intend as a redaction of flights done by female 

flies in case of excessive wind. 

Equation 9 

𝑓𝑃𝑂𝑂

{
 

 
𝐺𝐷𝐷𝑠,𝑜 < 900 1

900 ≤ 𝐺𝐷𝐷𝑠,𝑜 ≤ 𝐺𝐷𝐷𝑠𝑒𝑛 1 −
𝐺𝐷𝐷𝑠,𝑜 − 900

𝐺𝐷𝐷𝑠𝑒𝑛 − 900
𝐺𝐷𝐷𝑠,𝑜 > 𝐺𝐷𝐷𝑠𝑒𝑛 0

 

In which: 𝐺𝐷𝐷𝑠,𝑜 is the thermal time accumulate by olive trees (eq. 34) and 

𝐺𝐷𝐷𝑠𝑒𝑛 is the thermal time to sensible period (eq. 10; hardening of seed; 

Gutierrez et al., 2009).  

Equation 10 

𝐺𝐷𝐷𝑠𝑒𝑛 = 500 + 𝐺𝐷𝐷𝑓𝑙 

In which 𝐺𝐷𝐷𝑓𝑙 is the thermal time to olive trees flowering 
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Equation 11 

𝑓𝑃𝑂

{
 

 
𝐷𝑙 <  𝐷𝑙𝑃𝐴 1

𝐷𝑙𝑃𝐴 ≤ 𝐷𝑙 ≤ 𝐷𝑙𝑜𝑣 1 −
𝐷𝑙 − 𝐷𝑙𝑃𝐴
𝐷𝑙𝑜𝑣 − 𝐷𝑙𝑃𝐴

𝐷𝑙 >  𝐷𝑙𝑜𝑣 0

 

Where 𝐷𝑙𝑜𝑣 is the optimal day length to eggs production.  

Equation 12 

 

Where 𝐼𝐷𝑜𝑙𝑖𝑣𝑒 is an index of olive fruit infected by olive fruit flies (eq. 13), it 

range between 0 and 600 it means 0 no infection 600 each olive fruit has been 

hit 6 time by olive fruit fly (it is not taken into account if the insects are still 

in fruit or not) and 𝑃𝑂𝑡 is a parameter that describe the minimum percentage 

of infected olive to have an olive hit at least twice. The olive fruit fly has the 

preference to do a unique egg per olive fruit but if olive fruits are not 

reachable or are hit in large part the olive fruit are re-hit but in this case the 

oviposition activity decreases. A similar approach is used in Gutierrez at al., 

2009. 

Equation 13 

𝐼𝐷𝑜𝑙𝑖𝑣𝑒 =
6 ∙ 𝑁𝑜𝑙𝑖𝑣𝑒,𝑡 − 𝐸𝑦,𝑡

6 ∙ 𝑁𝑜𝑙𝑖𝑣𝑒,𝑡
∙ 600 

Where 𝑁𝑜𝑙𝑖𝑣𝑒,𝑡 is the olive fruit number at current time-step and 𝐸𝑦,𝑡 is the 

total number of produced eggs in the current season updated at current time 

step. 

  

𝑓𝑃𝑂𝐷𝑂

{
 
 

 
 

𝐼𝐷𝑜𝑙𝑖𝑣𝑒 < 𝑃𝑂𝑡 0

𝑃𝑂𝑡 ≤ 𝐼𝐷𝑜𝑙𝑖𝑣𝑒 ≤ 600  
𝐼𝐷𝑜𝑙𝑖𝑣𝑒 − (𝑃𝑂𝑡 − 2)

600− (𝑃𝑂𝑡 − 2)
∙  
(652) − 𝐼𝐷𝑜𝑙𝑖𝑣𝑒

52

52
600−(𝑃𝑂𝑡−2)

  

𝑠

𝐼𝐷𝑜𝑙𝑖𝑣𝑒 >  600 1
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Equation 14 

𝑓𝑃𝑂𝐷𝑂

{
 
 
 

 
 
 

   𝐹𝑁 < 𝐹𝑁𝑚𝑖𝑛      0.5

  𝐹𝑁𝑚𝑖𝑛 ≤ 𝐹𝑁 < 𝐹𝑁𝑜𝑝𝑡     0.5 ∙ (1 −
𝐹𝑁 − 𝐹𝑁𝑚𝑖𝑛
𝐹𝑁𝑜𝑝𝑡 − 𝐹𝑁

)

𝐹𝑁𝑜𝑝𝑡 ≤ 𝐹𝑁 ≤ 𝐹𝑁𝑜𝑝𝑡1         0

𝐹𝑁𝑜𝑝𝑡1 < 𝐹𝑁 ≤ 𝐹𝑁𝑚𝑎𝑥         
𝐹𝑁 − 𝐹𝑁𝑜𝑝𝑡2

𝐹𝑁𝑜𝑝𝑡2 − 𝐹𝑁𝑚𝑎𝑥
𝐹𝑁 > 𝐹𝑁𝑚𝑎𝑥       1

 

Were 𝐹𝑁 is the total number of reproductive adults, 𝐹𝑁𝑚𝑖𝑛 is the number of 

adult to reduce of the half the meeting probability 𝐹𝑁𝑜𝑝𝑡 and 𝐹𝑁𝑜𝑝𝑡1 are the 

population level that minimizes the disturbance effect and maximizes the 

probability to meet and 𝐹𝑁𝑚𝑎𝑥 is the total number of adults in which the 

disturbance effect inhibits the oviposition. The assumption is that a low 

number of olive fruit flies per hectare limit the olive fruit fly meeting and a 

higher number, at opposite, favours the meeting and it disturbs the female 

during oviposition. 

Equation 15 

 

Where 𝑇𝑚𝑖𝑛,𝑜 is the minimum air temperature to ovopositon, 𝑇𝑚𝑎𝑥,𝑜 is the 

maximum air temperature for ovoposition and 𝑇𝑜,𝑜 is the optimal temperature 

to oviposition. 

Impacts on olive 

The model considers both impacts: on quality of the harvested olive (infected 

olive; eq. 16) and on the quantity of production considering the olive fruits 

that drop (eq. 17). 

  

𝑓𝑇𝑂

{
 
 

 
 

𝑇𝑚𝑖𝑛 ,𝑜 ≤ 𝑇𝑎𝑣𝑔 ≤   𝑇𝑚𝑎𝑥 ,𝑜 1−

 

 
 𝑇𝑎𝑣𝑔 − (𝑇𝑚𝑖𝑛 ,𝑜 − 2)

𝑇𝑜 ,𝑜 − (𝑇𝑚𝑖𝑛 ,𝑜 − 2)
∙  
(𝑇𝑚𝑎𝑥 ,𝑜 + 2) − 𝑇𝑎𝑣𝑔

(𝑇𝑚𝑎𝑥 ,𝑜 + 2) − 𝑇𝑜 ,𝑜

(𝑇𝑚𝑎𝑥 ,𝑜+2)−𝑇𝑜 ,𝑜

𝑇𝑜 ,𝑜−(𝑇𝑚𝑖𝑛 ,𝑜−2)

 

 

 
 

𝑠

𝑒𝑙𝑠𝑒 1
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Equation 16 

 

Where 𝐼𝑂𝑃is the percentage of infected olive. 

Equation 17 

𝑁𝑜𝑙𝑖𝑣𝑒,𝑑𝑓 = 𝑁𝑜𝑙𝑖𝑣𝑒,𝑡 ∙
𝐼𝑂𝑃

100
∙ 𝑂𝐷𝐶𝑓 

Where 𝑂𝐷𝐶𝑓is the olive drop coefficient due to fly infections, it is a 

parameter, 𝑁𝑜𝑙𝑖𝑣𝑒,𝑑𝑓 is the infected olive fruits dropped today due to olive 

fruit fly. 

Mortality 

The model estimate a mortality trigged by environmental, management, aging 

and unknown causes (Genc and Nation, 2008; Gutierrez et al., 2009). 

For eggs, larvae (all three phases) and pupae we estimated the mortality (𝑀𝐼,𝑟; 

eq. 18) at the same way using parameters phase specific. For the adult form 

(𝑀𝐴,𝑟; eq. 19) a natural mortality (per aging) it is added when the 𝐺𝐷𝐷𝑑𝑖𝑒 is 

reached; it is also added a mortality coefficient in transition between pupae 

and adult (𝑓𝑀𝑀; eq. 29).The adult mortality does not consider the olive drop 

(𝑓𝑀𝐷𝑂; eq. 21).  

Estimation of mortality is done at cohort level. 

Equation 18 

𝑀𝐼,𝑟 = 𝐹𝑁𝑎 ∙ (1 − 𝑓𝑀𝑃) ∙ (1 − 𝑓𝑀) ∙ (1 − 𝑓𝑀𝐷𝑂) ∙ (1 − 𝑓𝑀𝐶)

∙ (1 − 𝑓𝑀𝑇) ∙ (1 − 𝑓𝑀𝐹𝐻) 

In which 𝑓𝑀𝑃 is the mortality due to the presence of natural predators, 𝑓𝑀 is 

a parameter that describe young case of death apparently without explanation, 

𝐼𝑂𝑃

{
  
 

  
 
𝐼𝐷𝑜𝑙𝑖𝑣𝑒 < 𝑃𝑂𝑡 𝐼𝐷𝑜𝑙𝑖𝑣𝑒

𝑒𝑙𝑠𝑒 𝑀𝑎𝑥

{
 
 

 
 

𝐼𝐷𝑜𝑙𝑖𝑣𝑒
6

𝑃𝑂𝑡
100

+ (1−
𝑃𝑂𝑡
100

) ∙  
𝐼𝐷𝑜𝑙𝑖𝑣𝑒 − (𝑃𝑂𝑡 − 2)

600− (𝑃𝑂𝑡 − 2)
∙  
(652) − 𝐼𝐷𝑜𝑙𝑖𝑣𝑒

52

52
600−(𝑃𝑂𝑡−2)

  

𝑠

∙ 100
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𝑓𝑀𝐷𝑂 is the death due to the drop of host olive fruit (eq. 21) , 𝑓𝑀𝐶 is the 

effect of the chemical treatment: the efficiency of the treatment, 𝑓𝑀𝑇 is the 

effect on death of air temperature (eq. 20), 𝑓𝑀𝐹𝐻 is the effect of olive 

harvest: only a percentage of immature olive fruit fly satays in the field 

according to the harvest efficiency. 

Equation 19 

 

Equation 20 

 

Where 𝑇𝐶𝐶,𝑖 is the critical cold temperature below witch all fly die, 𝑇𝑇𝐶,𝑖 is the 

threshold cold temperature below witch flies start to die, 𝑇𝑇𝐻,𝑖 is the threshold 

hot temperature above witch flies start to die, 𝑇𝐶𝐻,𝑖 is the critical hot 

temperature above witch all flies die. Those parameters are specific per the 

phenological phases listed following: 1) Egg, 2) Larva, 3) Pupae and 4) adults 

(without discrimination between mature or not); and they assume different 

values per phenological phase. 

Equation 21 

𝑓𝑀𝐷𝑂 =
𝐼𝐹𝑑
𝐼𝐹𝑁

 ∙ 𝐷𝑀𝑃ℎ 

For each phenology stage∙ 𝐷𝑀𝑃ℎ assume different values. This parameter is 

the mortality rate at drop eventuality, 𝐼𝐹𝑑 is the total amount of immature 

olive fruit flies that drop (eq. 22). 

𝑀𝐴,𝑟 {

𝐺𝐷𝐷𝑎 ,𝑡−1 < 𝐺𝐷𝐷𝐴𝐷1 ≤ 𝐺𝐷𝐷𝑎 𝐹𝑁𝑎 ∙ (1− 𝑓𝑀𝑃) ∙ (1− 𝑓𝑀) ∙ (1− 𝑓𝑀𝐶) ∙ (1− 𝑓𝑀𝑇) ∙ (1− 𝑓𝑀𝑀)

𝐺𝐷𝐷𝑎 ≥ 𝐺𝐷𝐷𝑑𝑖𝑒 𝐹𝑁𝑎
𝑒𝑙𝑠𝑒 𝐹𝑁𝑎 ∙ (1− 𝑓𝑀𝑃) ∙ (1− 𝑓𝑀) ∙ (1− 𝑓𝑀𝐶) ∙ (1− 𝑓𝑀𝑇)

 

𝑓𝑀𝑇 =

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑇𝐶𝐶,𝑖 < 𝑇𝑎𝑣𝑔 < 𝑇𝑇𝐶,𝑖      

 

 
 𝑇𝑎𝑣𝑔 − (𝑇𝐶𝐶,𝑖 − 3)

3
∙  
(𝑇𝑇𝐶,𝑖 + 2) − 𝑇𝑎𝑣𝑔

(𝑇𝑇𝐶,𝑖 + 2) − 𝑇𝐶𝐶,𝑖

(𝑇𝑇𝐶 ,𝑖+2)−𝑇𝐶𝐶 ,𝑖
3

 

 

 
 

𝑠

𝑇𝑇𝐶 ,𝑖 < 𝑇𝑎𝑣𝑔 < 𝑇𝑇𝐻,𝑖 1

    𝑇𝑇𝐻,𝑖 < 𝑇𝑎𝑣𝑔 ≤ 𝑇𝐶𝐻,𝑖 1−

 

 
 𝑇𝑎𝑣𝑔 − (𝑇𝑇𝐻,𝑖 − 3)

3
∙  
(𝑇𝐶𝐻,𝑖 + 2) − 𝑇𝑎𝑣𝑔

(𝑇𝐶𝐻,𝑖 + 2) − 𝑇𝑇𝐻,𝑖

(𝑇𝐶𝐻 ,𝑖+2)−𝑇𝑇𝐻 ,𝑖
3

 

 

 
 

𝑠

𝑒𝑙𝑠𝑒 0
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Equation 22 

𝐼𝐹𝑑 = 𝑁𝑜𝑙𝑖𝑣𝑒,𝑑𝑖 ∙ 𝐼𝐹𝑜 

Where 𝑁𝑜𝑙𝑖𝑣𝑒,𝑑𝑖 is the total number of olive dropped in which there is the 

active infection of fly and 𝐼𝐹𝑜 is the number of immature forms that are in 

average present in an infected olive fruit (eq. 23). 

Equation 23 

𝑁𝑜𝑙𝑖𝑣𝑒,𝑑𝑖 =  
𝑁𝑜𝑙𝑖𝑣𝑒,𝐴𝐼
𝑁𝑜𝑙𝑖𝑣𝑒,𝐼

∙ (𝑁𝑜𝑙𝑖𝑣𝑒,𝑑𝑓 + 𝑁𝑜𝑙𝑖𝑣𝑒,𝑑𝑛𝑓 ∗ 𝐼𝑂𝑃/100) 

 

Where 𝑁𝑜𝑙𝑖𝑣𝑒,𝐴𝐼 is the number of olive fruits in which there are an active 

infection (eq. 25), 𝑁𝑜𝑙𝑖𝑣𝑒,𝐼 is the number of olive fruit infected in total (active 

or not; eq. 24), 𝑁𝑜𝑙𝑖𝑣𝑒,𝑑𝑛𝑓 are the olive that drop for other causes. 

Equation 24 

𝑁𝑜𝑙𝑖𝑣𝑒,𝐼 = 𝑁𝑜𝑙𝑖𝑣𝑒 ∙ 𝐼𝑂𝑃/100 

Equation 25 

𝑁𝑜𝑙𝑖𝑣𝑒,𝐴𝐼 = 𝑁𝑜𝑙𝑖𝑣𝑒  ∙ 𝐼𝑂𝑃𝑎𝑡/100 

Where 𝐼𝑂𝑃𝑎𝑡 is the active level of infections (eq. 26). 

Equation 26 

 

Where 𝐼𝑂𝑃𝑎𝑡6 is the actual percentage of olive infected without considering 

multiple ovoposition (eq. 27). 

  

𝐼𝑂𝑃𝑎𝑡

{
  
 

  
 
𝐼𝑂𝑃𝑎𝑡6 < 𝑃𝑂𝑡 𝐼𝐷𝑜𝑙𝑖𝑣𝑒

𝑒𝑙𝑠𝑒 𝑀𝑎𝑥

{
 
 

 
 

𝐼𝐷𝑜𝑙𝑖𝑣𝑒
6

𝑃𝑂𝑡
100

+ (1−
𝑃𝑂𝑡
100

) ∙  
𝐼𝑂𝑃𝑎𝑡6 − (𝑃𝑂𝑡 − 2)

600− (𝑃𝑂𝑡 − 2)
∙  
(652) − 𝐼𝑂𝑃𝑎𝑡6

52

52
600−(𝑃𝑂𝑡−2)

  

𝑠

∙ 100
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Equation 27 

𝐼𝑂𝑃𝑎𝑡6 =
𝐼𝐹𝑁

𝑁𝑜𝑙𝑖𝑣𝑒,𝑡
∗ 100 

Where 𝐼𝐹𝑁 is the total number of immature flies (eq. 28). 

Equation 28 

𝐼𝐹𝑜 =
𝐼𝐹𝑁

𝑁𝑜𝑙𝑖𝑣𝑒,𝐴𝐼
 

Equation 29 

𝑓𝑀𝑀 

{
 

 
𝑅𝑐𝑢𝑚,𝑝𝑥 < 𝑅𝐶𝑀 1

𝑅𝐶𝑀 ≤ 𝑅𝑐𝑢𝑚,𝑝𝑥 ≤ 𝑅𝑇𝑀 1 −
𝑅𝑐𝑢𝑚,𝑝𝑥 − 𝑅𝐶𝑀

𝑅𝑇𝑀 − 𝑅𝐶𝑀
𝑅𝑐𝑢𝑚,𝑝𝑥 > 𝑅𝑇𝑀 0

 

Where 𝑅𝑐𝑢𝑚,𝑝𝑥 is the cumulated daily rain of a fixed number of previous day 

𝑅𝐶𝑀 is the critical cumulated rain value at witch all pupae in metamorphose 

die and 𝑅𝑇𝑀 is the threshold cumulated ran above witch there is no fly death. 

Migration / Immigration 

The fly movements (in and out the simulated field) are simulated but the 

unique driver that is involved is the adult population number.  

The emigration (𝐶𝑒; eq. 30) is estimated only if adults are active (not 

dormant), and all the olive fruits were hit 6 time. 

Equation 30 

𝐶𝑒 {
𝐹𝑁 ≥ 𝐹𝑁𝑜𝑝𝑡 𝑀𝑎𝑥 (0.99,

𝐹𝑁 − 𝐹𝑁𝑜𝑝𝑡 

𝐹𝑁𝑚𝑎𝑥 − 𝐹𝑁𝑜𝑝𝑡
)

𝐹𝑁 < 𝐹𝑁𝑜𝑝𝑡 0

 

𝐶𝑒 is applied to the adult population to determinate the number of adults 

remained in the field (𝐹𝑁𝑓) according to equation 31. 
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Equation 31 

𝐹𝑁𝑓 =  𝐹𝑁 ∙ (1 − 𝐶𝑒) 

Also immigration is estimate if population are too low (lower than 2) and if 

the olive has already been harvested. The approach generates a new cohort of 

100 reproductive adults. 

Olive sub-model 

The olive trees model is a crop model able to estimate at daily time step 

various process of the olive trees including lignification, photosynthesis, 

phenological development, organ growth, respiration, lignification 

senescence in function to various environmental and management driver, the 

model is linked to the olive fruit flies model thanks the olive fruit weight and 

phenology. 

Phenology 

The phenology development is reset at plant regrowth, after the winter 

dormient period. The dormancy or active growth phase is estimate according 

the equation 32 

Equation 32 

{

𝐴𝑐𝑡𝑖𝑣𝑒     {
𝐷𝑙 <  𝐷𝑙𝑃𝐴𝑜 & 𝑇𝑎𝑣𝑔7 <  𝑇𝑃𝐴𝑜 𝐷𝑜𝑟𝑚𝑎𝑛𝑐𝑦

𝑒𝑙𝑠𝑒 𝐴𝑐𝑡𝑖𝑣𝑒

𝐷𝑜𝑟𝑚𝑎𝑛𝑐𝑦 {
𝐷𝑙 >  𝐷𝑙𝑃𝐴𝑜 & 𝑇𝑎𝑣𝑔7 > 𝑇𝑃𝐴𝑜 𝐴𝑐𝑡𝑖𝑣𝑒

𝑒𝑙𝑠𝑒 𝐷𝑜𝑟𝑚𝑎𝑛𝑐𝑦

 

As in olive fruit fly the dormancy per olive tree is estimated according to the 

threshold day length that induce dormancy or phenological activity 𝐷𝑙𝑃𝐴𝑜 and 

a threshold temperature ( 𝑇𝑃𝐴𝑜). 

Phenology development is trigged by temperature (eq. 35, eq. 36) and water 

stress (eq. 91) and is summarized in a code (𝐷𝑉𝑆; eq. 33). 
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Equation 33 

𝐷𝑉𝑆 

{
 
 

 
 𝐺𝐷𝐷𝑠,𝑜 ≤ 𝐺𝐷𝐷𝑜,𝑓𝑙

𝐺𝐷𝐷𝑠,𝑜 

𝐺𝐷𝐷𝑜,𝑓𝑙

𝑒𝑙𝑠𝑒 1 +
𝐺𝐷𝐷𝑠,𝑜 − 𝐺𝐷𝐷𝑜,𝑓𝑙

𝐺𝐷𝐷𝑜,𝑚𝑎𝑡 − 𝐺𝐷𝐷𝑜,𝑓𝑙

 

 

The Development stage code (𝐷𝑉𝑆) indicate the flowering when assume 

value of 1 or closed and the full olive fruit maturation if it assumes value of 

2. Its estimation is based on the growing degree days accumulation 𝐺𝐷𝐷𝑠,𝑜 

(eq. 34). 

Equation 34 

𝐺𝐷𝐷𝑠,𝑜 = 𝐺𝐷𝐷𝑠,𝑜,𝑡−1 + 𝐺𝐷𝐷𝑟,𝑜 

Where 𝐺𝐷𝐷𝑠,𝑜,𝑡−1 is the thermal time accumulated at previous time step and 

𝐺𝐷𝐷𝑟,𝑜 is the current thermal accumulated in current time step (eq. 35, eq. 

36, eq. 91). 

Equation 35 

 

Where 𝑇𝑜𝑝𝑡,𝑜𝑑 is the optimal temperature to olive tree development and 

𝑇𝑚𝑎𝑥,𝑜𝑑 is the maximum temperature for development if 𝑇𝑎𝑣𝑔is higher than 

𝑇𝑚𝑎𝑥,𝑜𝑑 or lower than  𝑇𝑃𝐴𝑜 no accumulation of thermal time is simulated.  

Vernalization 

To flower, olive trees need of cold time accumulation (Villalobos et al., 2006; 

Moriondo et al., 2019). The accumulation of cold time 𝐶𝑈𝑠 starts when the 

plant starts the dormancy period and it ends at regrowth (eq. 32). An 

𝐺𝐷𝐷𝑟 ,𝑜 =

 

 
 𝑇𝑎𝑣𝑔 − ( 𝑇𝑃𝐴𝑜 − 2)

𝑇𝑜𝑝𝑡 ,𝑜𝑑 − ( 𝑇𝑃𝐴𝑜 − 2)
∙  

(𝑇𝑚𝑎𝑥 ,𝑜𝑑 + 2) − 𝑇𝑎𝑣𝑔

(𝑇𝑚𝑎𝑥 ,𝑜𝑑 + 2) − 𝑇𝑜𝑝𝑡 ,𝑜𝑑

(𝑇𝑚𝑎𝑥 ,𝑜𝑑 +2)−𝑇𝑜𝑝𝑡 ,𝑜𝑑

𝑇𝑜𝑝𝑡 ,𝑜𝑑−( 𝑇𝑃𝐴𝑜 −2)

 

 

 
 

𝑠

∙ (𝑇𝑜𝑝𝑡 ,𝑜𝑑 −  𝑇𝑃𝐴𝑜 ) 
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insufficient cold accumulation has an effect (𝐶𝑈𝑒; eq. 37) on a reduction of 

development rate (eq. 36) and a reduction of flowers next spring. 

Equation 36 

𝐺𝐷𝐷𝑟,𝑜 = 𝐺𝐷𝐷𝑟,𝑜 ∙ (1 − 𝐶𝑈𝑒) 

Equation 37 

𝐶𝑈𝑒 = 1 −
𝐶𝑈𝑚
𝐶𝑈𝑣

 

Where 𝐶𝑈𝑚 is the peak of cold time accumulation (𝐶𝑈𝑠; eq. 38) before the 

regrowth 𝐶𝑈𝑣 is parameter to describe the required cold time to be vernalized. 

Equation 38 

𝐶𝑈𝑠 = {
𝐶𝑈𝑠,𝑡−1 < 𝐶𝑈𝑣 𝑀𝑎𝑥(𝐶𝑈𝑠,𝑡−1 + 𝐶𝑈𝑟 , 𝐶𝑈𝑣)

𝐶𝑈𝑠,𝑡−1 ≥ 𝐶𝑈𝑣 𝐶𝑈𝑣
 

Where 𝐶𝑈𝑟 is the daily rate of cold time accumulation (eq. 39) and 𝐶𝑈𝑠,𝑡−1 is 

cold time at previous time step (daily). 

Equation 39 

𝐶𝑈𝑟 = 

{
 
 

 
 

𝑇ℎ ≥ 0                          0
0 < 𝑇ℎ ≤ 𝑇𝑣𝑜𝑝𝑡                      𝑇ℎ/𝑇𝑣𝑜𝑝𝑡

𝑇𝑣𝑜𝑝𝑡 < 𝑇ℎ ≤ 𝑇𝑣𝑚𝑎𝑥 1 − ((𝑇ℎ − 𝑇𝑣𝑜𝑝𝑡) ∙
1 − 𝑑𝑒𝐶𝑈

𝑇𝑣𝑚𝑎𝑥 − 𝑇𝑣𝑜𝑝𝑡
)

𝑇ℎ > 𝑇𝑣𝑚𝑎𝑥 𝑑𝑒𝐶𝑈

 

Where 𝑇ℎis the hurly air temperature 𝑇𝑣𝑜𝑝𝑡 is the optimal temperature to 

vernalize 𝑇𝑣𝑚𝑎𝑥 is the maximum temperature to vernalize and 𝑑𝑒𝐶𝑈 is the 

maximum devernalization rate. 
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Plant growth 

The biomass accumulation (𝐴𝐺𝐵𝑠; eq. 40) is estimated trough the net 

photosynthesis (eq. 41) as in Moriondo et al., 2019). The radiation 

interception is estimated according to the beer-lambert law (Swinehart, 1962). 

 

Equation 40 

𝐴𝐺𝐵𝑠 = 𝐴𝐺𝐵𝑠,𝑡−1 + 𝐴𝐺𝐵𝑟 

Where 𝐴𝐺𝐵𝑟 is the biomass accumulation rate (eq. 41). 

Equation 41 

𝐴𝐺𝐵𝑟 = (1 − 𝑒
−𝑘∙𝑃𝐴𝐼𝑠−1) ∙ 𝑅𝑈𝐸 ∙ 𝑃𝐴𝑅 ∙ 10 ∙ 𝑀𝑖𝑛(0.95 , 𝑆𝐶𝑂𝑉) 

Where 𝑘 is the coefficient of extinction of solar radiation by canopy, 𝑃𝐴𝐼𝑠−1is 

the totality of photosynthetic areas (eq. 43), 𝑅𝑈𝐸 is the maximum radiation 

use efficiency, 𝑃𝐴𝑅 is the photosynthetic active radiation (eq. 42), 𝑆𝐶𝑂𝑉 is 

the proportion of covered soil by canopy and 10 is to convert between 

different units a similar approach is used in Moriondo et al., 2019 (eq. 76).  

Equation 42 

𝑃𝐴𝑅 = 0.5 ∙ 𝑅𝐴𝐷 

𝑅𝐴𝐷 is the solar radiation that reaches the top of the canopy. 

Equation 43 

𝑃𝐴𝐼𝑠−1 = 𝐺𝐿𝐴𝐼𝑠−1 + (𝑂𝐹𝑀𝑠−.1 ∙ 𝑆𝐹𝐴) + (𝑇𝑀𝑠−1 ∙ 𝑆𝑇𝐴)  

Where 𝐺𝐿𝐴𝐼𝑠−1is the living leaves area index state at previous time step (day), 

𝑂𝐹𝑀𝑠−.1 is the olive fruit mass state at previous time step (day), 𝑆𝐹𝐴 is the 

specific olive area, 𝑇𝑀𝑠−1is the green twigs mass state at previous time step 

(day) and 𝑆𝑇𝐴 is the specific area of twig. 
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Limitation on photosynthesis  

There is considered two environmental drivers to limit the photosynthesis a 

thermal limitation (eq. 44) and a self-shading limitation (𝑆𝑅𝐴𝐷; eq. 45). 

 

Temperature 

 

Cold and thot temperatures limit the photosynthesis (𝑇𝑃ℎ𝐿𝑖𝑚) as below (eq. 

44). 

Equation 44 

 

𝑇𝑏,𝑃ℎ𝑂 is the base temperature to have photosynthesis, 𝑇𝑜𝑝𝑡,𝑃ℎ𝑂 is the optimal 

temperature to have photosynthesis and 𝑇𝑚𝑎𝑥,𝑃ℎ𝑂 is the max temperature to 

have photosynthesis. The function is limited to 1 if temperature is above 

𝑇𝑚𝑎𝑥,𝑃ℎ𝑂 + 2 or below 𝑇𝑏,𝑃ℎ𝑂 

 

Saturation Light  

 

Equation 45 

𝑆𝑅𝐴𝐷 =  {
𝑅𝐴𝐷 ≥ 25 && 𝑅𝐴𝐷 ≥ 𝑅𝐴𝐷𝑡 1 − (2 − 0.4 ∙ 𝑅𝐴𝐷)

𝑒𝑙𝑠𝑒 0
 

Where 𝑆𝑅𝐴𝐷 is the radiation saturation coefficient, 𝑅𝐴𝐷𝑡 is the threshold 

above which the photosytwig are saturated. 

The actual 𝐴𝐺𝐵𝑎𝑟 is limited by both 𝑇𝑃ℎ𝐿𝑖𝑚 and 𝑆𝑅𝐴𝐷 (eq. 46). 

𝑇𝑃ℎ𝐿𝑖𝑚 = 1−

 

 
 𝑇𝑎𝑣𝑔 − (𝑇𝑏 ,𝑃ℎ𝑂 − 2)

𝑇𝑜𝑝𝑡 ,𝑃ℎ𝑂 − (𝑇𝑏 ,𝑃ℎ𝑂 − 2)
∙  

(𝑇𝑚𝑎𝑥 ,𝑃ℎ𝑂 + 2) − 𝑇𝑎𝑣𝑔

(𝑇𝑚𝑎𝑥 ,𝑃ℎ𝑂 + 2) − 𝑇𝑜𝑝𝑡 ,𝑃ℎ𝑂

(𝑇𝑚𝑎𝑥 ,𝑃ℎ𝑂+2)−𝑇𝑜𝑝𝑡 ,𝑃ℎ𝑂

𝑇𝑜𝑝𝑡 ,𝑃ℎ𝑂−(𝑇𝑏 ,𝑃ℎ𝑂−2)

 

 

 
 

𝑠
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Equation 46 

 

If the temperature is elevated, it is estimated that respiration rate exceeds 

photosynthesis rate and the accumulation of biomass tend to be 0 or negative. 

if temperature is too elevated: (above 𝑇𝑚𝑎𝑥,𝑅𝑒𝑠𝑝𝑂)also respiration is null. 

Where 𝑊𝑝 is the water stress coefficient (eq. 85) 

Partitioning 

If actual aboveground biomass rate is positive is partitioned in 5 organs: i) 

leaves, ii) twigs, iii) storage organs (fruits), iv) woody twig, branch and trunk, 

and v) reserves; according to the development stage code as in López-Bernal 

et al., 2018, but in opposite our model do not neglect the growing of other 

organs during ripening phases. 

Our model changes partitioning behaviour according to phenological phasis. 

Starting from regrowth, there is a first phase in which plant growth depends 

on reserve and the produced organs are only leaves twigs and wood. When a 

threshold of accumulated thermal time (𝐺𝐷𝐷𝑜,𝑅𝑒𝑛𝑑) is reached the plant is in 

vegetative phase and it stops to use reserves and start to accumulate them, 

biomass is partitioned also to leaves twig and wood. After flowering plant 

start to accumulate in priority way fruit organ, in this phase if biomass 

produced exceeds olive demand the biomass in excess is partitioned to reserve 

leaves, wood and twig else the reserves are used to cover the gap. After olive 

harvest (or drop) the plant if is in active growth there is in a condition (in 

terms of partitioning) equal to the vegetative phase mentioned above. If plant 

is dormant and olive are not ripe, the plant provide to olive demand in 

opposite the photosynthesized mass is partitioned in reserve. 

If 𝐺𝐷𝐷𝑠,𝑜 ≤ 𝐺𝐷𝐷𝑜,𝑅𝑒𝑛𝑑 then the coefficients of partition are 0.3 for leaves, 

0.3 for woody organs and 0.4 for green twigs. After this threshold of thermal 

time if olive fruits are not present, the partition coefficients are 0.3 for leaves, 

0.2 for woody organs and 0.4 for green twigs and 0.1 for reserve. 

If olive fruit is present, the priority of plant becomes satisfy the olive demand 

(𝑂𝐷; eq. 48) according equation 47. 

𝐴𝐺𝐵𝑎𝑟 = {
𝑇𝑎𝑣𝑔 ≤ 𝑇𝑚𝑎𝑥 ,𝑃ℎ𝑂 𝐴𝐺𝐵𝑟 ∙ (1− 𝑇𝑃ℎ𝐿𝑖𝑚 ) ∙ (1− 𝑆𝑅𝐴𝐷) ∙ (1 −𝑊𝑝)

𝑇𝑚𝑎𝑥 .𝑃ℎ𝑂 < 𝑇𝑎𝑣𝑔 ≤ 𝑇𝑚𝑎𝑥 ,𝑃ℎ𝑂+2 −𝐴𝐺𝐵𝑠−1 ∙ (1− 𝑇𝑃ℎ𝐿𝑖𝑚 )
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Equation 47 

𝑂𝐹𝑀𝑟 = {
𝐴𝐺𝐵𝑟 ≤ 𝑂𝐷 𝐴𝐺𝐵𝑟

𝑒𝑙𝑠𝑒 Max(1.5 ∙ 𝑂𝐷, 0.5 ∙ (𝑂𝐷 + 𝐴𝐺𝐵𝑟))
 

Where 𝑂𝐹𝑀𝑟 is the increasing of olive fruit mass rate. 

The remaining quote of 𝐴𝐺𝐵𝑟 (if present) is partitioned to various organs 

basing on the coefficient written above. 

Olive demand 

The model estimates the daily mass that olive fruits require to growth basing 

on phenology. 

Equation 48 

 

Where 𝐺𝐷𝐷𝑜,𝑓𝑙𝑖𝑛𝑖 is the thermal time in which olive trees start to flower, 

𝑆𝑂𝑊 is the weight of a single olive fruit and 𝑁𝑜𝑙𝑖𝑣𝑒,𝑡−1 is the number of olive 

of previous time step. 

  

𝑂𝐷 =

{
 
 

 
 

𝐺𝐷𝐷𝑠,𝑜 ≥ 𝐺𝐷𝐷𝑜 ,𝑓𝑙𝑖𝑛𝑖

{
 
 

 
 
𝑂𝐹𝑀𝑠−.1

𝑁𝑜𝑙𝑖𝑣𝑒 ,𝑡−1
≥ 1.2 ∙ 𝑆𝑂𝑊 0

𝑒𝑙𝑠𝑒 𝑆𝑂𝑊 ∙ 𝑁𝑜𝑙𝑖𝑣𝑒 ,𝑡−1 ∙
𝐺𝐷𝐷𝑟 ,𝑜

𝐺𝐷𝐷𝑜 ,𝑚𝑎𝑡 − 𝐺𝐷𝐷𝑜 ,𝑓𝑙𝑖𝑛𝑖

𝑒𝑙𝑠𝑒 0
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Reserve remobilization  

Reserves are mobilized (𝑅𝑚𝑜𝑏) only in special occasion for example: 1) when 

respiration exceed photosynthesis (eq. 49), 2) growth restarting after 

dormancy (López-Bernal et al., 2018; eq. 50), 3) traumas (eq. 51), 4) if 

photosynthesis rate is lower than olive demand (López-Bernal et al., 2018; 

eq. 52). 

 

Case 1 

Equation 49 

𝑅𝑚𝑜𝑏 = −
𝐴𝐺𝐵𝑟
𝑒𝑓𝑓𝑅

 

In case of respiration the reserves recover the consummated mass. 

Case 2 

Equation 50 

Case 3 

Equation 51 

𝑅𝑚𝑜𝑏 = {
𝐺𝐿𝐴𝐼𝑠−1 ≤ 𝐺𝐿𝐴𝐼𝑟 & 𝑎𝑐𝑡𝑖𝑣𝑒  𝑅𝑞 ∙ 𝑅𝑠−1 ∙ 𝑇𝑟𝑒𝑠

𝑒𝑙𝑠𝑒 0
 

In case of dramatic damage to canopy the plant, if it is in active growth, re-

growths. 

  

𝑅𝑚𝑜𝑏 = {𝐺𝐷𝐷𝑠,𝑜 ≤ 𝐺𝐷𝐷𝑜 ,𝑅𝑒𝑛𝑑   & 𝑅𝑔 < 𝑅𝑚𝑖𝑛 ,𝑚

𝐺𝐷𝐷𝑟,𝑜 ∙ (𝑅𝑠−1 −𝑊𝑜𝑜𝑑𝑠−1 ∙ 𝑅𝑚𝑖𝑛 ,𝑚)

𝐺𝐷𝐷𝑜,𝑅𝑒𝑛𝑑
∙ 𝑇𝑟𝑒𝑠

𝑒𝑙𝑠𝑒 0
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Case 4 

Equation 52 

𝑅𝑚𝑜𝑏 = {
𝑅𝑔 < 𝑅𝑚𝑖𝑛,𝑚

𝑂𝐷 − 𝐴𝐺𝐵𝑟
𝑒𝑓𝑓𝑅

𝑒𝑙𝑠𝑒 0

 

In case of olive demand is higher than 𝐴𝐺𝐵𝑟 reserve cover the olive demand. 

Equation 53 

𝑇𝑟𝑒𝑠 = {
𝑇𝑎𝑣𝑔 ≥ 𝑇𝑏,𝑃ℎ𝑂

𝑅𝑞 ∙ 𝑅𝑠−1 ∙ (𝑀𝑖𝑛(𝑇𝑎𝑣𝑔, 𝑇𝑜𝑝𝑡,𝑃ℎ𝑂) − 𝑇𝑏,𝑃ℎ𝑂)

𝑇𝑜𝑝𝑡,𝑃ℎ𝑂 − 𝑇𝑏,𝑃ℎ𝑂
𝑒𝑙𝑠𝑒 0

 

The effective amount of reserve used (𝑅𝑚𝑜𝑏𝐸𝑓𝑓, eq. 54) take in consideration 

of the efficiency of remobilization 

Equation 54 

𝑅𝑚𝑜𝑏𝐸𝑓𝑓 = 𝑅𝑚𝑜𝑏 ∙ 𝑒𝑓𝑓𝑅 

Where 𝑒𝑓𝑓𝑅 is the efficiency of reserve mobilization: 

𝑅𝑚𝑖𝑛,𝑚 minim reserve to mobilization; 

E𝑓𝑓𝑅 is the efficiency to reserve mobilization; 

𝑅𝑞 is the maximum reserve quote of mobilization; 

𝑅𝑠−1 is the reserve state of time step before; 

𝐺𝐷𝐷𝑜,𝑅𝑒𝑛𝑑 is the growing degree day at which the plant ends the reserve 

mobilization after regrowing; 

𝑅𝑚𝑖𝑛,𝑚 is the minimum reserve relation on wood mass to have mobilization; 

𝑊𝑜𝑜𝑑𝑠−1 is the woody organs mass at pervious time step; 
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𝑅𝑔  is the relation between reserve mass and woody organs mass; 

𝑇𝑟𝑒𝑠 is the effect of temperature on reserve mobilization equation 53; 

The 𝑅𝑚𝑜𝑏 is added to the amount of biomass rate coming to photosynthetic 

activity, to have the pool of mass to be partitioned in the various organs 

according the thermal time accumulation. 

Olive drop  

The model estimates the drop of some olive fruit if the olive demand is not 

achieved according to equation 55. 

Equation 55 

{
𝑂𝐹𝑀𝑟 < 𝑂𝐷 ∙  𝑂𝐷𝑄𝑇ℎ (1 − (

𝑂𝐹𝑀𝑟

𝑂𝐷 ∙  𝑂𝐷𝑄𝑇ℎ
)) ∙ 𝑂𝐷𝑟𝑅

𝑒𝑙𝑠𝑒 0

 

Were 𝑂𝐷𝑃𝑇ℎ is a parameter that describe the threshold quote of olive demand 

at which olive fruits starts to drop and 𝑂𝐷𝑟𝑅 is an olive drop resistance 

parameter 
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LAI accumulation and senescence  

Each day the partitioned biomass to leaves is converted in cohorts of 

contemporary leaves (𝐿𝑁𝑐; leaves number; eq. 57) with a certain value of 

leaves area index (𝐺𝐿𝐴𝐼𝑐; eq. 56). 

Equation 56 

𝐺𝐿𝐴𝐼𝑐 =
𝑆𝐿𝐴 ∙ 𝐿𝑀𝑟/10000

𝑀𝑖𝑛(0.95 , 𝑆𝐶𝑂𝑉)
  

Equation 57 

𝐿𝑁𝑐 =
𝑆𝐿𝐴 ∙ 𝐿𝑀𝑟

𝐿𝐴
  

Where 𝑆𝐿𝐴 is the specific leaf area index 𝐿𝑀𝑟 is the partitioned mass to leaves 

and 𝐿𝐴 is the single leaf area. 

Each cohort of leaves accumulates thermal time (𝐺𝐷𝐷𝑠,𝑜𝐶𝐿; eq. 58) until the 

reaching of the growing degree day to leaf senescence (𝐺𝐷𝐷𝑠,𝑜𝐶𝐿𝑑𝑖𝑒) at which 

the cohort of leaves dies. 

The thermal time accumulated is 𝐺𝐷𝐷𝑟,𝑜 for the youngest cohort and the next 

equation for the others. 

Equation 58 

𝐺𝐷𝐷𝑠,𝑜𝐶𝐿 = 𝐺𝐷𝐷𝑠,𝑜𝐶𝐿,𝑡−1 + 𝐺𝐷𝐷𝑟,𝑜 ∙ (2 − 𝑆𝑆𝐶) 

Where 𝐺𝐷𝐷𝑠,𝑜𝐶𝐿,𝑡−1 is the growing degree days of a specific cohort of olive 

leaves at previous time step and 𝑆𝑆𝐶 is a self-shading coefficient (eq. 59).  

Equation 59 

𝑆𝑆𝐶 =

{
 

 𝐿𝐴𝐼𝑆𝑇 ∙ 3 ≤ 𝐿𝐴𝐼𝑆𝑆 ≤ 𝐿𝐴𝐼𝑆𝐶 ∙ 3
𝐿𝐴𝐼𝑆𝑆 − 𝐿𝐴𝐼𝑆𝑇 ∙ 3

𝐿𝐴𝐼𝑆𝐶 ∙ 3 − 𝐿𝐴𝐼𝑆𝑇 ∙ 3
𝐿𝐴𝐼𝑆𝑠  > 𝐿𝐴𝐼𝑆𝑐 ∙ 3 1
𝐿𝐴𝐼𝑆𝑠 < 𝐿𝐴𝐼𝑆𝑡 ∙ 3 0
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Where 𝐿𝐴𝐼𝑆𝑆(eq. 60) is the considered leaves area index to shading 𝐿𝐴𝐼𝑆𝐶  is 

the critical leaves area index above which the old leave are shaded, and 𝐿𝐴𝐼𝑆𝑇 

is the threshold below which the leaves are not shaded. 

The self-shading has an increasing response on leaves aging. 

Equation 60 

𝐿𝐴𝐼𝑆𝑆 = 𝐺𝐿𝐴𝐼𝑠 ∙ 𝑘 ∙  𝑀𝑎𝑥(1 , 𝑆𝐶𝑂𝑉) 

The LAI and leaf biomass is reduced of 1 − 𝑆𝑆𝐶 

Twigs accumulation and buds 

In similar way of leaves also the partitioned mass to twig generate at each 

vegetative season a cohort of twig. The last have mass and buds. The buds 

number (𝐵𝑢𝑑) is equal to the new number of leaves (𝐿𝑁𝑐) in the 𝐺𝐿𝐴𝐼𝑐 just 

generated. 

The twig and so the buds also die if shaded applying to twig mass half of 𝑆𝑆𝐶. 

At the end of the restart all the twig produced 2 years before became woody 

organs, and there is the estimation of the potential number of flowering bud 

is estimated according to the bud number of the previous year, the percentage 

of flowering bud (𝑅𝑃𝐵𝑢𝑑; eq. 62) and the vernalization coefficient (𝐶𝑈𝑒; eq. 

37). 

Equation 61 

𝐹𝑙𝐵𝑢𝑑 =  𝐶𝑈𝑒 ∙ 𝐵𝑢𝑑 ∙ 𝑅𝑃𝐵𝑢𝑑 

Equation 62 

𝑅𝐶𝐵𝑢𝑑 = 
𝑃𝐵𝑢𝑑 ∙ 𝑅𝑔

𝑅𝑔𝑀𝑖𝑛𝐹𝑙
 

Where 𝑃𝐵𝑢𝑑 is the normal ratio between flowering and vegetative buds, and 

𝑅𝑔𝑀𝑖𝑛𝐹𝑙 is the minimum ratio between wood and reserve mass for 

differentiation occurrence. 

The 𝐹𝑙𝐵𝑢𝑑 is limited between 0.8 and 0.001. 
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The flowers do not flower together but in a period around flowering and the 

allegation is limited by rain and wind. 

The total number of flowers today (𝐹𝐹) is estimated as below (eq. 63). 

Equation 63 

𝐹𝐹 =
 𝐺𝐷𝐷𝑟,𝑜

𝐺𝐷𝐷𝑜,𝑓𝑙𝑒𝑛𝑑 − 𝐺𝐷𝐷𝑜,𝑓𝑙𝑖𝑛𝑖
∙ 𝐹𝑙𝐵𝑢𝑑 ∙ 𝐵𝑢𝑑𝑁𝐹𝑙 

Where 𝐺𝐷𝐷𝑜,𝑓𝑙𝑒𝑛𝑑 is the maximum thermal time to flower 𝐹𝑙𝐵𝑢𝑑 remain 

constant 𝐵𝑢𝑑𝑁𝐹𝑙 is the number of flowers a bud 

The derived number of olive fruit (𝑁𝑜𝑙𝑖𝑣𝑒,𝑟) is estimated by equation 64 

Equation 64 

𝑁𝑜𝑙𝑖𝑣𝑒,𝑟 = 𝐹𝐹 ∙ 𝐴𝑙𝑙𝐶 ∙  (1 −𝑊𝑝) ∙ (1 −𝑊𝑖𝑛𝑎𝑙) ∙ (1 − 𝑅𝐸𝐹𝑎𝑙) 

Where 𝐴𝑙𝑙𝐶 is the allegation coefficient 𝑊𝑖𝑛𝑎𝑙 is the effect on wind on 

allegation (eq. 66) and 𝑅𝐸𝐹𝑎𝑙 is the rain effect on allegation (eq. 65). 

Equation 65 

𝑅𝐸𝐹𝑎𝑙 = {
𝑅𝑑 > 2 1
𝑒𝑙𝑠𝑒 0

 

Where 𝑅𝑑 is the daily rain. 

Equation 66 

𝑊𝑖𝑛𝑎𝑙 = {
1 < 𝑊 < 10 0.5

𝑒𝑙𝑠𝑒 0
 

Canopy growth 

The canopy growth is in function to leaves growth: the model estimates the 

increasing of plant height (𝐻𝑟; eq. 68) and the radius (𝑟𝑟; eq. 67) of vegetal 

canopy 
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Equation 67 

𝑟𝑟 =  𝑁𝐿𝐴 ∙ (1 − 𝑟𝐻𝑟) ∙ 𝐼𝑑 

Equation 68 

𝐻𝑟 =  𝑁𝐿𝐴 ∙ 𝑟𝐻𝑟 ∙ 𝐼𝑑 

Where 𝑁𝐿𝐴 is the new area of generated leaves (eq. 69), 𝑟𝐻𝑟 is the relation 

between plant height and radius of canopy and 𝐼𝑑 is a coefficient to take into 

account the internode length and the overlapping and thickening of leaves. 

Equation 69 

𝑁𝐿𝐴 = 
𝑆𝑀𝑟 ∙ 0.75 ∙ 𝑆𝐿𝐴

10000 ∙ 𝑀𝑖𝑛(0.95 , 𝑆𝐶𝑂𝑉)
 

Where 0.75 is a coefficient derived by the relation between twig an leaves 

partition coefficient. 

The state of the two variable: respectively 𝑟𝑠 (eq. 70) and 𝐻𝑠 (eq. 71) per 

canopy radius and plant height are obtained thanks the state of the two 

variable (𝑟𝑠−1; 𝐻𝑠−1) at previous time step and the rate of the two variables. 

Equation 70 

𝑟𝑠 = 𝑟𝑠−1 + 𝑟𝑟 

Equation 71 

𝐻𝑠 = 𝐻𝑠−1 + 𝐻𝑟 

Also the 𝑆𝐶𝑂𝑉 is updated (eq. 72). 

Equation 72 

𝑆𝐶𝑂𝑉 = 
𝑟𝑠
2 ∙ 𝜋 ∙ 𝑃𝑁

10000
 

Where 𝑃𝑁 is the plant number in an hectare. 
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Pruning 

The model estimates if it is required the plant pruning. This crop operation is 

useful to reduce the plant canopy in order to avoid self-shading or shading in 

general, to have an optimal ratio between vegetative and flowering buds and 

to avoid yield alternation. It is estimated also a redaction of woody and 

reserve organs. Pruning is estimated to be just before the restart of the thermal 

time accumulation (so in late winter or in early spring). 

The pruning effects on wood (eq. 73) and storage (eq. 74) are estimated 

applying a coefficient to the actual state of this two organs. 

Equation 73 

𝑅𝑠 = 𝑅𝑠 ∙ 𝑊𝑅𝑃𝐶 

Equation 74 

𝑊𝑜𝑜𝑑𝑠 = 𝑊𝑜𝑜𝑑𝑠 ∙ 𝑊𝑅𝑃𝐶 

Were 𝑅𝑠 and 𝑊𝑜𝑜𝑑𝑠 are respectively the actual state of reserve and woody 

organs and 𝑊𝑅𝑃𝐶 is the wood and reserve pruning coefficient. 

For the canopy cover (radius; eq. 76) and plant height (eq. 75) a pruning 

coefficient (𝐻𝐶𝑃) is applied. 

Equation 75 

𝐻𝑠 = 𝐻𝑠 ∙ 𝐻𝐶𝑃 

Equation 76 

𝑟𝑠 = 𝑟𝑠 ∙  𝐻𝐶𝑃 

For green organs the pruning is estimated differently considering a target of 

LAI to reach after pruning (𝐿𝐴𝐼𝑇𝑃; eq. 77). 

Equation 77 

𝐺𝐿𝐴𝐼𝑠 = {
𝐺𝐿𝐴𝐼𝑠 < 𝐿𝐴𝐼𝑇𝑃 𝐺𝐿𝐴𝐼𝑠 ∙ 0.8

𝑒𝑙𝑠𝑒 𝐿𝐴𝐼𝑇𝑃
 



159 

Where 𝐺𝐿𝐴𝐼𝑠 is the actual state of green leaves area index and 𝐿𝐴𝐼𝑇𝑃 is the 

leaves area index considered the target after pruning. 

To transfer the redaction of leaves area index to leaves (eq. 81) and green twig 

mass (eq. 82), number of leaves (eq. 80) and buds (eq. 79), a coefficient of 

pruned leaves area index is estimated (𝐺𝑉𝑃𝐶; eq. 78) 

Equation 78 

𝐺𝑉𝑃𝐶 = {

𝐺𝐿𝐴𝐼𝑠 < 𝐿𝐴𝐼𝑇𝑃 0.8

𝑒𝑙𝑠𝑒 1 − (
𝐺𝐿𝐴𝐼𝑠 − 𝐿𝐴𝐼𝑇𝑃

𝐺𝐿𝐴𝐼𝑠
)
 

Where the 𝐺𝐿𝐴𝐼𝑠 to consider is before pruning. 

Equation 79 

𝐵𝑢𝑑 = 𝐵𝑢𝑑 ∙  𝐺𝑉𝑃𝐶 

Equation 80 

𝐿𝑁 = 𝐿𝑁 ∙  𝐺𝑉𝑃𝐶 

Equation 81 

𝐿𝑀𝑠 = 𝐿𝑀𝑠  ∙  𝐺𝑉𝑃𝐶 

Equation 82 

𝑇𝑀𝑠 = 𝑇𝑀𝑠  ∙  𝐺𝑉𝑃𝐶 

Differently for the number of flowering buds the pruning effect tend to 

optimize the ratio between flowering and vegetative buds having as target a 

fixed threshold (eq. 83). 

Equation 83 

𝐹𝑙𝐵𝑢𝑑 = 𝑀𝑖𝑛(𝐹𝑙𝐵𝑢𝑑, 𝐵𝑢𝑑 ∙ 𝑂𝑅𝐹𝐵𝑃 ) 

Where 𝐵𝑢𝑑 are the buds number after pruning 𝑂𝑅𝐹𝐵 is the optimum ratio of 

flowering buds after pruning. 
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If number of vegetative buds are not available respected the flowering buds 

are recounted as complementary. 

Abiotic damages  

The model is able to estimate water stress effect on phenology, growing 

limitation and damage on plant, temperature (hot, freezing and flower 

sterility) effects and the damage due to an excess of radiation (𝐷𝑎𝑚𝑟𝑎𝑑,𝑒𝑥𝑐;eq. 

86). This damages could be activated or not. 

The model estimate also the death of organs or wale plant due to abiotic 

damages (Sanzani et al., 2012). The plants and the woody (and reserve) 

organs can die in case of extreme freezing or water stress; the twigs can die 

for freezing, self – shading (for half of the result of eq. 59), water stress and 

light excess (𝐷𝑎𝑚𝑟𝑎𝑑,𝑒𝑥𝑐;eq. 86); the leaves can die for hot (𝐷𝑎𝑚ℎ𝑜𝑡; eq. 87), 

freezing, self – shading (eq. 59), water stress and light excess (𝐷𝑎𝑚𝑟𝑎𝑑,𝑒𝑥𝑐; 

eq. 86); the olive fruit can die for hot (𝐷𝑎𝑚ℎ𝑜𝑡;eq. 86), freezing, water stress 

and light excess (𝐷𝑎𝑚𝑟𝑎𝑑,𝑒𝑥𝑐; eq. 86). 

The damage on twigs and leaves is estimated bigger than the damages on 

woody (and reserve) organs and death plants (Sanzani et al., 2012).  

The same impact of twig is reported to bud number, the same for leaf number, 

leaves area index and leaves biomass and for olive biomass and olive number. 

The damage on twigs and leaves are estimated starting for the youngest units. 

 

Sterility 

 

The flower sterility (eq. 84, 85) due to hot and cold temperature is estimate 

as portion of daily flowered flower that die for an exposition to cold (𝑆𝑡𝑒𝑟𝑐𝑜𝑙𝑑) 

or hot (𝑆𝑡𝑒𝑟𝑐𝑜𝑙𝑑ℎ𝑜𝑡) temperature and then applied to the rate of number of 

olive (𝑁𝑜𝑙𝑖𝑣𝑒,𝑟) 

 



161 

Cold (𝑆𝑡𝑒𝑟𝑐𝑜𝑙𝑑; eq.84): 

Equation 84 

 

Where 𝑇𝑚𝑖𝑛 is the minimum air temperature, 𝑇𝑆𝑡𝑒𝑟,𝑐𝑜𝑙𝑑,𝑐𝑟𝑖𝑡 is the critical 

temperature at which cold sterility starts to act, and 𝑇𝑆𝑡𝑒𝑟,𝑐𝑜𝑙𝑑,𝑑𝑖𝑒 is the 

temperature below which all the flowers that flower in this day die. 

hot (𝑆𝑡𝑒𝑟ℎ𝑜𝑡; eq.85): 

Equation 85 

𝑆𝑡𝑒𝑟ℎ𝑜𝑡 =

{
 

 
𝑇𝑚𝑎𝑥 < 𝑇𝑆𝑡𝑒𝑟,ℎ𝑜𝑡,𝑐𝑟𝑖𝑡 0

𝑇𝑆𝑡𝑒𝑟,ℎ𝑜𝑡,𝑐𝑟𝑖𝑡 ≤ 𝑇𝑚𝑎𝑥 ≤ 𝑇𝑆𝑡𝑒𝑟,ℎ𝑜𝑡,𝑑𝑖𝑒
𝑇𝑚𝑎𝑥 − 𝑇𝑆𝑡𝑒𝑟,ℎ𝑜𝑡,𝑐𝑟𝑖𝑡

𝑇𝑆𝑡𝑒𝑟,ℎ𝑜𝑡,𝑑𝑖𝑒 − 𝑇𝑆𝑡𝑒𝑟,ℎ𝑜𝑡,𝑐𝑟𝑖𝑡
𝑇𝑚𝑎𝑥 > 𝑇𝑆𝑡𝑒𝑟,ℎ𝑜𝑡,𝑑𝑖𝑒 1

 

Where 𝑇𝑚𝑎𝑥 is the maximum air temperature, 𝑇𝑆𝑡𝑒𝑟,ℎ𝑜𝑡,𝑐𝑟𝑖𝑡 is the critical 

temperature at which hot sterility starts to act, and 𝑇𝑆𝑡𝑒𝑟,ℎ𝑜𝑡,𝑑𝑖𝑒 is the 

temperature above which all the flowers that flower in this day die. 

 

Damage due for radiation excess (𝐷𝑎𝑚𝑟𝑎𝑑,𝑒𝑥𝑐;eq. 86) 

 

Equation 86 

𝐷𝑎𝑚𝑟𝑎𝑑,𝑒𝑥𝑐 = {

𝑅𝐴𝐷 < 38 0

38 ≤ 𝑅𝐴𝐷 ≤ 50
𝑃𝐴𝑅 − 38

12
𝑅𝐴𝐷 > 50 1

 

This damage lies at same way the leaves, olive fruit and twig organs. 

𝑆𝑡𝑒𝑟𝑐𝑜𝑙𝑑 =

{
 

 
𝑇𝑚𝑖𝑛 > 𝑇𝑆𝑡𝑒𝑟 ,𝑐𝑜𝑙𝑑 ,𝑐𝑟𝑖𝑡 0

𝑇𝑆𝑡𝑒𝑟 ,𝑐𝑜𝑙𝑑 ,𝑑𝑖𝑒 ≤ 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑆𝑡𝑒𝑟 ,𝑐𝑜𝑙𝑑 ,𝑐𝑟𝑖𝑡

𝑇𝑚𝑖𝑛 − 𝑇𝑆𝑡𝑒𝑟 ,𝑐𝑜𝑙𝑑 ,𝑐𝑟𝑖𝑡

𝑇𝑆𝑡𝑒𝑟 ,𝑐𝑜𝑙𝑑 ,𝑑𝑖𝑒 − 𝑇𝑆𝑡𝑒𝑟 ,𝑐𝑜𝑙𝑑 ,𝑐𝑟𝑖𝑡

𝑇𝑚𝑖𝑛 < 𝑇𝑆𝑡𝑒𝑟 ,𝑐𝑜𝑙𝑑 ,𝑑𝑖𝑒 1
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Damage due for extreme hot (𝐷𝑎𝑚ℎ𝑜𝑡;eq. 87) 

 

Equation 87 

𝐷𝑎𝑚ℎ𝑜𝑡 =

{
 

 
𝑇𝑚𝑎𝑥 < 𝑇ℎ𝑜𝑡,𝑐𝑟𝑖𝑡 0

𝑇ℎ𝑜𝑡,𝑐𝑟𝑖𝑡 ≤ 𝑇𝑚𝑎𝑥 ≤ 𝑇ℎ𝑜𝑡,𝑑𝑖𝑒
𝑇𝑚𝑎𝑥 − 𝑇ℎ𝑜𝑡,𝑐𝑟𝑖𝑡
𝑇ℎ𝑜𝑡,𝑑𝑖𝑒 − 𝑇ℎ𝑜𝑡,𝑐𝑟𝑖𝑡

𝑇𝑚𝑎𝑥 > 𝑇ℎ𝑜𝑡,𝑑𝑖𝑒 1

 

This damage lies at same way the leaves and olive fruit organs. Where 

𝑇ℎ𝑜𝑡,𝑐𝑟𝑖𝑡is the temperature below which there is no damage and 𝑇ℎ𝑜𝑡,𝑑𝑖𝑒 is the 

temperature above which all olive fruits and leaves are dropped. 

 

Freezing 

 

Damage due for freezing (𝐷𝑎𝑚𝑓𝑟𝑒𝑒𝑧𝑒;eq. 88) this damage change for the 

various organs and excluding for olive fruit it is sensible to hardening and 

dehardening phenomenon.  

Equation 88 

𝐷𝑎𝑚𝑓𝑟𝑒𝑒𝑧𝑒 =

{
 
 

 
 𝑇𝑚𝑖𝑛 < 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑐𝑟𝑖𝑡 0

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑑𝑖𝑒 ≤ 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑐𝑟𝑖𝑡
𝑇𝑚𝑖𝑛 − 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑐𝑟𝑖𝑡

𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑑𝑖𝑒 − 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑐𝑟𝑖𝑡
𝑇𝑚𝑖𝑛 > 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑑𝑖𝑒 1

 

Where 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑐𝑟𝑖𝑡 is the air temperature below which the vegetal tissue 

starts to freeze and 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑑𝑖𝑒 is the temperature below which the vegetal 

tissue dies for freezing. The plant organs have different parameter values 

(table 3), in order to sensibility olive fruit, leaves, twigs, woody and reserve 

organs, plant. If the plant are hardened the model subtract 5°C to 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑑𝑖𝑒 

and 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑐𝑟𝑖𝑡 of all organs excluding olive fruits. 
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Table 3: Acronym of the freezing parameters for the various organs 

Organs 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑐𝑟𝑖𝑡 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑑𝑖𝑒 

Plant 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑝𝑙,𝑐𝑟𝑖𝑡 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑝𝑙,𝑑𝑖𝑒 

Woody organs and reserves 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑤𝑜,𝑐𝑟𝑖𝑡 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑤𝑜,𝑑𝑖𝑒 

Twigs 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑡𝑤,𝑐𝑟𝑖𝑡 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑡𝑤,𝑑𝑖𝑒 

Leaves 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑙𝑒,𝑐𝑟𝑖𝑡 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑙𝑒,𝑑𝑖𝑒 

Olive fruits 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑜𝑓,𝑐𝑟𝑖𝑡 𝑇𝑓𝑟𝑒𝑒𝑧𝑒,𝑜𝑓,𝑑𝑖𝑒 

Hardening (𝐻𝑎𝑟𝑑𝑑 - the today hardening coefficient -; 𝐻𝑎𝑟𝑑𝑑−1 – the 

previous time step hardening coefficient-) approach is organized in two sub- 

approach one for hardened plant (eq. 89) and the other for not hardened plant 

(eq.90). 𝐻𝑎𝑟𝑑𝑑 and 𝐻𝑎𝑟𝑑𝑑−1 values minimum are 0 and maximum are 2, 

below the minimum and above the maximum are trunked. The value of 1 or 

above it means that plant is hardened 

Equation 89 

 

Equation 90 

 

 

𝐻𝑎𝑟𝑑𝑑

{
 

 
𝑇𝑎𝑣𝑔 ≤ 0 & 𝑇𝑚𝑖𝑛 ≤ 10 𝐻𝑎𝑟𝑑𝑑−1 + 0.833

𝑇𝑎𝑣𝑔 > 0 & 𝑇𝑚𝑖𝑛 ≤ 10 𝐻𝑎𝑟𝑑𝑑−1

𝑇𝑚𝑖𝑛 > 10 𝐻𝑎𝑟𝑑𝑑−1 + 0.2− 0.2 ∙ 𝑇𝑚𝑖𝑛 {
𝐻𝑎𝑟𝑑𝑑 ≥ 1 𝐻𝑎𝑟𝑑𝑑 + 0.2− 0.2 ∙ 𝑇𝑚𝑖𝑛

𝑒𝑙𝑠𝑒 𝐻𝑎𝑟𝑑𝑑

 

𝐻𝑎𝑟𝑑𝑑

{
 
 
 
 

 
 
 
 
−1 ≤ 𝑇𝑎𝑣𝑔 ≤ 8 𝐻𝑎𝑟𝑑𝑑−1 + 0.0833

−1 ≤ 𝑇𝑎𝑣𝑔 ≤ 0

𝑒𝑙𝑠𝑒

{𝐻𝑎𝑟𝑑𝑑 ≥ 1 𝐻𝑎𝑟𝑑𝑑
(𝑇𝑎𝑣𝑔 − 3.5)

2

506
𝑒𝑙𝑠𝑒 𝐻𝑎𝑟𝑑𝑑

𝐻𝑎𝑟𝑑𝑑−1

𝑇𝑚𝑖𝑛 > 10 𝐻𝑎𝑟𝑑𝑑−1 + 0.2− 0.2 ∙ 𝑇𝑚𝑖𝑛 {
𝐻𝑎𝑟𝑑𝑑 ≥ 1 𝐻𝑎𝑟𝑑𝑑 + 0.2− 0.2 ∙ 𝑇𝑚𝑖𝑛

𝑒𝑙𝑠𝑒 𝐻𝑎𝑟𝑑𝑑
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Water stress 

 

The model is able to estimate water stress effect on phenology, growing 

limitation and damage on plant. 

Equation 91 

𝐺𝐷𝐷𝑟,𝑜 = 𝐺𝐷𝐷𝑟,𝑜 ∙ (1 +𝑊𝑝) 

The model estimates an increase of growing degree accumulation (eq. 91) 

according to water stress coefficient on phenology ( 𝑊𝑝eq. 92) 

Equation 92 

𝑊𝑝 = 𝑀𝑎𝑥 (1, (
𝐸𝑇𝑎
𝐸𝑇𝑐

)
(1−𝑊𝑆𝑡𝑜𝑙)

) 

Where 𝐸𝑇𝑐 is the water required by atmosphere and canopy (eq. 94), 𝐸𝑇𝑎 is 

the actual evapotranspiration (output of a linked soil model) and 𝑊𝑆𝑡𝑜𝑙 is a 

water tolerance parameter. 

Water deficit damages (𝐷𝑎𝑚𝑊𝑑𝑒𝑓; eq. 93): in similar way to freezing damage 

there is a unique model with different parameter values for the various organs.  

Equation 93 

𝐷𝑎𝑚𝑊𝑑𝑒𝑓 = {𝑀𝑖𝑛(𝑊𝑝,𝑝𝑒𝑟𝑖𝑜𝑑) < 𝑊𝑆𝑐𝑟𝑖𝑡 1 −
1 − 𝐴𝑣𝑔(𝑊𝑝,𝑝𝑒𝑟𝑖𝑜𝑑)

𝑊𝑆𝑐𝑟𝑖𝑡
𝑒𝑙𝑠𝑒 0

 

Where 𝑊𝑝,𝑝𝑒𝑟𝑖𝑜𝑑 is the matrix of water stress coefficient (𝑊𝑝; eq. 92) of period 

of previous day and 𝑊𝑆𝑐𝑟𝑖𝑡 is a critical value of water stress. The length of 

the period and 𝑊𝑆𝑐𝑟𝑖𝑡 are different for the various organs (table 4). The 

tolerance order is plant, woody and reserve organs, twigs and olive fruit, 

leaves. 
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Equation 94 

𝑊𝑟 = 𝐸𝑇0 ∙  𝐾𝑐 ∙ (1 − 𝑒
−𝑘∙𝑃𝐴𝐼𝑠−1) 

Where 𝐾𝑐 is the crop evapotranspiration coefficient and 𝐸𝑇0 is the potential 

evapotranspiration. 

Table 4: Acronym of the freezing parameters for the various organs 

Organs 𝑊𝑝,𝑝𝑒𝑟𝑖𝑜𝑑 𝑊𝑆𝑐𝑟𝑖𝑡 

Plant 𝑊𝑝,𝑝𝑒𝑟𝑖𝑜𝑑,𝑝𝑙 𝑊𝑆𝑐𝑟𝑖𝑡,𝑝𝑙 

Woody organs and reserves 𝑊𝑝,𝑝𝑒𝑟𝑖𝑜𝑑,𝑤𝑜 𝑊𝑆𝑐𝑟𝑖𝑡,𝑤𝑜 

Twigs and fruits 𝑊𝑝,𝑝𝑒𝑟𝑖𝑜𝑑,𝑡𝑓 𝑊𝑆𝑐𝑟𝑖𝑡,𝑡𝑓 

Leaves 𝑊𝑝,𝑝𝑒𝑟𝑖𝑜𝑑,𝑙𝑒 𝑊𝑆𝑐𝑟𝑖𝑡,𝑙𝑒 

Predators of the olive fruit fly submodel 

Predator population (𝑃𝑜𝑟𝑠𝑛) is linked to the total olive fruit fly population 

(𝑇𝑜𝑡𝑃𝑜𝑝𝑡−𝑥; include all the stages) with a delay function that have 3 

parameters the number of time step (day) of delay, the theoretical number of 

flies that eats a predator to survive at each time step (𝐸𝐹𝑝𝑃𝑜𝑟) and theoretical 

number of fly for predator at equilibrium (𝑇𝐹𝑃𝐸). The heated flies are 

redistributed according a liking coefficient per phenological phase (𝑃𝐿𝑖𝑘𝑐,𝑝ℎ) 

to the actual populations; 

The population of predators (𝑃𝑜𝑟𝑠𝑛) is estimated as current (eq. 95) 

Equation 95 

𝑃𝑜𝑟𝑠𝑛 = 𝑇𝐹𝑃𝐸 ∙  𝑇𝑜𝑡𝑃𝑜𝑝𝑡−𝑥 

Where 𝑡 − 𝑥 is the number of day to delay.  

The theoretical number of eaten fly (𝐹𝑒𝑎𝑡,𝑡) is estimated according to equation 

96. 
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Equation 96 

𝐹𝑒𝑎𝑡,𝑡 = 𝑃𝑜𝑟𝑠𝑛 ∙  𝐸𝐹𝑝𝑃𝑜𝑟 

The theoretical coefficient (𝑐𝐹𝑒𝑎𝑡,𝑡) of eaten olive fruit fly is given by two 

alternative equations (eq. 97, 98) 

Equation 97 

𝑐𝐹𝑒𝑎𝑡,𝑡 =
𝐹𝑒𝑎𝑡,𝑡

𝑇𝑜𝑡𝑃𝑜𝑝𝑡−𝑥
 

Equation 98 

𝑐𝐹𝑒𝑎𝑡,𝑡 =
𝐸𝐹𝑝𝑃𝑜𝑟

𝑇𝐹𝑃𝐸
 

The actual olive fruit fly population it is changed in number, so the predators 

could have abundance or shortage of pray, for this reason the number of eaten 

fly (𝐹𝑒𝑎𝑡,𝑎𝑡𝑡; eq. 99) and the percentage of eaten fly (𝑐𝐹𝑒𝑎𝑡,𝑎𝑡𝑡; eq. 100) are 

adjusted. 

Equation 99 

𝐹𝑒𝑎𝑡,𝑎𝑡𝑡

= {
𝑐𝐹𝑒𝑎𝑡,𝑎𝑡𝑡 ∙ 𝑇𝑜𝑡𝑃𝑜𝑝𝑡 > 𝑇𝑜𝑡𝑃𝑜𝑝𝑡 − 2 𝑇𝑜𝑡𝑃𝑜𝑝𝑡 − 2

𝑒𝑙𝑠𝑒 𝑀𝑖𝑛(3 ∙ 𝐹𝑒𝑎𝑡,𝑡 , 𝑐𝐹𝑒𝑎𝑡,𝑎𝑡𝑡 ∙ 𝑇𝑜𝑡𝑃𝑜𝑝𝑡)
 

Equation 100 

𝑐𝐹𝑒𝑎𝑡,𝑎𝑡𝑡 = (𝑐𝐹𝑒𝑎𝑡,𝑡 ∙ 𝑐𝐹𝑒𝑎𝑡,𝑝𝑜𝑡)
0.5

 

Where 𝑐𝐹𝑒𝑎𝑡,𝑝𝑜𝑡 is the potential coefficient of olive fruit fly eaten (eq.101) 

Equation 101 

𝑐𝐹𝑒𝑎𝑡,𝑝𝑜𝑡 =
𝐹𝑒𝑎𝑡,𝑡

𝑇𝑜𝑡𝑃𝑜𝑝𝑡
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Than the number of eaten flies is spread in the various phenological phases 

(egg, larva I, larva II, larva III, pupae, adult) taking in account the various 

phases population number and liking following the approach below. 

For each phenological phases the minimum value of population number 

(different from 0, in this case the minimum value major than 0) is used as 

divisor of all the phenological phases population number. 

For each phenological phases the minimum value of liking coefficient 

(different from 0, in this case the minimum value major than 0) is used as 

divisor of all the phenological phases liking coefficient. 

The two list obtained are multiplied obtaining a list of predation score for 

each fly phenological phases. 

For each phenological phases the score is multiplied to 𝐹𝑒𝑎𝑡,𝑎𝑡𝑡 and divided 

by the sum of all the score obtaining the phase specific number of eaten fly. 

In case of surplus of eaten olive fruit fly in one or more phenogical phase than 

the phase/s population number, the surplus of eaten fly is applied to the 

phenological phase with the higher number of population. 

The phase specific number of eaten fly obtained as above is divided by the 

phase population number to obtain 𝑓𝑀𝑃 specific per phase. 
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6. Conclusions and remarks 

In this PhD Thesis, the importance of simulating the interactions between 

cultivated and wild species was underlined, for its crucial role in optimising 

crop management, quantifying the effects of climate change and the 

identification of adaptation strategies, estimating the quality of production 

(forage and olive fruits), and evaluating ecosystem services provided by 

agroecosystems. 

In this context, knowledge gaps were identified and prioritised and this 

provided us with insights for the development of new simulation models. We 

documented the accuracy of the simulations obtained and the usability of the 

models in operational contexts. In particular, the crop-weed interaction model 

was developed and parameterized using experimental data, and then assessed 

with in silico experiments for its capability to support weed management. For 

olive trees, the olive fruit fly and its predator, the suitability of the model for 

operational contexts was successfully tested by an insurance company that 

used the model (and a derived meta-model) to develop new index-based 

insurance products. A limitation of the use of these models could be the need 

to simplify the developed models to be easily understood by farmers and 

insurance personnel (Tartarini et al., 2021; Colbach et al., 2014). The new 

suitability function (including approaches specific for grazing) implemented 

in CoSMo demonstrated their usefulness in different grasslands and pastures, 

extending the CoSMo capability to support management in the short and 

medium term (including adaptation to climate change). 

Looking forward, new models of interactions between cultivated and wild 

species could be developed by adapting the modelling solutions developed 

and assessed in this thesis. 
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