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Introduction

One of the best contribution that algebraic geometry gave to mathematics was the
possibility to study geometric objects with the powerful language of category theory.
In fact, one can attach to any scheme X some natural abelian categories and therefore
all the formalisms of category theory can in some sense be embedded into the geometry.
One of the most interesting problems became then to understand "how much informa-
tion" one needs to remember about the geometric object X, in order to describe it in a
satisfactory way. Derived categories turned out to be the best object for this purpose
and hence the study of them became a key research theme in algebraic geometry. It
was discovered that they do not carry anymore the structure of an abelian category,
instead they can be endowed with the weaker structure of a triangulated category. Such
a structure, unluckyily, has some problematic features - as was know to mathematicians
since the very beginning.

On the other hand, the study of functors between derived categories led to the dis-
covery that an incredible number of them has the particular shape of a Fourier-Mukai
functor - a kind of functor that is also very simple and very geometric in nature. Start-
ing from the seminal works of Mukai in the 80’s, an increasing class of functors between
derived categories has been proved to be of Fourier-Mukai type. Conversely, the exam-
ples of non-Fourier-Mukai functors that were discovered since the second decade of this
century has been understood to be related to the pathologic structure of triangulated
categories.

For these reasons mathematicians have moved to higher categorical structures in
order to have a deeper understanding of this phenomenom. Working in the greater
generality of differential graded categories has permitted to solve a lot of problems and
to have a neater and simpler description of the theory.

The work of this PhD thesis fits in this framework and aims to add a brick in the
comprehension of the relationship between Fourier-Mukai functors and the differential
graded world.

Let us now be a bit more detailed. Let X and Y be two smooth proper schemes
and denote by X

p

←− X×Y
q

−→ Y the two projections. For any object E in the bounded
derived category of coherent sheaves Db(Coh(X×Y )) the Fourier-Mukai functor of
kernel E is a triangulated functor

ΦE : Db(Coh(X)) −→ Db(Coh(Y ))

defined by sending an object A ∈ Db(Coh(X)) to Rq∗(E ⊗L p∗A). Actually, it turns
out that all the triangulated functors one deals with in ordinary life are of this form;
moreover Orlov proved in [36] that, if X and Y are smooth projective varieties over a
field, then any fully faithful triangulated functor betweenDb(Coh(X)) andDb(Coh(Y ))
is of Fourier-Mukai type for some kernel E (unique up to isomorphism).
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But the growing hope for all the triangulated functors to be of Fourier-Mukai type
(removing the fully faithfulness hypotesis in Orlov Theorem) was definitely stopped in
2014, when the first example of a non-Fourier-Mukai functor was exhibited [39].

In the meantime mathematicians have started to investigate the realm of differential
graded (dg) categories and its connection with Fourier-Mukai functors. In particular,
in [4] the authors proved - in the case of X and Y being smooth algebraic varieties -
that any triangulated functor F : Db(Coh(X)) −→ Db(Coh(Y )) which is liftable at the
dg level must be of Fourier-Mukai type. A natural question that one may ask is:

(♣) if such a triangulated functor F is given, how can one find (the isomorphism class
of) the element EF ∈ Db(Coh(X×Y )) such that ΦEF is isomorphic to F?

In the article [45] Toën studied the properties of Hqe, the localization of the cat-
egory of (small) dg categories with respect to quasi-equivalences. He came out with
a bijection between the isomorphism classes of objects in D(Qcoh(X×Y )), the de-
rived category of quasicoherent sheaves on X×Y , and the set of morphisms in Hqe
between Ddg(Qcoh(X)) and Ddg(Qcoh(Y )), two dg enhancements of D(Qcoh(X)) and
D(Qcoh(Y )), respectively. He claimed, moreover, that such a bijection was exactly the
way of producing the kernel of question (♣). A proof of that fact was given in [31] even
in a more general form.

Actually, in the case of smooth and proper schemes, Fourier-Mukai functors can
be defined also between Perf(X) and Perf(Y ), the subcategory of D(Qcoh(X)) and
D(Qcoh(Y )) consisting of perfect complexes. Denote by Perfdg(X) and Perfdg(Y ) two
dg enhancements of Perf(X) and Perf(Y ), repsectively. In this thesis we are going to
prove the following

Theorem (see Theorem 4.4.1). Let X and Y be two smooth proper schemes over a
field. Then there exists a bijective map

γ : Iso(Perf(X×Y )) 1:1−→ Hqe(Perfdg(X),Perfdg(Y ))

compatible with Fourier-Mukai kernels; i.e. such that, for any E ∈ Perf(X×Y ), we
have H0(γ(E)) ' ΦE .

Our proof heavily relies on the explicit computation of a dg enhancement of the
Fourier-Mukai functor ΦE , that will take a consistent part of our work. This fact allows
our bijection γ to be very explicit as well; therefore it gives an easy way of exhibiting
the kernel EF ∈ Perf(X×Y ) of (the analogous version of) question (♣).

During the proof of this result we will highlight how a lot of intermediate steps can
be proved in a wider generality (without the assumption of being over a field) and how
we believe our strategy could lead to a full proof of Theorem 4.4.1 under these weaker
hypoteses.

The present thesis is divided in four chapters. The first two chapters are on the
theoretical background, the third is devoted to the construction of an explicit dg en-
hancement of ΦE while the last one deals with all the steps for the proof of Theorem
4.4.1.

The first chapter aims to recall some (perhaps well-known) key concepts; anyway,
some knowledge about the basics of category theory is assumed. We start by surveying
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the general theory of triangulated categories, derived categories and derived functors.
After that, we move to the geometric context in order to describe the incarnations of
those concepts that will be used throughout this work. We end with a discussion on
Fourier-Mukai functors and their features.

In the second chapter we introduce the world of differential graded categories and
we study its most important concepts like dg modules and pretriangulated dg cate-
gories. We spend some time on the extensions of dg functors and on the properties of
the localized category Hqe. We define the way of lifting triangulated categories and
exact functors at the dg level and we spend some words on the problems concerning
uniqueness of those lifts.

The third chapter starts with a discussion on the hypoteses under which our results
will be proved. We then move to the study of a particular type of Čech enhancement;
it will be used for producing explicit lifts of the three (derived) functors whose compo-
sition yields Fourier-Mukai functors: pullback, pushforward and tensor product.

With those dg lifts, in the fourth chapter we will produce a proof of Theorem 4.4.1.
In order to do that, we need to properly define the kernel EF and to deal with several
intermediate steps. We then conclude with some comments and by proving some results
towards a further generalisation of what we have done.
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Chapter 1

Derived categories of geometric
flavour

In this first chapter we are going to introduce the main characters of the present work:
Fourier-Mukai functors. They are a particular class of derived functors between the
derived categories of sheaves of modules on a scheme (and many of their "relatives").
For this reason we need to introduce the concepts of derived category of an abelian
category and of exact functor between them. We will focus, anyway, on the geometric
incarnations of those concepts and we will study particular examples of derived func-
tors that turns out to be very important for our purposes. We begin by presenting the
axioms of triangulated categories, since they are the theoretical structure that derived
categories naturally possess. Most of the basic facts about category theory are assumed
to be well-known to the reader.

1.1 Triangulated and derived categories
We start this Section by briefly recalling the notion of triangulated category and we
continue by highlighting the main steps in the construction of the derived category
of an abelian category, which gives the main (and the most important) example of
triangulated category. Essentially, one can think about triangulated categories as the
correct framework for the study of derived categories.

Definition 1.1.1. Let D be an additive category endowed with an additive equivalence
[1]D : D → D. We will denote it just by [1] when no confusion can occur and we will
write, for any object A of D and for any arrow f of D, A[1] instead of [1](A) and f [1]
instead of [1](f). A triangle in D is the datum of three objects A, B and C of D and
three arrows:

A
f // B

g // C
h // A[1].

A morphism of triangles in D is a commutative diagram of the form

A //

a

��

B //

��

C //

��

A[1]

a[1]
��

A′ // B′ // C ′ // A′[1]

where the rows are triangles in D.
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Definition 1.1.2. An additive category D is called triangulated if it is endowed with
an additive equivalence [1] : D → D and a set of distinguished triangles which satisfy
the following axioms:

TR1 Any triangle of the form

A
idA // A // 0 // A[1]

is distinguished;
any triangle isomorphic to a distinguished triangle is distinguished;
any morphism f : A→ B can be completed to a distinguished triangle

A
f // B // C // A[1].

C is called a cone of the morphism f .

TR2 The triangle

A
f // B

g // C
h // A[1]

is distinguished if and only if

B
g // C

h // A[1]
−f [1] // B[1]

is a distinguished triangle.

TR3 Suppose there exists a commutative diagram of distinguished triangles with ver-
tical arrows f and g:

A //

f
��

B //

g

��

C //

h
��

A[1]

f [1]
��

A′ // B′ // C ′ // A′[1]

then the diagram can be completed to a morphism of triangles by a (not neces-
sarily unique) morphism h : C → C ′.

TR4 This fourth and last axiom is a bit technical. It roughly states that given three
morphisms f : A→ B, g : B → C and their composition g ◦ f : A→ C then the
three mapping cones of each of these morphisms (of whose we know the existence
- altough they are not unique - by [TR1]) can be composed into a distinguished
triangle such that "everything commutes". To be precise we say that given three
distinguished triangles

A
f // B

h // C ′ // A[1],

B
g // C

k // A′ // B[1],

A
g◦f // C

` // B′ // A[1],
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there exists a distinguished triangle

C ′
u // B′

v // A′
w // C ′[1]

such that the following diagram commutes:

A
f //

idA
��

B
h //

g

��

C ′ //

u

��

A[1]

idA[1]
��

A
g◦f //

f

��

C
` //

idC
��

B′ //

v

��

A[1]

f [1]
��

B
g //

h
��

C
k //

`
��

A′ //

idA′
��

B[1]

h[1]
��

C ′
u // B′

v // A′
w // C ′[1]

This last axiom is generally called octahedron axiom because, in one and probably
the most famous of its different reformulations, it can be written using the vertices
of an octahedron (see for example [48]). In our exposition we have followed [23]
and [34], but the interested reader can find other presentations in [17].

Remark 1.1.3. An easy consequence of the axioms is the fact that the composition
of two consecutive arrows of a distinguished triangle is zero. In fact, the following
commutative diagram of distinguished triangles

A
idA //

idA
��

A //

f

��

0 // A[1]

idA[1]
��

A
f // B

g // C
h // A[1]

can be completed, by axiom TR3, to a morphism of (distinguished) triangles yielding
g ◦ f = 0. By making use of TR2 we can then conclude that the composition of any
two consecutive arrows of a distinguished triangle is the zero morphism.

From the above remark it is easy to deduce the following

Proposition 1.1.4. Let A
f // B

g // C
h // A[1] be a distinguished triangle in

a triangulated category D.Then, for any object G of D we have the following induced
exact sequences:

HomD(G,A) −→ HomD(G,B) −→ HomD(G,C)

HomD(C,G) −→ HomD(B,G) −→ HomD(A,G)

Furthermore, since from TR2 we get that also the sequence

HomD(G,B) −→ HomD(G,C) −→ HomD(G,A[1])

is exact (and the same happens when we apply Hom(−, G)), what we obtain are actually
long exact sequences.
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Remark 1.1.5. The axiom TR1 tells us that any morphism f : A −→ B can be
completed to a distinguished triangle

A
f // B

g // C
h // A[1].

Notice that this can be done essentially in a unique way. In fact if

A
f // B

g′ // C ′
h′ // A[1]

is another distinguished triangle we have, by TR3, a morphism of triangles

A
f //

idA
��

B
g //

idB
��

C
h //

α

��

A[1]

idA[1]
��

A
f // B

g′ // C ′
h′ // A[1]

and by Proposition 1.1.4 and the Five Lemma we can conclude that α must be an
isomorphism. Observe that the non-uniqueness of the filling map α yields the fact that
the cone of f is unique up to a non-unique isomorphism.

Remark 1.1.6. Let us now consider any triangulated category and any non-zero object
R in it. We can always write the following commutative diagram where the two rows
are distinguished triangles and the non-labelled maps are the zero maps:

R //

��

0 //

��

R[1]
idR[1] // R[1]

��
0 // R[1]

idR[1] // R[1] // 0.

Actually both the identity idR[1] : R[1] −→ R[1] and the zero map 0 : R[1] −→ R[1] can
be used to complete the above diagram to a morphism of distinguished triagles. This
is an example of the non-functoriality of the cone that is one of the main problematic
features of triangulated categories.

Definition 1.1.7. An additive functor F : D −→ D′ between two triangulated cate-
gories is called exact (or triangulated) if it satisfies the following conditions:

i) There exists a natural isomorphism

F ◦ [1]D ∼ // [1]D′ ◦ F.

ii) Any distinguished triangle

A −→ B −→ C −→ A[1]

in D is mapped to a distinguished triangle

F(A) −→ F(B) −→ F(C) −→ F(A)[1]

in D′, where F(A[1]) is identified with F(A)[1] via the functor isomorphism in i).
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Definition 1.1.8. A triangulated subcategory of the triangulated category D is an
additive subcategory D′ ⊆ D admitting a triangulated structure such that the inclusion
D′ ↪→ D is an exact functor.

Let us now just spend a couple of words in order to introduce the important notion of
compact object of a triangulated category and its connection with the different notions
of generation.

Definition 1.1.9. An object C of a triangulated category D with arbitrary coproducts
is called compact if, for any family {Ei} of object of D the canonical map

⊕iHomD(C,Ei) −→ HomD(C,⊕iEi)

is an isomorphism. We denote by Dc the set of compact objects of D.

From now until the end of this section let us denote by β = {Bi}i∈I a set of objects
of a triangulated category D.

Definition 1.1.10. We say that β classically generates D if the smallest full triangu-
lated subcategory of D containing β and closed under isomorphisms and direct sum-
mands is equal to D itself.

By the right orthogonal β⊥ in D we denote the full subcategory of D whose objects
A have the property that Hom(Bi[n], A) = 0 for all i ∈ I and for all n ∈ Z. β⊥ is closed
under isomorphisms and direct summands.

Definition 1.1.11. We say that β generates D if β⊥ = 0. Suppose moreover that D
has arbitrary coproducts: we say that D is compactly generated if it is generated by its
compact objects.

Clearly if β classically generates D then it generates D, but the converse is false.
Moreover we have the following

Theorem 1.1.12 (see Theorem 2.1.2 in [5]). Assume that the triangulated category D
is compactly generated. Then a set of objects β ⊂ Dc classically generates Dc if and
only if it generates D.

Triangulated categories can be seen as a kind of generalisation of abelian categories,
where distinguished triangles play the role of short exact sequences. However, it has
been clear from the very beginning that triangulated categries are in some sense "badly
behaved": in particular the non-uniqueness of the filling in TR3 is the cause of many
problems, like the so called non-functoriality of the cone of a morphism as we have seen
in Remark 1.1.6. Moreover, if D and D′ are two triangulated categories there is no nat-
ural way of endowing the category of exact functors between them with a triangulated
structure. We will see in the next Chapter how this and other kind of problems can be
overcome by employing differential graded categories.

It is now the time to introduce derived categories and see how they naturally fit
into the framework of triangulated categories.

Starting from a preadditive category A one can construct the category Kom(A)
whose objects are complexes of objects of A and whose morphisms are complex mor-
phisms: degreewise morphisms commuting with the differential. It is still a preadditive
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category (it is abelian if we start from an abelian category). The idea of derived cat-
egories is that we want an object in which we can identify complexes with the same
cohomology (i.e. that are quasi-isomorphic). On the other hand, we want such an
object to contain "homotopical information": for this purpose we need to remember
more of a complex than just its cohomology. For a more detailed discussion, the reader
may look at [44].

One can define the derived category of the abelian category A in terms of universal
properties:

Definition 1.1.13. For any abelian category A the derived category of A is a category
D(A) such that there exists a functor

Q : Kom(A) −→ D(A)

sending any quasi-isomorphism of Kom(A) to an isomorphism of D(A). Moreover Q
has to be such that for any functor F : Kom(A) −→ D sending quasi-isomorphisms
to isomorphisms there exists a unique functor F′ : D(A) −→ D making the following
diagram commute

Kom(A) Q //

F
##

D(A)

F′||
D

This definition is a purely categorical one. In order to explicitly define D(A), several
steps have to be made. Our interest here is just to spell out how objects and arrows of
D(A) look like.

For what concerns the objects of D(A) that’s the easy part: they are just the same as
Kom(A). The definition of morphisms is more subtle. First of all, one can define K(A),
the homotopy category of A taking as objects the same as Kom(A) and as morphisms
morphisms of complexes modulo homotopy. Actually the definition of Kom(A) makes
sense whenever A is a preadditive category. Since homotopy equivalent morphisms have
the same cohomology the notion of quasi-isomorphism is still well defined for morphisms
in K(A). If A• and B• are two objects of D(A) the set of morphisms between them in
D(A) is the set of all equivalence classes of "roofs" of the form

C•

}} !!
A• B•

where the dotted arrow is a quasi-isomorphism. Two of such roofs are equivalent if the
are dominated by a third roof in the homotopy category K(A). A precise statement of
this, together with a careful discussion on composition of morphism and in general on
the construction of D(A) can be found in Chapter 2 of [21].

Remark 1.1.14. Actually the procedure of formally inverting a class of arrows in a
category C is a standard one called localization. It is well known that localizing a
category can produce something that is not a category anymore in the sense that we
may loose control on the arrows between two objects: they may not be collected into a
set. One can avoid all those troubles if C possesses the structure of a model category.
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Roughly speaking, model categories are categories with three classes of arrows (called
fibrations, cofibrations and weak equivalences) satisfying certain properties. We will
not write down all the axioms of a model category (the interested reader can find all
the details in [20]); we will content ourselves by saying that if C has the structure of
a model category with quasi equivalences W , then the localization C[W ]−1 of C with
repect to W is still a category and can be described in a nice way.
What happens is that (at least if A is a Groethendieck abelian category) one can
endow Kom(A) with a model structure whose set of weak equivalences is the set W of
quasi-isomorphisms.

The categories K(A) and D(A) are not abelian anymore; indeed they possess a
triangulated structure.

Proposition 1.1.15. Let A be an abelian category. Both the categories K(A) and
D(A) are triangulated categories whose distinguished triangles are the ones isomorphic
in K(A) (respectively in D(A)) to triangles of the form

A•
f // B• // C(f) // A•[1]

where f is a morphism of complexes and C(f) is its mapping cone and [1] is the usual
shift of complexes.

Besides the notion of unbounded derived category D(A) we will denote by D?(A)
with ? = b,+,− the bounded (resp. bounded below, bounded above) derived category
that can be defined by suitably substitute Kom?(A) and K?(A) to Kom(A) and K(A)
(see Proposition 2.30 of [21]).

1.2 Derived functors
We start now a discussion on derived functors. Let F : A −→ B be an additive functor
between abelian categories. It gives rise to a well defined functor Kom(F) : Kom(A) −→
Kom(B) as well as K(F) : K(A) −→ K(B). But it is easy to see that K(F) induces a
functor between derived categories if and only if it maps acyclic complexes to acyclic
complexes; in other words, when F is an exact functor.

But most of the times, the functors that one encounters are only left or right exact.
In those cases, in order to end up with a functor between the derived categories, a more
sophisticated procedure has to be adopted.

Before introducing it, we need to recall some important definition. Let A and be
an abelian category.

Definition 1.2.1. A complex I• of objects of A is called h-injective if for any acyclic
complex M• of objects of A we have that HomKom(A)(M•, I•) is acyclic.

Definition 1.2.2. An h-injective resolution of an object C• ∈ Kom(A) is a quasi-
isomorphism C• −→ I• with I• an h-injective complex of objects of A.

Dually, we have the notion of h-projective complex and h-projective resolution.

Definition 1.2.3. A complex P • of objects of A is called h-projective if for any acyclic
complex M• of objects of A we have HomKom(A)(P •,M•) is acyclic.

11



Definition 1.2.4. An h-projective resolution of an object C• ∈ Kom(A) is a quasi-
isomorphism P • −→ C• with P • an h-projective complex of objects of A.

We will see later that also the notion of h-flat resolution is important for defining
the derived functor we are interested in.

Definition 1.2.5. A complex K• of objects of A is called h-flat if for any acyclic
complex M• of objects of A we have that M• ⊗K• is acyclic.

Definition 1.2.6. An h-flat resolution of an object C• ∈ Kom(A) is a quasi-isomorphism
K• −→ C• with C• an h-flat complex of objects of A.

We can now come back to the original problem; suppose for example that F : A −→
B is a left exact functor. If there exists a subcategory IF ⊂ K(A) such that:

(i) K(F) sends any acyclic complex of IF to an acyclic complex of K(B);

(ii) any object in K(A) is quasi-isomorphic to an object of IF.

then the right derived functor RF : D(A) −→ D(B) can be defined. In fact, condition
(ii) gives us that the localization of IF by quasi-isomorphisms between complexes with
objects in IF is equivalent to D(A) (let us call such equivalence ι). Moreover, condition
(i) ensures that K(F) can be defined on this localization and hence one can define the
right derived functor of F to be RF := Q̄B ◦ K(F) ◦ ι−1, where Q̄B : K(B) −→ D(B) is
the natural functor which factorizes the one of Definition 1.1.13.

Remark 1.2.7. Observe that if every complex of objects of A has an h-injective res-
olution, then the class of h-injective objects can play the role of IF for any left exact
functor F (see [28], Corollary (2.3.2.3)). This happens for example whenever A is a
Grothendieck category - see Section 1.3 below - by Theorem 5.4 of [1].

Clearly, if F is a right exact functor, the left derived functor of F can be defined in
an analogous way. In this case, the class of h-projective objects can play the role of IF.
Unfortunately, it is not true that any complex of objects of a Grothendieck category
admits an h-projective resolution. But often other kind of resolutions, like h-flat ones,
can be employed.

1.3 Derived categories and derived functors in the geo-
metric context

Let us now move to the geometric situation. In all this section we will assume all
schemes to be quasi-compact and quasi-separated over a commutative ring k.

Given any scheme X we can consider the category Sh(X) of sheaves of OX -modules
and its subactegories Qcoh(X) and Coh(X) of quasi-coherent (respectively, coherent)
sheaves. All those three categories are abelian and we can consider their (bounded
or unbounded) derived categories. Moreover we have that Sh(X) and Qcoh(X) are
Grothendieck categories meaning that they are abelian categories which are closed un-
der small coproducts, possess a small set of generators and are such that the direct
limits of short exact sequences are exact.
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In this thesis we will be primarily interested in the full subcategory Perf(X) of
D(Sh(X)) consisting of perfect complexes i.e. complexes that are locally quasi-isomorphic
to a bounded complex of vector bundles. Under our hypoteses Perf(X) coincides with
the full subcategory of compact objects of DQcoh(Sh(X)) (see Theorem 3.1.1 of [5]).
By DQcoh(Sh(X)) we mean the full subcategory of D(Sh(X)) consisting of complexes
with quasi-coherent cohomologies.

When the schemeX is also separated, the natural functorD(Qcoh(X)) −→ D(Sh(X))
induces an equivalence:

D(Qcoh(X)) ' DQcoh(Sh(X)). (1.1)

This equivalence restricts to an equivalence between Perf(X) and the full subcategory
of D(Qcoh(X)) consisting of complexes that are locally quasi-isomorphic to a bounded
complex of vector bundles.

Let us now take some time to discuss the derived functors that will be needed in
the present work.

Pushforward. Let f : X −→ Y be a morphism of schemes. It yields functors:

f∗ : Sh(Y ) −→ Sh(X) f∗ : Sh(X) −→ Sh(Y )

with f∗ right exact and f∗ left exact since we have the adjuction f∗ a f∗. According
to what we have said in the above section (see Remark 1.2.7), the derived functor

Rf∗ : D(Sh(X)) −→ D(Sh(Y ))

exists and we have that Rf∗(DQcoh(Sh(X))) ⊆ DQcoh(Sh(Y )), by Section 3.9 of [28].
Such a functor, in the case f is flat and proper and Y is Noetherian, restricts - from
[42, Tag 0B6F] - to a functor

Rf∗ : Perf(X) −→ Perf(Y ).

Pullback. For any morphism f : X −→ Y we have that, by means of h-flat resolutions
(k-flat in the terminology of [41], q-flat in the one of [28]), we can define the left derived
functor:

Lf∗ : D(Sh(Y )) −→ D(Sh(X))

and - always by the results in Section 3.9 of [28] - it is such that Lf∗(DQcoh(Sh(Y ))) ⊆
DQcoh(Sh(X)). Moreover, it restricts to

Lf∗ : Perf(Y ) −→ Perf(X)

by [42, Tag 09UA].

Tensor product. Let E ∈ Sh(X). Tensorization by E defines a right exact functor

E ⊗ − : Sh(X) −→ Sh(X). (1.2)

Following Section 2.5 of [28] we can define, by means of h-flat resolutions, the left
derived functor

E ⊗L − : D(Sh(X)) −→ D(Sh(X)).
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When E is an element of DQcoh(Sh(X)) the functor (1.2) restricts to a functor

E ⊗L − : DQcoh(Sh(X)) −→ DQcoh(Sh(X)).

Moreover, since the tensor product of bounded complexes of vector bundles is still a
bonded complex of vector bundles we obtain a functor

E ⊗L − : Perf(X) −→ Perf(X).

every time we choose E ∈ Perf(X).

Boxtimes. Let us denote by

X X × Ypoo q // Y

the two projection. The boxtimes (bi)functor (called also external tensor product) is
defined as

−� ∼:= p∗(−)⊗ q∗(∼) : Sh(X)× Sh(Y ) −→ Sh(X×Y ).

Thanks to the discusion above and to the fact that the pullback of h-flat complexes
is a h-flat complex as well (see [42, Tag 06YC]), we can compute by means of h-flat
resolutions the derived functor

−�L ∼:= Lp∗(−)⊗L Lq∗(∼) : D(Sh(X))×D(Sh(Y )) −→ D(Sh(X×Y ))

that restricts to the derived category of complexes of sheaves of modules with quasi-
coherent cohomology, and also to

−�L ∼: Perf(X)×Perf(Y ) −→ Perf(X×Y ).

Observe that if our schemes are smooth or if k is a field then the two projections
are exact and hence we have Lp∗ = p∗ and Lq∗ = q∗. Suppose moreover that the
schemes are globally strictly perfect i.e. such that any perfect complex on them is
quasi-isomorphic to a bounded complex of vector bundles; in Chapters 3 and 4 we will
always be under such hypotesis. We get then that even the tensor product is exact
since bounded complexes of vector bundles are h-flat. Therefore we can write �L = �
and we get the exact functor:

−� ∼: Perf(X)×Perf(Y ) −→ Perf(X×Y ).

Notice that when k is a field - without any further hypoteses - the exactness of �
already comes from [31] Lemma A.14.

We conclude the present section with three useful formulas, in the version that will
be used in the sequel.

Proposition 1.3.1 (Projection formula, see [29] Proposition 5.2.32 and [47] Exercise
16.3.H). Let f : X −→ Y be a quasi-compact and separated morphism of schemes and
let F ∈ Qcoh(X), G ∈ Qcoh(Y ). We have a canonical homomorphism

(f∗F)⊗OY G −→ f∗(F ⊗OX f
∗G)

that is an isomorphism if G is flat or f is affine.
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Remark 1.3.2. Notice that, in virtue of the equivalence (1.1), the above proposition
still holds for F ∈ DQcoh(Sh(X)) and G ∈ DQcoh(Sh(Y )).

Proposition 1.3.3 (Base change, see [31] Lemma A.1). Let f : Y −→ X be a morphism
of ringed spaces. Let U ⊂ X be an open subset and V := f−1(U). Consider them as
ringed spaces in the natural way: we have a cartesian diagram of ringed spaces

V

j
��

f ′ // U

ι
��

Y
f // X.

Then, for any G ∈ Sh(Y ) there is a natural isomorphism of OU -modules ι∗f∗G ' f ′∗j∗G.

Another version of base change (see [42, Tag 02KH]) is given by the following

Proposition 1.3.4 (Flat base change). Consider a cartesian diagram of schemes

Y ′

g′

��

f ′ // X ′

g

��
Y

f // X.

and suppose that f is flat and g is quasi-compact and quasi-separated. Then, for any
F ∈ Qcoh(Y ) and for any i ≥ 0 there is a natural isomorphism g∗Rif∗F ' Rif ′∗g′∗F .

1.4 Fourier-Mukai functors
In this section we are going to introduce a really important class of exact functors
between derived categories and we will see how this importance is justified.

Let X and Y be again two quasi compact and separated schemes over k, which is
supposed to be a commutative ring. We still denote by

X X × Ypoo q // Y

the two projections.

Definition 1.4.1. Let E be any object of DQcoh(Sh(X ×Y )). The Fourier-Mukai
functor of kernel E is the functor ΦE : DQcoh(Sh(X)) −→ DQcoh(Sh(Y )) defined by the
assignation

A 7−→ Rq∗(E ⊗L Lp∗A)

Notice that under our hypoteses the definition is well-posed thanks to the discussion
in the previous section. If moreover the schemes are flat, proper and Noetherian then
- if E is taken in Perf(X×Y ) - we can define the Fourier-Mukai functor

ΦE : Perf(X) −→ Perf(Y ).

Remark 1.4.2. It turns out that Fourier-Mukai functors have a lot of interesting
properties (see for example [21], Chapter 5 for the case of smooth projective schemes
over a field):

• they are always exact functors: this comes just by the definition;
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• if one of the schemes is flat then the composition of two Fourier-Mukai functors
is again (isomorphic to) a Fourier-Mukai functor;

• in the case of smooth and proper schemes over a field, Fourier-Mukai functors
ΦE : Perf(X) −→ Perf(Y ) always possess both left and right adjoint, which are
still Fourier-Mukai functors.

Another property of Fourier-Mukai functors is the one given by the following Lemma.
It follows from standard computations as highlighted, for example, in Section 4.3 of [9]
but for sake of completness we present an outline of the proof. Consider the diagonal
embedding ∆ : X −→ X×X and denote by O∆ the structure sheaf of its image in
X×X. Consider moreover the two projections

X×X×X×Y
p12

ww

p34

''
X×X X×Y

and define

−�̂ ∼:= p∗12(−)⊗ p∗34(∼) : Sh(X×X)× Sh(X×Y ) −→ Sh(X×X×X×Y ).

In complete analogy with the boxtimes functor we defined in Section 1.3, it can be
derived giving rise to a functor between the derived categories. Moreover it restricts
to perfect complexes and — if we are dealing with smooth and globally strictly perfect
schemes — it coincides with the exact functor

−�̂ ∼:= p∗12(−)⊗ p∗34(∼) : Perf(X×X)×Perf(X×Y ) −→ Perf(X×X×X×Y ).

Lemma 1.4.3. In the hypoteses that all our schemes are smooth and globally strictly
perfect we have, for any E ∈ Perf(X×Y ), the isomorphism ΦO∆�̂E(O∆) ∼= E.

Proof. In order to simplify the notation we will write the product of schemes instead
of the product of the category of perfect complexes on them.

For any i, j and z in {1,2,3,4} let us denote by pijz the projection from X×X×X×Y
onto the i-th, j-th and z-th terms and by pij the projection from X×X×X×Y onto
the i-th and the j-th terms. For any h and k in {1,2,3}, denote by p̃hk the projection
from X×X×Y onto the h-th and k-th terms and by p̃k the projection from X×X×Y
onto the k-th term.

Let us moreover define

∆12×idX×Y : X×X×Y −→ X×X×X×Y (x, x′, y) 7−→ (x, x, x′, y)

and

∆13×idX×Y : X×X×Y −→ X×X×X×Y (x, x′, y) 7−→ (x, x′, x, y)
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We can finally write:

ΦO∆�̂E(O∆) = p24∗(O∆�̂E ⊗ p∗13O∆) = p24∗
(
p∗12O∆ ⊗ p∗34E ⊗ p∗13O∆

)
= p24∗(p∗12∆∗OX ⊗ p∗34E ⊗ p∗13∆∗OX)
(a)
' (p̃23 ◦ p124)∗

(
p∗12∆∗OX ⊗ p∗34E ⊗ (∆13×idX×Y )∗p̃∗1OX

)
(b)
' p̃23∗ ◦ p124∗ ◦ (∆13×idX×Y )∗

(
(∆13×idX×Y )∗

(
(p∗12∆∗OX ⊗ p∗34E

)
⊗ p̃∗1OX

)
(c)
' p̃23∗(∆13×idX×Y )∗

(
p∗12∆∗OX ⊗ p∗34E

)
(d)
' p̃23∗

(
(∆13×idX×Y )∗p∗12∆∗OX⊗(∆13×idX×Y )∗p∗34E

)
(e)
' p̃23∗

(
p̃∗12∆∗OX⊗(∆13×idX×Y )∗p∗34E

)
(f)
' p̃23∗

(
(∆×idY )∗p∗OX⊗(∆13×idX×Y )∗p∗34E

)
(g)
' p̃23∗(∆×idY )∗

(
p∗OX ⊗ (∆×idY )∗(∆13×idX×Y )∗p∗34E

) (h)
' E .

where we have used:

• in (a), in addition to the trivial equality p24 = p̃23 ◦ p124, the flat base change
(Proposition 1.3.4) for the diagram

X×X×Y
∆13×idX×Y //

p̃1
��

X×X×X×Y
p13
��

X
∆ // X×X;

• in (b) the projection formula (Proposition 1.3.1);

• in (c) the equality p124 ◦ (∆13×idX×Y ) = idX×X×Y and the isomorphism p̃∗1OX '
OX×X×Y ;

• in (d) the commutativity between tensor product and inverse image;

• in (e) the equality p12 ◦ (∆13×idX×Y ) = p̃12;

• in (f) the flat base change (Proposition 1.3.4) with respect to the diagram

X×Y ∆×idY //

p

��

X×X×Y
p̃12
��

X
∆ // X×Y ;

• in (g) the projection formula (Proposition 1.3.1);

• in (h) the equalities p̃23 ◦ (∆×idY ) = idX×Y = p34 ◦ (∆13×idX×Y ) ◦ (∆×idY ) and
the isomorphism p∗(OX) ' OX×Y .
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But probably the most notable feature of Fourier-Mukai functors - despite it could
be not so obviout at a first sight - is that they are ubiquitous. For example: by using
projection formula 1.3.1 and the immediate equalities p ◦∆ = id = q ◦∆ we can write
- for any object A ∈ DQcoh(Sh(X)):

ΦO∆(A) = Rq∗(O∆ ⊗L p∗A) = Rq∗(∆∗(OX)⊗L p∗A) ' Rq∗(∆∗(OX ⊗L ∆∗p∗A))
' (Rq ◦∆)∗(OX ⊗L (p ◦∆)∗A) = id∗(OX ⊗L id∗A) ' A

This tells us that the Fourier-Mukai functor ΦO∆ is nothing else than the identity on
DQcoh(Sh(X)).

Definition 1.4.4. Given an exact functor F between DQcoh(Sh(X)) and DQcoh(Sh(Y ))
we say that F is of Fourier-Mukai type if there exists an object E in DQcoh(Sh(X×Y ))
such that F is isomorphic to ΦE of Definition 2.6.3 (we will say in this case that E is a
Fourier-Mukai kernel - or simply a kernel - of F).

It is not hard to prove that, if we consider for example an elementA ofDQcoh(Sh(X)),
the (derived) tensor product − ⊗L A is isomorphic to Φ∆∗A. Moreover, for any mor-
phism f : X −→ Y , the derived direct image functor Rf∗ is of Fourier-Mukai type
with kernel OΓf , where Γf ⊂ X×Y is the graph of f . And also the pullback Lf∗

along f is of Fourier-Mukai type with kernel the same object (but swapping p and q)
of DQcoh(Sh(X×Y )) (actually, since it is the left adjoint of Rf∗, for smooth and proper
schemes over a field, this should be clear also by Remark 1.4.2).

The list of functors of Fourier-Mukai type can obviously continue, but in order to
make a fundamental step in the understanding of "how many" exact functors between
derived categories are of Fourier-Mukai type one must cite the following beautiful result,
due to Orlov:

Theorem 1.4.5 ([36] Theorem 2.2). Let X and Y be two smooth projective varieties
and let

F : Db(Coh(X)) −→ Db(Coh(Y ))

be an exact functor. If F is fully faithful then there exists an object E, unique up to
isomorphisms, such that F is isomorphic to ΦE .

As one can easily believe, this Theorem is one of the milestones in the field. Actu-
ally, the original statement requires F to have both left and right adjoints but this has
been proven to hold for any exact functor in our situation (it is due to Theorem 1.1 of
[5]; see also [11], Proposition 3.5).

Remark 1.4.6. Orlov Theorem has been generalised in various directions: in [24] a
version for smooth stacks, obtained as global quotients, is provided; Canonaco and
Stellari proved in [9] a generalization to the twisted setting under milder assumptions
on the functor; in [30] the case of projective (possibly singular) schemes is treated; in [8]
the authors showed that - under some assumptions - the faithfulness of the exact functor
F can be deduced from it fullness; in [12] can be found a version in the supported case;
finally, Olander proved in [35] the version for smooth and proper varieties over a field.

In fact for some time it was believed that it could hold without the assumption
of fully-faithfulness. But recently (see [39], [49] or [38]) examples of exact functors
between bounded derived categories of coherent sheaves that are not of Fourier-Mukai
type were discovered, even in the case of smooth projective schemes over a field.
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On the other hand, also the uniqueness of the kernel is an interesting problem
in itself: there are well-known examples (even for the derived categories of elliptic
curves) of non isomorphic kernels whose Fourier-Mukai functors become isomorphic
(see [10]). Anyway, it has been proved that the cohomology sheaves of the kernels
of two isomorphic Fourier-Mukai functors are uniquely determined up to isomorphism
(see again [10], Theorem 1.2).

Those examples has shed light on the fact that the problem of understanding which
exact functors are of Fourier-Mukai type is more involved and that actually "patholo-
gies" like the existence of non-Fourier-Mukai functors are due to the bad behaviour
of triangulated categories. For this reason mathematicians have moved to higher cat-
egorical structures in order to have a deeper and more complete picture of the situation.

What we are going to do now is in fact to present one of such possible generalisations:
the theory of differential graded categories. With this new tool we will see, in Section
2.6, how the situation we have presented here can change if seen from an enhanced
perspective.
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Chapter 2

Differential graded categories and
(quasi-) functors

In this chapter we present the theory of differential graded categories, the language
that will be used throughout the present work. They are a powerful way of enhanc-
ing triangulated categories; for this reason, after presenting the basic definitions and
examples, we move to speak about pretriangulated dg categories.

We need also to understand the structure and the main properties of Hqe, the
category obtained by formally inverting quasi-equivalences in the category of (small)
dg categories. In fact it turns out to be the correct ambient where many problems of
the "triangulated world" can be solved.

Morphisms in Hqe are strongly linked to dg (bi-)modules, therefore we will spend
some words on them and on the way of extending dg functors to the categories of dg
modules. The final part is devoted to present the way(s) of enhancing triangulated
categories and triangulated functors to the differential graded level and to discuss some
related issues.

For what concerns the notation, in this chapter — for any category A and for any
pair of objects A, A′ in A — we will write A(A,A′) to denote the set of arrows in A
from A to A′.

2.1 Dg categories and dg functors
Let k denote a commutative ring. We will assume all categories to be k-linear i.e. the
Hom-space will be a k-module with a k-bilinear composition. All our functors will be
k-linear as well i.e. such that the induced map between the Hom-spaces is k-linear.

Let us recall here the (well-known) definition of tensor product of complexes (of
k-modules).

Definition 2.1.1. LetM• and N• be two complexes of k-modules. The tensor product
M• ⊗k N• is a complex (of k-modules) such that(

M• ⊗k N•
)i :=

⊕
p+q=i

Mp ⊗N q.

The differential is defined as follows: let f ∈Mp, g ∈ N q and i := p+ q then

diM•⊗kN•(f ⊗ g) := dpM•(f)⊗ g + (−1)pf ⊗ dqN•(g).
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Definition 2.1.2. A differential graded (dg) category is a category A such that, for any
couple of objects X, Y in A, the space of morphisms A(X,Y ) is a Z-graded k-module
endowed with a differential d: A(X,Y ) −→ A(X,Y ) of degree 1. We require also the
composition maps

A(Y,Z)⊗kA(X,Y ) −→ A(X,Z)
g ⊗ f 7−→ g ◦ f

to be morphisms of complexes for any X, Y and Z in Ob(A).

The tensor product appearing in the above definition is the ordinary tensor product
of complexes of Definition 2.1.1.

Actually, we can see a dg category A also as a category enriched over the (closed
monoidal) category C(k) of cochain complexes of k-modules i.e. we are requiring all
the Hom-spaces of A to be cochain complexes of k-modules.

From the request on the composition we get deg(g ◦ f) = deg(g) + deg(f) for f and
g homogeneous morphisms and also d(g ◦ f) = d(g) ◦ f + (−1)deg(g)g ◦ d(f). In the
special case of f = g = 1 we can see that the identity of each object must be a closed
morphism of degree 0.

Example 2.1.3. Let us present the basic examples of dg categories:

(i) Any k-linear category A is a dg category, once we set, for every couple of objects
X, Y in Ob(A):

A(X,Y )i =
{
HomA(X,Y ) when i = 0
0 otherwise

(ii) Let A be a dg algebra over k. We can define the dg category A as follows:

Ob(A) = {∗}; A(∗, ∗) = A.

Hence we have that any dg algebra (over k) gives rise to a dg category with one
object. Notice that we need A to be a dg algebra (and not just a dg module)
in virtue of the request on the compositon map. On the other hand, every dg
category with one object defines a dg algebra: the endomorphism space of the
unique object.

(iii) If A is an ordinary category we can define a dg category Cdg(A) of (cochain)
complexes of A. Its objects are complexes in A, while morphism are defined to
be

Cdg(A)(X•, Y •)n :=
∏
i∈Z
A(Xi, Y n+i)

where X• and Y • are in Ob(Cdg(A)). Note that, since we have assumed all
categories to be k-linear each term in

∏
i∈ZA(Xi, Y n+i) is a k-module.

Let f = (f i)i∈Z be an element of Cdg(A)(X•, Y •)n. We define the differential to
be

dn(f) = dn((f i)i∈Z) = (dn(f)i)i∈Z := (di+nY • ◦ f
i − (−1)nf i+1 ◦ diX•)i∈Z.

In the case we consider as A the category of k-modules we obtain the dg category
Cdg(k-Mod).
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Definition 2.1.4. Given a dg category A we can define the opposite dg category A◦
to be the category with the same objects as A and such that, for any X, Y in Ob(A◦):

A◦(X,Y ) := A(Y,X).

The composition g◦f in A◦ - with f and g homogeneous - is given by (−1)deg(f)deg(g)f◦g
in A.

Definition 2.1.5. Given a dg category A we can define the following two categories:

• The underlying category Z0(A) with the same objects as A and such that, for
any X and Y in Ob(A)

Z0(A)(X,Y ) := Z0(A(X,Y ))

where by Z0 of a complex we mean the kernel of the differential d0.

• The homotopy category H0(A) with the same objects as A and such that, for any
X and Y in Ob(A)

H0(A)(X,Y ) := H0(A(X,Y ))

where by H0 of a complex we mean its 0-th cohomology k-module.

Definition 2.1.6. Two objects of a dg category A are dg isomorphic if there exists an
isomorphism between them in Z0(A) (called a dg isomorphism). Moreover, they are
homotopy equivalent if there exists a morphism between them in Z0(A) whose image
in H0(A) is an isomorphism (in this case it is called a homotopy equivalence).

Example 2.1.7. Let us consider again Example 2.1.3 (iii). We have:

d0(f) = 0 ⇐⇒ diY • ◦ f i = f i+1 ◦ diX• for any i ∈ Z.

i.e. f ∈ ker(d0) if and only if it is a morphism of complexes. On the other hand:

d−1(g) = f ⇐⇒ f = (di−1
Y • ◦ g

i + gi+1 ◦ diX•)i∈Z

i.e. f ∈ Im(d−1) if and only if it is null-homotopic.
From what we have just said it is now clear that Z0(Cdg(A)) is the usual category

Kom(A) of complexes of A and that H0(Cdg(A)) is the usual homotopy category K(A)
of A. Moreover observe that two complexes in A are homotopy equivalent in the sense
of Definition 2.1.6 if and only if they are homotopy equivalent complexes in the usual
way.

Definition 2.1.8. A dg functor F : A −→ B between two dg categories is given by a
map: Ob(A) −→ Ob(B) and, for every X, Y in Ob(A), by a morphism of complexes
of k-modules

FX,Y : A(X,Y ) −→ B(F(X),F(Y ))

which is compatible with compositions and units.

Clearly, a dg functor F : A −→ B induces a functor H0(F) : H0(A) −→ H0(B).

Definition 2.1.9. We can define the category dgCat (or dgCatk if the ground ring
is not clear from the context) whose objects are (small) dg categories and whose mor-
phisms are dg-functors.
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The category dgCat has the empty dg category ∅ as initial object and the dg
category with one object — and with the zero ring as the endomorphism ring — as
terminal object.

Definition 2.1.10. Given two dg categories A and B we can define two new dg cate-
gories:

• The tensor product A⊗B, whose objects are pairs (A,B) with A ∈ A, B ∈ B and
the Hom-spaces are defined as follows:

(A⊗ B)
(
(A,B), (A′, B′)

)
:= A(A,A′)⊗k B(B,B′).

where the last tensor product is the tensor product of complexes of k-modules
over the ground ring k (see Definition 2.1.1).

• The dg functors category Hom(A,B), whose objects are dg functors between A
and B and Hom-spaces are Hom(F,G) =

⊕
i∈ZHom(F,G)i with

Hom(F,G)i := {dg natural transformations φ : F→ G of degree i}.

where a dg natural transformation φ : F → G of degree i is the datum, for any
object of A of A, of a degree i morphism φA : F(A) −→ G(A) such that, for
any homogeneous f ∈ A(A,A′), we have G(f) ◦ φA = (−1)deg(f)iφA′ ◦ F(f). The
differential is induced by the one of B(F(A),G(A)).

Remark 2.1.11. Observe that the dg category Hom(A,B) has many objects even if
A and B only have one. In fact, suppose Ob(A) = {A} and Ob(B) = {B}. A dg functor
F between A and B in this case is uniquely defined by a morphism of dg algebras, see
Example 2.1.3 (ii),

FA,B : A(A,A) −→ B(B,B)

and hence we can have plenty of them. This is a considerable difference between the
world of dg categories and the one of dg algebras.

Remark 2.1.12. Tensor product of dg categories is (up to isomorphism) associative,
commutative and with k acting as the identity: in other words, it defines a symmetric
monoidal structure on dgCat. Moreover, such a monoidal structure is closed i.e. for
any A, B and C in dgCat we have a natural isomorphism:

Hom(A⊗ B, C) ∼= Hom(A, Hom(B, C)). (2.1)

At the end of this section we introduce a class of maps between dg categories whose
importance will be crucial throughout this work. It can be seen as a mixture between
categorical equivalences and quasi-isomorphisms.

Definition 2.1.13. A dg functor F : A −→ B is a quasi-equivalence if H0(F) is an
equivalence and F is quasi-fully faithfull i.e. for any A and B in A the map FA,B of
Definition 2.1.8 is a quasi-isomorphism.

Observe that, if a dg functor F is quasi-fully faithfull it suffices to require that H0(F)
is essentially surjective on objects in order to have a quasi-equivalence.
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2.2 Dg modules
A really important notion in the theory of dg categories is the one of dg modules.

Definition 2.2.1. Let A be a dg category. A right dg A-module (or a right dg module
over A) is a dg functor

F : A◦ −→ Cdg(k-Mod)

Right dg A-modules can therefore clearly be collected into a dg category

dgMod(A):=Hom(A◦, Cdg(k-Mod)).

Clearly we have also the analogous notion of a left dg A-module as a dg functor
F : A −→ Cdg(k-Mod). But from now on, if not otherwise specified, all our dg modules
will be right dg modules.

Also at the dg level it is possible to define a version of the Yoneda embedding. For
any dg category A we have a dg functor

Y dg
A : A −→ dgMod(A)

defined by sending an object A to A(−, A). It is called Yoneda dg functor and it has
all the nice properties one could expect: it is fully faithful and injective on objects.
Moreover, for any dg A-module M and for any A ∈ A we have a natural isomorphism

dgMod(A)(Y dg
A (A),M)

∼
−→ M(A). (2.2)

Definition 2.2.2. In dgMod(A) we have some interesting full dg subcategories. In
particular, a dg A-module M is said to be:

1. acyclic if M(A) is an acyclic complex for any object A ∈ A. We denote by Ac(A)
the subcategory of acyclic dg-modules;

2. h-projective if H0(dgMod(A))(M,N) = 0 for any acyclic dg-module N. We denote
by h-proj(A) the subcategory of h-projective dg-modules;

3. representable if it lies in the image of the Yoneda dg functor. We denote by
Ā ⊂ dgMod(A) the closure of the image of Y dg

A by homotopy equivalent objects;

It is clear by (2.2) that any representable dg-module is h-projective.

We stop for the moment the discussion on dg modules: we will continue it after
having introduced the very important notion of pretriangulated dg category.

2.3 Pretriangulated dg categories
We have said that dg categories are one of the ways mathematicians have enhanced
triangulated categories in order to overcome their "bad features". So one may wonder
how dg categories contain a triangulated structure: we will answer this question pro-
viding the definition of pretriangulated dg categories. It turns out that one of the main
difference between triangulated and dg categories lies in the fact that a triangulated
category is an additive category plus some additional structure (and in fact we can
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have, for example, different triangulated structures on the same category) while being
pretriangulated is a property that a dg category could or could not have.

A crucial point is the fact that in the context of dg categories it is possible to define
functorially the shift of an object and the cone of a closed degree 0 morphism.
Definition 2.3.1. Let A be a dg-category, A ∈ A and n ∈ Z. A n-shift of A is an
object A[n] ∈ A together with two closed morphisms

nA : A[n] −→ A nA : A −→ A[n]

of degree n and −n respectively and such that nA ◦ nA = idA and nA ◦ nA = idA[n].
It is easy to see that the object A[n], once it exists, is unique up to a natural dg

isomorphism.
Definition 2.3.2. Let A be a dg category and let f : A −→ B be a closed morphism
of degree 0 in A; suppose moreover that A contains the shift A[1]. A cone of f is an
object C(f) ∈ A together with degree 0 morphisms

A[1]
i // C(f)
p
oo

s // B
j

oo

such that

p ◦ i = idA[1], s ◦ j = idB, s ◦ i = 0 = p ◦ j, i ◦ p+ j ◦ s = idC(f) (2.3)

and
d(j) = 0 = d(p), d(i) = j ◦ f ◦ 1A, d(s) = −f ◦ 1A ◦ p. (2.4)

Notice that conditions (2.3) characterize C(f) as the biproduct of A[1] and B in A,
seen as a k-linear category. Moreover it is also uniquely determined up to a unique dg
isomorphism. In fact it satisfies a universal property, according to the following:
Proposition 2.3.3 ([19] Proposition 2.3.4). Let A be a dg category, and let f : A −→ B
be a closed morphism of degree 0. View the inclusion map i : A[1] −→ C(f) as a degree
−1 morphism A −→ C(f). Then, d(i) = j ◦ f , and for any closed degree 0 map
j′ : B −→ X and any degree −1 map i′ : A −→ X such that d(ì′) = j′ ◦ f , there exists
a unique closed degree 0 map h : C(f) −→ X such that the diagram below

B

j
�� j′

��

A

f
==

i //

i′ //

C(f)
h

""
X

commutes, i.e. such that h ◦ j = j′ and h ◦ i = i′.
The notion of cone of a closed degree 0 morphism in a differential graded category

can be seen as a generalization of the cone of a morphism of complexes. If f : A −→ B
is a closed degree 0 morphism, then a sequence of the form

A
f // B

j // C(f) p // A[1]

where the notation is the same as in Definition 2.3.2, is called preexact triangle. Pre-
exact triangles - as well as shifts and cones of degree 0 morphisms - are preserved by
any dg functor.
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Definition 2.3.4. A dg category A is strongly pretriangulated if it contains the shift
A[n] for any object A ∈ A and for every n ∈ Z and if it moreover contains the cone of
every closed degree 0 morphism of A.

A dg category A is pretriangulated if there exists a quasi-equivalence A −→ A′ with
A′ strongly pretriangulated.

Remark 2.3.5. The dg category Cdg(A) is strongly pretriangulated for any additive
category A.

Remark 2.3.6. If the dg category B is (strongly) pretriangulated, then so isHom(A,B)
for any dg category A.

If A is a pretriangulated dg category then its homotopy category H0(A) is a trian-
gulated category: the images of preexact triangles form a set of distinguished triangles
for H0(A). Notice the analogy with Proposition 1.1.15. Moreover, any dg functor
F : A −→ B between pretriangulated dg categories gives rise to a triangulated functor
H0(F) : H0(A) −→ H0(B).

Definition 2.3.7. For every dg category A we will denote by Pretr(A) the smallest full
dg subcategory of h-proj(A) which contains Y dg

A (A), and which is closed under shifts
and cones of degree-0 morphisms.

For any dg category A, Pretr(A) is a (strongly) pretriangulated dg category and
clearly the Yoneda embedding restricts to it. Actually Pretr(A) is equivalent to the
explicit construction that permits to formally add to A all shifts, all cones, cones of
morphisms between cones, etc. The latter construction is usually denoted by Apretr:
one can look at [16] Section 2.4 or [4] Section 4 for the explicit construction.

Proposition 2.3.8. A dg category A is pretriangulated (respectively, strongly pretri-
angulated) if and only if the restricted Yoneda embedding A ↪→ Pretr(A) is a quasi-
equivalence (respectively, an equivalence).

In virtue of the above result we can see that a dg category A is pretriangulated if
and only if the essential image of H0(Y dg

A ) : H0(A) −→ H0(dgMod(A)) is a triangulated
subcategory of H0(dgMod(A)).

2.4 Dg modules, again
We have that the dg categories Ac(A), h-proj(A) and dgMod(A) introduced in Section
2.2 are strongly pretriangulated and both H0(Ac(A)) and H0(h-proj(A)) are triangu-
lated subcategories of the triangulated category H0(dgMod(A)). Moreover H0(Ac(A)),
H0(h-proj(A)) and H0(dgMod(A)) have arbitrary coproducts and there is a semi-
orthogonal decomposition (look at Section 3 of [25]):

H0(dgMod(A)) = 〈H0(Ac(A)),H0(h-proj(A))〉. (2.5)

Definition 2.4.1. We can define the dg category Perf(A) of perfect dg-modules as
the full dg subcategory of h-proj(A) whose objects are the compact objects of the
triangulated category H0(h-proj(A)).
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We can see, using the isomorphism (2.2), that the Yoneda dg functor Y dg
A factors

through Perf(A). Therefore we can write the following chain of inclusions:

Y dg
A (A) ⊆ Ā ⊆ Perf(A) ⊆ h-proj(A) ⊆ dgMod(A)

Remark 2.4.2. Actually one can equivalently define Perf(A) to be the full dg sub-
category of h-proj(A) consisting of dg modules which are homotopy equivalent to a
direct summand of an object in Pretr(A). In this way we get that H0(Perf(A)) is the
idempotent completion (or the Karoubi envelope) of H0(Pretr(A)).
This also implies that H0(Perf(A)) is closed under direct summands i.e. it is a thick
triangulated subcategory of H0(h-proj(A)) (and of H0(dgMod(A)) as well). Actually
the definition of a thick subcategory requires also the closure under isomorphisms but
in the present case it is straightforward since an object isomorphic to a compact one is
compact itself.

Definition 2.4.3. A dg category A is called perfect if it is pretriangulated and its
homotopy category H0(A) is Karoubian (i.e. idempotent complete).

We can see from Remark 2.4.2 that the dg category Perf(A) is always a perfect dg
category. Moreover, any dg category that is quasi-equivalent to a perfect dg category
is itself perfect.

Proposition 2.4.4 ([4] Proposition 4.20). If A is a perfect dg category then the dg
Yoneda embedding Y dg

A : A −→ Perf(A) is a quasi-equivalence.

Definition 2.4.5. Given a dg category A we can also define its derived category to be
the triangulated category:

D(A) := H0(dgMod(A))
H0(Ac(A))

where we have made use of the Verdier quotient (see [48]).

We know by [16] section 3.3 that there always exists a triangulated functor

H0(dgMod(A))/H0(Ac(A)) −→ H0(dgMod(A)/Ac(A))

where dgMod(A)/Ac(A) is the Drinfeld quotient that he defined in the article cited
above. Such a triangulated functor is an equivalence every time dgMod(A) is homo-
topically flat. For the definition of homotopically flat (or h-flat) dg categories, look at
Remark 2.5.12.

Remark 2.4.6. There is an equivalence H0(h-proj(A)) ' D(A). This is obvious if we
remind of the semi-orthogonal decomposition (2.5).

2.5 Bimodules and quasi-functors
In this section we will introduce the machinery of extension of dg functors that will be
intensively used throughout this thesis. We will follow the exposition in [13], Section 3.1.

Let A be any dg category, let M ∈ dgMod(A) and N ∈ dgMod(A◦). We can define
a map

T :
⊕

A,B∈A
M(B)⊗k A(A,B)⊗k N(A) −→

⊕
C∈A

M(C)⊗k N(C)
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that acts as follows: given x ∈ M(B) omogeneous of degree m, y ∈ N(A) and f : A→ B
of degree l we have

T(x, f, y) := M(f)(x)⊗ y − (−1)mlx⊗ N(f)(y) ∈ M(A)⊗k N(A)⊕M(B)⊗k N(B).

Definition 2.5.1. According to the notation above, given two dg modules M ∈ dgMod(A)
and N ∈ dgMod(A◦) we define the tensor product of M and N over A to be

M⊗A N := coker(T)

that lives in dgMod(k) = Cdg(k-Mod).

Clearly, one can repeat the same definition taking M ∈ dgMod(A ⊗ B) and N ∈
dgMod(B◦ ⊗ C). In this case, M⊗B N is an object in dgMod(A⊗ C).

Given two dg categories A and B, as a particular case of the natural isomorphism
(2.1) we get the isomorphism of dg categories

ηA,B : dgMod(A◦ ⊗ B) −→ Hom(A,dgMod(B)) (2.6)

Now, given a dg functor F : A −→ dgMod(B) we call extension of F the dg functor

F̂ : dgMod(A) −→ dgMod(B)

defined as the tensorization (overA) by the element EF ∈ dgMod(A◦⊗B) corresponding
to F via (2.6). We also have a natural way to define a dg functor

F̃ : dgMod(B) −→ dgMod(A)

by sending a dg B-module M to the dg A-module dgMod(B)(F(−),M).

If now G : A −→ B is a dg functor we define IndG := Ŷ dg
B ◦ G and ResG := Ỹ dg

B ◦ G.
Observe that, by the isomorphism (2.2), we have ResG(M) = M(G(−)).

Proposition 2.5.2 ([13] Proposition 3.2, [16] Section 14.9). Let G : A −→ B be a dg
functor. We have the following properties:

(i) IndG is left adjoint to ResG;

(ii) IndG ◦ Y dg
A is dg isomorphic to Y dg

B ◦ G;

(iii) IndG restricts to h-projective dg modules and such a restriction is a quasi-equivalence
if G is a quasi-equivalence;

(iv) ResG restricts to h-projective dg modules if and only if ResG(B̄) ⊆ h-proj(A);
moreover ResG restricts to perfect dg modules if and only if ResG(B̄) ⊆ Perf(A);

(v) H0(IndG) and H0(ResG) commute with arbitrary direct sums.

Proof. the only statement that is not covered by the cited results is the second part
of (iv). To prove (the non-trivial implication of) it we just need to recall that Perf(B)
is obtained from B̄ through shifts, cones of degree-0 morphisms and direct summands
in homotopy and that Perf(A) is closed under those operations (see Remark 2.4.2,
Definition 2.3.7 and the discussion below it).
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Proposition 2.5.3 ([4] Lemma 4.14). Let G : A −→ B be a dg functor. Then IndG
restricts also to perfect dg modules and such a restriction is a quasi-equivalence if G is
a quasi-equivalence.

If G : A −→ B is a dg functor we can see that IndG restricts to a dg functor
between Pretr(A) and Pretr(B). In fact, since any element of Pretr(A) is obtained
from representable A-modules by means of iterated shifts and cones and since IndG
preserves shifts and cones (being a dg functor), we can conclude by Proposition 2.5.2.

Proposition 2.5.4 (see [4], Remark 4.12). If a dg functor G : A −→ B is a quasi-
equivalence then the induced functor

IndG : Pretr(A) −→ Pretr(B)

is a quasi-equivalence as well.

Moreover, for a dg functor G : A −→ B, we can define also a derived version of the
dg functors IndG and ResG. Namely we have

LH0(IndG) : D(A) −→ D(B) and RH0(ResG) : D(B) −→ D(A)

and they still are a pair of adjoint functors (see, for example, [2] Section 10).

Remark 2.5.5. Actually, since ResG preserves acyclic dg modules (it is in some sense
the "dual" statement of Proposition 2.5.2 (iii)), it naturally passes to the derived cat-
egories (see Definition 2.4.5) and hence the right derived functor RH0(ResG) coincides
with H0(ResG). If we now consider the equivalence between D(A) and H0(h-proj(A))
we can see that the left derived functor LH0(IndG) in this setting is exactly H0(IndG)
while RH0(ResG) sends an object M ∈ H0(h-proj(B)) to an h-projective resolution
of H0(ResG(M)) (see [16] Section 14.12) since we have that in general ResG does not
restrict to h-projective dg modules.

We now present some result that will be used in the second part of the work.

Lemma 2.5.6. Let A be a perfect dg category and consider the Yoneda dg functor
YA : A −→ Perf(A). Then the dg functor ResYA restricts to perfect dg modules and
provides a quasi-equivalence ResYA : Perf(Perf(A)) −→ Perf(A).

Proof. Let us start by showing that ResYA restricts to perfect dg modules. Thanks to
Proposition 2.5.2 (iv) it suffices to show that ResYA(HomPerf(A)(−, A)) ⊆ Perf(A) for
any A ∈ Perf(A). Now, by the defnition of Res and by the dg Yoneda Lemma we can
write

ResYA(HomPerf(A)(−, A)) = HomPerf(A)(YA(−), A) ' A(−) ∈ Perf(A).

We have therefore that ResYA restricts to perfect dg modules and hence it is a right
adjoint to IndYA : Perf(A) −→ Perf(Perf(A)). But the latter dg functor is a quasi-
equivalence by Proposition 2.5.3, since A is perfect.
It follows that ResYA : Perf(Perf(A)) −→ Perf(A) is a quasi-equivalence as well.

Lemma 2.5.7. If A is a perfect dg category and B is any dg category then the dg functor
ResYA⊗idB restricts to perfect dg modules and provides a quasi-equivalence ResYA⊗idB :
Perf(Perf(A)⊗ B) −→ Perf(A⊗ B).
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Proof. Let us start again by showing that the dg functor under investigation restricts
to h-projective dg modules. Always by Proposition 2.5.2 (iv) this amounts to checking
that ResYA⊗idB

(
HomPerf(A)⊗B

(
(−,=), (A,B)

))
⊆ h-proj(A ⊗ B) for any A ∈ Perf(A)

and B ∈ B. We can write

ResYA⊗idB

(
HomPerf(A)⊗B

(
(−,=), (A,B)

))
= HomPerf(A)⊗B

(
(YA(−),=), (A,B)

)
= HomPerf(A)(YA(−), A)⊗HomB(=, B) ' A(−)⊗HomB(=, B),

again by the dg Yoneda Lemma. Now, since A is a perfect dg category there exists
an object Ã ∈ A such that A(−) is homotopy equivalent to HomA(−, Ã). Moreover,
tensorization by HomB(=, B) ∈ dgMod(B) provides a dg functor from dgMod(A) to
dgMod(A⊗ B) (see, for example, Remark 2.5 of [13]). Therefore A(−)⊗ HomB(=, B)
is homotopy equivalent to HomA(−, Ã) ⊗ HomB(=, B) = HomA⊗B

(
(−,=), (Ã, B)

)
∈

Perf(A⊗B). It follows that ResYA⊗idB

(
HomPerf(A)⊗B

(
(−,=), (A,B)

))
actually belongs

to h-proj(A⊗ B).
For the remaining part of the proof we proceed exactly as in the proof of Lemma 2.5.6
and we can conclude.

Corollary 2.5.8. If A and B are two perfect dg categories then the dg functor ResYA⊗YB
gives rise to a quasi-equivalence ResYA⊗YB : Perf(Perf(A)⊗ Perf(B)) −→ Perf(A⊗B).

Proof. Clearly we can prove - in complete analogy with Lemma 2.5.7 - that also

ResidPerf(A)⊗YB : Perf(Perf(A)⊗ Perf(B)) −→ Perf(Perf(A)⊗ B)

is a quasi-equivalence. Therefore the claim follows from the fact that the composition
of two quasi-equivalences is a quasi-equivalence, too.

One of the important features of differential graded categories is that dgCat can
be endowed with the structure of a model category whose weak equivalences are the
quasi-equivalences (see [43]). This assures us that localizing dgCat with respect to the
set W of quasi-equivalences still gives rise to a category. We set

Hqe := dgCat[W−1].

This category has been believed to be the right place for working with dg categories
from a homotopical point of view and it will be one of the main characters of the present
work. So let us summarize here the main properties of Hqe.

We will follow [14] and call quasi-functor any morphism in Hqe. An element
F ∈ Hqe(A,B) can always be represented (see [6] Theorem 1) by a roof

A′

~~   
A B

where the left-pointing arrow is a quasi-equivalence. It induces a well-defined (up to
isomorphism) functor H0(F) : H0(A) −→ H0(B).
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Definition 2.5.9. Let F and G be two dg functors from A to B. A dg natural trans-
formation θ : F −→ G is a termwise homotopy equivalence if it is closed of degree 0 and
θA : F(A) −→ G(A) is a homotopy equivalence for any A ∈ A.

Observe that θ is a termwise homotopy equivalence if and only if the natural trans-
formation H0(θ) : H0(F) −→ H0(G) is an isomorphism.

Proposition 2.5.10 ([13] Corollary 2.12). Let F and G be two dg functors from A to
B. If there exists a termwise homotopy equivalence between them, then the images of F
and G in Hqe(A,B) are the same.

We have already observed in Remark 2.1.12 that dgCat is a closed (symmetric)
monoidal category. What about Hqe? Since the tensor product of dg categories does
not behave well with respect to quasi-equivalences (as it should be clear since in the
definition appears the tensor product between complexes of k-modules) we need to
suitably derive it. It can be done by means of h-projective resolution.

Definition 2.5.11. A dg category A is h-projective if for any A, B ∈ A the complex
A(A,B) lies in h-proj(Cdg(k-Mod)).

Note that, if k is a field, any dg category is h-projective. In general, starting from
any dg category A one can construct an h-projective dg category Ahp quasi-equivalent
to A (see Section 13.5 of [16]); hence the derived tensor product of two dg categories
can be defined as

A⊗L B := Ahp ⊗ B.

Remark 2.5.12. Actually it suffices that one of the two dg categories is h-flat i.e. such
that all its complex morphisms are h-flat complexes (see Definition 1.2.5): this means
that tensoring them with an acyclic complex of k-modules still produces an acyclic
complex of k-modules. The reader can have a look at Section 3.2 of [7] for an explicit
construction of functorial h-flat resolutions. Clearly an h-projective dg category is also
h-flat.

The derived tensor product defines a symmetric monoidal structure on Hqe. In
2007 Toën proved that it is also closed.

Theorem 2.5.13 ([45], Theorem 6.1 or [13], Theorem 1.1). Given three dg categories
A, B and C there exists a dg category RHom(B, C) and a functorial isomorphism in
Hqe

Hqe(A⊗L B, C) ' Hqe(A, RHom(B, C))

The dg category RHom(B, C) is naturally isomorphic to the dg category

h-proj(B◦ ⊗L C)rqr

of right quasi-representable h-projective dg modules over B◦ ⊗L C.

Definition 2.5.14. Let B and C be two dg categories. The category of right quasi-
representable dg B◦⊗C-modules is the full dg subcategory of h-proj(B◦⊗C) consisting
of dg modues M such that ηB,C(M)(B) ⊆ C̄, where η is the isomorphism of (2.6).

In addition we have, see [45] Theorem 4.2 or [13] Theorem 1.1:

Theorem 2.5.15. For any dg categories A and B there exists a natural bijection

Hqe(A,B)←→ Iso(H0(h-proj(A◦ ⊗L B)rqr)) (2.7)
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2.6 Dg enhancements and lifts
The theory of differential graded categories whose essential aspects we have diven into
in the previous Sections allows us to look back at the problem of detecting representable
exact functors from a higher perspective. But before doing it we need to carefully define
the way of enhancing triangulated categories (and triangulated functors) to the dg level.

Definition 2.6.1. Let D be a triangulated category. A dg enhancement of D is a pair
(A,E) where A is a pretriangulated dg category and E is an exact equivalence

E : H0(A) ∼−→ D

Remark 2.6.2. We can recall now that we have already encountered examples of dg
enhancement, in the previous Sections:

(a) By Example 2.1.7 we can see that the dg category Cdg(A), which is pretrian-
gulated, is a dg enhancement of the homotopy category K(A) whenever A is
additive;

(b) The pretriangulated dg category h-proj(A) is a dg enhancement of D(A), by
Remark 2.4.6, for every dg category A;

(c) In general, if A is a pretriangulated dg category and B is a pretriangulated full dg
subcategory of A we have that the Drinfeld quotient A/B is a dg enhancement
of the Verdier quotient H0(A)/H0(B). In the case of A being homotopically flat
this is exactly Theroem 3.4 of [16]. Otherways the claim is obtained by passing
through h-flat resolutions (see again [16], or [7] Section 3.2 and in particular the
discussion before Remark 3.11 in it).

In the geometric case, there are many ways of enhancing a triangulated category.
Let us consider, for example, the category Db(Coh(X)) in the case of X being a smooth
projective scheme over a field.

• Consider the dg category Inj(X) of bounded below complexes of injective quasi-
coherent sheaves on X with bounded coherent cohomologies (see, for example,
[4]). It is a pretriangulated dg category and it is not hard to provide a natural
exact equivalence H0(Inj(X)) ∼= Db(Coh(X)).

• In virtue of Remark 2.6.2 (a) and (c), we can see that the Drinfeld quotient
of Cbdg(Coh(X)) (a version of the object defined in Example 2.1.7 where we are
considering only bounded complexes) by its full pretriangulated dg subcategory
Acbdg(Coh(X)) of acyclic complexes is another dg enhancement of Db(Coh(X)).

• In [4] it is defined also an enhancement of Db(Coh(X)) constructed starting from
Čech resolution of bounded complexes of vector bundles (Lemma 5.6). This kind
of enhancements, in the refined version of [31] Appendix C, turns out to be the
most suitable for our purposes: we will therefore describe it in details later, see
Section 3.2.

• In [31] the authors construct another enhancement of Db(Coh(X)) (cfr. Proposi-
tion 3.15), consisting in certain non-full subcategories of the dg category Cdg(Sh(X)).

It is therefore natural to wonder how are all those dg enhancements related. In the
literature, there are different ways of doing it:
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Definition 2.6.3. We say that the triangulated category D has a unique enhancement
if given (A,E) and (A′,E′) two dg enhancements of D there exists a pretriangulated dg
category A′′ together with two quasi equivalences

A′′
∼

~~

∼
!!

A A′.

This in particular implies that (actually, is equivalent to) A and A′ are isomorphic
in Hqe.

The problem of uniqueness of dg enhancement has been quite intensively studied
during the last decade. The first important result was obtained in 2010 by Lunts and
Orlov [30] where they prove that Db(Coh(X)) has unique enhancement when X is a
quasi-projective scheme; they proved also that D(Qcoh(X)) has unique enhancement in
the case of a quasi-compact and separated scheme X with enough locally free sheaves.
These and the other seminal results in [30] have been improved in many directions.
Recently, in [7] Canonaco, Neeman, and Stellari managed to prove the uniqueness of
dg enhancement for all kinds of derived categories (either bounded or unbounded or
bounded above/below) of any abelian category. They also proved that Perf(X) has a
unique enhancement for any quasi-compact and quasi-separated scheme.

The careful reader may have noticed that in Definition 2.6.3 the exact equivalences
E and E′, that are part of the data of a dg enhancement, do not play any role. If one
wants to care about them another definition of uniqueness has to be introduced.

Definition 2.6.4. The triangulated category D has a strongly unique enhancement
if given (A,E) and (A′,E′) two dg enhancements of D there exists a quasi-functor
F ∈ Hqe(A,A′) and an isomorphism of exact functors

E ' E′ ◦H0(F). (2.8)

There is also the intermediate notion of semi-strongly unique enhancement requiring
just E(A) ' E′ ◦H0(F)(A) for any object A of A instead of the isomorphism of functors
(2.8).

Remark 2.6.5. While — as we have observed — uniqueness is well understood in a
broad range of situations, strongly uniqueness is in some sense more obscure. Some
results has been proved: for example, for a smooth projective scheme X over a field
Db(Coh(X)) has a strongly unique enhancement (Theorem 2.14 of [30]). But still a lot
of open questions resist.

Besides the notion of (dg) enhancement of a triangulated category, there is also a
way of enhancing triangulated functors.

Definition 2.6.6. Let f : D −→ T be an exact functor between triangulated categories
and let (A,E) and (B,U) be two dg enhancements of D and T , respectively. A dg lift
of f is a morphism F ∈ Hqe(A,B) such that the diagram

H0(A)

E
��

H0(F) // H0(B)

U
��

D f // T
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is commutative up to isomorphisms i.e. there is an isomorphism of exact functors
U ◦H0(F) ∼= f ◦ E.

This is a good point for a jump back to Section 1.4: we have now all the tools
needed for understanding how the somehow obscure situation we have depicted there
finds a new description in the dg realm.

Suppose now X and Y to be two smooth projective schemes. We have seen that
given any object E ∈ Db(Coh(X×Y )) we can naturally attach to it an exact functor
ΦE : Db(Coh(X)) −→ Db(Coh(Y )). This can be expressed with the existence of a
functor

Db(Coh(X×Y )) −→ Fun(Db(Coh(X)), Db(Coh(Y ))) (2.9)

where Fun(Db(Coh(X)) , Db(Coh(Y ))) denotes the category of exact functors between
Db(Coh(X)) and Db(Coh(Y )).

Such a functor is unfortunately neither essentially surjective nor essentially injec-
tive — in Remark 1.4.6 we have spoken about the existence of non-Fourier-Mukai
functors as well as the fact that two non-isomorphic objects in Db(Coh(X×Y )) can
give rise to isomorphic Fourier-Mukai functors. A much more detailed dsicussion on
the problematic aspects of the functor (2.9) can be found, for example, in [14] Section 6.

In [4] the authors began to investigate this problem employing the machinery of
differential graded categories and they came up with the following:

Theorem 2.6.7 ([4] Theorem 6.8). Let X and Y be smooth projective varieties and
let f : Db(Coh(X)) −→ Db(Coh(Y )) be an exact functor. If f admits a dg lift, then f
is isomorphic to the Fourier-Mukai functor ΦEf for some Ef ∈ Db(Coh(X×Y )).

This suggests that one may consider the functor (2.9) by taking values in the class
of morphism in Hqe between two dg enhancements of Db(Coh(X)) and Db(Coh(Y )).
I want to recall now that we have already encountered the bijection (2.7) concerning
morphisms in Hqe between two dg categories. Toën proved in [45], as a consequence
of the existence of internal homs in Hqe, the following result

Proposition 2.6.8 ([45], Corollary 8.15). Let X and Y be two smooth proper schemes
over a commutative ring. Then there exists an isomorphism

RHom(Perfdg(X),Perfdg(Y )) ∼−→ Perfdg(X×Y )

in Hqe.

In the above statement Perfdg(X) and Perfdg(Y ) stand for dg enhancements of
Perf(X) and, respectively, of Perf(Y ). This proposition yields - taking the isomor-
phisms classes in H0 - a bijection

Hqe(Perfdg(X),Perfdg(Y ))←→ Iso(Perf(X×Y )). (2.10)

Now, consider an object E ∈ Perf(X×Y ) and its associated Fourier-Mukai functor
ΦE : Perf(X) −→ Perf(Y ). A natural question arise:

What is the relationship between ΦE and the element FE of Hqe(Perfdg(X),Perfdg(Y ))
corresponding to the isomorphism class of E through the bijection (2.10)?
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What one expects is to have H0(FE) ' ΦE . Toën claimed an analogous fact in [45],
after Corollary 8.12. This would also give us a way, in the hypoteses of Theorem 2.6.7,
of producing the kernel Ef . A positive answer to a closely related question has been
given in [31].

We will see in the following Chapters how it is possible to define a bijection that
behaves exactly in this way.
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Chapter 3

A dg lift of the Fourier-Mukai
functor ΦE

We start this Chapter with a discussion on the hypoteses we are going to assume.
After that we introduce the kind of Čech enhancements that will be used in order to
lift all the "pieces" of Fourier-Mukai functors in a compatible way. We move then to
the explicit dg lift of pullback, pushforward and tensor product.

We finish by pointing out that, with some small modification in the construction,
the dg lift of the Fourier-Mukai functor we end up with can still be produced in a bigger
level of generality.

3.1 Description of the general setting
What we are going to do in this thesis is to prove, under suitable hypoteses that will
be discussed later, the existence of a bijective map

γ : Iso(Perf(X×Y )) 1:1−→ Hqe(Perfdg(X),Perfdg(Y ))

compatible with Fourier-Mukai kernels; this means that γ is such that, for any E ∈
Perf(X×Y ), we have H0(γ(E)) ' ΦE . The dg categories Perfdg(X) and Perfdg(Y ) are
two fixed dg enhancements of Perf(X) and Perf(Y ) respectively. Look at Theorem
4.4.1 for the precise statement.

Our strategy consists essentially in two steps: the first one is to produce an explicit
dg lift Φdg

E of the Fourier-Mukai functor ΦE , where E is an object of Perf(X×Y ); the
second one is to show that we can construct the bijection γ essentially by sending the
isomorphism class of E to Φdg

E .
This will require a discrete amount of work that will be carried along the present and
the following Chapter. But before starting, we need to spend a couple of words about
the hypoteses we will be working under.

We will construct the bijection γ (and prove its properties) assuming that X and
Y satisfy condition (∗), where we say that any scheme X satisfies (∗) if:

(∗) X is a smooth and proper scheme over a field k.

The construction of the dg lift ΦE will be done by means of Čech enhancements,
in the version presented in [31] Appendix C. We will make use of some of the results
there, that are proved for schemes X which satisfy the condition
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(GSP+) X is a quasi-compact, separated, Nagata, locally integral scheme over a com-
mutative ring k. Moreover, any perfect complex on X is quasi-isomorphic to a
bounded complex of vector bundles.

Recall that a ring A is Nagata if it is Noetherian and if for every prime ideal p
of A and for every finite extension L of Frac(A/p) the integral closure of A/p in L is
finite over A/p. A scheme X is Nagata if for every x ∈ X there exists an affine open
neighbourhood x ∈ U ⊆ X such that the ring OX(U) is Nagata.

Remark 3.1.1. A scheme X satisfying the condition (GSP+) is Noetherian: in fact
it is quasi-compact by assumption and clearly a Nagata scheme is locally Noetherian.

Remark 3.1.2. We can see that under the assumptions (∗) any scheme X satisfies the
condition (GSP+). In fact:

(a) X is obviously quasi-compact and separated: it follows from properness;

(b) X is also Nagata since it is of finite type over a field, see the discussion at the
beginning of Appendix C in [31];

(c) X is locally integral. In fact, since it is smooth over a field, [42, Tag 056S] implies
that X is regular: in particular the local rings OX,x are regular for any x ∈ X,
hence OX,x are integral domains for any x ∈ X (by Proposition 4.2.11 of [29]).

(d) X is also regular as we observed above. Therefore - by Remark 2.4 of [31] and by
the fact that a Noetherian separated regular scheme has the resolution property
- any perfect complex on X is quasi-isomorphic to a bounded complex of vector
bundles.

Observe that moreover any scheme X satisfying (∗) is of finite dimension. In fact we
have that dim(X) = supα dim(Uα) for any open covering {Uα} of X. Since we are in the
quasi-compact case the supremum is actually a maximum and hence it suffices to show
that any affine open U = Spec(A) of X has finite dimension. Now, dim(U) = dim(A)
and A has finite dimension since it is a finitely generated k-algebra.

Remark 3.1.3. We have that, if X satisfies (∗), Proposition 2.1 of [31] applies and
hence Perf(X) = Db(Coh(X)).

Actually, many of the parts of the proof we are going to present hold true in greater
generality: in particular we do not need to work with schemes over a field. It is sufficient
for them to satisfy the condition

(∗∗) X is a smooth, proper, Nagata, locally integral scheme over a commutative ring k.
Moreover, any perfect complex on X is quasi-isomorphic to a bounded complex
of vector bundles.

Observe that this condition clearly implies condition (GSP+): it is a consequence of
point (a) in Remark 3.1.2.

We point out also that a scheme X satisfying condition (∗∗) is Noetherian, by Re-
mark 3.1.1.

Along the way, we will highlight which results still hold in the (∗∗) case.
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3.2 Choice of the enhancements and auxiliary results
In this section we set the basis for the construction of an explicit dg lift of the Fourier-
Mukai functor ΦE : Perf(X) −→ Perf(Y ). Such a lift will be computed by lifting each
of the three (derived) functors ΦE is made of: the pullback along the first projection,
the tensor product with the element E of Perf(X×Y ) and the pushforward along the
second projection.

As we have seen in Definition 2.6.6, part of the data of the dg lift of a triangulated
functor F : A −→ B is the choice of a dg enhancement of A and B, respectively. We
are therefore looking for lifts of pullback, pushforward and tensor product that are
computed using the same dg enhancements (in our case, Čech enhancements) in order
to avoid troubles with quasi-equivalences. Moreover, Čech enhancements are good tools
for having an explicit definition of the dg lifts and this will be very important in the
next Chapter.

In the present and future sections of this Chapter — except Section 3.8 — we will
working assuming all the schemes satisfy condition (∗).

Let us now begin with the description of those kind of enhancements. Throughout
this work U := {Ui}i∈I will be a finite affine open covering of X; if A is an OX−
module, we will denote by CU (A) the Čech resolution of A with respect to the covering
U . It is defined as

CnU (A) :=
⊕

i0<...<in∈I
(ji0,...,in)∗(ji0,...,in)∗A

where Ui0...in := Ui0 ∩ . . .∩Ui0 and ji0,...,in is the open inclusion Ui0...in ↪→ X. Differen-
tials are defined in the usual way: the map

d : CpU (A) −→ Cp+1
U (A)

is such that

d(s)i0...ip+1 =
p+1∑
j=0

(−1)jsi0...̂ij ...ip+1 |Ui0...ip+1

where by si0...ip we denote a local section of (ji0,...,ip)∗(ji0,...,ip)∗A and the "hat" on an
index means that it has been removed. When A• is a complex of OX− modules CU (A•)
is defined to be the totalization of the obvious double complex.

Following [31] Appendix C, we set P∗(U) to be the smallest full dg subcategory of
C(Qcoh(X)) containing all the complexes CU (P ) for every vector bundle P on X and
closed under shifts and cones of closed morphisms of degree zero. We denote by P(U)
the full dg subcategory of Cdg(Sh(X)) that contains all the objects of P∗(U) and is
closed under taking homotopy equivalent objects. Observe that any object of the form
CU (R), with R a bounded complex of vector bundles, still belongs to P(U). It is the
dg category that in [31] is denoted by PerfČob∗(X). The dg category P(U) is strongly
pretriangulated and moreover we have the following

Proposition 3.2.1 ([31], Proposition C.1 together with subsection C.1.1). The dg
category P(U) is a dg enhancement of Perf(X).

Actually, it can be seen from the proof of Proposition C.1 in [31] that the exact
equivalence ωX : H0(P(U)) −→ Perf(X) acts on objects as the identity.

Remark 3.2.2. Note that, by Remark C.3 of [31], any object of P(U) is homotopy
equivalent to an object of the form CU (R), with R a bounded complex of vector bundles.
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Analogously we will denote by V := {Vj}j∈J a finite affine covering of Y ; observe
that U×V := {Ui × Vj}(i,j)∈I×J is a finite affine covering of X×Y . So we can define also
the dg categories P∗(V), P(V), P∗(U×V) and P(U×V), together with the equivalences

ωY : H0(P(V)) −→ Perf(Y ) and ωX×Y : H0(P(U×V)) −→ Perf(X×Y ).

With this kind of enhancement we will try to lift all the three "pieces" of the Fourier-
Mukai functor.

Remark 3.2.3. Observe that, by definition, the inclusion ιU : P∗(U) ↪→ P(U) is a
quasi-equivalence as well as ιV : P∗(V) ↪→ P(V) and ιU×V : P∗(U×V) ↪→ P(U×V).
Moreover, since we are dealing with h-projective dg categories (see the remark below),
the inclusion

L := ιU ⊗ ιV : P∗(U)⊗ P∗(V) ↪→ P(U)⊗ P(V)
is a quasi-equivalence, too by Remark 2.8 of [13].

Remark 3.2.4. Observe also that, since we are working over a field, all those dg
categories will be h-projective and therefore also h-flat. In particular this avoids troubles
whenever we are dealing with the tensor product of dg categories in Hqe. Actually we
will see (in Proposition 3.8.1) that all the categories we are dealing with are h-flat even
under the milder hypotesis (∗∗).

In the following pages we are going to prove some importat properties of the dg
version of boxtimes bifunctor we have introduced in Section 1.3. We have said that one
can define a bifunctor

−� ∼:= p∗(−)⊗ q∗(∼) : Sh(X)× Sh(Y ) −→ Sh(X×Y ).

that - in our hypoteses - is exact whenever we fix one of the two arguments (see the
discussion about the boxtimes in Section 1.3). It naturally induces a dg bifunctor

� : P(U)⊗ P(V) // P(U×V).

The fact that the image �(P(U) ⊗ P(V)) is actually contained in P(U×V) follows
from Proposition C.11, Corollary C.12 and subsection C.3.3 of [31]. Notice that those
results, originally proved in the hypotesis of being over a field, actually hold also when
the schemes satisfy condition (∗∗) — in this case the role of Lemma A.16 (c) in [31] is
played by Lemma 3.2.8 below.

Remark 3.2.5. From those last two results it follows that - if A is a bounded complex
of vector bundles on X and B is a bounded complex of vector bundles on Y - there is
a homotopy equivalence between CU (A) � CV(B) and CU×V(A�B).

Proposition 3.2.6 ([31], Lemma C.14 and subsection C.3.3). The dg-functor � :
P(U)⊗ P(V) −→ P(U×V) is quasi-fully faithful.

Actually, a stronger result than Proposition 3.2.6 holds true.

Proposition 3.2.7. For any couple of objects (A,B) and (A′, B′) of P(U)⊗P(V) we
have that the canonical map

HomP(U)⊗P(V)
(
(A,B), (A′, B′)

)
−→ HomP(U×V)(A�B,A′ �B′)

is a homotopy equivalence. Moreover, such a map is an isomorphism every time A, A′,
B and B′ are Čech resolutions of bounded complexes of vector bundles (on X and Y ,
respectively).
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Proof. Let us start by considering vector bundles P and P ′ on X and Q and Q′ on Y .
We need that the natural morphism of complexes (♥)

HomOX (CU (P ), CU (P ′))⊗HomOY (CV(Q), CV(Q′)) −→ HomOX×Y (CU (P )�CV(Q), CU (P ′)�CV(Q′))

is an isomorphism.

The i-th degree of the right hand side is given by:⊕
ω

HomOX×Y
(
(CU (P ) � CV(Q))ω, (CU (P ′) � CV(Q′))ω+i

)
=

⊕
ω

HomOX×Y
( ⊕
a+b=ω

⊕
i0<..<ia

⊕
j0<..<jb

(PUi0..ia �QVj0..jb ),
⊕

c+d=ω+i

⊕
l0<..<lc

⊕
t0<..<td

(P ′Ul0..lc �Q′Vt0..td
)
)

The latter, thanks to the Lemma below, is isomorphic to (♠)⊕
ω

⊕
a+b=ω

⊕
c+d=ω+i

⊕
i0..ia

⊕
j0..jb

⊕
l0..lc

⊕
t0..td

HomOX×Y
(
(P�Q)Ui0..ia×Vj0..jb , (P

′�Q′)Ul0..lc×Vt0..td
)

On the other hand the i-th degree of the complex on the left is:⊕
r+s=i

(⊕
h

HomOX (CU (P )h, CU (P ′)h+r)⊗
⊕
k

HomOY (CV(Q)k, CV(Q′)k+s)
)

=

⊕
r+s=i

(⊕
h

HomOX (
⊕

i0<..<ih

PUi0..ih ,
⊕

l0<..<lh+r

P ′Ul0..lh+r
)⊗

⊕
k

HomOY (
⊕

j0<..<jk

QVj0..jk ,
⊕

t0<..<tk+s

Q′Vt0..tk+s
)
)

=

⊕
r+s=i

⊕
h

⊕
k

⊕
i0..ih

⊕
l0..lh+r

⊕
j0..jk

⊕
t0..tk+s

(
HomOX (PUi0..ih , P

′
Ul0..lh+r

)⊗HomOY (QVj0..jk , Q
′
Vt0..tk+s

)
)

and - up to a reordering of the terms (for example with the substitution h = a, k = b,
r = c− a, s = d− b) - it is the same as (♣)⊕
ω

⊕
a+b=ω

⊕
c+d=ω+i

⊕
i0..ia

⊕
j0..jb

⊕
l0..lc

⊕
t0..td

(
HomOX (PUi0..ia , P

′
Ul0..lc

)⊗HomOY (QVj0..jb , Q
′
Vt0..td

)
)

But the latter, as well as (♠), is zero unless Ul0..lc ⊆ Ui0..ia and Vt0..td ⊆ Vj0..jb by Lemma
A.5 of [31] and, if these conditions are verified, reasoning as in the proof of Lemma C.14
of the same paper we can conclude that (♠) and (♣) are exactly the same. This yields
the fact that the map (♥) is an isomorphism of complexes, as wished.

With essentially the same computations it is possible to see that such an isomor-
phisms holds true even in the case of P , P ′, Q and Q′ being bounded complexes of
vector bundles.
If we now consider generic objects of P(U) ⊗ P(V), also in virtue of Remark 3.2.2,
it is easy to see that the map (♥) is a homotopy equivalence in this case, consider-
ing the fact that covariant and contravariant Hom functors are defined on the whole
dg category Cdg(Sh(X)) × Cdg((Sh(Y )) as well as the boxtimes is well defined on
Cdg((Sh(X×Y )).

Lemma 3.2.8. Let X and Y be as in our hypoteses, let ι : U −→ X and j : V −→ Y
be the inclusions of affine open subsets. Then for any P (resp. Q) vector bundle on X
(resp. Y ) we have the following isomorphism of OX×Y -modules

ι∗ι
∗P � j∗j

∗Q = p∗ι∗ι
∗P ⊗ q∗j∗j∗Q ' (ι× j)∗(ι× j)∗(p∗P ⊗ q∗Q)
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Proof. Let us start by considering the cartesian diagram

U × Y
ι×idY

��

p|U // U

ι
��

X×Y p // X

By applying base change (see Proposition 1.3.3) we get

p∗ι∗ι
∗P ' (ι× idY )∗p∗|U ι

∗P = (ι× idY )∗(ι× idY )∗p∗P

Clearly we have a completely analogous situation on Y hence we can write:

p∗ι∗ι
∗P ⊗ q∗j∗j∗Q ' (ι× idY )∗(ι× idY )∗p∗P ⊗ (idX × j)∗(idX × j)∗q∗Q.

Now let us consider

(ι×j)∗(ι×j)∗(p∗P⊗q∗Q) = (idX×j)∗(ι×idV )∗
(
(idU×j)∗(ι×idY )∗p∗P⊗(ι×idV )∗(idX×j)∗q∗Q

)
The immersion ι : U −→ X is separated because U is affine [42, Tag 01KN], hence
ι×idV is separated as well since it is the base change of a separated morphism [42, Tag
01KU]. It is also quasi-compact: thus, being the module (idX×j)∗q∗Q flat (since the
pullback of a vector bundle is still a vector bundle), we can apply projection formula
(see Proposition 1.3.1) and gain that what we have written above is isomorphic to

(idX×j)∗
(
(ι×idV )∗(idU×j)∗(ι×idY )∗p∗P ⊗ (idX×j)∗q∗Q

)
'

'(idX×j)∗
(
(idX×j)∗(ι×idY )∗(ι×idY )∗p∗P ⊗ (idX×j)∗q∗Q

)
where for the last isomorphism we have used again base change. Now, since the map
(idX×j) is affine (as base change of an affine map), we can still apply projection formula
and get that the latter is isomorphic to

(ι× idY )∗(ι× idY )∗p∗P ⊗ (idX × j)∗(idY × j)∗q∗Q

This concludes the proof.

Proposition 3.2.7 yields the following

Corollary 3.2.9. The dg functor � : P∗(U)⊗ P∗(V) −→ P(U×V) is fully faithful.

Let us now denote by �| the restriction to P∗(U)⊗P∗(V) of � and let us abbreviate
by Y the dg Yoneda embedding Y dg

P(U×V). The latter is a quasi-equivalence from P(U×V)
to Perf(P(U×V)), since P(U×V) is a perfect dg category (see Section 3.3). We can
prove the following

Proposition 3.2.10. The dg-functor Res�| ◦Y : P(U×V) −→ dgMod(P∗(U)⊗P∗(V))
induces a quasi-equivalence from P(U×V) to Perf(P∗(U)⊗ P∗(V)).
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Proof. We start by noticing that Corollary 3.2.9 gives us the commutativity of the
following diagram

dgMod(P∗(U)⊗ P∗(V)) dgMod(P(U×V))
Res�|oo

P∗(U)⊗ P∗(V)

Ỹ

OO

�| // P(U×V)

Y

OO

where we have denoted by Ỹ the dg Yoneda embedding Y dg
P∗(U)⊗P∗(V). Let us now

consider the dg category B := �|
(
P∗(U)⊗ P∗(V)

)
We have:

(i) H0(Res�| ◦ Y )(H0(B)) ⊆ H0(Perf(P(U)⊗P(V))): In fact, thanks to the commu-
tativity of the above diagram we can write

H0(Res�| ◦ Y )(H0(B)) = H0(Res�| ◦ Y ◦�|)(P∗(U)⊗ P∗(V))
= H0(Ỹ )(P∗(U)⊗ P∗(V)) ⊆ H0(Perf(P(U)⊗ P(V)));

(ii) H0(P(U×V)) is classically generated by H0(B): in fact in our hypoteses we
can apply the Lemma 3.4.1 of [5] together with the equivalence (1.1) and get
that DQcoh(Sh(X×Y )) is generated by a single compact object E � F , where E
and F are the compact generators of DQcoh(Sh(X)) and DQcoh(Sh(Y )), respec-
tively. It follows that, see Theorem 1.1.12 and Definition 1.1.10, H0(P(U×V)) '
Perf(X×Y ) = DQcoh(Sh(X×Y ))c is the smallest thick triangulated subcategory
of itself containing E � F and therefore it is also the smallest thick triangulated
subcategory of itself containing H0(B): this precisely means that H0(P(U×V)) is
classically generated by H0(B);

(iii) H0(Perf(P∗(U) ⊗ P∗(V))) is a thick triangulated subcategory of the tri-
angulated category H0(dgMod(P∗(U) ⊗ P∗(V))) by what we said in Remark
2.4.2.

Therefore we get that the image of H0(P(U×V)) through H0(Res�| ◦Y ) is contained in
H0(Perf(P∗(U)⊗ P∗(V))). Moreover, the commutativity of the diagram above tells us
that H0(Res�| ◦ Y )|H0(B) is a fully faithful functor: this fact, together with (ii) implies
that H0(Res�| ◦ Y ) is fully faithful as well.

Summarizing, we have a fully faithful exact functor:

H0(Res�| ◦ Y ) : H0(P(U×V)) −→ H0(Perf(P∗(U)⊗ P∗(V))).

Now, since H0(Perf(P∗(U)⊗P∗(V))) is classically generated by H0(Ỹ )(P∗(U)⊗P∗(V)) =
H0(Res�| ◦ Y )(H0(B)), in order to have that H0(Res�| ◦ Y )

(
H0(P(U×V))

)
contains

H0(Perf(P∗(U)⊗P∗(V))) (and therefore they are equal) we just need to show that it is
closed under direct summands, cones and shifts and that contains H0(Res�| ◦Y )(H0(B))
(but the latter fact is immediate). Finally, the fact that H0(Res�| ◦Y )

(
H0(P(U×V))

)
is

closed under direct summands, cones and shifts follows since H0(P(U×V)) is idempo-
tent complete, it is closed under cones and shifts and H0(Res�| ◦Y ) is fully faithful.

Corollary 3.2.11. The dg functor Res�| |Perf(P(U×V)) : Perf(P(U×V)) −→ Perf(P∗(U)⊗
P∗(V)) is a quasi-equivalence.
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Proof. It follows from the Proposition and from the fact that Y is a quasi-equivalence
from P(U×V) to Perf(P(U×V)).

Lemma 3.2.12. Let L : P∗(U) ⊗ P∗(V) −→ P(U) ⊗ P(V) be the inclusion. Then
ResL(h-proj(P(U)⊗ P(V))) ⊆ h-proj(P∗(U)⊗ P∗(V)).

Proof. We know that it suffices to show — see Proposition 2.5.2 — that

ResL(P(U)⊗ P(V)) ⊆ h-proj(P∗(U)⊗ P∗(V)).

Let α := HomP(U)⊗P(V)
(
(−,=), (CU (A), CV(B))

)
= YP(U)⊗P(V)(CU (A), CV(B)). We

have:

ResL(α) = HomP(U)⊗P(V)
(
L
(
(−,=)

)
, (CU (A), CV(B))

)
=

= HomP∗(U)⊗P∗(V)
(
(−,=), (CU (A), CV(B))

)
∈ h-proj(P∗(U)⊗ P∗(V))

Now, we know that dg functors preserves shifts, cones of degree 0 morphisms and homo-
topy equivalences. Moreover, we have that h-proj(A) is closed for homotopy equivalent
objects for any dg category A. Therefore we obtain that ResL ◦ YP(U)⊗P(V)(C) ∈
h-proj(P∗(U)⊗P∗(V)) for any object B ∈ P(U)⊗P(V). For the same reasons we have
also ResL(P(U)⊗ P(V)) ⊆ h-proj(P∗(U)⊗ P∗(V)).

From the above proof and from the fact that Perf(P∗(U) ⊗ P∗(V)) is closed under
shifts, cones of degree 0 morphisms and homotopy equivalences we have

Corollary 3.2.13. ResL(Perf(P(U)⊗ P(V))) ⊆ Perf(P∗(U)⊗ P∗(V)).

Now, since L is a quasi-equivalence (see Remark 3.2.3) we have by Proposition 2.5.2
(iii) (respectively, by Proposition 2.5.3) that the restrictions of IndL to h-projective
dg modules (respectively, to perfect dg modules) is a quasi-equivalence. From the
latter two results we can conclude that also the restriction of ResL to h-projective
(respectively, perfect) dg modules is a quasi-equivalence, since it is the adjoint of the
version of IndL restricted to h-projective (respectively, perfect) dg modules.

Lemma 3.2.14. The dg functor Ind� : Perf(P(U) ⊗ P(V)) −→ Perf(P(U×V)) is a
quasi-equivalence and its inverse in Hqe is equal to IndL ◦ Res�|.

Proof. From the equality �| = � ◦ L we obtain Ind�| = Ind� ◦ IndL. But now Ind�| :
Perf(P∗(U)⊗P∗(V)) −→ Perf(P(U×V)) is a quasi-equivalence since it is the left adjoint
of the quasi-equivalence Res�| . Also IndL : Perf(P∗(U)⊗P∗(V)) −→ Perf(P(U)⊗P(V))
is a quasi-equivalences by the discussion above. It follows that Ind� = Ind�| ◦ ResL in
Hqe is a quasi-equivalence and, by taking inverses, we get our claim.

3.3 Notation
Let us now spend some words to set the notation we will use from now on.

We will abbreviate by YU the dg Yoneda embedding

Y dg
P(U) : P(U) −→ dgMod(P(U)).
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Note that it is a quasi-equivalence onto Perf(P(U)) since P(U) is a perfect dg category
(look at Definition 2.4.3 and at Proposition 2.4.4). In fact it is pretriangulated by
definition and Perf(X) is a Karoubian category for any quasi-compact quasi-separated
scheme X (see [5] Proposition 2.1.1).
Clearly we will adopt analogous convention for Y dg

P(V) and Y dg
P(U×V).

Moreover we will call
πU : P(U)→ P(U)⊗ P(V)

the dg functor sending an object A to
(
A, CV(OY )

)
and defined in the obvious way

on morphisms. The fact that it is a dg functor is easy to check: by definition of
tensor product of dg categories, we have (P(U)⊗P(V))(A⊗CV(OY ), A′ ⊗CV(OY )) :=
P(U)(A,A′)⊗ P(V)(CV(OY ), CV(OY )). We need to show that it satisfies the equality:

dP(U)(α)⊗ idCV (OY ) = dP(U)⊗P(V)(α⊗ idCV (OY ))

for any α : A −→ A′. But, by definition of tensor product of complexes, we have

dP(U)⊗P(V)(α⊗ idCV (OY )) = dP(U)(α)⊗ idCV (OY ) + (−1)deg(α)α⊗ dP(V)(idCV (OY ))

and we are done since, by definition of dg category, the identity of an object is a closed
map.

We define moreover the dg functor

πV : P(V) −→ P(U)⊗ P(V)

sending an object B to
(
CU (OX), B

)
.

We will need also "restricted" versions of πU and of πV .
Namely, π̄U : P∗(U) → P∗(U) ⊗ P∗(V) is the dg functor sending an object A to(
A, CV(OY )

)
while π̄V : P∗(V) −→ P∗(U) ⊗ P∗(V) is the dg functor sending an ob-

ject B to
(
CU (OX), B

)
.

In the same spirit we define also the dg functors

π1 : P(U)→ P(U)⊗ P(U) and π2 : P(U)→ P(U)⊗ P(U)

sending an object B ∈ P(U) respectively to
(
B, CU (OX)

)
and to

(
CU (OX), B

)
.

3.4 Pullback
Let us start by considering the pullback functor

p∗ : Perf(X) −→ Perf(X×Y ),

where the map p : X ×Y −→ X is the projection on the first factor. Note that, since p
is flat, p∗ does not need to be derived. We want to compute a dg lift of such a functor,
via the Čech resolutions i.e. to find a dg functor G : P(U) −→ P(U×V) such that the
following diagram

H0(P(U))
H0(G) //

ωX
��

H0(P(U×V))
ωX×Y

��
Perf(X) p∗ // Perf(X×Y )
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commutes.

We define the dg functor G as the composition � ◦ πU where πU is the dg functor
we have just defined.

Proposition 3.4.1. The dg functor � ◦ πU : P(U) −→ P(U×V) is a dg lift of the
triangulated functor p∗.

Proof. We need to show that there is an isomorphism η of triangulated functors from
p∗ ◦ ωX to ωX×Y ◦H0(� ◦ πU ).
By Remark C.3 of [31], any object of P(U) is homotopy equivalent (and hence isomor-
phic in H0(P(U))) to an object of the form CU (R), with R a bounded complex of vector
bundles. Let therefore A be a bounded complex of vector bundles. We have:

• p∗ ◦ ωX(CU (A)) = p∗(CU (A));

• ωX×Y ◦ H0(� ◦ πU )(CU (A)) = ωX×Y (CU (A) � CV(OY )) = CU (A) � CV(OY ) =
p∗CU (A)⊗ q∗CV(OY ) ' p∗CU (A)⊗ q∗OY ' p∗CU (A).

The two isomorphisms are meant in Perf(X×Y ) and are due to the fact that q is a flat
map and hence q∗ is exact.
So we have an isomorphism ηCU (A) : p∗ ◦ωX(CU (A)) −→ ωX×Y ◦H0(�◦πU )(CU (A)) that
is natural. In fact, if f : CU (A) −→ CU (B) is a morphism in H0(P(U)), we can easily
check the equality ηCU (B) ◦ p∗ ◦ ωX(f) = ωX×Y ◦H0(� ◦ πU )(f) ◦ ηCU (A).

3.5 Pushforward
For what concerns the (derived) pushforward functor Rp∗, we can use a more formal
argument in order to get a dg lift for it with respect to Čech enhancements using the
fact that Rp∗ is right adjoint to Lp∗ = p∗.

Remember that, by Proposition 2.5.3, given a dg functor G : A −→ B between two
dg categories we have that the dg functor IndG : dgMod(A) −→ dgMod(B) restricts to
perfect dg modules.

Therefore the dg functor

Ind�◦πU = Ind� ◦ IndπU : Perf(P(U)) −→ Perf(P(U×V))

is another dg lift of p∗.

Proposition 3.5.1. The dg functor G := ResπU ◦ IndL ◦ Res�| is a dg lift of Rp∗.

Proof. We can deduce from Lemma 3.2.14 that H0(IndL ◦ Res�|) is a right adjoint to
H0(Ind�); moreover, we know by Proposition 2.5.2 (i) that ResπU is a right adjoint to
IndπU at the level of dg modules. Therefore we have that G must be a dg lift of the
right adjoint of p∗ once we show that it restricts to perfect dg modules.
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We have already seen that both IndL and Res�| restricts to perfect dg modules. To
what concerns ResπU let (A,B) be an object of P(U)⊗ P(V):

ResπU (HomP(U)⊗P(V)(−, (A,B))) = HomP(U)⊗P(V)(πU (−), (A,B)) =
HomP(U)⊗P(V)((−, CV(OY )), (A,B)) = HomP(U)(−, A)⊗k HomP(V)(CV(OY ), B).

Now, we claim that HomP(V)(CV(OY ), B) is quasi-isomorphic to a bounded complex of
projective (actually free) k - modules of finite rank. In fact, it is bounded from the
definition of Čech resolution and from the finiteness of the covering V. It is moreover
trivially made of free modules since k is a field. Finally it suffices to show that it
has finite dimensional cohomologies: since we know that P(V) is a dg enhancement of
Perf(Y ) we have

Hi(HomP(V)(CV(OY ), B)
)

= H0(HomP(V)(CV(OY ), B[i])
)

=
HomH0(P(V))(CV(OY ), B[i]) ' HomPerf(Y )(CV(OY ), B[i])

and the latter is finite dimensional over k by a theorem of Serre (see [18] Théorème
III.3.2.1 and Corollaire III.3.2.3) since Y is proper. It follows that HomP(V)(CV(OY ), B)
lies in Perf(k) for any B ∈ P(V).

But now, since k is a field, we have that H0(Pretr(k)) is an idempotent complete
category and hence Perf(k) coincides with Pretr(k) (cfr. Remark 2.4.2): therefore
HomP(V)(CV(OY ), B) is obtained from k with a finite number of shifts and cones (of
degree 0 morphisms). But all those shifts and cones are preserved by the tensorization
with HomP(U)(−, A) ∈ Perf(P(U)). It follows that ResπU (HomP(U)⊗P(V)(−, (A,B))) is
obtained from HomP(U)(−, A) ∈ Perf(P(U)) with a finite number of shifts and cones of
degree 0 morphisms and thus it lies in Perf(P(U)) since the latter is closed with respect
to all those cones and shifts. Finally, the claim follows by part (iv) of Proposition
2.5.2.

Remark 3.5.2. It is obvious that ResπV ◦IndL◦Res�| : Perf(P(U×V)) −→ Perf(P(V))
will be a dg lift of Rq∗ : Perf(X×Y ) −→ Perf(Y ).

3.6 Tensor product
It’s now time to consider tensor product. We need to lift, for an object E ∈ Perf(X),
the triangulated functor −⊗L E : Perf(X) −→ Perf(X).

Let us define P⊗(U) to be the smallest full dg subcategory of Cdg(Sh(X)) containing
all the objects of the form CU (A) and CU (A) ⊗ CU (B) for A and B vector bundles on
X, and closed under shifts, cones and taking homotopy equivalent objects. We want
to show the following

Proposition 3.6.1. The dg category P⊗(U) is a dg enhancement of Perf(X).

Proof. We will proceed by following the idea of the proof of Proposition C.1 of [31].
Clearly the natural functor

H0(P⊗(U)) −→ Perf(X)
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is essentially surjective. It remains to prove that

HomH0(Cdg(Sh(X)))(P,Q[n]) −→ HomD(Sh(X))(P,Q[n])

is an isomorphism, for any n ∈ Z, in the (four) cases where P and Q are of the form
CU (A)⊗CU (B) or CU (R) for A, B and R vector bundles on X. Note that CU (A)⊗CU (B)
is made up from objects of the form AU ⊗ BV ' (A ⊗ B)U∩V , where U and V are in
U . Hence the two cases where P is of the form CU (R) can be treated as in the proof of
Proposition C.1 of [31].

For the remaining cases our claim is to show that:

HomH0(Cdg(Sh(X)))(CU (A)⊗ CU (B), RV [n]) −→ HomD(Sh(X))(CU (A)⊗ CU (B), RV [n])

is an isomorphism, for any n ∈ Z, where V is the intersection of some elements of U .
Consider the composition:

A⊗B α⊗idB // CU (A)⊗B
idCU (A)⊗β // CU (A)⊗ CU (B)

where α (resp. β) is the quasi-isomorphism between A (resp. B) and its Čech resolu-
tion. Note that α⊗ idB is still a quasi-isomorphism since B is flat; moreover idCU (A)⊗β
is a quasi-isomorphism, too since CU (A) is h-flat (see the Lemma below).

Now let us consider the following commutative diagram:

HomH0(Cdg(Sh(X)))(CU (A)⊗ CU (B), RV [n]) //

(idCU (A)⊗β)∗

��

HomD(Sh(X))(CU (A)⊗ CU (B), RV [n])

��
HomH0(Cdg(Sh(X)))(CU (A)⊗B,RV [n]) //

(α⊗idB)∗

��

HomD(Sh(X))(CU (A)⊗B,RV [n])

��
HomH0(Cdg(Sh(X)))(A⊗B,RV [n]) δ // HomD(Sh(X))(A⊗B,RV [n])

where the two right vertical arrows are isomorphism by what we have just observed.
The bottom map corresponds, via the adjuction j∗ a j∗ (where j is the inclusion of V
in X), to

HomH0(C(Sh(V )))(j∗(A⊗B), j∗(R)[n]) −→ HomD(Sh(V ))(j∗(A⊗B), j∗(R)[n]).

Now, since both j∗(A⊗B) and j∗(R)[n] are quasi-coherent OV -modules — and taking
into account equivalence (1.1) — we can conclude that the above map is an isomor-
phism since j∗(A⊗B) is projective in Qcoh(V ). Therefore δ is an isomorphism as well.

In order to show that (α⊗ idB)∗ is an isomorphism we will prove that

ω : HomCdg(Sh(X))(CU (A)⊗B,RV ) −→ HomCdg(Sh(X))(A⊗B,RV )

is a quasi-isomorphism. But now we can reason exactly as in the proof of Lemma C.2
of [31]: the degree 0 component of the right hand side is

H := HomOV ((A⊗B)|V , R|V )
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and all other components are trivial. The left handside, instead, is made up of direct
sums of objects HomOX ((A ⊗ B)W , RV ) where W is the intersection of a (positive)
number of element of U . These objects - thanks to [31], Lemma A.5 - are equal to H
if V ⊆ W and are zero otherwise. Whence we obtain that the left hand side is equal
to the chain comlplex that has in degree i a number of copies of H that depends on
s0 < · · · < si with all these variables lying in the set of elements of U containing V .
Therefore we can see ω as the augmentation map of the chain complex of a simplex
with coefficients in H that is actually a homotopy equivalence and hence a quasi-
isomorphism.
The same argument can be used to show that (idCU (A) ⊗ β)∗ is an isomorphism and
finally we get our claim.

Lemma 3.6.2. Let X be a quasi-compact separated scheme and let be P a vector bundle
(or a bounded complex of vector bundles) on X. Then CU (P ) is an h-flat complex of
OX - modules.

Proof. Since CU (P ) is a bounded complex - and since the finite direct sum of flat
modules is still flat - our claim follows once we have proved that j∗j∗P is a flat OX -
module, where j : U → X is the inclusion of an affine open set (see [42, Tag 06YD]).
Let γ : N −→ N ′ be an injective morphism of OX - modules. We want to prove that
id⊗ γ : j∗j∗P ⊗N −→ j∗j

∗P ⊗N ′ is still injective.
Now, in our case the morphism j is affine therefore we can make use of the projection
formula (see Proposition 1.3.1) and get that j∗j∗P ⊗M ' j∗(j∗P ⊗ j∗M) for any OX
- module M . But this means that id⊗ γ is the pushforward along j of the map

j∗P ⊗ j∗N id⊗j∗γ−−−−→ j∗P ⊗ j∗N ′.

Since j is an open immersion it follows that it is flat and hence j∗ is exact and j∗γ is
still injective. Moreover j∗P is still a vector bundle and in particular it is flat therefore
id ⊗ j∗γ is again an injective map. But finally j∗(id ⊗ j∗γ) = id ⊗ γ is injective as
well.

Corollary 3.6.3. The two dg-categories P(U) and P⊗(U) are actually equal.

Proof. The inclusion P(U) ⊆ P⊗(U) holds by definition. Now, we have that CU (A) ⊗
CU (B) and CU (A ⊗ B) are isomorphic in Perf(X) i.e. are quasi-isomorphic. But this,
by the above Proposition, implies that they are isomorphic in H0(P⊗(U)) and it means
that they are homotopy equivalent. Whence CU (A) ⊗ CU (B) lies already in P(U) and
we get the other inclusion.

Observe that this last corollary tells us that P(U) contains all the elements of the
form CU (A)⊗ CU (B), for A and B vector bundles on X.

Thanks to the discussion above the dg functor

K : P(U)⊗ P(U) −→ P(U)

that sends (A,B) ∈ P(U)⊗ P(U) into A⊗B is well defined.
In addition, if we fix a bounded complex R of vector bundles of X, we can define

the dg functor:
KCU (R) : P(U) −→ P(U) A 7−→ A⊗ CU (R).

where A is any object of P(U).
Let now E be an object of Perf(X). In our hypoteses we know that it is quasi-

isomorphic to some bounded complex of vector bundles E. We have the following
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Proposition 3.6.4. The functor KCU (E) is a dg-lift of −⊗L E : Perf(X) −→ Perf(X).

Proof. We have already observed (Remark 3.2.2) that any element of P(U) is homo-
topy equivalent to one of the form CU (A) and that tensorization preserves homotopy
equivalent objects in Cdg(Sh(X)). Whence it suffices to prove our claim for an element
of the form CU (A). We have:

• ωX ◦H0(KCU (E))(CU (A)) = ωX(CU (A)⊗ CU (E)) = CU (A)⊗ CU (E);

• (−⊗L E) ◦ ωX(CU (A)) = (−⊗L E)(CU (A)) = CU (A)⊗L E ' CU (A)⊗ E.

and hence we can define the natural transformation

η : (−⊗L E) ◦ ωX −→ ωX ◦H0(KCU (E))

by taking, for any (CU (A) ∈ P(U), the isomorphism in Perf(X) from CU (A) ⊗ E to
CU (A)⊗CU (E) that we have since CU (A) is a bounded complex of flat modules (as the
one between CU (A)⊗L E and CU (A)⊗ E).
Now, for any map f : CU (A) −→ CU (B), we have ωX ◦H0(KCU (E))(f) = f ⊗ idCU (E) and
(− ⊗L E) ◦ ωX(f) ' f ⊗ idE and hence we can clearly see that ωX ◦ H0(KCU (E))(f) ◦
ηCU (A) = ηCU (B) ◦ (−⊗L E) ◦ ωX(f).

We have therefore proved the commutativity of the diagram

H0(P(U))
H0(KCU (E)) //

ωX
��

H0(P(U))

ωX
��

Perf(X) −⊗LE // Perf(X),

yielding that KCU (E) is a dg lift of the derived tensor product, as wished.

3.7 A dg lift of ΦE
In the previous Sections we have constructed a "piecewise" dg-lift of the Fourier-Mukai
functor: it can be written down as follows

Φdg
E (−) := ResπV ◦ IndL ◦ Res�| ◦ YU×V ◦ KCU×V (E) ◦� ◦ πU (−).

where E is an element of Perf(X×Y ) and E is a (fixed) bounded complex of vector
bundles quasi-isomorphic to E .

We will draw a diagram in order to make clear to what functors we are referring to:

P(U)
�◦πU−−−→ P(U×V)

KCU×V (E)
−−−−−−→ P(U×V)

YU×V
−−−→ Perf(P(U×V))

G
−−−−→ Perf(P(V))

We have abbreviated G := ResπV ◦ IndL ◦ Res�| .
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Remark 3.7.1. Observe that if E′ is another bounded complex of vector bundles
on X×Y quasi-isomorphic to E ∈ Perf(X×Y ) then if we use E′ instead of E for the
definition of Φdg

E we obtain the same dg functor inHqe. In fact we get that CU×V(E) and
CU×V(E′) are quasi-isomorphic but - since they both live in the enhancement P(U×V) -
they are actually homotopy equivalent. This gives us a natural transformation between
the two version of Φdg

E that is clearly a termwise homotopy equivalence. Hence we can
conclude by Proposition 2.5.10.

What we have done in the present Chapter can be summarized by saying that we
have constructed, for any E ∈ Perf(X×Y ), a commutative diagram of exact functors

H0(P(U))
H0(ΦdgE )

//

ωX

��

H0(Perf(P(V))
)

ωY ◦H0(YV )−1

��
Perf(X) ΦE // Perf(Y )

where ωX and ωY ◦H0(YV)−1 are exact equivalences.

3.8 The most general case
We would like to point out here that the three dg lifts we have discussed in the pre-
vious pages can actually be computed also in the more general setting (∗∗). We have
used the hypotesis of being over a field in two situations: the first one is when we said
that, given two quasi-equivalences F : A −→ A′ and G : B −→ B′, the dg functor
F ⊗G : A⊗B −→ A′⊗B′ is a quasi-equivalence as well. This happened for example for
the dg functor L (see Remark 3.2.3). The second situation is in the proof of Proposition
3.5.1.

To what concerns the first problem, we can prove the following

Proposition 3.8.1. The dg category P(U) is h-flat.

Proof. Recall that for P(U) to be h-flat means that for any two of its objects A and B
the dg functor

HomP(U)(A,B)⊗−

preserves quasi-isomorphisms.

Let us consider the case of A = CU (P ) and B = CU (Q), where P and Q are vector
bundles on X: since HomP(U)(CU (P ), CU (Q)) is a bounded complex we have (see [42,
Tag 06YD]) that it is h-flat if

HomP(U)(CU (P ), CU (Q))n =
⊕
h

HomP(U)(CU (P )h, CU (Q)h+n)

is a flat OX -module for any n. But the latter is equal to⊕
h

HomP(U)(
⊕
i0,..,ih

PUi0,..,ih ,
⊕

j0,..,jh+n

QUj0,..,jh+n
)

'
⊕
h

⊕
i0,..,ih

⊕
j0,..,jh+n

HomP(U)(PUi0,..,ih , QUj0,..,jh+n
).
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Therefore — since direct sums of flat modules are again flat — we just need to check
that the k-module HomP(U)(PU , QV ) is flat where U and V are affine open sets. But,
in our hypoteses, we can make use of Lemma A.5 of [31] and get that such a module
vanishes if V 6⊂ U while in the case of V ⊆ U it is isomorphic to

HomOV (P|V , Q|V )

and so we can reduce ourselves to the affine situation.
Suppose V = Spec(R): thus we need to show that HomR(A,B) is a flat k-module
for any finite projective R-modules A and B. We start by noticing that since, by
hypoteses, R is a flat k-module (as our scheme X is smooth) it is sufficient to check
that HomR(A,B) is flat as an R-module. Now - by the projectivity of A - there exists
an R-module A′ and an r ∈ N such that A⊕A′ = Rr hence we have:

HomR(A,B)⊕HomR(A′, B) ∼= HomR(A⊕A′, B) ∼= HomR(Rr, B)
∼= ⊕rHomR(R,B) ∼= ⊕rB

where
⊕

r stands for the direct sum of r copies. Now, by hypotesis B (and ⊕rB, too) is a
projective R-module hence HomR(A,B)⊕HomR(A′, B) must be a projective R-module
as well. It follows that HomR(A,B) is a projective, and therefore flat, R-module (we
have used here that both direct sums and direct summands of projective modules are
still projective).

Now suppose that A1 and B are objects of P(U) such that HomP(U)(A1, B) is h-flat.
If A′ is a shift of A1 then HomP(U)(A′, B) is clearly still h-flat. Let now A′ be the cone
of the (closed degree 0) morphism f : A1 → A2, where A2 is another object of P(U)
such that HomP(U)(A2, B) is h-flat. Applying the dg functor HomP(U)(−, B) to the
distinguished triangle A1

f−→ A2 → A′ it yields a distinguished triangle

HomP(U)(A′, B) −→ HomP(U)(A2, B) −→ HomP(U)(A1, B)

in K(Sh(X)) and therefore HomP(U)(A′, B) is h-flat as well by [42, Tag 06Y2]. This
shows that HomP(U)(A′, B) is h-flat for any object A′ ∈ P(U). The case where B is a
generic object of P(U) can be treated in a similar way.

Let A and B be two objects of P(U) that are homotopy equivalent to some ob-
jects (say respectively Ã and B̃) obtained from Čech resolution of vector bundles by
iteratively taking shifts or cone of degree 0 morphisms. Hence HomP(U)(Ã, B̃) is an
h-flat complex for what we have just shown. Now, since for any object C ∈ P(U) we
have that both HomP(U)(−, C) and HomP(U)(C,−) are well defined dg functors on all
Cdg(Sh(X)), we get the following chain of homotopy equivalences:

HomP(U)(A,B) ' HomP(U)(Ã, B) ' HomP(U)(Ã, B̃).

Therefore tensoring with HomP(U)(A,B) preserves quasi-isomorphisms since tensoring
with HomP(U)(Ã, B̃) does (tensor product is a dg functor on Cdg(Sh(X)) and hence
preserves homotopy equivalent objects). This proves our claim.

Corollary 3.8.2. The dg category P∗(U) is h-flat as well.

Proof. It follows since P∗(U) is a full dg subcategory of the h-flat dg category P(U).

51



Those facts assure us that all the tensor products between our dg enhancements are
well defined in Hqe without the need of dealing with h-projective (or h-flat) resolutions.
This also implies that the product of quasi-equivalences is a again a quasi-equivalence
(in fact, it is the "h-flatness" of the dg category that actually matter in Remark 2.8 of
[13]).

To what concerns Proposition 3.5.1, if we now do not have that Res�◦πU restricts
to perfect dg modules, a more sophisticated argument can be adopted in order to end
up with a dg lift of the derived pushforward along the projection.

For any dg category A consider the Drinfeld quotient dgMod(A)/Ac(A): as we have
seen in Section 2.4, we always have a triagulated functor to its homotopy category from
the Verdier quotient H0(dgMod(A))/H0(Ac(A)) that is an equivalence if, for example,
dgMod(A) is homotopically flat. Now, following Section 3.2 of [7] we have a "functorial"
h-flat resolution I : Chf −→ C which is the identity on objects. We have therefore the
following dg functors

h-proj(A) ι−−−−→ dgMod(A) I←−−−− dgMod(A)hf Q−−−−→ dgMod(A)hf/Ac(A)′ (3.1)

whose composition η is a quasi-equivalence. By Ac(A)′ we mean the full dg subcategory
of dgMod(A)hf with the same object as Ac(A). We will denote by H the dg quasi-
functor η−1 ◦ Q ◦ I−1 : dgMod(A) −→ h-proj(A) that sends a dg A- module to its
h-projective resolution.

In particular we have, for any M ∈ h-proj(A) and for any N ∈ dgMod(A) a quasi-
isomorphism

HomdgMod(A)(M,N)
∼
−→ Homh-proj(A)(M,H(N)).

Lemma 3.8.3. For any dg functor F : A −→ B we have an adjunction H0(IndF) a
H0(H ◦ ResF) at the level of h-projective dg modules.

Proof. Thanks to what we said above, for any M ∈ h-proj(A) and for any N ∈ h-proj(B)
we have a quasi-isomorphism:

Homh-proj(B)(IndF(M),N) = HomdgMod(B)(IndF(M),N) '

HomdgMod(A)(M,ResF(N))
∼
−→ Homh-proj(A)(M,H ◦ ResF(N))

and this is enough to conclude.

Proposition 3.8.4. The dg quasi-functor

H ◦ ResπV ◦ IndL ◦ Res�| : h-proj(P(U×V)) −→ h-proj(P(U))

restricts to perfect dg modules and such a restriction is a dg lift of Rp∗.

Proof. in virtue of the above lemma, the only thing we need to show is the fact that
- having denoted G := ResπV ◦ IndL ◦ Res�| - the dg functor H ◦ G restricts to perfect
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complexes. Let us consider the following commutative diagram:

H0(h-proj(P(U)))
H0(Ind�◦πU )

// H0(h-proj(P(U×V)))

H0(Perf(P(U)))
?�

OO

// H0(Perf(P(U×V)))
?�

OO

H0(P(U))

∼

OO

H0(�◦πU ) // H0(P(U×V))

∼

OO

Perf(X)

∼

OO

p∗ // Perf(X×Y ).

∼

OO

This tells us that p∗ is isomorphic to H0(� ◦ πU ) at the level of H0(P(U)) and of
H0(Perf(P(U))).

Moreover we have that H0(h-proj(P(U))) is equivalent to DQcoh(Sh(X)): take C =
Ddg

Qcoh(Sh(X)) a dg enhancement of DQcoh(Sh(X)), B = P(U) in Proposition 1.17 of
[30] and notice that we have a quasi-equivalence between the dg category SF(A) of
semi-free dg modules over A and h-proj(A) for any dg category A (see, for example
section 3.1 of [25]). For example, Ddg

Qcoh(Sh(X)) can be the Drinfeld quotient

CdgQcoh(Sh(X))/AcdgQcoh(Sh(X))

between the dg category of complexes of sheaves of modules with quasi coherent coho-
mology and its full dg subcategory of acyclic complexes. It follows that we have a dg
quasi-functor φX : DdgQcoh(Sh(X)) −→ h-proj(P(U)) such that H0(φX) is an equivalence.
Clearly we have the equivalence between H0(h-proj(P(U×V))) and Ddg

Qcoh(Sh(X×Y ))
as well.

Now the functor p∗ defines a dg functor CdgQcoh(Sh(X)) −→ CdgQcoh(Sh(X×Y )) that,
since p∗ is exact, restricts to a dg functor

CdgQcoh(Sh(X))
AcdgQcoh(Sh(X))

−→
CdgQcoh(Sh(X×Y ))
AcdgQcoh(Sh(X×Y ))

that is a dg lift of the triangulated functor p∗. We are therefore in the following situation

Ddg
Qcoh(Sh(X))

φX
��

p∗ // Ddg
Qcoh(Sh(X×Y ))

φX×Y
��

h-proj(P(U)) IndF // h-proj(P(U×V))

Note that H0(φ) is an equivalence. We can see, as a consequence of Proposition 3.10 in
[13], that H0(Ind�◦πU ) and H0(φX×Y ) ◦ H0(p∗) ◦ H0(φX)−1 are isomorphic as functors
from H0(h-proj(P(U))) if they are isomorphic on H0(P(U)). Since this is precisely the
case, we can conclude that H0(Ind�◦πU ) and p∗ = H0(p∗) are isomorphic also at the
level of DQcoh(Sh(−)).
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We have also that the triangulated functor H0(H◦G) is right adjoint to H0(Ind�◦πU )
at the level of derived categories (see Lemma 3.2.14 and Remark 2.5.5 - or the above
Lemma together with Remark 2.4.6) therefore we get that H0(H ◦ G) must be isomor-
phic to Rp∗ at the level of DQcoh(Sh(−)). But now the geometry tells us that, under
our hypoteses, Rp∗ sends perfect complexes to perfect complexes - as we observed in
Section 1.3. We thus have that H0(H ◦ G) (and hence H ◦ G, too) sends the compact
objects of H0(h-proj(P(U))) to compact objects of H0(h-proj(P(U×V))) and our proof
is concluded.

Therefore we have computed a dg lift of the Fourier-Mukai functor ΦE even when
our schemes are over a commutative ring, precisely in the setting (∗∗). This lift can be
written as

Φdg
E (−) := H ◦ ResπV ◦ IndL ◦ Res�| ◦ YU×V ◦ KCU×V (E) ◦� ◦ πU (−).
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Chapter 4

An explicit bijection

In this chapter we are going to prove Theorem 4.4.1. We will define the bijection γ by
estensively using the dg lift Φdg

E we have computed in the previous Chapter. For proving
surjectivity we need to define a slightly different version Φ̃dg

E of such a lift. Moreover,
we need to properly define a candidate for the kernel EF of the Fourier-Mukai functor
associated to a dg quasi-functor F. The injectivity of γ is due to Proposition 4.3.1,
where we prove that - essentially - at the dg level different kernels produce different
Fourier-Mukai functors.

Also in this Chapter, except for Section 4.5, we will work under the hypotesis of all
our schemes satisfy condition (∗).

4.1 Construction of the kernel EF

Our aim is to define a bijective map

γ : Iso(Perf(X×Y )) 1:1−→ Hqe(P(U),P(V))

and we want to do it by sending an object E to something that is essentially Φdg
E . If

we want to prove its surjectivity we need, for any quasi-functor F : P(U) −→ P(V), to
suitably find a candidate for being the kernel EF such that Φdg

EF
= F in Hqe.

Our idea is roughly to choose the image via id ⊗ F of the diagonal bimodule. We
will give a precise definition later on, but please be aware that this idea is not new: it
matches what happens in the triangulated case (see [36]). Before we can write it in a
proper way we need some preliminary result:

Consider now the diagonal map ∆ : X −→ X×X. The pullback ∆∗ clearly gives
rise to a dg functor between Cdg((Sh(X×X)) −→ Cdg(Sh(X)). Let us define P∆∗(U)
to be the smallest full dg subcategory of Cdg(Sh(X)) containing all the objects of the
form CU (R) and ∆∗CU×U (A) for R and A vector bundles on X and X×X respectively,
and closed under shifts, cones and taking homotopy equivalent objects. We want to
show the following

Proposition 4.1.1. The dg category P∆∗(U) is a dg enhancement of Perf(X).

Proof. The proof readily follows the one of Proposition 3.6.1.
Note that, for any vector bundle A on X×X, ∆∗CU×U (A) is made up from objects

of the form ∆∗(AU×V ) ' (∆∗A)U∩V , where U and V are in U .
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Moreover, we have a quasi-isomorphism α : ∆∗A −→ ∆∗CU×U (A): in fact, since
both A and CU×U (A) are flat, it is precisely the image of the quasi-isomorphism A −→
CU×U (A) via the exact functor L∆∗.

Finally, the map

HomH0(C(Sh(V )))(j∗∆∗A, j∗R[n]) −→ HomD(Sh(V ))(j∗∆∗A, j∗R[n])

is an isomorphism since j∗∆∗A is a vector bundle on the affine scheme V and hence it
is projective in Qcoh(V ). Again we have to use the fact that both j∗∆∗A and j∗R[n]
are quasi-coherent OV -modules together with equivalence (1.1).

Corollary 4.1.2. The two dg-categories P(U) and P∆∗(U) are actually equal.

Proof. The inclusion P(U) ⊆ P∆∗(U) holds by definition. Now, we have that ∆∗CU×U (A)
and CU (∆∗A) are isomorphic in Perf(X) i.e. are quasi-isomorphic. But this, by the
above Proposition, implies that they are isomorphic in H0(P∆∗(U)) and it means that
they are homotopy equivalent. Whence ∆∗CU×U (A) lies already in P(U) and we get the
other inclusion.

Observe that this last corollary tells us that P(U) contains all the elements of
the form ∆∗CU×U (A), for any vector bundle A on X×X. Hence we can define a dg
functor ∆∗dg : P(U×U) −→ P(U) as the restriction to P(U×U) of the dg functor
∆∗ : Cdg((Sh(X×X) −→ Cdg(Sh(X)). Therefore it is clear that we have the following:

Lemma 4.1.3. The dg functor ∆∗dg : P(U×U) −→ P(U) is a dg lift of of the triangu-
lated functor L∆∗ : Perf(X×X) −→ Perf(X).

We would like now to produce a dg lift of R∆∗. The problem is that in this case
Res∆∗

dg
does not restrict to perfect dg modules. So we need to proceed as in Section

3.8 and compose it with the projection to the quotient of dg modules by acyclic ones.

Remark 4.1.4. Unlike Section 3.8, we are over a field and hence the construction we
have made there can be simplified: in fact all the dg categories are now homotopically
flat. We have therefore that the composition η of (3.1) can be written now as

h-proj(A) ι−−−−→ dgMod(A) Q−−−−→ dgMod(A)/Ac(A).

We will denote again by H the dg quasi-functor η−1 ◦ Q : dgMod(A) −→ h-proj(A)
that sends a dg A-module to its h-projective resolution.

Now observe that, since in our hypoteses ∆ : X −→ X ×X is a closed immersion
(we are on a separated scheme), we have R∆∗ = ∆∗.

Lemma 4.1.5. In our hypoteses the triangulated functor ∆∗ : Perf(X) −→ Perf(X×X)
sends perfect complexes to perfect complexes.

Proof. The scheme X is smooth and hence the natural morphism X×X −→ X coming
from the definition of fibered product is a smooth morphism; it follows that its section
∆ is a regular immersion ([3] Proposition 1.10). Since moreover ∆ : X −→ X×X is
a proper morphism of noetherian schemes we have that - according to Corollary 4.8.1
and Exercise 4.1.1 of [22] - ∆∗ sends perfect complexes to perfect complexes.

We have now all the ingredients for proving the following:
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Lemma 4.1.6. The dg quasi-functor H ◦Res∆∗
dg

: Perf(P(U)) −→ Perf(P(U×U)) is a
dg lift of R∆∗ = ∆∗.

Proof. Thanks to Lemma 4.1.3 and Lemma 4.1.5, a variant of Propostion 3.8.4 applies
in this case, with ∆∗dg in place of F and ∆ in place of p. In fact we have that, by
Remark 2.5.5, the triangulated functor H0(H ◦ Res∆∗

dg
) is right adjoint to H0(Ind∆∗

dg
)

at the level of derived categories and therefore H0(H ◦ Res∆∗
dg

) must be isomorphic to
∆∗ at the level of DQcoh(Sh(−)).

Before coming to the definition of EF we need a technical result. Let us consider
Res�| : dgMod(P(U×V)) −→ dgMod(P∗(U) ⊗ P∗(V)); observe that it restricts to
h-projective dg modules, by Proposition 2.5.2 (iv) and since we already know from
Corollary 3.2.11 that it restricts to perfect dg modules. It therefore makes sense to
state the following

Lemma 4.1.7. We have the commutativity in Hqe of the diagram:

dgMod(P(U×V))

H
��

Res�| // dgMod(P∗(U)⊗ P∗(V))

H
��

h-proj(P(U×V))
Res�| // h-proj(P∗(U)⊗ P∗(V)).

Proof. Recallt that H was defined as the composition η−1 ◦ Q so we can rewrite the
rectangle above as:

dgMod(P(U×V))

Q
��

Res�| // dgMod(P∗(U)⊗ P∗(V))

Q
��

dgMod(P(U×V))
Ac(P(U×V))

Res�| // dgMod(P∗(U)⊗P∗(V))
Ac(P∗(U)⊗P∗(V))

h-proj(P(U×V))

η ∼
OO

Res�| // h-proj(P∗(U)⊗ P∗(V))

η∼
OO

where Res�| is the (unique) dg functor making the upper rectangle commutes. And
this happens since the dg functor ResF preserves acyclic dg modules for any dg functor
F. The commutativity of the lower diagram comes from the fact that η is by definition
Q ◦ ι, where ι is the inclusion of the dg category of h-projective dg modules into the dg
category of dg modules.

Remark 4.1.8. Observe that the proof above actually shows that for any dg functor
F such that ResF restricts to h-projective dg modules we have H ◦ ResF = ResF ◦ H in
Hqe.

Now we are ready to define the kernel EF. First of all, since F is a quasi-functor
between P(U) and P(V), we know that it can be represented by

P(U)′

∼
I

{{

F′

##
P(U) P(V)
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for some dg category P(U)′ and some dg functors F′ and I, where I is a quasi-equivalence
and hence F = F′ ◦ I−1 in Hqe. Similarly to what we set in Section 3.3 we will denote
Y dg

P(U)′ by YU ′ .

We define α to be the image of CU (OX) via the following composition of dg quasi-
functors

P(U) YU // Perf(P(U))
H◦Res∆∗

dg // Perf(P(U×U))
IndL◦Res�| // Perf(P(U)⊗ P(U)).

Thanks to Lemma 4.1.7 we have

α : = IndL ◦ Res�| ◦ H ◦ Res∆∗
dg
◦ YU (CU (OX)) ' IndL ◦ H ◦ Res�| ◦ Res∆∗

dg
◦ YU (CU (OX))

' IndL ◦ H ◦ Res∆∗
dg
◦�| ◦ YU (CU (OX)) ' IndL ◦ H ◦ ResK| ◦ YU (CU (OX))

in H0(Perf(P(U)⊗P(U))), where K : P(U)⊗P(U) −→ P(U) is the dg functor we have
introduced in Section 3.6 and with K| we have denoted its restriction to P∗(U)⊗P∗(U).
The last isomorphism is a consequence of the one between ∆∗ ◦ � and ⊗ that holds
already at the level of Cdg(Sh(X))× Cdg(Sh(X)).

Observe that we have K| = K ◦ L therefore ResK| = ResL ◦ ResK. From this and
by Remark 4.1.8 (remember that ResL restricts to h-projective dg modules by Lemma
3.2.12) we obtain

IndL ◦ H ◦ ResK| = IndL ◦ H ◦ ResL ◦ ResK = IndL ◦ ResL ◦ H ◦ ResK = H ◦ ResK

in Hqe and whence we have α ' H ◦ ResK ◦ YU (CU (OX)) in H0(Perf(P(U)⊗ P(U))).

Now, I is a quasi-equivalence by hypoteses and therefore, since we are dealing with
h-flat dg categories, id ⊗ I is a quasi-equivalence as well (see Remark 2.8 of [13]). It
follows by Proposition 2.5.2 (iii) that also

Indid⊗I : Perf(P(U)⊗ P(U)′) −→ Perf(P(U)⊗ P(U))

is a quasi-equivalence. We therefore choose α′ to be an element of Perf(P(U)⊗P(U)′)
such that

H0(Indid⊗I)(α′) ' α

and finally we set our candidate kernel

EF := Indid⊗F′(α′) ∈ Perf(P(U)⊗ P(V)). (4.1)

4.2 A new version of the dg lift
The only problem in the definition of EF is that it actually belongs to Perf(P(U)⊗P(V))
instead of P(U×V), where the object CU×V(E) quasi-isomorphic to E appearing in the
definition of Φdg

E lives. For this reason we are going to construct a slightly different
version of the latter. In order to do that, we need some auxiliary lemmas.

Let us now define the map p∗|V : P(U) −→ P(U×V) as the composition between
the two dg functors p∗ : P(U) −→ P(U×Y ) and CX×V(−) : P(U×Y ) −→ P(U×V).
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The functor p∗ is just the ordinary pullback along p: it sends an object CU (A) to
p∗CU×V(A) ' CU×Y (p∗A). The functor CX×V(−) is the one given by taking the Čech
resolution with respect to the covering X×V. They are both well defined as dg functors
between the category of complexes of sheaves of modules (for CX×V(−) it comes from
the fact that our open covering is finite). Hence they are well defined with respect to
homotopy equivalent objects.

We want to prove the following

Lemma 4.2.1. For any bounded complex E of vector bundles of Perf(X×Y ) we have
that the two dg functors KCU×V (E) ◦ � ◦ πU (−) and Kp∗|V (−)(CU×V(E)) from P(U) to
P(U×V) are equal in Hqe.
Proof. It is easy to see that p∗|V sends the object CU (A) to CU×V(p∗A). Let us now prove
that we have an equality in Hqe between KCU×V (E) ◦� ◦ πU (−) and Kp∗|V (−)(CU×V(E)).
For any CU (A) ∈ P(U) we have that:

KCU×V (E) ◦� ◦ πU (CU (A)) = KCU×V (E)(CU (A) � CV(OY )) =
(CU (A) � CV(OY ))⊗ CU×V(E)

and
Kp∗|V (CU (A))(CU×V(E)) = CU×V(p∗A)⊗ CU×V(E).

are homotopy equivalent - see Remark 3.2.5. It is then easy to see that we have a
termwise homotopy equivalence and, by Proposition 2.5.10, our proof is concluded.

Now we can see IndKp∗|V (−) as a dg functor

Perf(P(U×V))⊗ P(U) −→ Perf(P(U×V))

sending an object (A,B) ∈ Perf(P(U×V)) ⊗ P(U) to IndKp∗|V (B)(A). In the same way
IndK(−)⊗id is the dg functor

Perf(P(U)⊗ P(V))⊗ P(U) −→ Perf(P(U)⊗ P(V))

sending an object (C,D) ∈ Perf(P(U) ⊗ P(V)) ⊗ P(U) to IndK(D)⊗id(C). We want to
prove the following

Lemma 4.2.2. We have the commutativity in Hqe of the diagram:

Perf(P(U×V))⊗ P(U)(
IndL◦Res�|

)
⊗id
��

IndKp∗|V (−)
// Perf(P(U×V))

IndL◦Res�|
��

Perf(P(U)⊗ P(V))⊗ P(U)
IndK(−)⊗id

// Perf(P(U)⊗ P(V)).

Proof. Let us start by preliminarly showing that, for any object B ∈ P(U) we have the
equality

IndL ◦ Res�| ◦ IndKp∗|V (B) = IndKB⊗id ◦ IndL ◦ Res�| (4.2)

in Hqe. This comes once we have that Kp∗|V (B) ◦� = � ◦ (KB ⊗ id) in Hqe. Actually
we can reduce ourselves to the case of B = CU (A). In fact, since we are dealing with
dg functors they preserve shifts and cones of morphisms of degree zero; moreover such
functors are defined on C(Sh(−)) and therefore preserve homotopy equivalences. Now,
for any (CU (C), CV(D)) ∈ P(U)⊗ P(V) we have:
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• Kp∗|V (CU (A)) ◦�(CU (C), CV(D)) = KCU×V (p∗A)(CU (C) � CV(D))
= CU×V(p∗A)⊗ (CU (C) � CV(D));

• � ◦ (KCU (A) ⊗ id)(CU (C), CV(D)) = �(CU (C)⊗CU (A), CV(D))
= (CU (C)⊗CU (A)) � CV(D).

and both objects are homotopy equivalent to CU×V((A⊗C)�D) - by Remark 3.2.5 and
by the proof of Corollary 3.6.3. Therefore we have a termwise homotopy equivalence
and we can apply, as in the previous Lemma, Proposition 2.5.10.
Hence we get also

IndKp∗|V (B) ◦ Ind� = Ind� ◦ IndKB⊗id.

Now we recall that Ind� is invertible in Hqe and IndL ◦ Res�| is its inverse: we can
therefore deduce the equality (4.2).

For a proof of the original claim we need to show that for any element (E,F ) of
Perf(P(U×V))⊗ P(U) we have a homotopy equivalence between

IndK(−)⊗id ◦
(
(IndL ◦ Res�|)⊗ id

)
(E,F ) and IndL ◦ Res�| ◦ IndKp∗|V (−)(E,F ).

Actually it suffices to show it when (E,F ) is of the form
(
HomP(U×V)(−, CU×V(G)), H

)
∈

Perf(P(U×V))⊗P(U) where G is a bounded complex of vector bundles on X×Y . We
can write:

IndK(−)⊗id ◦
(
(IndL ◦ Res�|)⊗ id

)(
HomP(U×V)(−, CU×V(G)), H

)
=

IndK(−)⊗id
(
IndL ◦ Res�|

(
HomP(U×V)(−, CU×V(G))

)
, H
)

=

IndKH⊗id
(
IndL ◦ Res�|

(
HomP(U×V)(−, CU×V(G))

))
On the other hand:

IndL ◦ Res�| ◦ IndKp∗|V (−)

(
HomP(U×V)(−, CU×V(G)), H

)
=

IndL ◦ Res�| ◦ IndKp∗|V (H)

(
HomP(U×V)(−, CU×V(G))

)
But the latter element, thanks to equation (4.2), is homotopy equivalent to

IndKH⊗id ◦ IndL ◦ Res�|
(
HomP(U×V)(−, CU×V(G))

)
and hence we get the desired result.

Thanks to Lemma 4.2.1, Proposition 2.5.2 (ii) and Lemma 4.2.2 we can write:

Φdg
E (−) : = ResπV ◦ IndL ◦ Res�| ◦ YU×V ◦ KCU×V (E) ◦� ◦ πU (−)

= ResπV ◦ IndL ◦ Res�| ◦ YU×V ◦ Kp∗|V (−)(CU×V(E))

= ResπV ◦ IndL ◦ Res�| ◦ IndKp∗|V (−) ◦ YU×V(CU×V(E))

= ResπV ◦ IndK(−)⊗id ◦ IndL ◦ Res�| ◦ YU×V(CU×V(E)).

Now we can define the dg functor

Φ̃dg
β (−) := ResπV ◦ IndK(−)⊗id(β) : P(U) −→ Perf(P(V))
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for any element β ∈ Perf(P(U) ⊗ P(V)). What we have proved in the last pages can
therefore be summarised saying that we have the equality

Φdg
E = Φ̃dg

IndL◦Res�|◦YU×V (CU×V (E)) in Hqe.

Notice now that the kernel of Φ̃dg actually belongs to Perf(P(U)⊗P(V)): therefore it
makes perfect sense to write Φ̃dg

EF
and what we want to do now is to prove the following

crucial result.

Proposition 4.2.3. Let F : P(U) −→ P(V) be any dg quasi-functor and let EF be the
element of Perf(P(U)⊗ P(V)) we have defined in (4.1). Then Φ̃dg

EF
= YV ◦ F in Hqe.

The proof of this Proposition will be carried over the remaining part of the present
Section, involving many auxiliary results.

Recall that F can be represented in Hqe by a "roof" P(U)
I
←− P(U)′

F′

−→ P(V), where
I is a quasi-equivalence.

Lemma 4.2.4. Let G : P(U)′ −→ P(V) be any dg functor, then we have an equality in
Hqe between IndK(−)⊗id ◦ Indid⊗G and Indid⊗G ◦ IndK(−)⊗id.

Proof. this fact comes from the obvious equality in Hqe between (K(−)⊗ id) ◦ (id⊗G)
and (id⊗ G) ◦ (K(−) ⊗ id).

Let us now define the dg functor

π′2 : P(U)′ −→ P(U)⊗ P(U)′

given by A 7−→ (CU (OX), A). It has clearly the same behavior of πU and so it is not
hard to believe that Resπ′2 restricts to perfect dg modules (see Proposition 3.5.1). We
therefore can state the following

Lemma 4.2.5. The two dg functors IndF′◦Resπ′2 and ResπV ◦Indid⊗F′ from Perf(P(U)⊗
P(U)′) to Perf(P(V)) are equal in Hqe.

Proof. Let us consider A ∈ P(U), B ∈ P(U)′ and consider the element YU×U ′(A,B).
We have:

IndF′ ◦ Resπ′2 ◦ YU×U ′(A,B) =

IndF′
(
HomP(U)⊗P(U)′

(
π′2(−), (A,B)

))
=

IndF′
(
HomP(U)⊗P(U)′

(
(CU (OX),−), (A,B)

))
=

IndF′
(
HomP(U)(CU (OX), A)⊗HomP(U)′(−, B)

)
On the other hand:

ResπV ◦ Indid⊗F′ ◦ YU×U ′(A,B) = ResπV ◦ YU×V ◦ (id⊗ F′)(A,B) =

ResπV ◦ YU×V
(
A,F′(B)

)
= HomP(U)⊗P(V)

(
πV(−), (A,F′(B))

)
=

HomP(U)⊗P(V)
(
(CU (OX),−), (A,F′(B))

)
=

HomP(U)
(
CU (OX), A

)
⊗HomP(V)

(
−,F′(B)

)
=

HomP(U)
(
CU (OX), A

)
⊗ YV

(
F′(B)

)
=

HomP(U)
(
CU (OX), A

)
⊗ IndF′

(
HomP(U)′(−, B)

)
.
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Now, we know by definition (see Section 2.5) that the dg functor IndF acts as a ten-
sorization with the dg bimodule EYV◦F corresponding to YV ◦ F via the isomorphism
(2.6). Therefore, denoting T := HomP(U)

(
CU (OX), A

)
∈ dgMod(k) = Cdg(k-Mod), we

have
IndF′ ◦ Resπ′2 ◦ YU×U ′(A,B) =

(
T ⊗HomP(U)′(−, B)

)
⊗P(V) EYV◦F′

and

ResπV ◦ Indid⊗F′ ◦ YU×U ′(A,B) = T ⊗
(
HomP(U)′(−, B)⊗P(V) EYV◦F′

)
.

The two expressions are equal thanks to the associativity of the tensor product of dg
modules (see Remark 2.6 of [13]). Our claim therefore comes from part 2 of Theorem
7.2 in [45].

Recall that a few pages ago we defined α as H ◦ ResK ◦ YU (CU (OX)) and α′ such
that H0(Indid⊗I)(α′) ' α.

Proposition 4.2.6. We have IndK(−)⊗id(α′) = H ◦ Resid⊗I ◦ IndK(−)⊗id(α) in Hqe.

Proof. By definition we have that α is homotopy equivalent to Indid⊗I(α′), therefore
we have, in Hqe:

H ◦ Resid⊗I ◦ IndK(−)⊗id(α) = H ◦ Resid⊗I ◦ IndK(−)⊗id ◦ Indid⊗I(α′) =
H ◦ Resid⊗I ◦ Indid⊗I ◦ IndK(−)⊗id(α′).

when in the last equality we have used Lemma 4.2.4. Now, the claim follows from
the fact that the quasi-functor H ◦ Resid⊗I is right adjoint to Indid⊗I at the level of
h-projective dg modules (see Lemma 3.8.3) and the latter is a quasi-equivalence.

Now, recall that Φ̃dg
β (−) was defined to be the dg functor ResπV ◦ IndK(−)⊗id(β) for

any element β ∈ Perf(P(U)⊗P(V)) and recall that we have defined EF := Indid⊗F′(α′).

Thanks to Lemma 4.2.4, Lemma 4.2.5 and Proposition 4.2.6 we can start writing,
in Hqe:

Φ̃dg
EF

(−) : = ResπV ◦ IndK(−)⊗id ◦ Indid⊗F′(α′) = ResπV ◦ Indid⊗F′ ◦ IndK(−)⊗id(α′)
= IndF′ ◦ Resπ′2 ◦ IndK(−)⊗id(α′) = IndF′ ◦ Resπ′2 ◦ H ◦ Resid⊗I ◦ IndK(−)⊗id(α)
= IndF′ ◦ H ◦ Resπ′2 ◦ Resid⊗I ◦ IndK(−)⊗id(α)
= IndF′ ◦ H ◦ ResI ◦ Resπ2 ◦ IndK(−)⊗id(α)

where the last two equalities come, respectively, from Remark 4.1.8 and from the obvi-
ous equality (id⊗ I) ◦ π′2 = π2 ◦ I.

We spend some effort now in order to better describing α ' H◦ResK ◦YU (CU (OX)).
Let us denote W := ResK ◦ YU (CU (OX)) = HomP(U)(−⊗ =, CU (OX)). It is an element
of dgMod(P(U)⊗ P(U)) and we have a canonical isomorphism, see (2.6):

η : dgMod(P(U)⊗ P(U)) −→ Hom(P(U)◦, dgMod(P(U)))

In our particular situation, thanks to the following result, we can give a concrete de-
scription of the image ηW of W in Hom(P(U)◦,dgMod(P(U))).
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Lemma 4.2.7. For any pair of bounded complexes of vector bundles P and Q on X
we have a homotopy equivalence:

HomP(U)(CU (P ),Hom(CU (Q), CU (OX))) −→ HomP(U)(CU (P )⊗ CU (Q), CU (OX)).

Proof. First of all we observe that the sheaf complex Hom(Q, CU (OX)) lies in P(U). In-
deed, if j : V −→ X is the inclusion of an open subset we have the natural isomorphisms
(see also Remark C.6 of [31])

j∗j
∗HomX(Q,OX) ' j∗HomV (j∗Q, j∗OX) ' HomX(Q, j∗j∗OX)

and hence we obtain the isomorphism of complexes CU (Hom(Q,OX)) ' Hom(Q, CU (OX)).
Note that Hom(Q,OX) is a bounded complex of locally free sheaves if Q is such.

Now, by Lemma C.7 of [31] we get that the morphism

Hom(CU (Q), CU (OX)) −→ Hom(Q, CU (OX))

induced by the Čech resolution is actually a homotopy equivalence.

We can therefore write the following chain of maps

HomP(U)(CU (P ),Hom(CU (Q), CU (OX)))

h.eq.
��

HomP(U)(CU (P )⊗ CU (Q), CU (OX))

h.eq.
��

HomP(U)(CU (P ),Hom(Q, CU (OX))) ∼ // HomP(U)(CU (P )⊗Q, CU (OX))

where the object CU (P )⊗Q lives in P(U) since it is isomorphic to CU (P ⊗Q) (see the
Lemma below). The first and the last maps are homotopy equivalences because we can
actually define dg endofunctors HomCdg(Sh(X))(CU (P ),−) and HomCdg(Sh(X))(−, CU (P ))
of the category Cdg(Sh(X)) and so they preserve homotopy equivalences (note that
CU (P )⊗ CU (Q) and CU (P )⊗Q are homotopy equivalent by Corollary 3.6.3 and by the
Lemma below) as well. The middle map is the isomorphism obtained by taking global
sections of the functorial isomorphism of complexes of sheaves of modules (see [42, Tag
0A8M])

Hom(F ,Hom(G,H)) −→ Hom(F ⊗ G,H)
that we have for any F , G and H complexes of sheaves of modules.

Lemma 4.2.8. Let A and B bounded complexes of vector bundles on X. Then we have
the isomorphism of complexes CU (A⊗B) ' CU (A)⊗B.
Proof. On one hand we have, for any integer m:

CU (A⊗B)m =
⊕

p+q=m

⊕
i0,..,iq

jq∗jq
∗(
⊕
r+s=p

Ar ⊗Bs) =
⊕

p+q=m

⊕
r+s=p

⊕
i0,..,iq

jq∗jq
∗(Ar ⊗Bs) '

'
⊕

r+s+q=m

⊕
i0,..,iq

jq∗(jq
∗Ar ⊗ jq∗Bs) '

⊕
r+s+q=m

⊕
i0,..,iq

(jq∗jq
∗Ar)⊗Bs

where the last isomorphism comes from the projection formula (see Proposition 1.3.1).
On the other hand:(

CU (A)⊗B
)m =

⊕
a+b=m

CaU (A)⊗Bb =
⊕

a+b=m

( ⊕
h+k=a

⊕
i0,..,ik

jk∗jk
∗Ah

)
⊗Bb '

'
⊕

h+k+b=m

⊕
i0,..,ik

(jk∗jk∗Ah)⊗Bb

and hence the two sides are clearly isomorphic.
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Remark 4.2.9. Actually, Lemma 4.2.7 is true in greater generality: Lemma C.7 of
[31] holds for a generic vector bundle in place of OX (as it can be easily seen by its
proof); moreover, it holds also for a bounded complex of vector bundles R. In fact
Hom(CU (Q), CU (R)) still lies in P(U) thanks to the funtoriality of Čech resolutions
and to the fact that, for any B ∈ P(U), Hom(B,−) is a well defined dg functor on all
Cdg(Sh(X)). Now, since also Hom(−, B) is a well defined dg functor on all Cdg(Sh(X)),
and since - as we already observed - any object of P(U) is homotopy equivalent to the
Čech resolution of a bounded complex of vector bundles, we can state what follows: for
any A, B and D objects of P(U) we have that

HomP(U)(A,Hom(B,D)) −→ HomP(U)(A⊗B,D).

is a homotopy equivalence.

Now, by Proposition 3.12 of [13], for any dg categories A and B we have a bijection

ΛA,B : Iso(H0(h-proj(A◦ ⊗ B)))←→ Hqe(A,h-proj(B))

sending (the isomorphism class of) an element D ∈ H0(h-proj(A◦ ⊗ B)) to the image
in Hqe of what we have here called ηD. On the other hand, following carefully the
proof of such proposition, we can see that, if we are dealing with a honest dg functor
G : A −→ h-proj(B), it corresponds through ΛA,B to (the isomorphism class in H0 of)
the h-projective resolution of the image of G via the inverse of η.

Coming back to our situation, recall that we have denoted by W the object ResK ◦
YU (CU (OX)) of dgMod(P(U)⊗P(U)). Thanks to Lemma 4.2.7 and the discussion above
we get that the image of the dg functor

ηW = HomP(U)(−,Hom(=, CU (OX))) ∈ Hom(P(U)◦,h-proj(P(U)))

through ΛP(U)◦,P(U) is the isomorphism class in H0 of α = H ◦ W , the h-projective
resolution of W . But it is clear that α is also the image of ηα via the same map; from
this it follows that ηW and ηα are equal in Hqe.

Let us recall that we have:

Φ̃dg
EF

(−) = IndF′ ◦ H ◦ ResI ◦ Resπ2 ◦ IndK(−)⊗id(α).

Let us set E(−) := IndK(−)⊗id(α). By the proof of Lemma 3.4 in [13] we have
Resπ2(E(−)) = ηE(−)(CU (OX)) and by the one of Proposition 3.8 (2), always in [13]
ηE(−) = IndK(−) ◦ ηα = IndK(−) ◦ ηW .

With this being said we can write:

IndK(−) ◦ ηW = IndK(−) ◦HomP(U)(∼,Hom(=, CU (OX)))
= HomP(U)(∼,K(−)(Hom(=, CU (OX))))
= HomP(U)(∼,Hom(=, CU (OX))⊗−)

and therefore

Resπ2(E(−)) = ηE(−)(CU (OX)) = HomP(U)(∼,Hom(CU (OX), CU (OX))⊗−)
= HomP(U)(∼,−) = YU (−)
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in Hqe since, by Lemma C.7 of [31], we have the homotopy equivalence between
Hom(CU (OX), CU (OX)) and Hom(OX , CU (OX)) ' CU (OX) and the tensorization with
CU (OX) is equal to the identity in Hqe. In fact, thanks to Corollary 3.6.3, we have
that CU (OX)⊗CU (A) is homotopy equivalent to CU (OX ⊗A) ∼= CU (A) for any bounded
complex of vector bundles. But since - as we have already observed many times -
tensorization is a well defined dg functor on Cdg(Sh(X)) we get that for any complex
B that is homotopy equivalent to CU (A) (as any object of P(U) is) CU (OX) ⊗ B is
homotopy equivalent to B.

In conclusion we can write, in Hqe:

Φ̃dg
EF

(−) = IndF′ ◦ H ◦ ResI ◦ Resπ2(E(−)) = IndF′ ◦ H ◦ ResI ◦ YU (−)
= IndF′ ◦ Ind−1

I ◦ YU (−) = IndF′ ◦ YU ′ ◦ I−1(−)
= YV ◦ F′ ◦ I−1(−) = YV ◦ F(−)

where, for the third equality, we have adopted the same reasoning as in the proof of
Proposition 4.2.6, while the equalities following it are due to Proposition 2.5.2 (ii).
This finally gives us a proof of Proposition 4.2.3.

4.3 Uniqueness of Fourier-Mukai kernels
We have seen in Section 1.4 that at the triangulated level it can happen to have differ-
ent kernels giving rise to the same Fourier-Mukai functor. We prove that, moving to
the dg level, this cannot happen anymore.

Before stating (and proving) Proposition 4.3.1 it is worth setting some notation
that will be employed. In Section 1.4 we have defined the functor

�̂ : Sh(X×X)× Sh(X×Y ) −→ Sh(X×X×X×Y ).

In complete analogy with what happens for the ordinary boxtimes functor (see Section
3.2) it gives rise to a dg functor — that by abuse of notation will be denoted in the
same way

�̂ : P(U×U)⊗P(U×V) −→ P(W)
where we have abbreviated W := U ×U ×U ×V. The dg category P(W) is defined
analogously to P(U): it is the Čech dg enhancement of Perf(X×X×X×Y ). We will
denote by �̂| the restriction of �̂ to P∗(U×U)⊗P∗(U×V).

We define
πU×U : P(U×U) −→ P(U×U)⊗ P(U×V)

and
πU×V : P(U×V)) −→ P(U×U)⊗ P(U×V)

by sending an objectA ∈ P(U×U) to
(
A, CU×V(OX×Y )

)
andB ∈ P(U×V) to

(
CU×U (OX×X), B

)
,

respectively. Moreover YW is the dg Yoneda embedding

Y dg
P(W) : P(W) −→ Perf(P(W))

and ιU×U (respectively ιU×V) is the inclusion, that is actually a quasi-equivalence, of
P∗(U×U) into P(U×U) (respectively of P∗(U×V) into P(U×V)).
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With that said, for any F ∈ Perf(X×X×X×Y ), we can define the dg functor ΨF
as the composition

P(U×U)
πU×U // P(U×U)⊗ P(U×V)

�̂
��

Perf(P(W)) S // Perf(P(U×V))

P(W) // P(W)

YW

OO

where the lower horizontal arrow is the tensorization with CW(F ) for a bounded complex
of vector bundles F quasi-isomorphic to F and S := ResπU×V ◦ IndιU×U⊗ιU×V ◦ Res�̂| .
Thanks to what we proved in Chapter 3 we have that ΨF is a dg lift of the Fourier-
Mukai functor ΦF : Perf(X×X) −→ Perf(X×Y ), defined as

ΦF (A) := Rr2∗(F ⊗L r∗1A)

where we have employed the notation of the diagram below, that contains also all the
different projections that will be used later

X×X×X×Y
r1

ww

r2

''
X×X

r11

{{

r12

''

X×Y
r21

ww

r22

##
X X X Y

We are now ready for the following

Proposition 4.3.1. Assume that we have Φdg
E1 = Φdg

E2 in Hqe. Then E1 ∼= E2 in
Perf(X×Y ).

Proof. We start by fixing a bounded complex D of vector bundles that is quasi-
isomorphic to O∆ := ∆∗OX (we know it exists since by Lemma 4.1.5 O∆ lies in
Perf(X×X)); we fix moreover a bounded complex E of vector bundles that is quasi-
isomorphic to E ∈ Perf(X×Y ). We claim the commutativity in Hqe of the following
diagram:

P(U)⊗ P(U)

ΦdgO∆
⊗ΦdgE

��

� //

(?)

P(U×U)

ΨE
��

Perf(P(U))⊗ Perf(P(V))

ȲU×V
��

Perf(P(U×V))
IndL◦Res�|
��

Perf(Perf(P(U))⊗ Perf(P(V)))
ResYU⊗YV // Perf(P(U)⊗ P(V)).

where ȲU×V is the Yoneda embedding and, by a slightly abuse of notation, ΨE := ΨO∆�̂E
denotes the dg functor we have above defined that is a dg lift of ΦO∆�̂E .

The existence of the lower horizontal arrow is guaranteed by Corollary 2.5.8. Ob-
serve that D�̂E is a bounded complex of vector bundles quasi-isomorphic to O∆�̂E .
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Now, given an element (CU (A), CU (B)) ∈ P(U)⊗ P(U), we have:

ResYU×YV ◦ ȲU×V ◦ (Φdg
O∆
⊗ Φdg

E )(CU (A), CU (B)) =

ResYU×YV ◦ ȲU×V(Φdg
O∆

(CU (A)),Φdg
E (CU (B))) =

ResYU×YV ◦Hom
(
(−,=), (Φdg

O∆
(CU (A)),Φdg

E (CU (B)))
)

=

Hom
(
(YU (−), YV(=)), (Φdg

O∆
(CU (A)),Φdg

E (CU (B)))
)

=

Hom
(
YU (−),Φdg

O∆
(CU (A))

)
⊗k Hom

(
YV(=),Φdg

E (CU (B))
) ∼=

Φdg
O∆

(CU (A))(−)⊗k Φdg
E (CU (B))(=)

where the Hom complexes are in the obvious categories and the last isomorphism is
a consequence of dg Yoneda Lemma - see the isomorphism (2.2) of Section 2.2. Now,
from the commutativity of the diagram

P∗(V) π̄V //

ιV
��

P∗(U)⊗ P∗(V)

L
��

P(V) πV // P(U)⊗ P(V)

where we recall that ιV is the inclusion and π̄V is the restricted version of πV (see
Section 3.3) we obtain the equality ResπV ◦ IndL = IndιV ◦ Resπ̄V in Hqe when we
consider them as dg functors between perfect dg modules. We can write:

Φdg
E (CU (B)) = ResπV ◦ IndL ◦ Res�| ◦ YU×V ◦KCU×V (E) ◦� ◦ πU (CU (B))

= IndιV ◦ Resπ̄V ◦ Res�| ◦ YU×V ◦KCU×V (E)(CU (B) � CV(OY ))
= IndιV ◦ Resπ̄V ◦ Res�| ◦ YU×V ◦KCU×V (E)(CU (B) � CV(OY ))
= IndιV ◦ Resπ̄V ◦ Res�| ◦ YU×V

(
(CU (B) � CV(OY ))⊗ CU×V(E)

)
= IndιV ◦ Resπ̄V ◦ Res�| ◦HomP(U×V)

(
−,
(
(CU (B) � CV(OY ))⊗ CU×V(E)

))
= IndιV

(
HomP(U×V)

(
CU (OX) �−,

(
(CU (B) � CV(OY ))⊗ CU×V(E)

)))

Now, let us write more explicitly:

Θ1 : = HomP(U×V)
(
CU (OX)� =,

(
(CU (B) � CV(OY ))⊗ CU×V(E)

))
h.eq.
' HomP(U×V)

(
CU (OX)� =, CU×V(r∗21(B)⊗ E)

)
;

Θ2 : = HomP(U×U)
(
CU (OX) �−,

(
(CU (A) � CU (OX))⊗ CU×U (D)

))
h.eq.
' HomP(U×U)

(
CU (OX) �−, CU×U (r∗11(A)⊗D)

)
.

From essentially the same argument as the one of Proposition 3.2.7 we have a homotopy
equivalence between

HomP(U×U)
(
CU (OX)�−, CU×U (r∗11(A)⊗D)

)
⊗kHomP(U×V)

(
CU (OX)� =, CU×V(r∗21(B)⊗E)

)
and

HomP(W)
((
CU (OX)�−

)
�̂
(
CU (OX)� =

)
, CU×U (r∗11(A)⊗D)�̂CU×V(r∗21(B)⊗E)

)
. (4.3)
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Summarising we have the following chain of homotopy equivalences:

ResYU×YV ◦ ȲU×V ◦ (Φdg
O∆
⊗ Φdg

E )(CU (A), CU (B)) = Φdg
O∆

(CU (A))(−)⊗k Φdg
E (CU (B))(=)

' IndιU (Θ2)⊗k IndιV (Θ1) = IndL(Θ2 ⊗k Θ1) ' IndL
(
(4.3)

)
when the equality between IndL:=ιU⊗ιV and IndιU ⊗ IndιV can be easily verified.

On the other hand — by applying an argument analogous to the one we used above
for Φdg

E (CU (B)) — we have, in Hqe

ΨE ◦�(CU (A), CU (B)) = ΨE(CU (A) � CU (B)) = IndιU×V (Θ12)

where Θ12 ∈ Perf(P∗(U×V)) is

HomP(W)
(
CU×U (OX×X)�̂−,

(
(CU (A) � CU (B))�̂CU×V(OX×Y )

)
⊗ CW(D�̂E)

)
which is homotopy equivalent to

HomP(W)
(
CU×U (OX×X)�̂−, CW

((
(A�B)�̂OX×Y

)
⊗ (D�̂E)

))
. (4.4)

But now, IndιU×V (Θ12) is just Θ12 viewed as a dg module over P(U×V) and we can see
by tedious computations (see Lemma 4.3.2 below) that if we apply Res�| to (4.4) it is
homotopy equivalent to (4.3). It is not hard to see that such a homotopy equivalence
holds for any objects of P(U)⊗P(U) therefore we have a termwise homotopy equivalence
that yields by Proposition 2.5.10, in Hqe, the equality

ResYU⊗YV ◦ ȲU×V ◦ (Φdg
O∆
⊗ Φdg

E ) = IndL ◦ Res�| ◦ΨE ◦�

that is exactly the commutativity we were looking for.

Now, if we apply the functor Ind to the diagram (?), we still get a commutative
one. Moreover, if we restrict to perfect dg modules, most of the dg functors involved
are actually quasi-equivalences. In fact:

- Ind� : Perf(P(U) ⊗ P(V)) −→ Perf(P(U×V)) is a quasi-equivalence by Lemma
3.2.14;

- ResYU⊗YV : Perf(Perf(P(U)) ⊗ Perf(P(V))) −→ Perf(P(U) ⊗ P(V)) is a quasi-
equivalence by Corollary 2.5.8;

- the dg functor IndF is a quasi-equivalence between perfect dg modules anytime
F is such - see Proposition 2.5.3. Therefore the dg functors IndIndL◦Res�|

and
IndResYU⊗YV are quasi-equivalences;

- In order to prove that also IndȲU×V is a quasi-equivalence we use a more general
reasoning. For any dg category A we have the dg Yoneda functor YA : A −→
Perf(A) and therefore also - by Proposition 2.5.2 (ii) - a commutative diagram

Perf(A)
IndYA // Perf(Perf(A))

A

YA

OO

YA // Perf(A)

YPerf(A)

OO
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This implies IndYA ◦YA ' YPerf(A)◦YA. But now, by the so called "derived Morita
theory" (see for example Corollary 4.2 of [13]) we have IndYA = YPerf(A) in Hqe.
In conclusion IndYA is a quasi-equivalence since YPerf(A) is such: in fact Perf(A)
is always a perfect dg category (see Proposition 2.4.4 and the discussion above
it).

Hence what we obtain is the fact that IndϕE and IndΨE can be identified in Hqe up to
invertible elements, where we have set ϕE := Φdg

O∆
⊗ Φdg

E .

Now assume that Φdg
E1 = Φdg

E2 in Hqe. Then we have

IndϕE1 = IndϕE2 in Hqe

and, by the commutativity of the diagram obtained by applying the functor Ind to the
commutative diagram (?) and restricting to perfect dg modules, also IndΨE1 and IndΨE2
are equal in Hqe. From the commutative diagrams below, for i ∈ {1, 2}

Perf(P(U×U))
IndΨEi // Perf(Perf(P(U×V)))

P(U×U)

OO

ΨEi // Perf(P(U×V))

OO

we deduce that the same happens for ΨE1 and ΨE2 . If we apply H0(−), we get there-
fore that ΦO∆�̂E1 and ΦO∆�̂E2 can be identified as exact functors, up to isomorphism.
Whence we can conclude, as claimed:

E1 ∼= ΦO∆�̂E1(O∆) ∼= ΦO∆�̂E2(O∆) ∼= E2

where the first and the last isomorphisms come from Lemma 1.4.3.

Lemma 4.3.2. For any CU (M) ∈ P∗(U) and CV(N) ∈ P∗(V) we have that the object

HomP(W)
((
CU (OX)�CU (M)

)
�̂
(
CU (OX)�CV(N)

)
, CU×U (r∗11(A)⊗D)�̂CU×V(r∗21(B)⊗E)

)
is homotopy equivalent to

HomP(W)
(
CU×U (OX×X)�̂

(
CU (M) � CV(N)

)
, CW

((
(A�B)�̂OX×Y

)
⊗ (D�̂E)

))
.

Proof. Since all the functors ⊗, �, �̂ and the (co- and contro-)variant Hom are well-
defined dg functors on the dg category of quasi-coherent sheaves, they behave well with
respect to classes of homotopy equivalent objects, as we already observed. Therefore
our claim follows from the following facts:

•
(
CU (OX) � CU (M)

)
�̂
(
CU (OX) � CV(N)

) h.eq.
' CU×U (OX �M)�̂CU×V(OX �N) '

CU×U (r∗12M)�̂CU×V(r∗22N)
h.eq.
' CW(r∗12M�̂r∗22N) ' CW((r12◦r1)∗M⊗(r22◦r2)∗N);

• CU×U (OX×X)�̂
(
CU (M) � CV(N)

) h.eq.
' CU×U (OX×X)�̂CU×V(M �N)

h.eq.
'

CW(OX×X�̂(r∗21M ⊗ r∗22N)) ' CW((r21 ◦ r2)∗M ⊗ (r22 ◦ r2)∗N);

• CU×U (r∗11A⊗D)�̂CU×V(r∗21B ⊗ E)
h.eq.
' CW

(
(r∗11A⊗D)�̂(r∗21B ⊗ E)

)
'

CW
(
r∗1(r∗11A⊗D)⊗ r∗2(r∗21B⊗E)

)
' CW

(
(r11 ◦ r1)∗A⊗ r∗1D⊗ (r21 ◦ r2)∗B⊗ r∗2E

)
;

69



• CW
((

(A�B)�̂OX×Y
)
⊗(D�̂E)

)
' CW

((
(r∗11A⊗r∗12B)�̂OX×Y

)
⊗(r∗1D⊗r∗2E)

)
'

CW
(
(r11 ◦ r1)∗A⊗ (r12 ◦ r1)∗B ⊗ r∗1D ⊗ r∗2E

)
;

• there exists a canonical isomorphism interchanging the two middle factors of
U×U×U×V.

4.4 Proof of Theorem 4.4.1
We are now ready to collect what we have done in order to define the explicit bijection
and showing that it yields in a straightforward way the proof of the claim we were
looking for. Let us fix Perfdg(X) := P(U) and Perfdg(Y ) := P(V); we know they are
two dg enhancements of Perf(X) and of Perf(Y ) respectively.

Theorem 4.4.1. Let X and Y be two smooth proper schemes over a field. Then there
exists a bijective map

γ : Iso(Perf(X×Y )) 1:1−→ Hqe(Perfdg(X),Perfdg(Y ))

compatible with Fourier-Mukai kernels; i.e. such that, for any E ∈ Perf(X×Y ), we
have H0(γ(E)) ' ΦE .

Proof. Consider now the map

Iso(Perf(X×Y )) γ // Hqe(P(U),P(V))

[E ]iso � // Y −1
V ◦ Φdg

E

In the following steps we are going to show that it satisfies all the requests we need in
order to prove the theorem.

It is well-defined: remember that, Remark 3.7.1 tells us that the class in Hqe of
Φdg
E does not depend on the choice of the bounded complex of vector bundles quasi-

isomorphic to E . Moreover, if we have E ' F we can apply the same argument and get
that Φdg

E and Φdg
F are termwise homotopy equivalent; hence they represent the same

morphism in Hqe. It follows that γ([E ]iso) = γ([F ]iso).

Injectivity: if γ([E ]iso) = γ([F ]iso) in Hqe then certainly we have Φdg
E = Φdg

F in Hqe,
too. But this, from Proposition 4.3.1, implies E ' F in Perf(X×Y ).

Surjectivity: let F be an element of Hqe(P(U),P(V)). We know from Proposition
4.2.3 that YV ◦ F is equal to Φ̃dg

EF
in Hqe with EF ∈ Perf(P(U)⊗ P(V)). Now, since we

have a quasi-equivalence

IndL ◦ Res�| ◦ YU×V : P(U×V) −→ Perf(P(U)⊗ P(V))

there exists an object E ′F ∈ H0(P(U×V)) ' Perf(X×Y ) such that H0(IndL ◦ Res�| ◦
YU×V)(E ′F) ' EF. Now, let E′ be a bounded complex of vector bundles on X ×Y
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quasi-isomorphic to E ′F. It follows that CU×V(E′) is isomorphic to E ′F in H0(P(U×V))
and therefore H0(IndL ◦ Res�| ◦ YU×V)(CU×V(E′)) ' EF. In conclusion, recalling the
relationship between Φdg and Φ̃dg (see the discussion before Proposition 4.2.3), we can
write the following equalities in Hqe

γ([E ′F]iso) = Y −1
V ◦ Φdg

E ′F
= Y −1

V ◦ Φ̃dg
IndL◦Res�|◦YU×V (CU×V (E′)) = Y −1

V ◦ Φ̃dg
EF

= F.

and get the surjectivity of γ.

Compatibility with Fourier-Mukai kernels: it comes form the definition of γ. In
fact, for any E ∈ Perf(X×Y ), we have

H0(γ(E)) = H0(Y −1
V ◦ Φdg

E ) = H0(Y −1
V ) ◦H0(Φdg

E ).

Recall now that we have a commutative diagram

H0(P(U))
H0(ΦdgE )

//

ωX
��

Perf(P(V))

ωY ◦H0(YV )−1

��
Perf(X) ΦE // Perf(Y )

where ωX and ωY are exact equivalences. It follows that H0(γ(E)) and ΦE can be
identified up to equivalences.

The importance of Theorem 4.4.1 relies also on the following fact. Suppose we
have a triangulated functor f : Perf(X) −→ Perf(Y ) that is dg liftable: we know by
theoretical reasons - at least in the case of smooth proper schemes over a field - that f
is of Fourier-Mukai type. Now, the way we have costructed the bijective map γ allow
us to explicitly compute a kernel Ef of f .

4.5 Possible generalizations
In the conclusion of this thesis we want to point out that a consistent part of the results
proved in Chapter 4 does not depend on the fact that we are working over a field and
is indeed true when the schemes satisfy the assumption (∗∗).

By looking carefully at Chapter 4, it can be realized that — if we are under the
milder assumption (∗∗) — the only relevant difference is that all our categories are
just h-flat (thaks to Proposition 3.8.1) instead of being h-projective. In practice, this
translates in the fact that the dg functor ResπV (and its "relatives" Resπ2 , etc.) do
not restrict to h-projective dg modules and hence we need to compose it with the h-
projective resolution quasi-functor H, as we have done in Section 3.8. For this reason
we belive that it will be possible to extend all the proofs of Chapter 4 — and therefore
the one of Theorem 4.4.1 — also in the generality of (∗∗).

Actually we are close to a proof of Proposition 4.2.3, which is essentially the su-
jectivity of our bijection, but still some details has to be fixed. This, together with a
generalized version of Proposition 4.3.1, is something that might be investigated in the
future.
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Remark 4.5.1. We just want to point out here that, if our k happens to be a perfect
(commutative) ring, then the whole proof of Theorem 4.4.1 readily applies. In fact
perfect (commutative) rings can be characterized (see Theorem 24.25 of [27]) as the
rings such that flat modules over them are projective. This clearly implies that —
under this hypotesis — all our dg categories are also h-projective and therefore, by
what we said above, all the results of Chapter 4 remain true.
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