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University of Milan, Milan, Italy Blood microcirculation is the site of control of tissue perfusion, blood-tissue

exchange, and tissue blood volume. Despite the many irregularities, almost
ubiquitously, one can recognize in microcirculation vessels a hierarchy of arterioles
and venules, organized in tree-like structures, and capillary plexi, organized in net-like
structures. Whilst for arterioles and venules it may be envisageable to obtain
geometries needed for numerical simulations from imaging techniques, the size and
numerosity of capillaries makes this task much more cumbersome. For this reason, it
is interesting to study approaches to generate in silico-derived artifacts of capillary
networks, even in view of machine-learning based approaches which require a large
amount of samples for training. Artificial networks must correctly reflect proper
metrics and topology, which in turn, will ensure with proper boundary conditions a
physiological blood flux in the net and a sufficient nutrient distribution in the
surrounding tissues. In this paper, we introduce the sequence of curves whose limit is
the space filling Hilbert curve and we discuss its inherent properties and we obtain
the backbone of the artificial capillary network from a suitable element of this
sequence. The backbone represents a significant synthesis of basic metric features of
the network and, in this context, its properties can be studied analytically. In this
framework, the Hilbert curve is a malleable entity which allows to shape the
backbone according to the physical indicators. In particular, two significant factors are
shown to control the network topology and scaling: the iteration step of the Hilbert
curve generation and the characteristic length of the REV, respectively. Based on the
points we generate for a certain iteration step, we then obtain via spline interpolation
a smoothed version of the curve, which fine-tunes the tortuosity. A volumetric
construction is obtained building a tubular neighborhood of the backbone, whose
metrics can be computed and tuned as well. Numerical simulations of the blood flow
in the obtained geometry show the physical fields occurring in the artificial network.
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1 Content
The microcirculation is the collective name for the smallest (<150 pm in diameter) blood

vessels. Microcirculatory vessels are the site of control of tissue perfusion, blood-tissue
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exchange and tissue blood volume. Each of these functions can be associated, though
not exclusively, with a specific type of microvascular segment: arterioles, capillaries and
venules [1]. Microvessels do not generally form precise arrays in the tissue; rather, their
spacingis non-uniform and their pathways are often tortuous [2]. Despite the irregularities
in network structure, almost ubiquitously, arterioles and venules are organized in tree-like
structures and capillary plexi in net-like structures. When performing numerical simula-
tions, the geometry of larger vessels in microcirculation, corresponding to arterioles and
venules, may be reconstructed from imaging. For example, in [3] the authors extracted
from confocal laser microscopy of sliced sections of human brain hundreds of microves-
sels within a large cortex area of the human brain. The vessels corresponding to arteri-
ole/venule level were clearly organized in tree-like structures. However, this operation is
much more cumbersome when dealing with capillaries, as capillary beds are composed
of thousands (>10%) of tiny vessels with diameter ranging from 4 to 8 microns. For this
reason, different studies have tackled this problem by modeling the capillary structures
(see [4] for a review of the different approaches). Vessel-by-vessel descriptions tuned to a
specific geometry are technically feasible but they are forcibly restricted to small tissue re-
gions [5, 6]. Aside from this approach, the generation of synthetic capillary networks with
equivalent properties allows to highlight common organizational features both intra and
interspecies (see [7] for a discussion on topic). Simplified geometrical models describe cap-
illaries as an idealized hierarchy of parallel vessels, as done in [8] for the eye retina capillar-
ies. Whilst this representation can reasonably reproduce flow and pressure levels, it does
not fully describe the real net-like organization of capillaries in its complexity. To model
the net-like structure of capillary beds, some studies have used mathematical algorithms
to generate coherent capillary meshes. In [9], a concentric circle mesh-like model was pro-
posed to simulate capillaries in the rat retina. In [10], statistical algorithms were used to
explore how the structural properties of the capillary bed influence the transport of blood
through the human cerebral microvasculature. Sprouting angiogenesis algorithms have
been used to generate capillary networks embedded in tumoral tissues (see, e.g, [11, 12]).
In the recent work [13], a three-dimensional microvascular network representing a por-
tion of the vasculature of the brain cortex is proposed, according to the mechanisms of
angiogenesis, remodeling and pruning. In this model, stimuli are represented by oxygen
levels and conducted responses in vessel walls. In [14], a representative cubic cell was in-
troduced to compute equivalent quantities to be used in a further upscaling procedure:
“spaghetti-shaped” capillaries with random orientations were embedded in the cell and
a direct numerical simulation was performed. A similar approach was also pursued in
[15], where a set of nodes were randomly seeded on a voxel to form a capillary network,
on which upscaling was further performed. In [16—18], 3D capillary networks have been
constructed using a Voronoi tessellation. A similar approach is considered also in [19] (see
also the subsequent papers of the same authors and [7]), where the underlying structure of
a 3D portion of the cerebral capillary net is obtained from a Voronoi dual mesh built from
a tetrahedral Delaunay triangulation filling the space within a set of terminal arterioles
and venules.

In this work we propose a technique to generate a net-like capillary geometry based
on the observation of the space-filling nature of capillary networks at scales above a cut-
off length of 25-75 um [7]. Differently from [7, 17] and references therein, we base our
construction of the network on the backbone obtained from successive approximations of
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the 3D Hilbert curve [20], a mathematical construction which has the interesting property
of displaying a range which, at the limit, fills an entire cube. In this framework, the Hilbert
curve is a malleable entity which allows to shape the backbone to meet physical indicator
parameters, according to the idea that the effective functioning of the vascular system
depends sensitively on its geometrical characteristics. The cube forms a representative
elementary volume (REV) and its characteristic length along with the iteration number
in the generation of the backbone are chosen in order to meet appropriate scaling and
length density/numerosity parameters. The main advantages of the present approach are:
(a) an increased number of degrees of freedom which are being captured as opposed to
other methods; (b) the fact that it can basically represent complex geometries by means
of a recursive algorithm in a way that also complicated geometries could ultimately be
mapped in a sequence of geometries obtained by suitable simple manipulations of piece-
wise constant curves; (c) the availability of different (possibly also distorted) configurations
atavery low cost. This may turn to be useful in machine-learning based approaches, where
one typically needs for training hundredths of samples that can be difficult to realistically
obtain in the medical field. Artificial samples can be used in a first training phase, with a
refinement based only on a limited number of real samples.

The paper is organized as follows: in Sect. 2 we present the construction of the back-
bone of the network via the approximants of the Hilbert curve and we compute its relative
metrics which are relevant for our application; in Sect. 3 we present the construction of
the volumetric neighborhood around the backbone with specific attention to the mean
extravascular distance; in Sect. 4, we discuss the smoothing of the curve and the addition
of segments to create loops, in order to obtain a realistic network; in Sect. 5 we present
the results of 3D numerical simulations of the Stokes flow of blood in some instances of
the network; eventually, in Sect. 6 we draw the conclusions.

2 Geometrical construction of artificial capillary networks: the backbone

In silico-built artifacts of capillary networks must reflect proper metrics and topology,
which in turn, ensure a physiological blood flux in the net and a sufficient nutrient dis-
tribution in the surrounding tissues. Here below, we introduce the space filling curve
called Hilbert curve and we discuss its inherent properties. In the present construction,
the backbone of the artificial capillary network is obtained from a suitable element of the
sequence of piecewise approximations of the Hilbert curve and constitutes the union of
the centerlines of the volumetric construction of vessel branches. The backbone is, in gen-
eral, a significant synthesis of basic metric features of the network and, in this context, its
properties can be studied analytically. Two significant factors will be shown to control
the network topology and scaling: the iteration step of the Hilbert curve generation and
the characteristic length of the REV, respectively. In the following, we start recalling the
construction of the sequence of piecewise linear curves whose limit is the Hilbert curve
via an iterated procedure, then we deduce its geometrical properties at each step of the
iteration.

2.1 Definition of the 3D Hilbert curve

According to [20], Sect. 2.8, letting I = [0, 1], the Hilbert curve H : I — C is constructed
as limit, for » — +00, of a sequence I" := {I',;} of piecewise linear curves I';, : [ — C, em-
bedded in a three dimensional cube C with edge /. Such a curve satisfies the topological
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property of being space filling since it turns out to be dense in the cube C, and, being C
compact, this implies that H is surjective, i.e., H(I) = C. The density property implies that
for each point P of the cube C and each open neighborhood Up of P, it is possible to find a
suitable step # of the iteration such that I',,(I) intersects Up. Moreover, as the sequence I'
is shown to be uniformly convergent and each I',, is continuous, also the Hilbert curve,
which is its limit, is continuous. In this context, we consider finite n values and we use
the corresponding curves I',,. Setting # = 1 we obtain I';, which represents the basic pat-
tern and we shall call from now on the leit-motiv; it can be obtained as follows (see [20]
for an alternative arithmetic-analytic definition): one divides the cube C into 8 congruent
sub-cubes -cutting it along the symmetry planes parallel to the faces- and takes the 8 cen-
troids of these sub-cubes, which shall serve as the vertices of the curve. The leit-motiv is
constructed by connecting the vertices with segments each of length /; = é, upon having
established a traversal order of the points themselves (see Fig. 1). Setting now # = 2, to
obtain I'y, one has to divide again each of the 8 sub-cubes as before so to obtain 82 sub-
sub-cubes. Each set of the 8 centroids coming from the same sub-cube is connected by a
curve L;, i =1,...,8, and represents a scaled transformation of the leit-motiv (see below
for a detailed discussion of this point); each L; is then connected to L;;;,i=1,...,7 by seg-
ments s; (segment s; is shown in Fig. 2 for reference). Again, we see that I',(/) connects 82
nodes via 8 x 7 segments, whose length is /, = ZLZ, and 7 connecting arcs whose length is
still /5, hence 63 segments whose length is /;. The method to get I',,,; from I, is analog to
the one to obtain I'; from I'y. At step # the original cube is partitioned into 8" sub-cubes.

Figure 1 Leit-motiv of the Hilbert curve, coincident with the P,
curve I'y obtained at the first iteration. The order of traversal P8
is indicated by the numbering of the vertices

P,

Pg
P,
P;
P3
Ps

Figure 2 Curve I'; obtained at the second iteration.
The continuous polygonal curve is constructed from
the leit-motivs L;, i=1,..., 8, by connecting the last
node of L; with the first node of Ly, i=1,...,7, with
segment s; (denoted by the violet color, for clarity only
segment sy is annotated in the figure), modulo prior
scaling/transformation of each leit-motiv
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def hilbert3(n):
if 7 <=0 then
‘ set [x, ¥, z]=0;
else
[%5, ¥o]=hilbert3(n — 1);
[x, y, z]=generatemotiv(x,, Yo, 2Z,);

end
Algorithm 1: Recursive algorithm to generate the sequence {I',} of 3D space filling

Hilbert curves

To obtain I, 1, each of these sub-cubes is still partitioned in 8 sub-cubes into which is
fitted a pattern which is a scaled transformation of I',;; the 8 patterns similar to I',, are
then connected by 7 segments. At step 7, I',(I) connects 8" nodes via 8 patterns I',_; and
7 connecting arcs whose length is /,, = zin Hence, with a computation by recursion, we get
that I',,(I) consists of 8” — 1 segments whose length is /,,.

The above iterative procedure is numerically implemented via the recursive Algo-
rithm 1. Upon giving as an input the final desired iteration step #, the function iterates re-
cursively; at each recursive call, the function generatemotiv () takes in input a pivot-
ing point [%,, ¥, 2,], which is a vertex of the previous level leit-motivs and arranges around
it a scaled/transformed (rotated, mirrored, translated) leit-motiv, generating the new ver-
tex coordinates [«, y,z]. The vertices are eventually connected to form a continuous polyg-
onal curve, the traversal order being implicit in the procedure itself. The base leit—motiv
is built for n = 1.

According to the transformations implemented in the generatemotiv () function,
in 3D one can generate more than 10° different sequences converging to different Hilbert
curves which are anyways essentially equivalent from the metrical point of view, as shown
in [21]. In this work we will limit ourselves to consider one specific instance of transforma-
tions, which is sufficient for our goals. To exemplify the procedure encoded generate-
motiv (), we refer to the simplified 2D setting, its extension to the 3D case being similar.
In this setting, the cube reduces to square which is divided in four quadrants (see Fig. 3,
which shows the Hilbert curves obtained for # schematized with the dashed blue line and
n+ 1, respectively). The basic leit-motiv is formed by the polygonal curve joining 4 vertices
disposed symmetrically about the coordinate origin (dashed blue line). At each iteration,
the leit-motivs in the quadrants are obtained from the original leit-motiv by the follow-
ing transformations around the pivotal points (vertices) of the leit-motiv of the previous
iteration (blue dots in Fig. 3): (1) reflection about the x axis and then rotation 7 /2 coun-
terclockwise, translation and scaling (red curve, south-west quadrant); (2) translation and
scaling (black curve, north-west quadrant); (3) translation and scaling (green curve, north-
east quadrant); (4) rotation 7 /2 counterclockwise, translation and scaling (magenta curve,
south-east quadrant). The traversal order of each transformed leit-motiv allows to form a
continuous polygonal curve upon joining the end of and the beginning of the leit-motivs
(dashed gray lines). We refer to [22] and [23] for efficient MATLAB implementations of

the above construction in 2D and 3D, respectively.
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Figure 3 Instance of generatemotiv ()
function appearing in Algorithm 1 in the simplified
2D case. The original leit-motiv (dashed blue line),
centered around its pivotal point (%o, yo)
generates at the successive iteration four leit-motivs
in the respective quadrants. For ease of presentation
the transformation is depicted in the 2D case,
embedded in a square (thin black line). The 3D case
is a straightforward extension of this concept

2.1.1 Skeleton metrics

The definition of the backbone picking one of the curves in I' makes immediate to obtain
closed—form skeleton metrics of the vessel ensemble that are relevant for its characteri-
zation. Namely, the backbone I',, curve is characterized by:

« length density per unit volume: since the total length L(I",,) of the curve is given by

n
L(T,) = w ~ 4], (1)
the length density per unit volume is ~ 4" /I?

o extravascular distance: the points in volume C which realize the maximal distance,
say d,, from the curve are the centers of the leit—motivs. Since these latter have edge
112", we have d,, = /31/2"+1 ~ [ /2"

« curvature and torsion: curvature and torsion are usually defined and computed for
curves of, at least, differentiable of class C1, i.e. that have continuous derivative, which
is not the case of the piecewise curves I',.. For these curves, the curvature measures
the deviation of the curve from a straight line, whilst the torsion measures the
deviation of the curve from being plane. The classical generalization of these
geometric quantities to polygonal curves refers to closed curves, see e.g,, [24]. More
recently, a definition has been proposed also in the case of open piecewise linear
curves (see [25, 26] and [27]). Here we will follow the notation used in [26, 27]. The
total absolute curvature (TAC) of a piecewise linear curve of vertices {P;},i=0...n, is
the sum of the turning angles in each vertex {P;}, i = 1...n -1, where the turning

angle in P; is the value of the angle ¢ € [0, 7], between the vectors P;_1, P; and P;, Pi,1.

In the present case, we have

— TAC(T\(I)) = 62 =3,

— TAC(I'y(I)) = 8TAC(T'1(1)) + 127 = 307, (12 being the number of turning angles
arising from the connecting arcs)

— and for a generic n: TAC(T',(1)) = 8TAC(I",1 (1)) + 67 = Z(27 - 871 _¢).
Analogously, we introduce the total absolute torsion (TAT) of a piecewise linear

curve of vertexes {P;}, i = 0,...,n, considering the tangent and binormal unit vectors

Pi1, Pi LAt

=i I ——————) v, — P
CIPL Pl Ll At

Page 6 of 17
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where A denotes the vector product. Then the TAT is the sum of the angles
Y € [0, ], between the vectors b, and b,,,, i =1...n— 2. In our case, we have:
- TAT(I (D)) ==,

— TAT(I'y(I)) = 8TAT(I'1 (1)) + m =9,

— TAT(T,(I)) = 8TAT(T, (D) + 7 = Z(8" — 1).

The above metrical properties of the backbone curve shows that n and [ are the charac-
teristic parameters to be chosen in the present model so that artificial networks derived
from the above construction reproduce physiological skeleton metrics of capillary net-
works. We observe that the choice of characteristic parameters is also common to other
related works, for example the choice of the density of the number of random Voronoi
points used to generate networks in models as in [7, 16] (or the separation distance of the
vertices in these models). We also observe that metrics display inter-species variability
(e.g., in rat, mouse, cat, human) and even intra-species variability in a relevant range. We
consider the following skeleton metrics:

— length of a capillary segment (SL)

length density (LD), i.e., the total capillary length per unit volume

vertex density (VD), i.e., the number of vertices per unit volume
— maximal and mean distance of the capillaries (MEV, MeaEV) from an internal
(non-vascular) point

We studied such metrics for #n = 1,2,3 and for / = 170, 160, 150, 125 xm, respectively.
The results are shown in Table 1 and the values are to be compared with the reference
values shown in Table 2. Setting # = 2 allows to better fit the quantities SL, LD, VD, irre-
spective of the characteristic length /. This latter quantity turns instead to be important
when looking at the MEV and MeaEV metrics. The mean distance between capillaries
obtained in the artificial network of [16] lays in the range 16-46 um and it is stated that
73% of the tissue elements are no further than 40 um away from the nearest blood vessel.
In the artificial network of [7], the MeaEV is in the order of 18-20 um, in the order of
24.2-54.2 ym (cat brain cortex) in [28], 26.02 um (brain, model) in [17]) and 22-40 um
(human brain, laser microscopy) in [3]). Gathering all these observations, in the following
we will set [ = 160 um. In Fig. 4, we show for n = 2 and [ = 160 um the extravascular dis-
tances computed numerically and mapped on a vertical and horizontal slice, respectively.
The maximal distance is attained in the central region of the leit-motivs and in the region
separating different leit-motivs.

3 Geometrical construction of artificial capillary networks: the volumetric
construction

Once defined the backbone of the network, we construct its tubular neighborhood to ob-
tain a volumetric structure. To do this, several approaches are possible. In a simplest ver-
sion — which allows us to perform analytical computations — we consider the union of
a family of disks, of given radius r, parametrized by the points of the curve I',,(I), where
each disk is centered in the corresponding point Q of I', (/) and belongs to a plane through
Q orthogonal to I',(I) in Q (sweeping procedure). This construction has to be modified
around the vertices P; where the polygonal backbone curve is not smooth. We approxi-
mate the curve around these points by the arc corresponding to a quarter of a circle, with
radius R, and we sweep along this arc the disk to give a quarter of a torus, with radii r, and
pn, With 1, + p, = R,,, respectively (see Fig. 5). In order to obtain, at step #, a global tubular
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Table 1 Summary of the skeleton metrics obtained according to choices of the characteristic
parameters n and /. Abbreviations: SL = segment length; LD = length density; VD = vertex density;
MEV = max extravascular distance, MeaEV = mean extravascular distance

[ [pem] n SL [um] LD [1/mm?] VD [#/mm?] MEV [um] MeaEV [m]

170
1 85 121 1630 69.9 343
2 425 545 13,020 33.12 16.7
3 21.25 2200 10,420

160
1 80 137 1953 65.8 322
2 40 615 15,625 3117 15.2
3 20 2495 125,000

150
1 75 155 2370 61.7 30.2
2 375 700 32476 29.22 1534
3 18.75 2840 151,704

125
1 62.5 224 4096 514 252
2 31.25 1008 32,760 2435 12.3
3 15.625 4088 262,144

neighborhood A, without self-intersections and having as a centerline the curve I',(1),
the radii p, and r,, and the length zi,, of the segment P;, P;,1, should satisfy the relations:

l
(i) T 2ry+pa) =0, (i) pp<~2r.
For the present range of physiological parameters, condition ii) turns out to be the most

restrictive.

3.1 Volume metrics

We are now in a position to compute the volume metrics relevant to the tubular neigh-
borhood, namely its volume and surface. To do this, it is useful to introduce a slight mod-
ification of the structure represented in Fig. 5(b), by defining at step # (see Fig. 6):

« T, each of the red cylinders whose height is &, = [, — 2(r, + p,) and whose radius is 7,

+ G, each of the blue quarters of torus,

+ F, each of the two small yellow cylinders whose height is r, + p, and whose radius
is ry,.

We will denote by A/, the tubular neighborhood with the two cylinders F, removed.

We have for the portion G, that its volume is V(G,,) = ”72(,0,, +r,)r,2 and its lateral sur-
face A(G,,) = w2(p, + r,)r,. The final formulas for total volume and lateral area derive from
the fact that:

+ A; is composed by 7 cylinders T3, 6 quarters of torus G; and two small cylinders F;

+ A, is obtained by attaching 8 tubular neighborhoods like A} (butin 1:2 scale) with 7
cylinders of radius r, and height 2% (composed of one blue cylinder and two yellow
ones in 1: 2 scale) and two more cylinders of radius r, and height r; + po.

In Table 3 we report for the cases # = 1,2 the total volume and lateral area of the network.
Observe that in the general case, with similar notations, one can obtain A,,; by attach-
ing tubular neighborhoods A/, in the corresponding scale, with 7 cylinders 7),,; and 14

quarters of torus G,,; and two more cylinders F,;.
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Figure 4 Numerically computed MEV for the backbone generated with n =2 and /=160 pum. Lighter areas
represent internal regions with maximal distance from the network

Figure 5 Construction of the tubular neighborhood of the leit-motiv (I'y), approximating of the Hilbert
curve. (a): detail of the procedure near the vertices points of the curve; (b) final result, red portions derive from
the original leit-motiv, blue portions derive from the toroidal connections

Figure 6 Nomenclature of the portions of the tubular neighborhood of the leit-motiv (used in the nth
iteration) useful to compute the volume metrics

We are now in a position to compute the vascular volume fraction and the vascular sur-
face per volume fraction. To do this, we assume a constant tubular radius r = 3 um. In
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Table 3 Formulas for the total volume and lateral area of the tubular neighborhood

[teration # Volume

1 mri(18wn —12r +187py + 74 - 12p7)

2 Tr3(1867Tr> — 1241, + 186705 + 635 — 124>)
Iteration # Lateral area

1 27'm(37m—W2m+37tp]+7%—12p])
2 2317, ~ 130r, + 3170 + 654 ~ 1302)

Table 2, we summarize all the metric parameters obtained with the present model along
with the representative metric parameters from literature (column Reference data). We
observe that the curves that we construct in the following sections to obtain more real-
istic networks, based on the above construction, do not significantly alter these parame-

ters.

4 Realistic capillary networks

In the following, based upon the above construction, we propose a more realistically ad-
herent model of artificial capillary plexum obtained for # = 2,/ = 160 p. To do this first we
smooth the backbone via tension spline/Bézier curves of which we can control a tension
parameter and then we add segments to include the characteristic presence of loops in

capillary plexi.

4.1 Smoothed representation of the backbone

We fit the points generated from points of the generating sequence of the Hilbert curve
with a tension spline, and the tension spline is divided by characteristic points, which are
then fitted by cubic Bézier curve piece by piece. The tension parameter is a scaling factor
such that, the tenser the curve, the more it tends towards straight lines from one point to
the next. Several instances of the network are generated by this procedure. The tension
is chosen so that the total length — when compared with the total length obtained from
Eq. (1) for n = 2, given by =~ 82/2? = 15.75 — displays an increase of about 10-15%.

4.2 Closed loops

The Hilbert curve is a single curve and does not have any branching structure. There are
sophisticated manners to represent the branching patterns, for example by reproducing
sprouting angiogenesis [13]. In this work, we introduce a more mechanistic approach by
making cross-connections between neighboring nodes. To do this, we create the direct
graph of the vertices of the backbone curve, then we choose a random set of vertices and
for each of them we find the k nearest neighbors via a clustering algorithm. Eventually, we
add loops between the vertices of the first set and a subset of the second. Figure 7(a) shows
a realization of the network obtained picking 19 (out of 64) vertices and connecting each
of them to one of its 4 nearest neighbors. Figure 7(b) shows the graph of the resulting
network with the loops. Using the graph of the network, we can count via a numerical
procedure the total number of closed loops which are enclosed in the network. For the
network represented in Fig. 7 there are 16,514 possible loops. Similar results are obtained

with other realizations obtained from curve I',.



Bertolini et al. Journal of Mathematics in Industry (2023) 13:3

09010 *

o5
s

Figure 7 (a): realization of a network obtained from the curve I', upon adding connections (blue segments)
to form closed loops. The arrows indicate the original traversal order of the leit-motiv, which is now possibly
altered by the presence of loops; (b) corresponding graph (numbers indicate the name of the node)

5 Numerical simulations

We consider different instances of the realistic geometry presented in Sect. 4, in turn built
upon the backbone of Sect. 2. The cube of length / = 160 ;xm in which the network is em-
bedded conceptually represents a physiological unit of capillary circulation network (the
so-called REV). Notice that a similar concept was already used as well in [17] with similar
geometric proportions and most recently in [7], in [30] (with a larger dimension) and [31]
(with a smaller dimension, and named “3D brain unit”). We perform in this complex do-
main a 3D numerical simulation of the blood flow, considering the steady incompressible
Stokes equations

V.-u=0,
Vp-nulu=0,

(2)

where u is the velocity field, p the pressure field, p is the blood density and where the blood
kinematic viscosity u is described by a simplified mathematical expression as a function
of the vessel radius given by [8]

Moo

wO) = s

where 11 is the asymptotic viscosity of blood flowing in large tubes and the constant § is
set to 4.29 (r being expressed here in microns). We set (Lo, = 1.09 - exp(0.024 - Hct) where
the hematocrit Hct is chosen to be the constant value 0.35 [29]. The problem is numerically
solved in COMSOL Multiphysics 5.1 using the built—in P,/P; finite elements. Boundary
conditions are specified in each of the specific test cases.

Test 1 We consider the geometry shown in Fig. 8. At the Inlet 1 (arteriolar input) of the
network we set a pressure of 30 mmHg while at the Outlet 1 (venular output) we set a
pressure of 15 mmHg. The corresponding pressure drop drives the flow along the network.
Figure 8 shows slices of the velocity field magnitude (expressed in m/s) along with the
vector field of the blood flow, indicated by the red arrows.
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Figure 8 Test 1. Slices of the velocity field magnitude (expressed in m/s) and vector field of the blood flow,
indicated by the red arrows
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Figure 9 Test 2. Slices of the velocity field magnitude (expressed in m/s) and vector field of the blood flow,
indicated by the red arrows. The presence of the shortpath causes the rest of the network to be practically
shut off

Test 2 We consider again the geometry shown of Test 1 with the same boundary condi-
tions, and we add a shortpath in the network as indicated in Fig. 9. Observe how in this
setting the presence of a short path causes the rest of the network to be practically shut

off. Figure 9 shows slices of the velocity field magnitude (expressed in m/s) along with the
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Figure 10 Test 3. Slices of the velocity field magnitude (expressed in m/s) and vector field of the blood flow,
indicated by the red arrows. The presence of two inlets causes the merge of two main blood flows which join
to reach the outlet with lower pressure

vector field of the blood flow, indicated by the red arrows. Observe how in this setting the
presence of the shortpath causes the rest of the network to be practically shut off.

Test 3 Again we consider the same geometry of Test 1 and the same boundary conditions
for Inlet 1 and Outlet 1. We add a second arteriolar inlet (Inlet 2), at which we set a blood
pressure of 20 mmHg. Figure 10 shows slices of the velocity field magnitude (expressed in
m/s) along with the vector field of the blood flow, indicated by the red arrows. Observe
how in this setting a more complex blood flow takes place, especially when the flows from
the two inputs merge to reach the outlet with lower pressure.

6 Discussion and conclusions

In 1831, M. Hall stated in his book “A Critical and Experimental Essay on the Circulation
of the Blood” [32] that “the number and distribution of the minute and capillary vessels is
accurately proportioned and adapted to the object of the circulation”. Over the following
two centuries, the significant role of microvascular metrics and topology as determinants
of local blood flow has been further emphasized and recognized as an axiomatic denomi-
nator of all microcirculatory systems. Vascular geometry has indeed a major impact in the
blood dynamics and, in turn, in the origin and development of vascular diseases, through
the action of forces exerted by flowing blood on the vascular wall.

Modern medical imaging (CT scan, magnetic resonance, angiography, ...) has made
available a good amount of data on the 3D morphology of the in vivo microvasculature.
Still, real anatomies present very large variability and there is an objective difficulty in
retrieving quantitative data from images of microvessels — especially capillary networks
— in a robust, operator-independent way. Many post-processing steps (including image
segmentation, computation of the centerlines, resolution of branching points) must also
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be performed on the raw imaging data with dedicated software in order to obtain tractable
geometries. For these reasons, artificial networks with controllable geometric properties
and metrics represent appealing tools. A few examples of such constructions have been
proposed in literature, mainly based on arrays of parallel/concentric cylinders or Voronoi
tessellations, which aim at reproducing — at different degrees of fidelity — a general model
of capillary network. In the present work we have introduced a novel approach able to
cheaply generate proxy geometries of capillary networks with properties controlled by
mathematical parameters. The network backbone was based on approximations of the
Hilbert curve, known for its space filling property and skeleton metrics coherent with
realistic vascular networks were obtained by tuning the characteristic parameters of the
iterative construction # (number of iteration) and / (side of the cell). This construction has
naturally embedded the possibility to produce local areas with a higher density of vessels
by considering in a target portion successive iterations of the Hilbert curve generation
sequence.

The generated coherent geometries have multifold uses. They can serve in numerical
simulations as cheap tools to: i) build geometries of representative cells in homogeniza-
tion procedures. Indeed, when it comes to deal with simulations at the tissue/organ scale,
one should resort to reduction techniques in order to obtain a tractable problem [33-35].
In these approaches a detailed microvascular geometry is needed to carry out computa-
tions at the single cell level (REV) for further upscaling; ii) generate geometries to be used
as training samples in machine learning-based simulations. It is well known indeed the
difficulty in the medical field to obtain the large amounts of data required to train neural
networks. In this respect, pre-training with artificially generated data, followed by refine-
ment training on a limited number of realistic data, has been shown to be an effective
strategy. Having at disposal a mathematical way to generate (and possibly also distort) ge-
ometrical configurations at a low cost can play a pivotal role in this kind of approaches.
The study of vascular geometry and metrics of microvessel networks can provide by itself
indices of specific conditions, or indicate the progression of certain pathologies, as for ex-
ample in diabetes [36]. This is yet another application where artificially—generated data
can be used to pre-train neural networks as surrogates of realistic data to obtain directly
usable clinical criteria.
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