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Abstract

Objective. The percentages of cardiac and sympathetic baroreflex patterns detected via baroreflex
sequence (SEQ) technique from spontaneous variability of heart period (HP) and systolic arterial
pressure (SAP) and of muscle nerve sympathetic activity (MSNA) burst rate and diastolic arterial
pressure (DAP) are utilized to assess the level of the baroreflex engagement. The cardiac baroreflex
patterns can be distinguished in those featuring both HP and SAP increases (cSEQ++-) and decreases
(cSEQ——), while the sympathetic baroreflex patterns in those featuring a MSNA burst rate decrease
and a DAP increase (sSEQ-+—) and vice versa (sSSEQ—+). The present study aims to assess the
modifications of the involvement of the cardiac and sympathetic arms of the baroreflex with age and
postural stimulus intensity. Approach. We monitored the percentages of cSEQ++ (%cSEQ++) and
c¢SEQ—— (%cSEQ——) in 100 healthy subjects (age: 21-70 years, 54 males, 46 females), divided into
five sex-balanced groups consisting of 20 subjects in each decade at rest in supine position and during
active standing (STAND). We evaluated %cSEQ++, %cSEQ——, and the percentages of sSSEQ+— (%
sSEQ+—) and sSEQ—+ (%sSEQ—+) in 12 young healthy subjects (age 23 4 2 years, 3 females, 9
males) undergoing incremental head-up tilt. Main results. We found that: (i) %cSEQ++ and %cSEQ
—— decreased with age and increased with STAND and postural stimulus intensity; (ii) %sSEQ+—
and %sSEQ—+ augmented with postural challenge magnitude; (iii) the level of cardiac and
sympathetic baroreflex engagement did not depend on either the absolute value of arterial pressure or
the direction of its changes. Significance. This study stresses the limited ability of the cardiac and
sympathetic arms of the baroreflex in controlling absolute arterial pressure values and the equivalent
ability of both positive and negative arterial pressure changes in soliciting them.

1. Introduction

The cardiac baroreflex is responsible for adjusting heart period (HP) to limit the variability of arterial pressure
(AP), and it was originally characterized by assessing the positive slope of the linear regression of HP on systolic
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AP (SAP) after the administration of a vasoactive drug (Smyth et al 1969, Pickering et al 1972). The baroreflex
sequence (SEQ) method (Bertinieri et al 1985) is one of the most utilized time domain techniques for the
characterization of the cardiac baroreflex from spontaneous variability of HP and SAP (Parati et al 1988, Steptoe
and Vogele 1990, Blaber et al 1995, Parlow et al 1995, Porta et al 2000, Laude et al 2004, Porta et al 2013a). The
SEQ method is based on the definition of patterns of cardiac baroreflex origin featuring concomitant parallel
variations, either increases or decreases, of both HP and SAP (Bertinieri et al 1985). The sympathetic baroreflex
varies sympathetic activity to buffer AP changes, and it was originally evaluated by assessing the negative slope of
the linear regression of a suitable parameter derived from muscle sympathetic nerve activity (MSNA) on
diastolic AP (DAP) both after pharmacological challenges (Ebert et al 1992, Rudas et al 1999) and in
nonpharmacological condition (Sundlof and Wallin 1978, Kienbaum et al 2001, Hart et al 2010). The SEQ
technique was adapted to typify the sympathetic baroreflex from spontaneous variability of MSNA burst rate, as
defined in Marchi et al (2016a), and DAP (Marchi et al 2016b). Patterns of sympathetic baroreflex origin were
defined as concomitant antiparallel sequences featuring MSNA burst rate increases and DAP decreases, or

vice versa (Marchi ef al 2016b). In the studies that originally proposed the SEQ technique for the characterization
of the cardiac (Bertinieri et al 1985) and sympathetic (Marchi et al 2016b) arms of the baroreflex, it was suggested
that the percentage of cardiac baroreflex sequences (%cSEQ) and of sympathetic baroreflex sequences (%sSEQ)
could provide a measure of the degree of solicitation of the two baroreflex arms.

The advantage of the SEQ method with respect to the other analytical methods is the possibility of
investigating the contribution of AP rises and falls separately. In the case of the cardiac baroreflex, it is possible to
separate HP-SAP patterns featuring HP lengthening driven by SAP increase, referred to as cSEQ++, from those
presenting HP shortening in response to SAP fall, labelled as cSEQ—— (Bertinieri et al 1985, Parati et al 1988, De
Maria et al 2018, De Maria et al 2019b). In the case of the sympathetic baroreflex, it is possible to separate MSNA-
DAP patterns featuring a DAP increase associated to a MSNA burst rate decrease, referred to as SSEQ+—, from
those presenting the opposite combination, namely a DAP fall and a MSNA burst rate rise, labelled as sSSEQ—+
(Marchi etal 2016b, De Maria et al 2019a).

Aging influences the functioning of the cardiac baroreflex (Laitinen et al 1998, Rudas et al 1999, Jones et al
2003, Laitinen et al 2004, Fauvel et al 2007, Milan-Mattos et al 2018). This result has been confirmed by the SEQ
technique as well (Laitinen et al 2004, De Maria et al 2019b). Orthostatic stimulus affects the functioning of the
cardiac baroreflex (Cooke et al 1999, Laitinen et al 2004, De Maria et al 2018, Milan-Mattos et al 2018, Porta et al
2023a) and sympathetic baroreflex (O’Leary et al 2003, Fu et al 2006, Ichinose et al 2006, Barbic et al 2015). This
finding has been confirmed by the SEQ analysis as well (Steptoe and Vogele 1990, Laitinen et al 2004, Marchi et al
2016b, Portaetal 2016, De Maria et al 2019a, De Maria et al 2019b). However, the impact of aging and postural
challenges on the functioning of the cardiac and sympathetic arms of the baroreflex has been assessed most in
terms of influences on baroreflex sensitivity, but the effect on parameters describing their engagement, such
as %cSEQ and %sSEQ, has not been reported, especially when separately considering the direction of the AP
variations. Since similar cardiac and sympathetic baroreflex sensitivities might underlie dissimilar baroreflex
engagements and the involvement of the cardiac and sympathetic arms of the baroreflex might be distributed
differently to buffer positive and negative AP variations, this analysis might provide additional insight in the AP
control.

Thus, the present study aims to compare %cSEQ++ with %cSEQ—— and %sSEQ+— with %sSEQ—+ in
experimental conditions challenging the baroreflex, such as aging and postural stressors. The aging protocol
enables us to monitor %cSEQ++ and %cSEQ—— in healthy subjects of different ages at supine resting (REST)
and during active standing (STAND) (Catai et al 2014, Porta et al 2014). The incremental head-up tilt protocol
allowed the monitoring of %cSEQ++ and %cSEQ—— and of %sSEQ+— and %sSEQ—+- in young, healthy
subjects undergoing passive orthostatic challenges of various intensities (Lambert et al 2008). The two protocols
were considered together in the present study to provide the most complete picture on the quantification of the
engagement of the baroreflex in response to aging and postural stressors that we can provide according to the
data we collected in the past. Since the degree of involvement of the cardiac and sympathetic arms of the
baroreflex might be influenced by the level of AP (Hesse et al 2007, Hart et al 2011, Incognito et al 2020), we
correlated the %cSEQ and %sSEQ with the SAP and DAP mean values, respectively.

2. Experimental protocol and data analysis

2.1. Aging protocol

This experimental protocol was designed to assess the effect of the aging process on the cardiac baroreflex in
healthy subjects (Catai et al 2014, Porta et al 2014). In this study we retrospectively analyzed recordings
prospectively collected from 2011 to 2012. The study adhered to the Principles of the Declaration of Helsinki and
was approved by the Ethics Committee of the Federal University of Sao Carlos (173,/2011). Subjects signed an
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informed consent upon enrollment. We refer to (Catai et al 2014, Porta et al 2014) for additional details. Briefly,
participants to the study were non-smokers, free of any disease and not taking any medication. Subjects were
invited to avoid caffeinated and alcoholic beverages in the 24 h preceding the test. The group consisted of 100
healthy subjects (age from 21 to 70 years, median = 45 years), divided into 5 groups according to their age: (i)
group 21-30 (age from 21 and 30 years, median = 26 years, 10 males, 10 females); (ii) group 31-40 (age from 31
to 40 years, median = 34 years; 11 males, 9 females); (iii) group 41-50 (age from 41 and 50 years, median = 45
years, 10 males, 10 females); (iv) group 51-60 (age from 51 and 60 years; median = 55 years, 10 males, 10
females); (v) group 61-70 (age from 61 to 70 years; median = 65 years; 13 males, 7 females). Body mass index
(BMI) and peak oxygen uptake of all the groups were reported in Catai et al (2014), Porta et al (2014).

For each subject an electrocardiogram (ECG), via a bioamplifier device (BioAmp FE132, ADInstruments,
Sydney, Australia), and non-invasive AP, via a volume-clamp device (Finometer-PRO, Finapres Medical
System, Amsterdam, The Netherlands) was available for analysis. Recordings were conducted at REST and
during STAND, where STAND sessions always followed REST. Both REST and STAND recordings lasted
15 min. The test was performed in the morning after a good-slept night in a room with a comfortable
temperature. The subjects breathed spontaneously during the test, but they were not allowed to talk. Signals
were sampled at 400 Hz via a commercial analog-to-digital converter device (Power Lab 8/35, ADInstruments,
Sydney, Australia).

2.2. Incremental head-up tilt protocol

This experimental protocol was designed to assess the effect of passive orthostatic challenge with incremental
intensity on the cardiac and sympathetic arms of the baroreflex in young healthy subjects (Lambert et al 2008). In
this study we retrospectively analyzed recordings prospectively collected from 2006 to 2008. The study adhered
to the Principles of the Declaration of Helsinki and was approved by the Alfred Hospital Ethics Committee (144/
06). Subjects signed an informed consent upon enrollment. We refer to Lambert et al (2008) for additional
details. Briefly, participants in the study were free of any disease and not taking medications. Subjects were
invited to avoid caffeinated and alcoholic beverages in the 24 h preceding the test. The group consisted of 12
young, healthy subjects (age: 23 + 2 years, BMI: 24.3 & 2.5 kg-m %, 9 males, 3 females).

Each enrolled subject underwent an incremental head-up tilt test. The table was consecutively tilted at 0°,
20°,30°,40° and 60° (T0, T20, T30, T40 and T60, respectively), never returned to 0° and angle was incremented
from the previous inclination. Each angle was maintained for 10 min. The recording at 60° was completed in 7
subjects, while the recordings of one subject during T30 and T40 were excluded from the analysis for poor
quality. We recorded ECG (ADInstruments, Sydney, Australia), invasive AP from the radial artery (3F, 5 cm,
Cook catheter), and MSNA acquired via a microneurographic device IOWA Nerve Traffic Analyzer, model
662C-3, Department of Bioengineering, University of lowa, lowa) from postganglionic sympathetic fibers
directed to the muscle vasculature (Vallbo et al 2004). Signals were recorded for the overall duration of the
incremental challenge. The MSNA signal was acquired by inserting a tungsten microelectrode (FHC,
Bowdoinham, Maine) in the peroneal nerve and adjusting the position to obtain a satisfactory signal. The raw
MSNA signal was band-pass filtered (700-2000 Hz), amplified, rectified, and integrated (time constant of 0.1 s).
The integrated MSNA signal was utilized for further analysis. The tests were performed in the morning after a
good-slept night in a room with a comfortable temperature. The subjects breathed spontaneously but were not
allowed to talk. The sampling rate was fixed at 1000 Hz via a commercial analog-to-digital converter device
(PowerLab ML785/8SP, ADInstruments, Sydney, Australia).

2.3. Beat-to-beat variability series extraction

The software for the beat-to-beat variability series extraction was developed in-house and applied to the raw
signals collected in both the protocols (Porta et al 1998; Porta et al 2013a). The software searches for the QRS
complex via a method based on a threshold on the first derivative of the ECG signal. The position of the apex of
the QRS complex was refined via parabolic interpolation. The ith HP, where i is the cardiac beat counter, was
calculated as the temporal distance between two consecutive R-wave peaks detected on the ECG. The maximum
of the AP within the ith HP was taken as the ith SAP value. The ith DAP was detected as the minimum of the AP
found after the ith SAP. The MSNA burst rate series was derived as follows. The first step was the identification of
the MSNA bursts using an automatic detection algorithm (Diedrich et al 2009). The method was based on an
amplitude threshold set over the MSNA signal. The threshold was updated on a beat-to-beat basis and kept
constant over the current HP. In agreement with the traditional setting of the MSNA burst latency, the MSNA
burst was searched in a time window ranging from 0.9 to 1.7 s from each R peak (Sundléfand Wallin 1978,
Kienbaum et al 2001). The MSNA burst rate series was obtained by counting the MSNA bursts in a moving time
window of 5 s, filtering the resulting stepwise signal with a low-pass filter with a cut-off frequency of 0.5 Hz, and
sampling the filtered signal at the first R-wave peak delimiting each ith HP (Marchi et al 2016a). The obtained
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value was indicated as ith MSNA. All the MSNA values were divided by 5 s, thus obtaining mean MSNA burst
rate values expressed in bursts-s ' (Marchi et al 2016a). The detection of fiduciary points was visually checked. In
the case of a misdetection, the correct event was identified and reinserted, thus allowing the automatic
recalculation of all the associated values. In the case of ectopic beats, the series were corrected via cubic spline
interpolation. The number of corrections was very limited and largely below 5%. In the aging protocol, we
derived HP and SAP series, and in the incremental head-up tilt protocol, the HP, DAP and MSNA burst rate
series. In the case of the aging protocol, segments of the HP and SAP series lasting 256 beats were selected in a
random position at REST and during STAND. As to the incremental head-up tilt protocol, segments of HP, SAP,
DAP and MSNA burst rate lasting 256 beats were selected in a random position during T0, T20, T30, T40 and
T60. Stationarity of the mean and variance was tested according to Magagnin et al (2011). Trends of the mean
and variance of HP, SAP, DAP and MSNA burst rate, namely pigp, tsap> 4pap> HinMsna, and Ob1ps O AD TDAPs
Orsnas respectively, with age and experimental condition were already reported in Catai et al (2014), De Maria
etal (2019b) and Marchi et al (2016b). Briefly, in the aging protocol at REST yy;p did not vary with age, while op
decreased as aging progressed, and both yisxp and oé,p were positively correlated with age. In the aging protocol,
during STAND oéap did not vary with age, while o%p was negatively associated with age, and both pyp and psap
increased gradually as aging progressed. Briefly, in the incremental head-up tilt protocol, we observed a decrease
of pigp with the magnitude of the postural challenge associated with an increase of iy sna» Oeaps Obap, and
ousna- Conversely, fisap, fipaps and ofpp did not change.

2.4. Definition of patterns of cardiac baroreflex origin

We followed the definition of the pattern of cardiac baroreflex origin given in (Bertinieri et al 1985) and
subsequent modifications reported in (Porta et al 2000). Briefly, the method is based on the search of HP and
SAP ordered sequences [HP(3), HP(i+-1), HP(i4-2), HP(i4-3)] and [SAP(i), SAP(i+1), SAP(i+2), SAP(i+3)]
formed by four consecutive HP and SAP values corresponding to three HP and SAP variations. The HP and SAP
patterns that featured all positive or negative variations and occurred synchronously were referred to as cSEQ+
+ and cSEQ——, respectively. All cSSEQ++ and cSEQ—— were considered of cardiac baroreflex origin regardless
of the magnitude of SAP and HP variations and the strength of their linear association (Porta et al 2013a). The %
c¢SEQ++ and %cSEQ—— were computed by dividing the number of cSSEQ++ and cSEQ—— patterns by the
number of total patterns and multiplying the results by 100.

2.5. Definition of patterns of sympathetic baroreflex origin

We followed the definition of the pattern of sympathetic baroreflex origin given in (Marchi et al 2016b) that
exploited the definition of MSNA burst rate variability given in (Marchi et al 2016a). Briefly, the method is based
on the search of MSNA and DAP ordered sequences [MSNA(7), MSNA(i+1), MSNA(i4-2), MSNA(i+3)] and
[DAP(), DAP(i+1), DAP(i+2), DAP(i+-3)] formed by four consecutive MSNA burst rate and DAP values
corresponding to three MSNA burst rate and DAP variations. The MSNA and DAP patterns that featured all
antiparallel variations, with all positive DAP variations associated with negative MSNA burst rate changes, were
referred to as sSSEQ+—. The opposite situation with all negative DAP and positive MSNA burst rate variations
led to the definition of sSSEQ—+. sSSEQ+— and sSEQ—+ were considered of sympathetic baroreflex origin
regardless of the magnitude of DAP and MSNA burst rate variations and the strength of their linear association.
The %sSEQ+— and %sSEQ—+ were computed by dividing the number of sSSEQ+— and sSSEQ—+ patterns by
the number of total patterns and multiplying the results by 100.

2.6. Statistical analysis

As to the aging protocol, two-way repeated measures analysis of variance (one-factor repetition, Holm-Sidak
test for multiple comparisons) versus control was applied to test the differences between %cSEQ markers within
the same age group (i.e. 21-30, 31-40, 41-50, 51-60 and 61-70) and changes compared to 21-30 group within
the same %cSEQ index (i.e. %cSEQ-++ or %cSEQ——). This analysis was carried out separately at REST and
STAND. Two-way repeated measures analysis of variance (one-factor repetition, Holm-Sidak test for multiple
comparisons) versus control was applied to test the differences between REST and STAND within the same age
group and the impact of age compared to 21-30 group assigned the experimental condition (i.e. REST or
STAND). This analysis was carried out separately over %0cSEQ++ and %cSEQ——.

As to the incremental head-up tilt protocol, two-way repeated measures analysis of variance (one-factor
repetition, Holm—-Sidak test for multiple comparisons) versus control was applied to test the differences
between %cSEQ indexes within the same orthostatic challenge (i.e. T0, T20, T30, T40 and T60) and changes
compared to TO within the same %cSEQ marker (i.e. %cSEQ-++ and %cSEQ——). This analysis was carried out
separately over %sSEQ indexes as well.




10P Publishing

Physiol. Meas. 44 (2023) 114002 B De Maria et al

REST STAND

14 14
) B ocsEQ++| :
[ J%eSEQ— :

%cSEQ [%]
%cSEQ [%]

Py rerI

21-30 31-40 41-50 51-60 61-70 21-30 31-40 41-50 51-60 61-70

Figure 1. The vertical grouped error bar graphs show %cSEQ++- (black bars) and %cSEQ—— (white bars) in the aging protocol as a
function of the age groups (i.e. 21-30, 31-40, 41-50, 51-60 and 61-70 years) at REST (a) and during STAND (b). Data are reported as
mean-+standard deviation. Two-way repeated measures analysis of variance (one-factor repetition, Holm-Sidak test for multiple
comparisons) versus control, namely %cSEQ++ and 21-30, is applied. The symbol " indicates p < 0.05 versus 21-30 group.

The linear regression analysis of %cSEQ—— on %cSEQ-++, of %sSEQ—+ on %sSEQ+—, of %cSEQ++ on
tsap> Of %0cSEQ—— on pisap, of %sSEQ4— on pipap, and of %sSEQ—+ on pipap was carried by pooling all the
data regardless of the experimental condition and group. Linear regression analysis was performed separately in
each experimental protocol. Pearson product-moment correlation coefficient r and type I error probability p
were calculated. A p < 0.05 was always considered significant. The rand p of the linear regression analysis were
reported when statistically significant. Statistical analysis was carried out using a commercial statistical program
(Sigmaplot, Systat Software, Inc., Chicago, IL, version 11.0).

3. Results

3.1. Results relevant to the aging protocol

The vertical grouped error bar graphs of figure 1 show %cSEQ++ (black bars) and %cSEQ—— (white bars) as a
function of the age groups (i.e. 21-30, 31-40, 41-50, 51-60 and 61-70) at REST (figure 1(a)) and during STAND
(figure 1(b)). %cSEQ-++ and %cSEQ—— were similar, and this finding held regardless of the age bin and
experimental condition (figures 1(a), (b)). At REST, both %cSEQ++ and %cSEQ—— did not vary with age
(figure 1(a)). During STAND, %cSEQ++ decreased in the 51-60 and 61-70 groups compared to the 21-30 one,
while %cSEQ—— was lower in the 61-70 group compared to the 21-30 one (figure 1(b)).

Figure 2 shows %cSEQ++ (figure 2(a)) and %cSEQ—— (figure 2(b)) as a function of the age groups, while
considering the position of the body as a part of the statistical model. Data are reported at REST (black bars) and
during STAND (white bars). %cSEQ++ and %cSEQ—— increased during STAND compared to REST, and this
difference was significant in the 21-30, 31-40 and 51-60 groups in the case of %cSEQ++- (figure 2(a)) and in
21-30, 31-40, 41-50 and 51-60 groups in the case of %cSEQ—— (figure 2(b)). Trends of %cSEQ++ and %
cSEQ—— with age were the same as in figure 1.

The scatterplot of figure 3 shows the results of the linear correlation analysis of %cSEQ—— on %cSEQ+
+. %cSEQ—— and %cSEQ-++ were found to be significantly correlated with r = 0.697 and p = 2.131 x 10°.
After removing pairs with values of %cSEQ—— or %cSEQ++ below the 2.5th percentile or above the 97.5th
percentile of their distribution (n = 4), %cSEQ—— and %cSEQ-+ were still significantly correlated with
r=0.648 and p = 1.009-107**,

The scatterplots of figure 4 show the results of the linear correlation analysis of %cSEQ-++ on pisap
(figure 4(a)) and %cSEQ—— on psap (figure 4(b)). %cSEQ and pisap are not significantly associated and this
result held regardless of the type of cardiac baroreflex pattern.




10P Publishing

B De Mariaetal

Physiol. Meas. 44 (2023) 114002

c¢SEQ++ ¢SEQ——
14 14
B REST *
a b
[ |STAND *
# # # #
%
§ # # # 2
- |
+ |
< o
D M
n n
Q Q
O\O ”j iﬁ O\o
0 0
21-30 31-40 41-50 51-60 61-70 21-30 31-40 41-50 51-60 61-70

Figure 2. The vertical grouped error bar graphs show %cSEQ+-+ (a) and %cSEQ—— (a) in the aging protocol as a function of the age
groups (i.e. 21-30, 31-40, 41-50, 51-60 and 61-70 years) at REST (black bars) and during STAND (white bars). Data are reported as
mean+standard deviation. Two-way repeated measures analysis of variance (one-factor repetition, Holm-Sidak test for multiple

comparisons) versus control, namely REST and 21-30), is applied. The symbols # and * indicate, respectively, p < 0.05 versus REST

and versus 21-30 group.
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16
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Figure 3. The scatterplot shows the results of the linear correlation analysis of %cSEQ—— on %cSEQ++ in the aging protocol. Each
open circle represents a (%cSEQ++, %cSEQ——) pair computed in an assigned subject. Data are pooled regardless of group (i.e.
21-30, 31-40, 41-50, 51-60 and 61-70) and the experimental condition (i.e. REST or STAND). The linear regression line (solid line)
and its 95% confidence interval (dotted lines) are shown because the Pearson product-moment correlation coefficient is different

from 0 with p < 0.05.

3.2. Results relevant to incremental head-up tilt protocol

The vertical grouped error bar graphs of figure 5 show %cSEQ (figure 5(a)) and %sSEQ (figure 5(b)) asa
function of the experimental condition (i.e. T0, T20, T30, T40 and T60). %cSEQ were subdivided in %cSEQ++
(black bars) and %cSEQ—— (white bars) in figure 5(a) and %sSEQ were subdivided in %sSEQ+— (black bars)
and %sSEQ—+ (white bars) in figure 5(b). Regardless of the arm of the baroreflex, the proportion of patterns
belonging to the two families (i.e. %cSEQ++ and %cSEQ—— in the case of the cardiac baroreflex and %sSEQ+
— and %sSEQ—+ in the case of the sympathetic baroreflex) were similar (figures 5(a), (b)). The %cSEQ tended
to increase with the magnitude of the challenge but the increment was significant only in the case of %cSEQ——
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Figure 4. The scatterplot shows the results of the linear correlation analysis of %cSEQ++ (a) and %cSEQ—— (b) on psap in the aging
protocol. Each open circle represents a (jtsap, %cSEQ++) and (1sap, %cSEQ——) pair computed in an assigned subject. Data are
pooled regardless of group (i.e. 21-30, 31-40, 41-50, 51-60 and 61-70) and the experimental condition (i.e. REST or STAND). No

significant association is detected via the Pearson product-moment correlation analysis with p < 0.05.
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Figure 5. The vertical grouped error bar graphs show %cSEQ (a) and %sSEQ (b) in the incremental head-up tilt protocol as a function
of the experimental condition (i.e. T0, T20, T30, T40 and T60). %cSEQ in (a) was divided into %cSEQ++- (black bars) and %cSEQ—
— (white bars), while %sSEQ in (b) into %sSEQ+— (black bars) and %sSEQ—+ (white bars). Data are reported as mean+standard
deviation. Two-way repeated measures analysis of variance (one-factor repetition, Holm-Sidak test for multiple comparisons) versus
control, namely %cSEQ++ and TO in (a) and %sSEQ-+— and TO0 in (b), is applied. The symbol * indicates p < 0.05 versus TO.

during T60 compared to TO (figure 5(a)). The trend toward a raise of %sSEQ with the magnitude of the postural
challenge was more evident than that of %cSEQ: indeed, the increment was significant during both T40 and T60
compared to T0 and detected by both %sSEQ+— and %sSEQ—+- (figure 5(b)).

The scatterplots of figure 6 show the results of the linear correlation analysis of %cSEQ++ on %cSEQ——
(figure 6(a)) and of %sSEQ—+ on %sSEQ+— (figure 6(b)). %cSEQ++ and %cSEQ—— were found to be
significantly correlated with 7= 0.701 and p = 9.94 x 10, while %sSEQ-— and %sSEQ—+ were significantly
associated with r=0.78 and p = 1.46 x 10~ '". After removing pairs with values of %cSEQ—— or %cSEQ++-
below the 2.5th percentile or above the 97.5th percentile of their distribution (1 = 2), %cSEQ++ and %cSEQ—
— were still significantly correlated with r = 0.602 and p = 9.65-10~°. The same procedure applied to the analysis
of the correlation of %sSEQ—+ on %sSEQ+—, leading to the exclusion of 4 pairs, confirmed the significance of

the correlation with r=0.713 and p = 1.93 x 107%.

7



10P Publishing

Physiol. Meas. 44 (2023) 114002

B De Mariaetal

%cSEQ-— [%]

0 %cSEQ++ [%]

16

%sSEQ—+ [%]

Figure 6. The scatterplot shows the results of the linear correlation analysis of %cSEQ—— on %cSEQ++ (a) and of %sSEQ—-+ on %
sSEQ-+— (b) in the incremental head-up tilt protocol. Each open circle represents a (%cSEQ++, %cSEQ——) and (%sSEQ+—, %
sSEQ—+) pair computed in an assigned subject. Data are pooled regardless of the experimental condition (i.e. T0, T20, T30, T40 and
T60). The linear regression line (solid line) and its 95% confidence interval (dotted lines) are shown as well because the Pearson
product-moment correlation coefficient is different from 0 with p < 0.05.
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Figure 7. The scatterplot shows the results of the linear correlation analysis of %cSEQ++ (a) and %cSEQ—— (b) on psap, and of %
SSEQ-+— (c) and %sSEQ—+(d) on pipap in the incremental head-up tilt protocol. Each open circle represents a (pisap, %cSEQ++),
(ptsap» %cSEQ——), (pap, %sSEQ+—), and (ipap, %sSEQ—+) pair computed in an assigned subject. Data are pooled regardless of
the experimental condition (i.e. T0, T20, T30, T40 and T60). No significant association is detected via the Pearson product-moment
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The scatterplots of figure 7 show the results of the linear correlation analysis of %cSEQ++ and %cSEQ——
on usap (figures 7(a), (b)) and of %sSEQ-+— and %sSEQ—+ on pipap (figures 7(c), (d)). The percentages of
cardiac and sympathetic baroreflex patterns were not linearly correlated with the absolute AP value and this
result held regardless of the cardiac and sympathetic baroreflex pattern types.

4. Discussion

The main findings of the present study can be summarized as follows: (i) the SEQ method allows the separate
evaluation of the degree of cardiac and sympathetic baroreflex involvement in controlling positive and negative
AP variations; (ii) %cSEQ++ and %cSEQ—— decreased with age and increased with STAND and postural
stimulus intensity; (iii) %0sSEQ+— and %sSEQ—+ augmented with postural challenge magnitude; (iv) the level
of cardiac and sympathetic baroreflex engagement did not depend on either the absolute value of arterial
pressure or the direction of its changes.

4.1. SEQ method allows the evaluation of the degree of cardiac and sympathetic baroreflex involvement in
controlling positive and negative AP variations

The baroreflex consists of several arms, all aiming at limiting AP variability with suitable modifications of
various physiological variables (Karemaker and Wesseling 2008, Robertson et al 2012, Porta and Elstad 2020).
For example, the cardiac and sympathetic arms of the baroreflex have as targets, respectively, the HP (Smyth et al
1969, Pickering et al 1972) and sympathetic traffic, the latter being usually characterized in humans via the total
integrated value of MSNA, or MSNA burst amplitude or area, or probability of observing MSNA bursts
associated with a cardiac beat in each bin of DAP (Sundlof and Wallin 1978, Ebert et al 1992, Kienbaum et al
2001, Hart et al 2010). The characterization of the baroreflex functioning is usually based on the assessment of
baroreflex sensitivity defined as the variation of target variable per unit modification of an appropriate AP value.
Originally, the evaluation of the baroreflex sensitivity requires the administration of a vasoactive drug evoking
an important modification of AP (Smyth et al 1969, Pickering et al 1972, Ebert et al 1992, Rudas et al 1999, Hunt
etal2001, Tank et al 2005, Studinger et al 2007, Studinger et al 2009). The exploitation of spontaneous
fluctuations of physiological variables allowed the estimation of the baroreflex sensitivity in absence of an
artificial modification of AP and in more physiological conditions (Laude ef al 2004, Sundlof and Wallin 1978,
Kienbaum et al 2001). One of the most utilized techniques allowing the computation of the baroreflex sensitivity
from spontaneous variability of physiological variables is the SEQ technique, originally proposed to typify the
cardiac baroreflex (Bertinieri et al 1895) and adapted for the analysis of the sympathetic baroreflex (Marchi et al
2016b). The SEQ method is based on the definition of patterns of baroreflex origin and its search within the
recorded variability series. This characterization makes possible the assessment of the strength of activation of
the baroreflex via the percentage of baroreflex patterns (%SEQ): the greater the %SEQ, the more involved the
baroreflex is in regulating a physiological variable. The %SEQ complements the baroreflex sensitivity given that
the same value of baroreflex sensitivity can be obtained from different %SEQ values. In addition, the
identification of the pattern of baroreflex origin allow one to separate the response of the target variability to AP
rises and falls, namely, respectively, cSEQ-++ and cSEQ—— in the case of the cardiac baroreflex and sSSEQ+—
and sSEQ—+- in the case of the sympathetic baroreflex, thus making more specific and more insightful the
characterization of baroreflex functioning. It is worth noting that the degree of engagement of the baroreflex was
assessed in the original papers via the computation of the total number of baroreflex sequences instead of using
percent values because those studies considered baroreflex patterns of different lengths (Bertinieri et al 1985,
Parati et al 1988). The possibility of assessing %SEQ is favored by a constant pattern length, namely L =4 or 3
variations in the present study (Porta et al 2000, Marchi et al 2016b). The advantage of using %SEQ instead of the
cumulative amount of the baroreflex patterns is that %SEQ is normalized between 0 and 100, thus becoming
independent of the frame length. Differences between %SEQ and the cumulative amount of baroreflex patterns
could explain the opposite conclusions about the effect of STAND that can be found in (Steptoe and

Vogele 1990) compared to those of the present study.

4.2. %cSEQ++ and %cSEQ— — decreased with age while remaining balanced

Itis well known that aging affects the cardiac baroreflex, given that its sensitivity decreases with age (Laitinen et al
1998, Rudas et al 1999, Jones et al 2003, Laitinen et al 2004, Fauvel et al 2007, Milan-Mattos et al 2018). SEQ
analysis was able to detect this trend as well (De Maria et al 2019b). In addition, no cardiac baroreflex sensitivity
differences were detected when cSEQ were separated into cSEQ++- and cSEQ—— and this finding held
regardless of the age groups, even though the association of cardiac baroreflex sensitivity computed in response
to SAP rises and falls with some asymmetric behaviors of HP variability (De Maria et al 2019b) suggested a more
efficient ability of the cardiac baroreflex in limiting SAP elevations compared to drops (Pickering et al 1972,
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Eckberg 1980, Rudas et al 1999, Studinger et al 2007, Young et al 2008). However, no studies reported the trend
of %cSEQ with age, especially when ¢cSEQ++ and cSEQ—— were separately considered. The present study
originally found that the degree of solicitation of the cardiac baroreflex, assessed via %cSEQ), decreased with age,
even when cSEQ++- and cSEQ—— were separated. Accounting for posture did not modify conclusions on the
impact of age given that we observed similar trends regardless of the direction of the AP variations. In addition,
the proportion of cSEQ++ and cSEQ—— remained balanced, thus suggesting a similar level of involvement of
the cardiac baroreflex in governing SAP rises and falls. This result suggests that the greater instability of the
cardiac baroreflex observed in advanced age might be related to its reduced global degree of involvement more
than a diminished activity of the cardiac baroreflex in reacting to SAP changes in a particular direction. The
progressive decrease of the cardiac baroreflex involvement with age has been suggested by the gradual decrease
with age of the HP-SAP squared coherence in the low frequency bands (Milan-Mattos et al 2018). However,
cross-spectral analysis cannot investigate separately the responses of HP to positive and negative SAP variations,
because it provides an average value of association computed over rising and falling portions of the sinusoidal
oscillations forming the HP and SAP variability series.

4.3.%cSEQ++ and %cSEQ— — increased during postural stimuli while remaining balanced

Itis well known that the cardiac baroreflex was affected by postural stimuli as suggested by the decrease of the
cardiac baroreflex sensitivity during head-up tilt or active standing (Steptoe and Vogele 1990, Cooke et al 1999,
Laitinen et al 2004, Porta et al 2016, De Maria et al 2018, Milan-Mattos et al 2018). The SEQ analysis detected the
progressive decline of the cardiac baroreflex sensitivity toward 0 with tilt table inclination during incremental
head-up tilt (Marchi et al 2016b, De Maria et al 2019a). This decline was evident regardless of the type of cardiac
baroreflex patterns and no significant differences between cardiac baroreflex sensitivity computed over cSEQ+
+ and ¢SEQ—— were detected at any tilt table angle (De Maria et al 2019a). It is well known the %cSEQ increased
with tilt table angles (Marchi et al 2016b, Porta et al 2016) likely as an effect of the engagement of the cardiac
baroreflex to cope with the reduced venous return associated with the posture modification (Karemaker and
Wesseling 2008, Robertson et al 2012, Porta and Elstad 2020). However, no studies reported the trend of %cSEQ
with the magnitude of the postural challenge when c¢SEQ++ and cSEQ—— were separately considered. The
present study originally found that the degree of cardiac baroreflex activation, assessed via %cSEQ, increased
with tilt table angle, even when cSEQ++ and cSEQ—— were separated, thus suggesting an involvement of the
cardiac baroreflex independent of the direction of the SAP variation. The relationship between %cSEQ-++

and %cSEQ—— was also corroborated by the high correlation between the two variables. Remarkably, the
increase of %cSEQ++ and %cSEQ—— compared to REST was observed during STAND in the aging protocol as
well. The effect of STAND on %cSEQ was lost solely in 61-70 decade in keeping with a reduced response of the
cardiovascular system to external stimulation in advanced age (Laitinen et al 1998, Rudas et al 1999, Jones et al
2003, Laitinen et al 2004, Fauvel et al 2007, Milan-Mattos et al 2018). Taken all the results together, the increase
of %cSEQ++ and %cSEQ—— with an orthostatic challenge appears to be robust and could be utilized to detect
the derangement of the cardiac baroreflex. Since a missing increase, or even a decrease, of the coupling strength
between HP and SAP during a postural challenge is a distinctive feature of subjects prone to postural syncope
(Oconetal2011, Barietal 2017, Reulecke et al 2018, Porta et al 2023b), the possibility of separately analyzing the
contribution of positive and negative SAP variations to the HP-SAP coupling strength appears to be particularly
valuable. Indeed, orthostatic intolerance and baroreflex failure might be linked to a disproportionate response to
SAP changes of different sign. The increase of the association between HP and SAP during head-up tilt was
detected via cross-spectral analysis as well: indeed, the HP-SAP squared coherence in the low frequency band
was positively linked with tilt table angles (Porta et al 2016), but this tool cannot separate the contribution of
positive and negative SAP changes. Causal tools in the information domain assessing the degree of association in
the specific time direction from SAP to HP provided similar conclusions (Porta et al 2011, Porta et al 2013b,
Portaeral 2015, Barietal 2017), but again its generalization to positive and negative SAP changes is less
immediate than in the SEQ technique.

4.4. %sSEQ+— and %sSEQ—+ increased during incremental head-up tilt while remaining balanced
Head-up tilt decreased the sympathetic baroreflex sensitivity, namely it became less negative and migrated
toward 0, and this decrement was significant in the case of prolonged head-up tilt (Ichinose et al 2006). This
result was also confirmed by the SEQ analysis (Marchi et al 2016b, De Maria et al 2019a). Remarkably, a
significant positive relationship between the sympathetic baroreflex sensitivity and the magnitude of the
postural stressor was detected (Marchi et al 2016b). This trend was visible only on sympathetic baroreflex
sensitivity computed over sSEQ—+, while it was absent over sSSEQ+— (De Maria et al 2019a). The observed
trend was compatible with the more negative values of sympathetic baroreflex sensitivity computed over sSSEQ—
+, compared to sSSEQ+— (De Maria et al 2019a), thus stressing the more important ability of the sympathetic
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baroreflex to limit DAP drops with suitable increases of the MSNA burst rate (Sundlof and Wallin 1978,
Studinger et al 2009, Hart et al 2011). This result is supported by the consideration that, while increasing the
magnitude of the postural challenge, DAP exhibited a constant rise, and this induces an MSNA inhibition in
proportion with tilt table angles (Marchi et al 2016b). It is well known that %sSEQ increased with tilt table angles
(Marchi et al 2016b). The new finding of this study is that the proportion of sSSEQ, when separated in sSSEQ+—
and sSEQ—+, increases at a similar pace, thus suggesting that the sympathetic baroreflex was activated equally
by positive and negative DAP changes even though with a different sympathetic baroreflex sensitivity in the
youngest group as demonstrated in (De Maria et al 2019a). The high correlation between the two variables
supported the link between %sSEQ+— and %sSEQ—+. The notion that the sympathetic baroreflex is activated
equally by positive and negative DAP variations is important because it suggests that, not only the decoupling
between MSNA markers and DAP is one of the determinants of orthostatic syncope (Schwartz et al 2013, Barbic
etal 2015), but also an imbalance of the proportions of the responses to positive and negative DAP variations
might playarole.

4.5. %cSEQ and %sSEQ are independent of the AP mean value

In hypertensive patients, a high AP is associated with a reduced cardiac baroreflex sensitivity and scarce control
of AP variability (Mancia et al 1986, Coats et al 1991, Ziegler et al 1995). It has been demonstrated that the cardiac
baroreflex function depends on the level of AP given that the cardiac baroreflex sensitivity is inversely correlated
with mean AP (Hesse et al 2007). Similarly, a dependence of the MSNA responses of the sympathetic baroreflex
on AP rises and falls has been linked to DAP baseline levels (Incognito et al 2020) and took the form of a reduced
possibility of increasing MSNA burst rate when DAP was high (Hart ez al 2011). Since pisp increases and %cSEQ
decreases with age, even when ¢SEQ++ and cSEQ—— were separated, we would expect a significant inverse
relationship between pisap and %cSEQ-++, or %cSEQ——. This relationship might be suggested even by the
decrease of the number of cardiac baroreflex patterns in hypertensive patients (Parati et al 1988). Contrary to our
expectations, we found no association between pisap and %cSEQ++-, or %cSEQ——. This result confirms the
weak link of the cardiac baroreflex, when assessed over spontaneous variations, to the absolute value of AP, while
its relevance in controlling dynamical fluctuations of SAP is stressed by the gradual increase of the %cSEQ-++
and %cSEQ—— with the magnitude of the postural stimulus. Since a tendency toward a rise of pipap (Marchi et al
2016b) and %sSEQ with tilt table angles was observed, even when sSEQ+— and sSEQ—+ were separated, we
would expect a significant direct relationship between pipap and %sSEQ+—, or %sSEQ—+-. Contrary to our
expectations, we found no association between pipap and %sSEQ+—, or %sSEQ—+. This result confirms that
even the sympathetic baroreflex, when evaluated over physiological variability, has little to do with DAP, while
its relevance in controlling dynamical fluctuations of DAP is stressed by the gradual increase of %sSEQ+—

and %sSEQ—+ during incremental head-up tilt. We attribute the discrepancies with the literature to the
different methods utilized to characterize the behavior of the cardiac and sympathetic arms of the baroreflex,
namely the pharmacological technique in Hesse et al (2007), Incognito et al (2020) and the static approach over
spontaneous fluctuations in Hart et al (2011).

5. Conclusion

In the present study, we investigated for the first time the degree of solicitation of the cardiac and sympathetic
arms of the baroreflex assessed via the SEQ method using %cSEQ and %sSEQ from spontaneous fluctuations of
HP and SAP, and of MSNA burst rate and DAP by separately considering the direction of the SAP and DAP
variations. The degree of engagement of the cardiac baroreflex was assessed at REST and during STAND in
healthy subjects featuring different ages and in a young, healthy group undergoing incremental head-up tilt. The
degree of solicitation of the sympathetic baroreflex was evaluated solely in the group undergoing incremental
postural challenge. The results of the aging protocol showed that the degree of engagement of the cardiac
baroreflex decreased with age and increased during active orthostatic challenge. The results of the incremental
head-up tilt protocol showed that the degree of solicitation of the cardiac and sympathetic arms of the baroreflex
progressively augmented with the magnitude of the passive orthostatic challenge. These results suggests that
simple markers based on classification of patterns of baroreflex origin can be usefully exploited to detect the
activation of different baroreflex arms and to quantify their degree of solicitation. In addition, we found that the
degree of engagement of both arms of the baroreflex did not depend on the absolute AP values and the direction
of their variations. This finding stresses the limited ability of the cardiac and sympathetic arms of the baroreflex
in controlling absolute AP values and the equivalent ability of both positive and negative AP changes in
activating them. The present findings call for the use of markers of baroreflex engagement derived from the SEQ
technique to typify patients with orthostatic intolerance of various etiology and postural disturbances associated
with the missing ability to induce suitable adjustments of heart rate and peripheral resistances. As a future
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development the size of the groups should be enlarged to assess whether the degree of solicitation of the
baroreflex could be different between males and females.
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