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ABSTRACT

Context. The mass of protoplanetary discs determines the amount of material available for planet formation, the level of coupling
between gas and dust, and possibly also sets gravitational instabilities. Measuring the mass of a disc is challenging, as it is not possible
to directly detect H2, and CO-based estimates remain poorly constrained.
Aims. An alternative method has recently been proposed that does not rely on tracer-to-H2 ratios. It allows dynamical measurement of
the disc mass together with the star mass and the disc critical radius by looking at deviations from Keplerian rotation induced by the
self-gravity of the disc. So far, this method has been used to weigh three protoplanetary discs: Elias 2-27, IM Lup, and GM Aurigae.
Methods. We provide a numerical benchmark of the above method. To this end, we simulated isothermal self-gravitating discs with
a range of masses from 0.01 to 0.2 M⊙ with the PHANTOM code and post-processed them with radiative transfer (MCFOST) to obtain
synthetic observations.
Results. We find that dynamical weighing allows us to retrieve the expected disc masses as long as the disc-to-star mass ratio is larger
than Md/M⋆ = 0.05. We estimate an uncertainty for the disc mass measurement of ∼25%.
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1. Introduction

A fundamental but still poorly constrained property of proto-
planetary discs is their mass. This parameter is of paramount
importance because it affects the planet formation process in
many different ways. First of all, it determines the amount of
material available for the formation of planets (Manara et al.
2018; Mulders et al. 2021), and, once formed, it can also influ-
ence their migration efficiency (e.g. Nelson 2018). Furthermore,
it controls the interactions between gas and dust particles through
drag, strongly influencing the dynamics of the dust, and therefore
also its radial drift and growth (e.g. Birnstiel et al. 2010a,b; Laibe
2014; Gonzalez et al. 2017; Franceschi et al. 2022). The mass
of the protopanetary disc can also affect the ionisation rate and
thus the magnetic activity (e.g. Lesur et al. 2022). Finally, if the
disc-to-star mass ratio is sufficiently high (i.e. q = Mdisc/M⋆ ≳
0.07–0.1, Kratter & Lodato 2016), the disc self-gravity (SG)
affects the morphology and the stability of the system. This may
potentially lead to the development of gravitational instability
(GI) in the form of a spiral structure (Jeans 1902; Lin & Shu
1964; Paczynski 1978; Binney & Tremaine 1987; Lin & Pringle
1987; Bertin & Lin 1996; Kratter & Lodato 2016), which several
authors claim to have observed (e.g. see the case of Elias 2-27,
Pérez et al. 2016; Huang et al. 2018; Paneque-Carreño et al.
2021). However, weighing protoplanetary discs is challenging.
Indeed, the main disc gaseous component, molecular hydrogen
(H2), emits faintly in cold environments, thus making its direct

detection extremely difficult. Consequently, one must rely on
other gas-mass tracers. A first approach consists in measuring
fluxes of alternative gaseous tracers such as CO isotopologues
(e.g. Miotello et al. 2017), with 12CO being the most abun-
dant. Then, by assuming a model-dependent conversion factor
from CO isotopologues to H2, one can estimate the total mass.
Another viable tracer is dust: the gas mass can be estimated by
measuring the dust mass from millimetre flux assuming the disc
is optically thin and setting a value for the gas-to-dust ratio (e.g.
100 as in the ISM; Draine 2003). However, all these methods
rely on conversion factors – which lack accurate constraints –
and on the assumption that the observed dust is optically thin
(for a more comprehensive review, see Miotello et al. 2023).
Another recently investigated tracer is hydrogen deuteride (HD;
e.g. Bergin et al. 2013; Trapman et al. 2017). When the disc ver-
tical structure is known, a more reliable estimate of the disc
mass can be obtained using HD, which tends to yield higher
values compared to other tracers (Trapman et al. 2017). A suf-
ficiently large sample of measurements to test the strength of
this method is still missing due to the absence of plans for
a far-infrared observatory with the capability to observe HD.
Recently, Trapman et al. (2022) investigated the possibility of
using a combination of N2H+ and C18O to determine the CO-
to-H2 ratio (Öberg et al. 2023), which nevertheless still depends
on the assumed disc structure and N2 abundance. Lastly, a hand-
ful of additional approaches have been proposed in an attempt
to provide a better characterisation of this disc property. For
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example, by looking at multi-wavelength observations and com-
paring substructures to get an estimation of the Stokes number,
and thus of the total disc mass or local surface density (Powell
et al. 2019; Veronesi et al. 2019). Also, by investigating the mor-
phology of a kinematic feature linked to GI, known as GI-wiggle
(Hall et al. 2020; Longarini et al. 2021), Terry et al. (2022)
recently found an approximately linear relationship between the
amplitude of this wiggle and the disc-to-star mass ratio, thus
obtaining an estimate of the mass of gravitationally unstable
discs.

An alternative approach to tracers and dust-to-H2 conver-
sion has recently been proposed (Veronesi et al. 2021; Lodato
et al. 2023), which consists in dynamically measuring the mass
of the disc. Indeed, when the disc is massive enough compared
to the star, the gravity of the disc contributes considerably to the
azimuthal gas velocity, making it super-Keplerian. In particular,
the azimuthally averaged rotation curve is expected to transition
from an inner Keplerian profile to an outer flatter one, indica-
tive of the disc contribution. If high-resolution kinematic data
are available, the observed rotation curve can be fitted, allowing
a dynamical mass estimate to be obtained. This method has been
widely used in galaxies (e.g. Barbieri et al. 2005) and has also
been applied to AGN discs (e.g. Lodato & Bertin 2003). It is also
worth noting that it does not require precision on previous stellar
mass measurements, because it simultaneously fits M⋆ and the
disc mass, Md, from the rotation curve. To date, in the context of
protoplanetary discs, the method has been applied to three sys-
tems, Elias 2-27 (Veronesi et al. 2021), IM Lup, and GM Aur
(Lodato et al. 2023), providing a disc-to-star mass ratio (∼0.1–
0.4) for the first two that is consistent with a scenario where the
detected spirals are induced by GI.

This method of dynamical measurement, which is efficient
for massive discs, relies on a simple model for the structure
and the dynamics of the disc. As such, it is important to deter-
mine the range of disc-to-stellar mass within which it can
provide sufficiently accurate results. In this study, we provide
a benchmark of the method by performing a set of smoothed-
particle hydrodynamics (SPH) and radiative transfer simulations
(PHANTOM+MCFOST, Price et al. 2018; Pinte et al. 2009), taking
into account the gravity of the disc.

This article is organised as follows: in Sect. 2 we describe the
physical model use for the gas. In Sect. 3, we present and bench-
mark our set of numerical simulations. In Sect. 4, we detail the
analysis workflow and present our results. In Sect. 5, we present
our analysis of the uncertainties. In Sect. 6, we discuss these
uncertainties and highlight some possible limitations and future
outlooks. We finally draw our conclusions in Sect. 7.

2. Physical model

We consider a smooth axisymmetric circular disc, and we
neglect the effect of the magnetic field and dust feedback.
Indeed, the former brings only a small correction to the turbu-
lence and magnetic pressure, while the latter may only signifi-
cantly modify the effect of the pressure gradient of the gas for
high dust-to-gas ratios, which is assumed not to be the case for
the systems studied here. We also do not consider discs with
embedded planets. Low-mass planets would introduce a negli-
gible correction of the order of ∝Mp/M⋆. Massive planets would
create gaps and modify the gas surface densities, but this is
beyond the scope of this first exploration. Within these assump-
tions, the azimuthal velocity vϕ of a gas particle at a cylindrical
distance R and height z from a central object of mass M⋆ is

related to the gas pressure P and the gravitational potential of
the disc Φd according to

v2
ϕ =

GM⋆R2

(R2 + z2)3/2 +
R
ρ

∂P(R, z)
∂R

+ R
∂Φd

∂R
. (1)

The three contributions of the right hand-side of Eq. (1) cor-
respond to the gravity of the central star, the radial pressure
gradient, and the self-gravity of the disc. We assume that the
surface density of the gas follows a self-similar profile set by
turbulent viscosity (Lynden-Bell & Pringle 1974):

Σ(R) =
Md(2 − γ)

2πR2
c

(
R
Rc

)−γ
exp

− (
R
Rc

)2−γ , (2)

where Rc is the tapering radius, Md the disc mass, and γ = 1
is the power-law index. Although this profile is commonly used
for non-self-gravitating discs, it can also be chosen in the self-
gravitating case since the Keplerian shear is not affected by the
disc SG. We also assume the disc to be vertically isothermal with
the density profile given by

ρ(R, z) = ρ0(R) exp

− R2

H2

1 − 1√
1 + z2/R2

 , (3)

and the temperature profile to be a power law with the radius

T (R) = T100

( R
100 au

)−q

, (4)

where H is the disc thickness, ρ0 is the density at the mid-
plane, and T100 is a normalisation factor at 100 au. We stress
that the discs considered are not only vertically but also locally
isothermal (see Sect. 3.1).

Following, for example, Lodato et al. (2023), the rotation
profile is

v2
ϕ = v

2
K

1 −

γ′ + (2 − γ)
(

R
Rc

)2−γ (H
R

)2

−q

1 − 1√
1 + (z/R)2


 + v2

d, (5)

where γ′ = γ + 3/2 + q/2, v2
K = GM⋆/R and

v2
d = G

∫ ∞

0

[
K(k) −

1
4

(
k2

1 − k2

)
×

(
r
R
−

R
r
+

z2

Rr

)
E(k)

]√
r
R

kΣ (r) dr, (6)

where K(k) and E(k) are complete elliptic integrals and k2 =
4Rr/[(R + r)2 + z2] (Binney & Tremaine 1987; Bertin & Lodato
1999). Here the boundaries of the integral are chosen to cor-
respond to the inner and outer radius of the disc. The terms
have been rearranged in four contributions: (1) a purely circular
Keplerian term, vK ≡

√
GM⋆/R; (2) a term related to the radial

pressure gradient in the midplane, which gives a sub-Keplerian
contribution; (3) another sub-Keplerian term originating from
the pressure gradient and the stellar contribution in the vertical
direction; and finally (4) the self-contribution of the disc (see
Eq. (6)). To be able to compare some of these contributions, we
present some orders of magnitude. The correction introduced by
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Fig. 1. Rotation curves extracted from SPH simulations. Left: rotation curves in the midplane of the disc extracted from the SPH simulations with
H/R100 au = 0.075 after 20 orbits at the outer disc radius, for different disc-to-star mass ratios (solid lines). The black dash-dotted line shows the
rotation curve of the model given by Eq. (5), including the pressure gradient term with zero disc mass. Except for profiles obtained with a disc-to-
star mass ratio of 0.01, the rotation curves are distinct from a model without the disc self-gravity. Right: same as left panel but with Mdisc = 0.1 M⊙,
with rotation curves extracted for different heights (blue solid lines), and compared to the one obtained in the midplane (z = 0, black dashed-dot
line).

the vertical dependence of the stellar potential is ∼(z/R)2 and
is therefore of the same order as the correction due to the pres-
sure gradient, and therefore should not be neglected (we derived
the disc mass of Elias 2-27 with the updated model, obtain-
ing a result that is consistent with Veronesi et al. 2021; see
Appendix A). In Appendix B, these equations are provided in
a dimensionless form for order-of-magnitude estimates.

3. Numerical simulations

3.1. Hydrodynamical simulations

We performed a suite of 3D SPH simulations of gaseous
protoplanetary discs using the code PHANTOM (Price et al.
2018). The system consists of a central star of mass
M⋆ = 1 M⊙ surrounded by a gas disc with mass Mdisc =
[0.01, 0.025, 0.05, 0.1, 0.15, 0.2] M⊙. These simulations can be
rescaled in terms of disc-to-star mass ratio (see the derivation
in Appendix B). The disc extends from Rin = 10 au to Rout =
300 au, and is simulated with 106 SPH particles. The initial pro-
file of surface density is a relaxed exponential tapered power law
of Eq. (2), with Rc = 100 au and γ = 1. Simulations include the
disc self-gravity as described in Price et al. (2018), adopting a
locally isothermal equation of state P = c2

sρg with q = 0.5 for the
power-law index of the temperature radial profile (see Eq. (4)).
As a consequence of the absence of cooling, the morphology of
the discs will be smooth and axisymmetric, without spiral den-
sity waves due to gravitational instability. This is consistent with
the fact that, to date, most of the observed discs are axisymmet-
ric (with or without substructures; Ohashi et al. 2023). Effects
of self-gravity can be important even if the disc does not host
spirals. The choice of the index for radial profile of tempera-
ture would remain valid even if we were to take into account
dust in the hydrodynamical modelling, because variations in the
temperature q-index are not expected to significantly impact the
evolution of dust (Pinte & Laibe 2014).

The disc is vertically extended by initially setting up a disc
aspect ratio of (H/R)c = 0.075 with a Gaussian profile for the
volume density (see Eq. (3)), ensuring nearly vertical hydrostatic
equilibrium. These locally isothermal simulations do not require
an extra cooling term. As such, we model the angular momentum
transport throughout the disc using the SPH shock to capture vis-
cosity (Price et al. 2018, see Sect. 2.6) with αAV ≃ 0.19, which
results in a Shakura & Sunyaev (1973) viscous parameter of
αSS ≈ 0.005. The parameters used are given in Appendix C.

3.2. Preliminary test: Hydrodynamical rotation curves

As a first benchmark, we first extracted the rotation curves
directly from the hydrodynamical simulations after having
relaxed the disc to centrifugal equilibrium (t ∼ 20Ωout, where
Ωout is the orbital period of the disc outer radius). The rota-
tion curves are obtained by interpolating azimuthal velocities of
the SPH particles along the desired coordinates (R, z), and then
azimuthally averaging the results. This step provides an uncer-
tainty for the rotational velocity that is estimated as a standard
deviation. Figure 1 shows the rotation curves obtained by this
procedure. The left panel shows the rotation profiles obtained
in the midplane (R, z = 0), with disc masses ranging from 0.01
to 0.2 (blue lines). As a reference, the black line provides the
rotation curve of the model given by Eq. (5)), including the pres-
sure gradient term, but setting the mass of the disc to zero. As
expected, the contribution of the disc self-gravity increases with
the disc-to-star mass ratio. The right panel shows the rotation
curves of the simulation with Mdisc = 0.1 at different heights
ranging from z = 0 to z = 50 au. As expected from the model,
the difference in azimuthal velocity between different heights
decreases with radius.

To benchmark the validity of the formulation given by
Eq. (5), we fit the extracted rotation curves with the code DYSC1,

1 https://github.com/crislong/DySc
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Table 1. Masses, truncation radius, and their uncertainties extracted
from fitting hydrodynamical rotation curves with the model of Eq. (5).

Sims Md (M⊙) ∆Md/Md Rc (au) ∆Rc/Rc

md0.2 0.19 0.05 119 0.19
md0.15 0.14 0.06 113 0.13
md0.1 0.1 0. 106 0.06
md0.05 0.05 0. 94 0.06
md0.025 0.028 0.12 92 0.08
md0.01 0.017 0.7 86 0.14

Notes. Disc masses are all recovered with an accuracy of ∼5–12% for
all disc-to-star mass ratios [0.2, 0.15, 0.1, 0.05, 0.025, 0.01], except for
the extreme case 0.01. The star mass 1 M⊙ is always recovered ( 0.98–
0.99 M⊙). The input value for the truncation radius (100 au) is recovered
with an accuracy of ∼6–20%.

which implements the model described in Sect. 2. The results
are shown in Table 1. The fitting procedure relies on a Markov
Chain Monte Carlo using the Python package EMCEE (Foreman-
Mackey et al. 2013). We used a Gaussian likelihood with flat
priors. The code simultaneously fits both the masses of the star
and the disc, as well as the truncation radius Rc, similarly to the
procedure described in Lodato et al. (2023). After this step, we
recovered the mass of the disc with an uncertainty of ∼5–12%
(see Table 1) for disc-to-star mass ratios ranging between 0.025
and 0.2. In these cases, discs are sufficiently massive for the self-
gravity to have a measurable contribution. For a disc-to-star mass
ratio of 0.01, the disc mass cannot be extracted accurately even
from the numerical simulations.

3.3. Radiative transfer and synthetic observations

We then computed the thermal structure and synthetic observa-
tions of our numerical discs by performing 3D radiative transfer
simulations with the code MCFOST (Pinte et al. 2006, 2009).
We used a Voronoi tessellation, where each MCFOST cell cor-
responds to a gas SPH particle. The goal is to generate mock
12CO and 13CO isotopologue channel maps, from which we can
extract disc rotation curves.

The main inputs for the radiative transfer modelling are
the source of luminosity, the gas density profile extracted from
the simulations, and models for dust opacities and densities.
Self-gravitating isothermal discs do not present any kind of sub-
structure and the underlying dust density profile can therefore
be assumed to be smooth. We do not account for an eventual
dust drift, since Stokes numbers are expected to be small in these
discs, and we consider sufficiently short disc evolutions. The dust
contribution to the gravitational potential of the disc is also neg-
ligible. As such, we adopt a constant dust-to-gas ratio of ∼10−2,
which corresponds to a standard averaged ISM (Draine 2003).

The thermal structure of the disc is computed with the
following assumptions. At first, emission is at local thermal equi-
librium and Tgas = Tdust. Dust is treated as a mixture of silicates
(70%) and carbon (30%) (Draine & Lee 1984), and the optical
properties are calculated using Mie theory for spheres (Andrews
et al. 2009). Opacities are computed following the procedure
described in the DIANA model (Woitke et al. 2016; Min et al.
2016). We assume an ISM-like grain size distribution (dn/da ∝
a−3.5), with amin = 0.01µm and amax = 1 mm. The disc is heated
passively, that is, the source of radiation is only the central star,
which is assumed to radiate isotropically with a Kurucz spec-
trum at 4000 K. The expected channel maps are computed via ray

tracing, using 107 photon packets to sample the radiation field.
The disc inclination with respect to the line of sight is i = 30◦,
and the system is simulated to be located at 140 pc, which corre-
sponds to a typical protostellar disc in a star-forming region such
as Taurus. For 12CO and 13CO, we consider the J = 2–1 transi-
tion and assume abundances of 10−4 and 1.4× 10−6 respectively.
MCFOST simulations are post-processed with PYMCFOST2 by
simulating a velocity resolution of 0.1 km s−1. We then spatially
convolve the channels with a Gaussian beam of 0.1 arcsec, sim-
ilarly to the value of the MAPS survey (Öberg et al. 2021). We
finally introduce Gaussian noise with an RMS of 5mJy beam−1.

Figure 2 shows an example of the channel maps obtained
for a simulation with a disc mass of 0.1 M⊙. The 12CO channels
appear more radially extended compared to the 13CO channels.
The 13CO channels are also less patchy, because the τ = 1 region
is located closer to the midplane, a region with higher resolution.
As a result, the 13CO disc rotation curves will be less noisy than
the curves extracted from the 12CO channels (see Fig. 5). We
note that while this is the case for simulations, in real observa-
tions we do not expect 13CO rotation curves to be less noisy than
the 12CO. Indeed, 13CO is much less abundant than 12CO, and
at the same sensitivity, the signal-to-noise ratio (S/N) in 13CO
should be lower than that for 12CO.

4. Method and results

4.1. Workflow description

From the cubes of synthetic data, we first determined the height
of the emitting layer with DISKSURF (Teague et al. 2021). The
emitting layer is defined as the region from which the emis-
sion we observe originates. Isotopologues have specific optical
depth and column density, and as such, the emitting layer can be
located farther from or closer to the midplane of the disc. Having
a precise estimate of the height of the emitting layer is crucial in
order to correctly deproject azimuthal velocities and compute the
model of Eq. (5) at the correct height.

We then used EDDY (Teague 2019) to extract the rota-
tion curves. Two methods have been developed to retrieve the
observed velocity (specifically to fit the line centroids): one
quadratic and the other Gaussian. The aim of the former is to
fit a quadratic curve to the brightest pixel on either side of the
maximum of the pixel. The fit depends on the velocity sampling,
and is sensitive to the channel correlation. On the other hand,
with the latter method, which finds the line centre by fitting a
Gaussian profile to it, the selected velocity range may affect the
result in cases with skewed profiles.

To perform our analysis, we chose the quadratic method; we
briefly discuss this choice in Sect. 4.3 (for an extended discus-
sion of the methods, see e.g. Lodato et al. 2023 and Teague &
Foreman-Mackey 2018). Finally, we fit the rotation curves with
the model of Eq. (5) using the code DYSC (see Sect. 2).

4.2. Retrieving the height of the emitting layer

We first used the code DISKSURF (Teague et al. 2021) to extract
the height of the emitting layer zn (ri) of the ith radial bin for
the nth channel. DISKSURF implements the method presented
in Pinte et al. (2018). Briefly, this is a geometrical method that
allows the user to trace the emission maxima of each veloc-
ity channel and reconstruct the position of the CO layers. For
each bin, we determined the heights zn

16 (ri), zn
50 (ri), and zn

84 (ri),

2 https://github.com/cpinte/pymcfost
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12CO

13CO

Fig. 2. Example of channel maps obtained with MCFOST for the 12CO (top row) and 13CO (bottom row) isotopologues, for a simulation with disc
mass of Md = 0.1 M⊙. Different velocity channels are displayed, from 0.25 to 0.75 km s−1 (going from left to right). The chosen Gaussian beam
used to convolve the image matches the value of the MAPS survey (0.1′′), and is shown with a grey circle in the left bottom corner of each channel
map. The velocity resolution is chosen to be 0.1 km s−1 (as in the MAPS survey).

Table 2. 12CO and 13CO fit results for the parameters relevant to the
disc emitting layer (z0, ψ, Rt, qt) obtained with DISKSURF from the 50th
percentiles of the particle vertical distribution.

md0.01 md0.025 md0.05 md0.1 md0.15 md0.2

12CO

z0
ψ
Rt
qt

0.83
3.06
0.49
0.69

0.24
1.88
3.7
1.77

0.38
1.66
3.54
1.46

0.45
1.85
2.76
1.11

0.33
1.13
5.1
9.47

0.25
1.87
4.31
2.35

13CO

z0
ψ
Rt
qt

0.078
1.25
3.01
6.27

0.09
1.52
3.25
5.39

0.097
1.72
3.35
4.22

0.09
1.82
3.46
3.53

0.09
2.04
3.38
2.83

0.09
2.02
3.33
2.61

which correspond to the 16th, 50th, and 84th percentiles of the
distribution, respectively. We then used the tapered power law,

z(R) = z0 [arcsec]
( R
1arcsec

)ψ
exp

[
−

(
R
Rt

)qt
]
, (7)

to continuously parametrise the emitting surfaces z16 (r),
zem (r) = z50 (r), and z84 (r). The parameters obtained were used
to retrieve the height of the molecular emission surface zem (r)
as well as to estimate the uncertainties associated with the
procedure.

0 100 200 300 400 500 600 700
R [au]
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100

150

200

250

300

z 
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u]

z50
z16
z84

Fig. 3. Example (12CO, Mdisc = 0.1 M⊙) of one of the emitting layers
derived with DISKSURF (grey dots) and then fitted with an exponen-
tially tapered power law (solid line). We also show the 16th (dotted line)
and the 84th (dashed line) percentiles, which we take into account to
compute the rotation curve errors.

Table 2 presents the results obtained for zem (r), which
we subsequently used as a reference surface in the following
analysis. As an example, Fig. 3 shows the emission surface
(grey markers) obtained with DISKSURF for the 12CO dat-
acube from a mock observation generated by a simulation with
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Fig. 4. Differences between rotation curves obtained with the Gaussian and quadratic methods. Left panel: comparison between the rotation curves
from the model (black line, Eq. (5) with a disc mass of Md = 0.1 M⊙), the Gaussian method (blue line), and the quadratic method (orange line). We
observe that the Gaussian curve is systematically shifted with respect to the model. Right panel: difference between the extracted rotation curve
(Gaussian method in blue, quadratic method in orange) and the model vϕ from Eq. (5).

Mdisc = 0.1 M⊙. The three lines are the fits of the data points,
namely zem = z50 (solid line), z16 (dotted line), and z84 (dashed
line). The scatter between the three fitted surfaces is impor-
tant with this procedure: it is therefore crucial to refer to this
dispersion when analysing uncertainties on the rotation curve.

As expected, we also find that there is a clear trend between
the height of the emitting layer and the disc mass: more massive
discs have a higher emitting layer, because their surface density
is higher and they are optically thicker. Also, the height of the
13CO is lower with respect to the 12CO because of its reduced
abundance, tracing a region closer to the midplane. This is shown
in more detail in Figs. D.1 and D.2.

Finally, for consistency, we decided not to include the simu-
lation with Md/M⋆ = 0.2 in our analysis at this stage. Indeed,
in this case, the 12CO emission is poorly reproduced because
the SPH resolution at the emitting surface is not sufficient (see
Sect. 6.1 for a resolution analysis).

4.3. Extracting the rotation curve

We extract the azimuthal velocity with EDDY (Teague 2019)
using the harmonic oscillator method, following Teague et al.
(2018a,b). Further details of the extraction methods can be found
in Sect. 3.3.1 of Lodato et al. (2023).

For each emitting layer, that is, z16, zem = z50, and z84,
we computed three rotation curves, v16, v50, and v84. We then
assumed the azimuthal velocity of the system to be vem = v50,
with an uncertainty σv estimated to be

σv =
√
|v84 − v16|

2 + σ2
eddy, (8)

whereσeddy is the numerical error obtained with EDDY. This pro-
cedure refines the approach of Lodato et al. (2023) by including

uncertainties related to the estimate of the height of the emitting
layer.

As we fixed the inclination of the disc to i = 30◦, we used
the quadratic method to extract the rotation curve; this method
fits only the peak of emission, which is less sensitive to the lower
surface. Indeed, using the Gaussian method instead provides the
following bias: the emission coming from the lower surface sys-
tematically shifts the position of the line centroids, resulting in
a systematic error for the velocity estimate. Figure 4 shows a
comparison between the quadratic and the Gaussian methods.
Interestingly, despite being smoother, the curve obtained with
the Gaussian method underestimates the velocity in the inner
disc and overestimates it in the outer disc. This happens because
the method tries to fit a double-peaked spectrum with a single
Gaussian. We note that in this work we tested both methods,
and despite both being biased, we chose the quadratic method
(although noisier) because the Gaussian one presents an overall
larger systematic shift of the velocity caused by the lower sur-
face. Moreover, with the quadratic method we already manage to
recover the correct disc and star masses. For completeness, we
also tested our workflow using a rotation curve retrieved with a
double Gaussian fit. However, the double-Gaussian method fails
to retrieve the correct velocity in the outer region of the disc
(R > 300 au), where the S/N is too low (it fits the noise but not
the signal; see Appendix E).

Figure 5 shows the rotation curves obtained with the
quadratic method for both CO isotopologues following the pro-
cedure described above (12CO in the left panel, 13CO in the
right panel). We compare these with the analytical rotation curve
obtained assuming a disc of zero mass (black dash-dotted line).
As expected, the rotation curve derived with this approxima-
tion fits only the disc with the lower mass (Md = 0.01 M⊙),
because this is the only case where the disc contribution can
be considered as negligible. We show how we confirmed this
in Sect. 4.5.
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Fig. 5. Quadratic rotation curves obtained for all the disc mass simulations (from Mdisc = 0.01 M⊙ to Mdisc = 0.2 M⊙) for the 12CO isotopologue
(solid lines in the left panel) and the 13CO isotopologue (dashed lines in the right panel). The black dash-dotted line shows the analytical rotation
curve obtained by only considering the star and pressure gradient contribution.

4.4. Fitting procedure

For every simulation, we obtain two rotation curves: one for
12CO and another for 13CO. These curves are then fitted using
the self-gravitating model of Eq. (5). The free parameters are the
star and disc mass, and the disc truncation radius. The fits were
performed with an MCMC algorithm as implemented in EMCEE
(Foreman-Mackey et al. 2013). We chose a simple Gaussian like-
lihood, and flat priors of [0, 5] M⊙ for the star mass3, [50, 300] au
for the truncation radius, and [0, 0.5] M⊙ for the disc mass. We
chose 250 walkers and 1000 steps (having verified that conver-
gence is reached). We fit the two isotopologues both individually
and then simultaneously.

4.5. Fit results

Table 3 shows the values retrieved for the star mass M⋆, the
disc mass Md, and the disc truncation radius Rc for simulations
with disc masses ranging within Md = 0.01–0.2 M⊙, and a disc
aspect ratio of 0.075. The disc-to-star mass ratio threshold below
which the expected value cannot be recovered is 0.05. For rea-
sons related to resolution, we also exclude the simulation with
Md = 0.2 M⊙ (see Sect. 4.2). From our procedure, we are able to
measure a non-zero value for the disc mass (Mdisc ≥ 0.05 M⊙),
which indicates that the model for the rotation curve should
include the term from the gravity of the disc.

5. Uncertainties

5.1. Physical parameters

In the treatment of real data, the three principal sources of uncer-
tainty are the height of the emitting layer, the aspect ratio of the
disc, and its inclination. Uncertainties on z (r) are estimated with

3 We also tried using a prior with a narrower range around 1 M⊙ and
the result does not change.

the values of z16 and z84 found previously. To estimate uncertain-
ties associated with H/r and i, we first note that in the fitting
procedure of Sect. 4, we enforce the values of H/r and i that
were set in the numerical simulation. We therefore estimated
uncertainties associated to those parameters by carrying the fit
over the same synthetic channel maps while varying H/r and i
over a range of values. For H/r, we simply performed new fits
over the previously extracted rotation curves. For a setup value
of H/R = 0.075, we tested H/R = [0.05, 0.07, 0.08, 0.1]. For
inclinations, uncertainty estimates require the extraction of new
disc emitting layers, necessitating that we obtain novel rotation
curves. For a setup value of i = 30◦, we tested i = [27, 29, 31,
33]◦. The values of the uncertainties obtained by this procedure
are summarised in Table 3. Figure 6 shows these uncertainties for
discs whose mass can be accurately recovered by the fitting pro-
cedure. This excludes the md0.01 and md0.025 (small masses),
and md0.2 (lack of resolution). A key result of this study is that
disc masses of self-gravitating discs can be estimated from chan-
nel maps with averaged systematic uncertainties of the order of
25%. The three parameters H/r, i, and z make similar contribu-
tions as sources of error. No clear trend appears when varying
H/r and z. Values that differ from the expected one still provide
mass estimates with the same level of uncertainty. On the other
hand, precise values of i provide uncertainties of the order of
5–10%, whereas an error of a few degrees provides uncertain-
ties of the order of 20–30%. Hence, our procedure is relatively
reliable in its capacity to accurately determine disc masses. For
instance, when recovering a disc mass of 0.1 M⊙, the estimated
range spans from 0.075 to 0.125. We note that one obtains simul-
taneously ∆M⋆/M⋆ ∼ 8% for an inclination error of ±3◦ and
∆Rc/Rc ∼ 15% for a reasonable disc aspect ratio range of ±0.025
(see Appendix F for a discussion).

5.2. Spatial resolutions

In order to test how the minimum detectable mass is affected
by the spatial resolution, we produced new synthetic images by

A136, page 7 of 13



Veronesi, B., et al.: A&A, 688, A136 (2024)

Table 3. Results for the 12CO, 13CO, and the combined fit procedure.

12CO ∆X/X12CO
13CO ∆X/X13CO Combined ∆X/Xcomb

md0.01
M⋆ = 1.02
Md = 0.03
Rc = 80.00

0.02
1.99
0.2

M⋆ = 0.99
Md = 0.00
Rc = 105.15

0.01
1.0
0.05

M⋆ = 0.99
Md = 0.00
Rc = 103.7

0.01
1.0
0.037

md0.025
M⋆ = 0.99
Md = 0.04
Rc = 92.17

0.01
0.6
0.078

M⋆ = 0.99
Md = 0.00
Rc = 115.55

0.01
1.0
0.15

M⋆ = 0.99
Md = 0.00
Rc = 115.2

0.01
1.0
0.15

md0.05
M⋆ = 0.99
Md = 0.044
Rc = 102.78

0.01
0.12
0.028

M⋆ = 0.97
Md = 0.07
Rc = 94.27

0.03
0.4
0.057

M⋆ = 0.98
Md = 0.055
Rc = 97.8

0.02
0.099
0.022

md0.1
M⋆ = 1.04
Md = 0.09
Rc = 88.33

0.04
0.10
0.117

M⋆ = 0.97
Md = 0.12
Rc = 90.8

0.03
0.20
0.09

M⋆ = 0.97
Md = 0.12
Rc = 91.2

0.03
0.19
0.088

md0.15
M⋆ = 1.00
Md = 0.18
Rc = 86.00

0.0
0.2
0.14

M⋆ = 1.00
Md = 0.15
Rc = 87.5

0.0
0.0
0.125

M⋆ = 1.00
Md = 0.15
Rc = 88.114

0.0
0.0
0.12

md0.2
M⋆ = 1.1
Md = 0.165
Rc = 87.26

0.1
0.175
0.13

M⋆ = 1.06
Md = 0.15
Rc = 84.9

0.06
0.25
0.15

M⋆ = 1.12
Md = 0.09
Rc = 96.23

0.12
0.55
0.037

Notes. True values are: M⋆ = 1 M⊙, Md = [0.01, 0.025, 0.05, 0.1, 0.15, 0.2] M⊙, and Rc = 100 au. Uncertainties (∆X/X) are also shown and they
are discussed in Sect. 5.1.

Fig. 6. Uncertainties related to the fitting procedure for the disc mass Md. Estimates are given as functions of the aspect ratio of the disc H/R (left
column), the disc inclination (middle column), and the disc emitting layer z(R) (right column). Different markers and line styles represent results
obtained for simulations with different disc masses.

convolving the channel maps previously obtained in Sect. 3.3
with different Gaussian beam sizes [0.2, 0.3]′′. We then extracted
new rotation curves with the procedure described in Sects. 4.2
and 4.3, and we fit them with the DYSC code (Sect. 4.4). In
Fig. 7, we report the results obtained for the disc mass (dif-
ferent markers and lines), showing uncertainties obtained as a
function of the spatial resolution of the observations. When
Md = 0.05 M⊙, the uncertainty ranges from ∼50 to 100%, while
for the other two cases, Md = [0.1–0.15] M⊙, it ranges within
∼30–40%, which is larger compared to the 0.1′′ case discussed
above (∼25%; see Sect. 5.1). This analysis shows that a res-
olution of 0.1′′ is recommended in order to obtain a reliable
measurement.

6. Discussion

6.1. Numerical resolution

As the height of the emitting layer increases with the disc mass,
in the md0.2 simulation, we notice that the emitting layer is
higher than the typical height of SPH particles, while this is
not true for the case with low disc mass (for an example, see
Fig. D.3). Indeed, the number density of SPH particles decreases
with z, because most of the disc mass is concentrated in the
midplane. This implies that the size of the Voronoi grid cells
used in MCFOST is increasing with z, which results in artificially
low-resolution 12CO data cubes for the high-disc-mass simu-
lation. To test this, we performed additional hydrodynamical
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Fig. 7. Uncertainties obtained from our fitting procedure for the disc
mass ∆Md/Md and for the combined fit procedure with different spatial
resolutions [0.1,0.2,0.3]′′. Different markers (and lines) represent results
obtained for simulations with different disc masses.

Fig. 8. Uncertainties obtained from our fitting procedure for the disc
mass ∆Md/Md for the combined fit procedure with different numerical
resolutions: [1, 2, 4, 6] × 106 SPH particles. The blue dashed line is the
semi-log linear fit of the data points with slope m = −0.58. As expected,
accuracy increases with numerical resolution.

simulations with 2, 4, and 6 ×106 SPH particles. Figure 8 shows
that by increasing the number of SPH particles, the uncertainty
we obtain for the disc mass decreases until we reach the ‘true’
disc mass value for the 6M particles simulation. The blue dashed
line represents the semi-log linear fit of the data points.

6.2. Limitations and further work

The main assumptions adopted in this study are as follows:
– Model: axisymmetric discs, no magnetic field, no planets;
– Hydrodynamic simulations: gas only, as the dust-to-gas ratio

is assumed to be so low that it does not affect the result. The
disc is assumed to be locally and vertically isothermal;

– Radiative transfer: Tgas = Tdust (LTE), Mie theory for optical
properties, ISM-like grain size distribution, dust-to-gas ratio
of ∼0.01.

– Post-processing of synthetic images: the simulated ALMA
images are obtained by convolving with a Gaussian beam
and the noise has been added directly to the resulting images.

Thus, the filtering of an interferometer and the noise prop-
erties of ALMA observations are not fully captured with
these simple assumptions. As a test, we also applied the
method presented in this work to a simulated ALMA image
obtained with CASA, finding no difference in the fitted disc
parameters.

Our study is restricted to stable self-gravitating discs, excluding
those with peculiar substructures such as GI spirals. It would be
important to reproduce the benchmark performed in this study
with more general cases; for example, to confirm masses esti-
mated for Elias 2-27, IM Lup, and GM Aur. This study highlights
the need to investigate how the extraction of the rotation curve
is affected by the presence of non-axisymmetric structures (e.g.
by including cooling and allowing the disc to develop GI in the
shape of spiral structures). Indeed, non-axisymmetric structures
might be important in young objects that are still accreting from
the molecular clouds (e.g. streamers). It may also be worth inves-
tigating whether or not the presence of an embedded planet or
a central binary affects disc mass estimates. Finally, the case
of non-isothermal discs is being investigated by Martire et al.
(2024).

7. Conclusions

In this study, we benchmarked the determination of disc masses
using rotation curves extracted from channel maps as intro-
duced in Veronesi et al. (2021) and Lodato et al. (2023). We
generated controlled mock observations from PHANTOM SPH
simulations with different disc masses that are post-processed
with the MCFOST radiative transfer code. We adopted spatial
and spectral resolutions that are the same as those of the MAPS
survey (0.1′′ and 0.1 km s−1).

We find that for Md/M⋆ ≳ 0.05, we recover the correct disc-
to-star mass ratio with a typical accuracy of ∼25%, with equal
uncertainty contributions from determinations of the aspect ratio
and the inclination of the disc, as well as the height of the emit-
ting layer (the truncation radius and the stellar mass are also
obtained with uncertainties of ∼15% and ∼8%, respectively).
For lower resolutions (0.2–0.3′′), disc masses recovered shift
towards larger values (0.1 M⊙ for 0.2′′). This constraint should be
accounted for when proposing ALMA kinematics observations
in order to dynamically measure the disc mass. This method can
be used to calibrate existing methods such as those based on flux.
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Table B.1. Parameters of our SPH simulations.

Parameters Value

M⋆ [M⊙] 1
Mdisc [M⊙] [0.01, 0.025, 0.05,

0.1, 0.15, 0.2]
Rin [au] 10
Rout [au] 300
Rc [au] 100
γ 1.
q 0.5
αSS 0.005
(H/R)c 0.075

Notes. M⋆ is the star mass and Mdisc is the disc initial mass. Rin and Rout
denote the initial disc inner and outer radii. The surface density profile
of Eq. 2 is parametrised by the radius of the exponential tapering Rc and
the power-law index p. Here, q is the power-law index of the temperature
radial profile as in Eq. 4, αss is the effective Shakura & Sunyaev (1973)
viscosity, and (H/R)c is the disc aspect ratio at the reference radius Rc.

Appendix A: Elias 2-27 updated fit results

We derived with the updated model the disc mass of Elias 2-27,
obtaining a result that is consistent with the findings of Veronesi
et al. (2021). In particular, when fitting the west and the east side
of the disc simultaneously, and the two isotopologues (13CO and
C18O), we obtain a star mass of ∼0.40 M⊙ and a disc mass of
∼0.13 M⊙ (∼0.46 M⊙ and ∼0.08 M⊙ in Veronesi et al. 2021).

Appendix B: Dimensionless model

Equation 5 can be expressed in terms of x = R/Rc and ζ = z/Rc
as

v2
ϕ/

GM⋆

Rc
= f1(x, ζ) +

1
2π

Md

M⋆
f2(x, ζ), (B.1)

where

f1(x, ζ) =
1
x

1 −
[
γ′ + (2 − γ)x2−γ

] (Hc

Rc

)2

x1−q − q

1 − 1√
1 + ζ2


 ,

and

f2(x, ζ) =
∫ ∞

0

[
K(y) −

1
4

(
y2

1 − y2

) (
u
x
−

x
u
+
ζ2

xu

)
E(y)

]
√

u
x
yΣ̃ (u) du,

where Hc denotes the scale height at the tapered radius Rc, y ≡
4u

(u+x)2+ζ2 , Σ̃ (r/Rc) ≡ Σ (r) / M̃d

2πR2
c

denotes the dimensionless surface

density, and M̃d ≡ 2π
∫ Rout

Rin
RΣ (R) dR ≃ Md denotes the true mass of

the disc. Hence, the azimuthal velocity can be rescaled in terms of the
disc-to-star-mass ratio Md/M⋆.

Appendix C: Simulation parameters

The parameters used in the hydrodynamic simulations described in
Sect. 3.1 are given in Table B.1.
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Fig. D.1. Emitting layer derived with DISKSURF for different disc
masses for the 12CO isotopologue.
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Fig. D.2. Comparison between the emitting layer of 12CO (solid line)
and 13CO (dashed line) for a disc mass of 0.1 M⊙.

Appendix D: Properties of the emitting layer

Figure D.1 shows the height of emitting layers as a function of the
radius for different disc masses. As expected, the emitting layer is
higher for large disc masses, because the column density is larger.
Fig. D.2 highlights the difference between the height of layers derived
for the 12CO (orange line) and 13CO (blue line) isotopologues. 13CO is
optically thinner than 12CO and therefore traces a region closer to the
midplane; its emitting layer is also lower compared to that of 12CO.

Fig. D.3 shows a comparison between the emitting layers derived
for 0.2 M⊙ (top panel) and 0.025 M⊙ (bottom panel). Emitting
layers are plotted with orange solid lines, while the SPH par-
ticles particles are represented with cyan markers. The number
density of SPH particles decreases with z, as most of the disc
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Fig. D.3. Distribution of SPH particles (cyan dots) and the emitting
layer obtained with DISKSURF (orange line) for two simulations, one
with high mass (upper panel) and one with low mass (lower panel).

mass tends to be concentrated in the midplane. This implies that the
size of the Voronoi grid cells increases with z, resulting in an artifi-
cially low resolution in the upper layer of the 12CO data cubes. This
becomes problematic in the case of the high-disc-mass simulations
(e.g. here 0.2 M⊙ for 106 SPH particles), as the disc is optically thicker
and the emitting layer is higher with respect to the case of lighter
discs.

Appendix E: Double Gaussian method

Fig. E.1 shows a comparison between the analytical rotation curve
obtained with the self-gravitating model (Eq. 5), and the velocity val-
ues obtained with the quadratic and the double Gaussian methods,
computed at two different radii. We note that, in the outer region,
the value extracted with the double Gaussian method deviates further
from the expected value. Moreover, in the outer region the S/N is too

102 103
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3
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5

v 
[k

m
/s

]

SG analytical RC
quadratic
double Gaussian

Fig. E.1. Comparison among the analytical rotation curve obtained
with the self-graviting model (Eq. 5, black solid line), and the velocity
obtained with the quadratic (red circle) and the double Gaussian method
(blue star), computed at two different radii (70 au and 560 au).

low, and the double Gaussian method fits the noise rather than the
signal.

Appendix F: Other uncertainties

Fig. F.1 shows the uncertainties for the mass of the star (top row)
and the disc truncation radius (bottom row) as function of the aspect
ratio of the disc H/R (left), the disc inclination (centre), and the disc
emitting layer z(R) (right). While for the uncertainties for the disc
mass (see Fig. 6), the three parameters H/R, i, and z(r) make simi-
lar contributions as sources of error, now we can identify two main
contributions. For the mass of the star and the disc truncation radius,
the principal sources of uncertainty are the inclination of the disc
(panel e in Fig. F.1) and its aspect ratio (panel g in Fig. F.1), respec-
tively. Indeed, varying the inclination with respect to the expected
value implies that the annulus along which the observed velocity is
computed in order to extract the rotation curve is not at a constant
radius. Another source of error is related to the deprojection of the
rotation curve. This strongly affects the fitted value of the mass of the
star. As for the aspect ratio, it mostly influences the truncation radius,
as it scales with (H/R)2 (Eq. 5).
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Fig. F.1. Uncertainties related to the fitting procedure for the mass of the star M⋆ (top row) and the disc truncation radius Rc (bottom row). Estimates
are given as functions of the aspect ratio of the disc H/R (left column), the disc inclination (middle column), and the disc emitting layer z(R) (right
column). Different markers and lines styles represent results obtained for simulations with different disc masses.
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