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Thesis overview

Structure of the thesis

The present thesis consists of one introductory chapter, three parts and a final chapter,
for a total of eleven chapters. The first chapter set the stage by introducing the themes
that will be discussed, providing a general overview of the research landscape in which
my doctoral thesis unfolds. The first part is composed of 4 chapters, and it is devoted
to the presentation of the classical viscous theory of protoplanetary discs. In particu-
lar, chapter 2 focus on the gas dynamics in protostellar discs, chapter 3 address the role
of the self-gravity and gravitational instability, chapter 4 is devoted to the study of gas
kinematics in protostellar discs and chapter 5 to the dust dynamics. In the second and
third part, we get to the core of my research. The second part presents the gas kinematics
in self-gravitating discs, and it includes three chapters. chapter 6 is devoted to the study
of kinematic signatures of gravitational instability, chapter 7 focusses on a method to
weigh and size discs through the kinematics and chapter 8 presents kinematic analysis
of a gravitationally unstable disc. Part III consists of two chapters, and it focusses on the
dust dynamics in gravitationally unstable discs. In particular, chapter 9 presents an ana-
lytical framework to study the stability of gas and dust in protostellar discs, and chapter
10 tackles this problem through numerical simulations, showing that gravitational insta-
bility is a pathway to form planetary cores in young protostellar systems.

Most of the results of part 2 and part 3 have appeared as refereed publications in
scientific journals. Some variations have been made in the presentation of previously
published results, to maintain consistency of style and content structure through the
dissertation. Here, I briefly summarize the content of chapters.

Chapter 1: The synergy between theory and observations in the high resolution
era

In this introductory chapter, I set the stage by presenting the current research
panorama in the field of exoplanet and planet formation. I underline the strong
connection between theory and observations of protoplanetary discs. I introduce
the issue of early planet formation, the starting point of my research.

Chapter 2: Gas dynamics in protostellar discs

I describe the dynamics of gas in accretion discs, with a particular focus on proto-
stellar environments. The basic dynamical equations are presented and discussed,
and a particular attention is devoted to the transport of angular momentum and
the nature of the viscosity in these environments.
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x Thesis overview

Chapter 3: Self-gravity and gravitational instability in protostellar discs
I thoroughly discuss the role of self-gravity and gravitational instability in proto-
stellar environments. After characterizing the basic state of a self-gravitating pro-
tostellar disc, I introduce the concept of gravitational instability, investigating both
the linear and non-linear regime. Finally, I discuss whether the standard picture of
gravitational instability can be a viable way to form planets.

Chapter 4: Gas kinematics in protostellar discs
I introduce the molecular line emission processes in protoplanetary discs, explain-
ing how they can trace the gas kinematics. I analyse the kinematics of protostellar
discs, discussing azimuthal, radial and vertical motions. In addition, I present the
power of kinematics in studying protoplanetary discs structure and temperature.
Finally, I introduce kinematic signatures of different processes that can happen in
a protoplanetary disc, such as embedded planets and instabilities.

Chapter 5: Dust in protostellar discs
I discuss the role of dust in protostellar discs, the aerodynamical coupling with the
gas and the resulting dynamics. The Core Accretion theory for planet formation is
presented, with its advantages and caveats, and finally we introduce the interplay
between dust dynamics and self-gravity.

Chapter 6: Kinematic signatures of gravitational instability
I present an analytical framework to characterize kinematic signatures of gravita-
tional instability in protoplanetary discs. I derive the analytical expression for the
velocity field perturbations generated by gravitational instability, and we discuss
the physical parameters involved. Interestingly, the cooling factor plays a funda-
mental role in this context, and the possibility of constraining it is discussed and
tested.

Chapter 7: Weighing and sizing protoplanetary discs with gravity
I present a method to infer disc masses and sizes through high resolution CO iso-
topologues rotation curves. I benchmark the method against numerical simula-
tions, and I present a generalization for a thermal stratified disc. I finally apply
this method to the MAPS sample.

Chapter 8: Kinematic study of a gravitational unstable disc : Elias 2-27
I present a kinematical study of the protoplanetary disc Elias 2-27, revealing indica-
tions of gravitational instability. In particular, I analyse global kinematic deviations
and, assuming that they are generated by gravitational instability, I constrain the
cooling factor. Consequently, I estimate the amount of angular momentum trans-
ported through gravitational instability. To validate this analysis, I compare the
expected accretion rate onto the central object with the observed one, showing a
very good agreement.
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Chapter 9: The interplay between drag force and gravitational instability

I present an analytical framework to describe the stability of a fluid composed of
two phases that interact through a drag force. Starting from previous works in the
context of galactic dynamics, I generalize them to the field of protoplanetary discs,
and I discuss the role of the drag force. I show that for typical protoplanetary
discs parameter, the dynamical role of the dust can be important in determining
the global stability of the flow.

Chapter 10: Planetary cores formation through dust collapse in gravitationally
unstable discs

Strong of the analytical background, I perform numerical SPH simulation of gas
and dust protostellar discs undergoing gravitational instability. I focus my atten-
tion on the interplay between cooling, drag force and dust excitation. I identify
a sweet spot within our parameter space where dust collapse in gas spiral arms
becomes possible. The consequence of this collapse is the formation of planetary
bodies with masses on the order of Earth’s mass. I speculate about the possibility
of them to be the cradle of the ALMA planets.
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Table 1: Values of the relevant physical constant assumed in this thesis.

Quantity Value

M⊙ 1.99× 1033 g

Mjup 1.90× 1030 g

M⊕ 5.97× 1027 g

R⊙ 6.69× 1010 g

L⊙ 3.90× 1033 erg s−1

G 6.67× 10−8 g−1cm3s−2

au 1.5× 1013 cm

pc 3.09× 1018 cm

kB 1.38× 10−16 erg K−1

mp 1.66× 1024 g

σSB 5.67× 10−5 erg cm−2s−1K−4

h 6.63× 10−27 erg s



CHAPTER 1

The synergy between theory and observation in the high
resolution era

Planets are definitely the most familiar astrophysical objects: we live on one of them,
and we know very well the ones belonging to our planetary system. The initial planets
discovered by humans were part of our solar system, visible to the naked eye. Their swift
motions in contrast to the background stars indicated their distinct nature. The 20th
century marked the era of space exploration within our solar system, with significant
advancements in the understanding of celestial bodies. During this time, we ventured
closer to the planets within our system, allowing for detailed and close-up studies of
their characteristics. Important space missions such as Voyager, Cassini, Rosetta, New
Horizons, and Juno played pivotal roles in unravelling the mysteries of our solar system.

In 1995, a paradigm-shifting moment occurred with the detection of the first exo-
planet orbiting around a Sun-like star, 51 Pegasi. The incredible discovery was made
by Mayor and Queloz (Mayor & Queloz 1995), Nobel Prize 2019. This discovery com-
pletely changed our perspective, since it was the first time that a planet not belonging
to our planetary system was seen, and also because the properties of this planet are
completely different from ours. Indeed, it is really close to the host star, and its mass
is higher compared to Jupiter, and for this reason it is called “hot Jupiter”. To this day,
there are more than 5000 confirmed exoplanets, whose properties are extremely diverse.
From a dynamical point of view, figure 1.1 shows the semi-major axis - planetary mass
diagram for the current exoplanet population, where the colour indicates the planetary
eccentricity. This figure shows that hot Jupiters, as 51 Peg B, are very common in our
Galaxy. In addition, there is a large number of planets with sub-au orbital separation,
and higher mass compared to the Earth. These bodies are referred to as “Super Earths”.
As for the orbital eccentricity, there is an almost uniform distribution over all eccentric-
ity values, reaching very high values e ∼ 0.9. In this context, our planetary system is a
really peculiar subset of the whole exoplanet population, not showing giant planets at
sub-au orbital distances, with all the bodies in almost circular orbits. How can we rec-
oncile all these differences? How is it possible to create such a diverse set of features? To
answer these questions, investigating the process of planet formation is of paramount
importance.

The planet formation process takes places in protostellar discs, that are structures
around newborn stars. These astrophysical objects play an important dynamical role in
the star formation process, since it is through them that the protostars accrete material,
and they are the cradle of planets. The reason why a disc-like geometry forms in such
environments is a direct consequence of angular momentum conservation. Stars form
through the collapse of a molecular cloud core. In principle, without angular momen-
tum, the molecular cloud core can collapse freely, forming a compact protostar. How-
ever, even a small amount of rotation prevents the collapse, allowing the gas to sink
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Figure 1.1: Semi-major axis - planetary mass plot for the exoplanet population. The colour of the
points refers to the planet eccentricity.

down only to a minimum distance from the centre, called circularization radius. At this
distance, the centrifugal force completely balances the gravitational one, allowing the
formation of a flattened structure, that is the circumstellar disc. Typical values of circu-
larisation radius are ∼ 300au, much larger than the stellar radius. Hence, a star could
not form from a simple gravitational collapse of a rotating core because of the centrifugal
barrier, unless the angular momentum is lost or transferred to something else, and this
is the role played by the accretion disc.

A system composed of a young star and an envelope, from which the protostar is
still gathering mass, is usually called Young Stellar Object (YSO). Typically, YSOs are
classified according to their infrared spectral energy distribution (Lada & Wilking 1984),
and different classes are interpreted as different evolutionary stages (Adams et al. 1988).
The spectral energy distribution represents how the energy radiated from the system is
redistributed over frequencies after being reprocessed by the disc material. The spectral
index is defined as

s =
d log(λFλ)

d log λ
, (1.1)

where Fλ is the emitted flux per wavelength λ. The infrared spectral index is usually de-
fined between 2µm and 100µm. Figure 1.2 shows the four classes of YSOs, their spectral
energy distribution and the evolutionary stage. Class 0 and Class I objects are charac-
terized by s > 0, meaning that the spectrum rises towards higher wavelengths, indi-
cating the presence of a cold envelope that dominates the emission. Such objects are
the youngest ones, being the protostar still embedded into the molecular cloud. Class
II objects have a spectral index −4/3 < s < 0, meaning that the spectrum declines in
the infrared region, and they show a significant excess of emission with respect to the



The synergy between theory and observation in the high resolution era 3

Figure 1.2: Infrared classification of Young Stellar Objects (Andre et al. 2000).

standard stellar photosphere. This feature, often referred to as IR excess, is thought to be
mostly due to the disc, which can be accreting or simply reprocessing the stellar emis-
sion. These systems are known as “Classical T-Tauri” stars. To conclude, Class III objects
are characterized by s < −4/3, typically s = −3, and here the emission is dominated by
the star, showing a very small IR excess. At this stage, most of the protostellar material
has been accreted, and thus they represent the last stage of a YSO. Usually, these objects
are known as “Weak T-Tauri stars”.

Being the result of molecular cloud core collapse, circumstellar discs are essentially
composed of gas and dust. Typically, the gas-to-dust mass ratio is inferred from the com-
position of the interstellar medium (Draine 2011), and it is often taken ∼ 100. Due to its
abundance, the gas controls the dynamics of the system. On the other hand, because
of its opacity, the dust is responsible for the radiative transport, as it absorbs and re-
processes stellar radiation, emitting in infrared-millimetric wavelengths. In addition to
that, gas is a viscous fluid, which is subject to pressure forces, while dust is pressureless
and inviscid. These properties imply different dynamical behaviours, that have sev-
eral implications on planet formation. The gas content of protoplanetary discs is mainly
made up of molecular hydrogen. This molecule is symmetric, and hence it does not emit
through roto-vibrational transitions, making it impossible to be observed. Almost the
entirety of the gas mass is invisible, thus one should rely on other tracers. Molecular
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tracers are CO isotopologues, which have a relative abundance to the H2 of the order
of 10−6 − 10−5. Clearly, another tracer is the dust. Solid particles in protoplanetary are
mainly composed by silicates. The emission in mid-infrared wavelengths is generated
by sub-µ - 10µ particles. This part of the spectrum contains several spectral resonances
whose features can be related to the shape and composition of dust grains (Bouwman
et al. 2001; van Boekel et al. 2003; Kessler-Silacci et al. 2006; Min et al. 2016). Observations
at longer wavelengths are dominated by the thermal emission from large dust grains.

Since the primary emission of protoplanetary discs occurs within the millimetric
range of wavelengths, to achieve high-resolution observations of these environments,
the use of interferometric techniques becomes crucial. In this field of study, the revo-
lution came thanks to the Atacama Large Millimetre Array (ALMA). ALMA is a radio
interferometer located on the Chajnantor Plateau in the Atacama Desert, Chile, one of
the highest and driest places on Earth. Currently, ALMA is the largest radio telescope
in the world. This achievement is the result of an international collaboration between
Europe (ESO), North America (NRAO) and East Asia (NAOJ). It is composed of 66
high-precision antennas, which operate on wavelengths of 0.32 to 3.6mm. ALMA has
the flexibility to arrange its antennas in various configurations, allowing for adjustable
spacing ranging from 150 meters to 16 kilometres. This feature provides ALMA with
a formidable “zoom” capability, reaching incredible spatial resolutions and sensitivity.
From 2015, ALMA is collecting incredible images of the cold universe, including planet
forming environments. The first image of a protoplanetary disc was released in 2015
(ALMA Partnership et al. 2015), and consists of dust continuum and spectral line emis-
sion from the HL Tau region. The incredible image is shown in the left panel of figure
1.3, showcasing a number of gaps and rings, rather than a smooth emission. Soon, this
became the norm, as nearly every protoplanetary disc, when observed with sufficient
spatial resolution, exhibits substructures such as rings, gaps, spirals, or asymmetric fea-
tures in dust continuum emission. Figure 1.4 shows a collection of dust substructures in
protoplanetary discs observed by ALMA.

In addition to dust continuum emission, ALMA is capable of observing gas line emis-
sion at high spectral resolution. The main targets are CO isotopologues, being the most
abundant gas tracers in protostellar environments. This kind of observation allows prob-
ing the kinematics of these systems, offering a complementary window to study them.

Such progress in the observational field requires a strong theoretical effort to disclose
the potential of these data. This happens through the advancement of hydrodynamical
simulations. These simulations have truly revolutionized our comprehension of proto-
planetary disc dynamics, and have allowed us to understand the information hidden
within the wealth of observational data. Key to this transformation are the sophisticated
algorithms capable of accurately modelling the hydrodynamics of gas and dust within
these discs. Noteworthy examples include PHANTOM - Price et al. (2018b) and FARGO
- Benı́tez-Llambay & Masset (2016). Moreover, it is crucial to highlight the synergy be-
tween hydrodynamic simulations, which describe the dynamics of these systems, and
radiative transport simulations. Radiative transport codes, such as MCFOST Pinte et al.
(2006, 2009) and RADMC-3D Dullemond et al. (2012), play a pivotal role in generating
synthetic observations that can be one-to-one compared with the data obtained from
ALMA. This powerful combination enables to bridge the gap between theoretical pre-
dictions and observations, unlocking unprecedented insights into protoplanetary disc
evolution and planet formation. An incredible example of the synergy between theory
and observations is presented in figure 1.3. Following the release of the initial image of
a protoplanetary disc by ALMA (ALMA Partnership et al. 2015), Dipierro et al. (2015b)
conducted hydrodynamical simulations using the PHANTOM code to explore planet for-
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Figure 1.3: Comparison between the ALMA image of HL Tau (left panel) with simulated observa-
tions (right panel) at band 6 (continuum emission at 233 GHz), taken from Dipierro et al. (2015b).

mation in HL Tau. They found good agreement between the actual observations and the
synthetic ones, generated from the hydrodynamical simulation. The axisymmetric gaps
seen in the observations of the HL Tau protoplanetary disc with ALMA are explained as
being due to the different response of gas and dust to three embedded protoplanets.

The ubiquity of substructures in protoplanetary discs shown by ALMA has opened
debate as to how the timescales for planet formation align with the established evolu-
tionary sequence for Young Stellar Objects. Under the hypothesis of the planetary inter-
pretation, a robust conclusion is that a substantial part of the planet formation process
must overlap with the time when protostellar discs are likely to be young. These find-
ings completely changed our perspective on the timescale for planet formation. Indeed,
ALMA observations have indicated that the planet formation process must occur within
the first Myr of the disc’s life, a timescale one order of magnitude earlier than previously
believed. This shift in perspective poses a challenge to existing planet formation theo-
ries, such as the Core Accretion model. At this stage, most of the mass content of the disc
has not yet been accreted by the central object. The disc to star mass ratio can be con-
siderably high, making the role of the disc self-gravity of paramount importance. A key
consequence of the self-gravity is the development of gravitational instability, that can
lead to the formation of grand designed spiral structures, that deeply influence the struc-
ture and the dynamics of the disc, and the physical processes happening within. As a
matter of fact, it is well known (Lynden-Bell & Kalnajs 1972) that gravitational instability
is responsible for the transport of angular momentum, possibly solving the angular mo-
mentum problem, at least during the first stages of the disc lifetime. Historically (Boss
1997), gravitational instability has been proposed as a pathway for planetary formation,
due to the limitations of the core accretion model. However, it lost favour due to the
higher likelihood of forming stellar companions rather than planets (Kratter & Lodato
2016). Nevertheless, recently, this scenario has gained new interest (Rice et al. 2004, 2006;
Booth & Clarke 2016; Baehr & Zhu 2021a), when the synergy between gravitational in-
stability and dust dynamics is considered. Nowadays, it is believed to have the potential
to contribute to planet formation.

The work presented in this thesis fits into this line of research. The question we ad-
dress in this dissertation is: is gravitational instability a viable way to form planets in
young protostellar discs? To tackle this, we first focus our attention into characterizing
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Figure 1.4: Examples of substructures in protoplanetary discs collected in dust continuum emis-
sion from ALMA telescope. Top row: spirals, Elias 2-27 (Pérez et al. 2016; Andrews et al. 2018),
WaOph6 (Andrews et al. 2018), IM Lup (Andrews et al. 2018). Central row: rings and gaps, HD
163296 (Andrews et al. 2018), AS 209 (Andrews et al. 2018), HD 169142 (Pérez et al. 2019). Bot-
tom row: asymmetric features, MWC 758 (Dong et al. 2018), HD 143006 (Andrews et al. 2018) and
IRS48 (van der Marel et al. 2013).
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the kinematic signatures of gravitational instability in protoplanetary discs (chapter 6).
This approach allows us to get insight about the ability of such process to transport an-
gular momentum throughout the disc, and can be applied to actual systems that show
hints of gravitational instability (chapter 8). Additionally, the kinematics of such systems
provides important information about their mass content, that is the building blocks of
planets (chapter 7). In light of this, we investigate the dust dynamics in gravitationally
unstable systems. Building on prior research and on a strong analytic background (chap-
ter 9), we exploit high resolution hydrodynamical simulations to assess the viability for
gravitational instability to form planets (chapter 10).





Part I

Viscous theory of accretion discs





CHAPTER 2

Gas dynamics in protostellar discs

The content presented in this chapter is mainly taken from Lodato (2008); Armitage
(2013); Clarke & Carswell (2014); Hartmann (2009).

2.1 Description of an accretion disc

A first important distinction for protostellar discs is based on their luminosity. If the
disc luminosity is generated by internal dynamical mechanisms, i.e. accretion, the disc
is active, and its luminosity is given by

Lacc =
GM⋆Ṁ

2R⋆
, (2.1)

where M⋆ and R⋆ are the mass and the radius of the star, and Ṁ is the accretion rate.
Conversely, if the luminosity is generated by reprocessing the stellar one, the disc is
passive, and the luminosity is

Lirr =
L⋆
4
, (2.2)

where L⋆ is the star luminosity. The threshold between active and passive discs can be
obtained by equating Lacc with Lirr, and can be expressed in terms of accretion rate. In
particular, a disc is active if its accretion rate is

Ṁ ≥ L⋆
2GM⋆R⋆

≃ 10−8 M⊙

yr
, (2.3)

where we have used L⋆ = L⊙, M⋆ = M⊙ and R⋆ = R⊙. Typical T-Tauri accretion rates
vary from 10−6 to 10−8M⊙/yr (Hartmann et al. 1998), being at the border between active
and passive discs.

From simple geometrical arguments, it is possible to characterize the temperature
profile of a passive thin disc, that scales as

T ∝ R−3/4. (2.4)

However, a thin irradiated disc model is not realistic, and a degree of flaring should
be considered. Hence, self-consistent models of flared irradiated discs show that the
temperature profile scales as

T ∝ R−1/2. (2.5)

Conversely, to understand how active discs work, a thorough analysis of the accretion
processes is needed.

11



12 2.1 Description of an accretion disc

Protoplanetary discs are accretion discs, meaning that, through redistribution of an-
gular momentum, the disc material is accreted onto the central object. In order to de-
scribe an accretion disc, we hypothesize that the system is thin. The thickness of the disc
can be measured by comparing the height of the disc H with the radial extent R. The
quantity H/R is called the aspect ratio. The thin disc approximation translates into

H

R
<< 1. (2.6)

This ratio can be evaluated for different astrophysical systems. In particular, in accre-
tion discs around black holes or AGN disc, this approximation is satisfied since H/R ≃
10−3; as for protostellar discs, the typical value is 10−1, meaning that this hypothesis
is marginally satisfied. The thin disc approximation implies that the azimuthal velocity
is supersonic. Indeed, according to the hydrostatic equilibrium for a Keplerian disc (see
section 2.1.1), the height of the discH can be written asH = cs/Ωk, where cs is the sound
speed and Ωk =

√
GM⋆/R3 is the Keplerian frequency. Hence, the aspect ratio can be

written as
H

R
=

cs
RΩk

=
cs
vk

<< 1; (2.7)

where vk = RΩk =
√
GM⋆/R is the azimuthal Keplerian velocity. Thanks to the thin

disc approximation, it is convenient to use vertically integrated quantities, as the surface
density

Σ(R, t) =

∫ +∞

−∞
dzρ(R, z, t). (2.8)

In the following paragraphs, we will also assume that the disc is axisymmetric and non
self-gravitating. We will discuss the effects of self-gravity in chapter 3.

2.1.1 Hydrodynamical equations

The equations that govern the dynamics of an accretion disc are the fluid equations,
namely the conservation of mass (continuity equation) and the conservation of angular
momentum (Navier Stokes equation). We consider an axisymmetric thin accretion disc
in cylindrical coordinates. The continuity and Navier Stokes equations are

∂Σ

∂t
+

1

R

∂

∂R
(RΣvR) = 0, (2.9)

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇P − ρ∇Φ+∇ · σ, (2.10)

where v is the velocity vector, P is the pressure, Φ the gravitational potential and σ the
stress viscosity tensor. The components of this object are

σij = η

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3
(∇kvk)δij

)
+ ζ(∇kvk)δij , (2.11)

where η is the shear viscosity coefficient, ζ the bulk viscosity one and δij is the Kronecker
delta. We assume, as a first approximation, that the disc is Keplerian. This means that
Ω = Ωk ∝ R−3/2, implying that the inner rings rotate faster, and thus viscous shear forces
act between a ring and another one, because of their difference in azimuthal velocity.
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These forces are caused by the radial gradient of azimuthal velocity, consequently the
only non-vanishing component of the viscous stress tensor is Rϕ, that is

σRϕ = ηR
dΩ
dR

. (2.12)

In general, the viscosity generates a surface force that opposes to the velocity gradi-
ents, and thus for a uniform circular motion it vanishes. For this reason, it is described
through a tensor, and not simply a vector. In the limit of non self-gravitating disc, the
gravitational potential is the Keplerian one generated by the central object, that is

Φ = −GM⋆

r
, (2.13)

where M⋆ is the mass of the central star and r is the spherical radius
(
r =

√
R2 + z2

)
.

Finally, we consider the gas to be barotropic, meaning that the pressure only depends on
density. In this case, the sound speed is defined as

c2s =
dP
dρ

. (2.14)

A noteworthy case is represented by a locally isothermal fluid, where the relationship
between pressure and density is simply

P = c2sρ. (2.15)

In the next paragraphs we will separately study the vertical, radial and azimuthal com-
ponent of the Navier Stokes equation. We will show that the vertical component simply
reduces to the hydrostatic equilibrium, the radial one to the centrifugal balance and the
azimuthal one to the conservation of angular momentum.

Vertical component

We consider the vertical component of equation 2.10. Because of the thin disc approx-
imation, we neglect vertical motions, and hence the left part is zero. In addition, the
viscosity does not act in the vertical direction, thus the Navier Stokes equation reduces
to

1

ρ

∂P

∂z
= −∂Φ

∂z
, (2.16)

that is the vertical hydrostatic equilibrium. The right side is just the derivative along z of
equation 2.13. As a consequence of the barotropic hypothesis, the left side can be written
as a function of the density. Equation 2.16 then becomes

c2s
ρ

∂ρ

∂z
= −∂Φ

∂z
, (2.17)

where we assume that the disc is vertically isothermal, meaning that the sound speed
does not change with z. A study of the effects of thermal stratification is presented in
chapter 7. Since we hypothesize that the disc is thin, z << R and hence we can approx-
imate the spherical radius r with the cylindrical one R. The hydrostatic equilibrium is
then

c2s
ρ

∂ρ

∂z
= −GM⋆

R3
z = −Ω2

kz. (2.18)
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Figure 2.1: Density ρ as a function of z for the approximate gravitational potential (eq. (2.19)) and
the complete one (eq. (2.21)). In this plot, R = 100au and H = 10au, resulting in an aspect ratio of
H/R = 0.1.

To solve this equation, we define the dimensionless quantity ζ = z/z0, where z0 = cs/Ωk
is the typical scale height of the problem, and we call it H . The solution of eq. (2.18) is

ρ(R, z) = ρmid(R) exp

[
− z2

2H2

]
, (2.19)

that is a Gaussian along the z direction, and ρmid(R) is the density at the midplane.
It is possible to solve the hydrostatic equilibrium without approximating the gravita-

tional potential, and just by computing its vertical gradient. In this case, the hydrostatic
equilibrium is

c2s
ρ

∂ρ

∂z
= − GM⋆z

(R2 + z2)3/2
, (2.20)

and the solution

ρ(R, z) = ρmid(R) exp

[
−R2

H2

(
1− 1√

1 + z2/R2

)]
. (2.21)

We underline that the last equation reduces to the standard Gaussian in the limit of
z << R. Figure 2.1 shows the difference between the two solutions, for a set of standard
disc parameters.

Radial component

We now consider the radial component of eq. (2.10). Since accretion happens on a long
timescale, we can neglect the radial component of the velocity. In addition, the viscosity
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does not act on the radial direction, hence the tensor stress contribution is zero. The
Navier Stokes equation in the radial direction hence reduces to the centrifugal balance,
and it reads

v2ϕ = R
∂Φ

∂R
+
R

ρ

∂P

∂R
. (2.22)

The azimuthal velocity is determined by two contributions: the first one is simply the
gravitational field of the central star; the second one is the so called “pressure gradient”,
that is, typically, a negative contribution. Its meaning relates to the fact that a particle
is pushed to move from a high to low pressure region. Indeed, the pressure profile of
a protostellar disc usually decreases with the radius, and hence the pressure gradient
tends to slow gas particles.

The first term of eq. (2.22) can be written as

R
∂Φ

∂R
=

GM⋆R
2

(R2 + z2)3/2
= v2k

(
1 +

z2

R2

)−3/2

(2.23)

and the second one
R

ρ

∂P

∂R
= c2s

∂ log ρ

∂ logR
= v2k

(
H

R

)2
∂ log ρ

∂ logR
, (2.24)

and hence the azimuthal velocity is

v2ϕ = v2k

[(
1 +

z2

R2

)−3/2

+

(
H

R

)2
∂ log ρ

∂ logR

]
. (2.25)

As a first order estimate, we can assume that the density in the radial direction is simply
a power law ρ ∝ R−n. At the disc midplane (z = 0), the azimuthal velocity is

vϕ = vk

[
1− n

(
H

R

)2
]1/2

. (2.26)

Here it is clear how the pressure gradient is slowing gas particle rotation. As a matter of
fact, we usually refer to the gas azimuthal velocity as sub-Keplerian. The sub-Keplerian
correction scales with (H/R)2, that is small, but non-negligible. In some cases, the pres-
sure corrections play an important role, as for the radial drift of solid particles, that will
be presented in chapter 5.

Azimuthal component

Finally, we discuss the azimuthal component of the Navier Stokes equation, where, the
viscous term plays an important role. The gravitational and pressure term give zero
contribution, and the vertically integrated equation reads

Σ

[
∂vϕ
∂t

+ vR

(
vϕ
R

+
∂vϕ
∂R

)]
= ∇ ·T|ϕ (2.27)

where T is the vertically integrated stress tensor, whose only non-vanishing term is

TRϕ = νΣRΩ′. (2.28)
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In eq. (2.28) the vertically integrated kinematics viscosity ν is defined through

νΣ =

∫ +∞

−∞
dzη. (2.29)

Combining eq. (2.27) with the continuity one, we obtain the angular momentum conser-
vation for a viscous disc

∂

∂t
(ΣRvϕ) +

1

R

∂

∂R
(RvRΣRvϕ) =

1

R

∂

∂R

(
νΣR3Ω′) . (2.30)

The above equation is a continuity equation for the quantity ΣRvϕ, that is the angu-
lar momentum per unit area. The left-hand side is the Lagrangian derivative of this
quantity, while the right one is the torque per unit area exerted by viscous forces. We
underline that the right-hand side term is a divergence, hence a surface term. It is not a
dissipative term but a transport one. Indeed, viscosity redistributes angular momentum
throughout the disc, and it does not dissipate it. To make this clear, imagine integrating
the above equation all over the disc: because of the Stokes theorem, the divergence term
give a contribution only at the borders, meaning that the angular momentum is trans-
ported throughout the disc, and it exits from the borders. Multiplying the right-hand
term by 2πRdR, we get the net torque on an annulus of width dR. Thus, the flux of
angular momentum across an annulus at distance R from the central object is given by

G(R) = 2πR2TRϕ = 2πνΣR3Ω′, (2.31)

where the sign convention is such that a positiveG(R) implies inward flux. As expected,
in a rigidly rotating disc (Ω = const), the flux of angular momentum is zero. Conversely,
for a Keplerian disc (Ω′

k = −3Ωk/2R), the angular momentum is transported outward
with a net torque given by

Gk(R) = −3πνΣR2Ωk. (2.32)

With the help of the continuity equation, from eq. (2.30) we obtain an expression for the
radial velocity

vR =
1

RΣ(R2Ω)′
∂

∂R

(
νΣR3Ω′) . (2.33)

The above equation is valid for a general potential, and in the Keplerian case it yields

vR = − 3

ΣR1/2

∂

∂R

(
νΣR1/2

)
. (2.34)

Combining the above equation back with the continuity one, we obtain the equation for
the evolution of the surface density Σ

∂Σ

∂t
= − 1

R

∂

∂R

[
1

(R2Ω)′
∂

∂R

(
νΣR2Ω′)] , (2.35)

that, for a Keplerian disc, reads

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
νΣR1/2

)]
. (2.36)

The equation provided depicts the temporal evolution of the surface density of a viscous
accretion disc, that is clearly a diffusion mechanism. We want to underline that the
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evolution strongly depends on the viscosity ν, which sets the typical diffusive timescale.
Indeed, from a simple dimensional analysis of eq. (2.35), the surface density evolves on
a timescale tν , called viscous timescale, of the order of

tν =
R2

ν
. (2.37)

2.2 Transport of angular momentum : solutions to the diffusion equa-
tion

In this section, we solve the diffusion equation for the surface density (2.35) for a num-
ber of relevant cases. In order to solve (2.35), one should determine how the kinematic
viscosity ν changes with the radius. We will analyse the case of constant ν (“spreading
ring solution”) and of power law profile ν ∝ Rγ . In the following paragraphs, we will
also assume that the disc is Keplerian, hence we will solve eq. (2.36). Finally, it is useful
to define two quantities that will appear in the following parts, that are the enclosed disc
mass within a radius R

Md(R, t) = 2π

∫ R

0

dR′Σ(R′, t)R′, (2.38)

and the accretion rate
Ṁ(R, t) = −2πRvR(R, t), (2.39)

where vR is given by (2.34).

Spreading ring

A simple but instructive case to consider is when the viscosity coefficient ν is constant
with the radius. In this case, the diffusion equation for the surface density can be solved
analytically (Lynden-Bell & Pringle 1974). We assume that, initially, the mass of the disc
Md is concentrated on an infinitesimally thin ring at radius R0

Σ(R, t = 0) =
Md

2πR0
δ(R−R0), (2.40)

where δ is the Dirac δ function. The solution of the eq. (2.35) is

Σ(x, τ) =
Md

πR2
0

x−1/4

τ
exp

[
−1 + x2

τ

]
I1/4

(
2x

τ

)
, (2.41)

where x = R/R0, τ = 12νt/R2
0 and I1/4 is the modified Bessel function of the first

kind. τ is the typical timescale of the problem, and it represents the ratio between t
and viscous time. This solution is called spreading ring, since the initial ring of mass
spreads both inward and outward, rather than simply accreting. Figure 2.2 shows the
evolution of the surface density for τ = [0.01, 0.05, 0.1, 0.2]. In figure 2.2 we see that, in
order to accrete, the disc needs to spread outward. In particular, the transition between
the inward and outward evolution occurs at a radius of order of Rtr ≃ R0t/tν , being an
increasing function of time. This means that for t→ ∞ all the ring mass is accreted, and
the angular momentum is transported to infinitely large radii by a negligible amount of
mass.
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Figure 2.2: Evolution of the surface density of a Keplerian spreading ring under the effect of
viscosity ν, for different times ν.

Self Similar

Another class of solutions for the diffusion equation are derived under the hypothesis
that the viscosity varies with the radius, following a power law ν ∝ Rγ . Power-law vis-
cosity profiles are often employed in numerical simulations of accretion discs due to their
simplicity and the ability to capture various physical phenomena in a computationally
efficient manner. We assume that the initial density profile follows

Σ(R, t = 0) =
C

3πν(R)
exp

[
−
(
R

Rc

)2−γ
]
, (2.42)

where C is a constant, with the dimension of mass over time, γ is the power law coef-
ficient of the viscosity profile and Rc is the typical length of the problem, i.e. the scale
radius of the density profile. The viscosity ν(R) can be expressed as

ν = νc

(
R

Rc

)γ
, (2.43)

so that the surface density scales as Σ ∝ R−γ exp[−(R/Rc)
2−γ ]. The solution of the

diffusion equation with this initial condition is known as self-similar, since its functional
form is the same at all times. The solution has been derived by Lynden-Bell & Pringle
(1974), and it reads

Σ(R, T ) =
C

3πν(R)
T− 5/2−γ

2−γ exp

[
− 1

T

(
R

Rc

)2−γ
]
, (2.44)
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where the dimensionless time coordinate T is defined as

T = 1 +
t

tν
, tν =

1

3(2− γ)2
R2
c

νc
, (2.45)

where νc = ν(Rc). We note that choosing a typical length Rc defines a typical timescale,
the viscous time tν . By examining the equation (2.44), we observe that as T increases, the
normalization of the surface density decreases while the truncation shifts towards larger
radii. This means that the disc looses mass, since the central object accretes, and the size
of the disc increases: this mechanism is called viscous spreading, and it is fundamental
in the viscous theory of accretion discs. Hence, in order to accrete onto the central object,
a small part of the disc mass migrates outwards, subtracting angular momentum. The
spread of the disc extent can be seen by inspecting how the scale radius changes as a
function of time

Rc(T ) = Rc,0T
1

2−γ . (2.46)
As for the enclosed disc mass, it varies with the radius and the time according to

Md(R, t) =
2CR2

c

3νc(2− γ)
T− 1

2(2−γ)

{
1− exp

[
− 1

T

(
R

Rc

)2−γ
]}

. (2.47)

It is possible to compute the total mass of the disc, by integrating the surface density
from 0 to infinity

Md(T ) =
2CR2

c

3νc(2− γ)
T− 1

2(2−γ) =Md,0T
− 1

2(2−γ) , (2.48)

where Md,0 = 2CR2
c/3νc(2 − γ) is the initial mass. Using the above expression, we can

re-write the surface density, removing the C constant

Σ(R, t) =
(2− γ)Md,0

2πR2
c

T− 5/2−γ
2−γ exp

[
− 1

T

(
R

Rc

)2−γ
]
, (2.49)

and now its meaning is clearer. Indeed, the surface density at time T is given by the
initial mass Md,0 divided by a circular area of radius Rc times the time dependent part.
Now, using eq. (2.34), we write the radial velocity as a function of radius and time

vR(R, t) = −3πνc
R

[
1− 2

T

(
R

Rc

)2−γ
]
. (2.50)

Here, it is clear that the inner part of the disc undergoes accretion, having a negative
radial velocity, while the outer part migrates outwards. In particular, this inversion hap-
pens at Rc/22−γ . Finally, it is instructive to obtain the accretion rate, that is given by

Ṁ =
3Md,0νc(2− γ)

2R2
c

exp

[
− 1

T

(
R

Rc

)2−γ
][

1− 2

T

(
R

Rc

)2−γ
]
T− 5/2−γ

2−γ . (2.51)

As for the radial velocity, also the accretion rate changes sign at Rc/22−γ , being positive
in the inner part (accretion) and negative in the outer one (outward migration). As time
increases, the scale radius becomes larger, and hence the region of the disc that is accreted
grows. For T → ∞, all the disc mass is accreted and an infinitesimally small part of it
migrates to infinity.

Figure 2.3 shows surface density, disc mass, radial velocity and accretion rate of the
self similar solution as a function of radius and for different T .
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Figure 2.3: Surface density, disc mass, radial velocity and accretion rate of the self-similar solution
for a disc with an initial mass Md,0 = 0.1M⊙, γ = 1, Rc = 50au, νc = 500km2/yr. The value of νc
has been chosen in order to reproduce a disc around a solar mass star with an aspect ratio of 0.1
at 50au and an α-viscosity of 0.005. The meaning of α viscosity will be explained in the next sub-
section. The different curves, from top to bottom, show the solutions for different dimensionless
time T = [1, 2, 5, 10].
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Stationary solution

Another solution of astrophysical interest is the stationary solution, which supposes that
the fluid maintain a steady accretion rate. Mathematically speaking, we set the time
derivative of the surface density to zero and, from the continuity equation, we obtain
that

RΣvR = C1, (2.52)

where C1 is a constant. This condition correspond to the steady accretion rate hypothe-
sis. Indeed, since Ṁ = −2πRΣvR, it follows that

C1 = −Ṁ
2π
. (2.53)

Then, setting the time dependent part equal to zero in eq. (2.30) gives that

R2ΣvRΩ− νR3Σ
dΩ
dR

= C2, (2.54)

where C2 is a constant. In order to determine C2, we need to consider an inner bound-
ary condition. We suppose that the inner radius of the disc is connected to the radius of
the star R⋆. In a realistic case, the star is rotating with an angular frequency Ω⋆, that is
smaller compared to the Keplerian frequency at this radius Ωk(R⋆). We hence suppose
that the angular velocity of gas particles connect to the angular velocity of the star, mean-
ing that exists a radius R⋆ + b where Ω′ = 0. In the limit of b << R⋆, we can suppose
that Ω′(R⋆) = 0; combining this request with eq. (2.54) and (2.53), we obtain

C2 = −Ṁ
2π

√
GM⋆R⋆. (2.55)

Hence, we have the two equations

RΣvR = −Ṁ
2π
, (2.56)

and

R3ΣvRΩ− νR3Σ
dΩ
dR

= −Ṁ
2π

√
GM⋆R⋆; , (2.57)

and, by substituting the first into the second one, we obtain

νΣ =
Ṁ

3π

[
1−

(
R⋆
R

)1/2
]
. (2.58)

If we consider the limit R >> R⋆, equation (2.58) becomes

νΣ =
Ṁ

3π
. (2.59)

The last expression shows that the mass infall rate and the viscosity depend linearly on
each other for a fixed surface density profile. It is also possible to write the radial velocity
for a steady disc, that is

vR = − Ṁ

2πRΣ
= − 3ν

2R

[
1−

(
R⋆
R

)1/2
]−1

. (2.60)
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2.3 Radiation from steady thin discs

Viscous forces are dissipating energy in accretion discs. This is the mechanism that char-
acterize an active disc. It is possible to obtain the energy dissipated per unit area by
viscous forces (Clarke & Carswell 2014), and it reads

D(R) =
GΩ′

2πR
= νΣ(RΩ′)2 =

9

4
νΣΩ2, (2.61)

where the last identity is valid for a Keplerian disc. Combining the above equation with
(2.58), we obtain the energy dissipated per unit area for a steady thin disc

D(R) =
3

4π

GM⋆Ṁ

R3

(
1−

√
R⋆
R

)
. (2.62)

We can now evaluate the total power emitted by the disc, by integrating the above equa-
tion

Lacc =

∫ ∞

R⋆

dR2πRD(R) =
1

2

GM⋆Ṁ

R⋆
, (2.63)

and we obtain the accretion luminosity presented in eq. (2.1). It is interesting to note
that the luminosity of the disc is equal to the gravitational energy needed to bring a
mass element from infinity to R⋆ times the accretion rate, that is the mass flow rate. The
1/2 factor comes from the virial theorem, since along a circular orbit the kinetic energy
is half the gravitational one.

Now we want to compute the temperature profile of such a disc. By assuming that
each annulus of the disc radiates as a black body with temperature Teff(R), such that the
emitted flux balances the viscous dissipation D(R), we require

2σBT
4
eff(R) =

3

4π

GM⋆Ṁ

R3

(
1−

√
R⋆
R

)
. (2.64)

For R >> R⋆, the temperature of an active accretion disc scales as T ∝ R−3/4. In-
terestingly, this is the same behaviour of a passive thin disc, however here the reason is
different, and it can be understood by considering the Kepler’s laws. Indeed, the 3 factor
derives from Ω2

k, while the 1/4 factor from the Stefan-Boltzmann law.
In general, we assume that the temperature of an accretion disc scales as

T (R) ∝ R−q, (2.65)

with 1/2 < q < 3/4, where the limits are for a flared passive and an active disc, re-
spectively. The spectral energy distribution of such disc is obtained by summing black
body spectra over annuli at the appropriate temperature, weighting their contribution
according to their area. The SED is then

νFν =

∫ Rout

R⋆

dR2πRνBν(T (R)), (2.66)

with

Bν(T ) =
2h

c2
ν3

exp
[
hν
kBT

]
− 1

, (2.67)
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where c is the speed of light, h the Planck constant and kB the Boltzmann one. This
spectrum is usually referred to as multicolour black body spectrum. For low frequency
(hν << kBTout), the Rayleigh Jeans limit is recovered

νFν ∝ ν3; (2.68)

for high frequencies (hν >> kBTin), the spectrum follows the Wien form with the expo-
nential cut-off

νFν ∝ ν4 exp[−hν/kBTin]. (2.69)

For intermediate wavelengths, it is possible to show (Hartmann 2009) that

νFν ∝ ν4−2/q. (2.70)

Thus, the final profile of the SED is given by the composition of these three regions. By
evaluating the spectral index in the intermediate region for typical values of q, we obtain
that

s =

{
4/3, q = 3/4
0, q = 1/2

(2.71)

where the first case is for a Keplerian active disc, and the second one for a passive flared
disc. The presence of a disc makes s ∈ [0, 4/3], that is the typical range of spectral indexes
of Class II discs.

2.3.1 Timescale for thermal processes

In this paragraph, we obtain the thermal timescale, i.e. the propagation timescale of a
thermal perturbation. This quantity is defined as the ratio between the thermal energy e
and the energy dissipation rate.

The thermal energy per unit mass e can be obtained from the first principle of ther-
modynamics

de = pd(ρ−1), (2.72)

where P is the pressure per unit mass and ρ is the density. Assuming a polytropic equa-
tion of state p = kργ and integrating the above equation, we obtain

e =
c2s

γ(γ − 1)
. (2.73)

The thermal timescale is hence the thermal energy per unit surface Σe over the dissipa-
tion rate per unit surface given by eq. (2.61)

tth =
Σc2s

γ(γ − 1)

1

νΣ(RΩ′)2
=

4

9γ(γ − 1)α
Ω−1, (2.74)

where in the last identity is valid for a Keplerian disc.

2.4 The nature of the viscosity

So far, we have avoided a discussion about the physical nature of the viscosity and what
is its strength. It is instructive to check if standard collisional viscosity provides enough
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transport of angular momentum in protoplanetary discs. In the standard collisional sce-
nario, the kinematic viscosity ν is the sound speed (i.e. the average velocity of gas parti-
cles) times the collisional mean free path λcoll. The latter quantity depends on the particle
density and cross-section according to

λcoll =
1

nσcoll
=

µmp

ρσcoll
=

(
µmp

Σσcoll

)
H, (2.75)

where σcoll is the molecular hydrogen cross-section and µ is the mean molecular weight,
that is assumed to be 2.1 in protoplanetary discs. Hence, the collisional kinematic vis-
cosity is

νcoll =
µmp

Σσcoll
csH. (2.76)

In order to understand its magnitude, we evaluate its viscous timescale for a typical
protostellar system, that is

tν =
R2

ν
=

ΩR2

ν
Ω−1 = Ω−1Re, (2.77)

where Re = ΩR2/ν is the Reynolds number of the fluid at radius R and Ω−1 is the
dynamical time, i.e. the orbital time at a radius R. Hence, the Reynolds number is the
factor of proportionality between the viscous time and the dynamical one. For collisional
viscosity, the Reynolds number is

Re ≃ 1012

(
Σ

20g/cm2

)(
H/R

0.1

)−2

. (2.78)

Since the dynamical timescale is of the order of several years, it implies that the viscous
time is longer than the Hubble time. Clearly, the collisional viscosity is not able to explain
the angular momentum transport needed in protoplanetary discs.

It is worth highlighting that the ratio between the viscous and the dynamical timescale,
which is of the order of 1012, indicates an incredibly high Reynolds number for the flow.
It implies that the fluid is subject to develop turbulent motions. In this scenario, viscosity
can be higher because angular momentum is exchanged by the mixing of fluid elements,
because of turbulence. To better understand the problem, we rewrite the Euler equation
separating the mean flow motions v from the fluctuating quantities δv

∂

∂t
(ΣRvφ)

1

R

∂

∂R
(RvRΣRvφ) = −

∑
i

1

R

∂

∂R

(
R2Σ

〈
δv

(i)
R δv(i)φ

〉)
, (2.79)

where the angle brackets indicate a vertical and azimuthal average and the summation
is over the fluctuating fields. For example, we can have proper velocity field fluctuations
(v+δv), magnetic field fluctuations (B0+δB) or gravitational field fluctuations (g0+δg),
where g is the gravitational field. In the simplest case of a purely hydrodynamic flow,
the only relevant field is the velocity, and its contribution to the stress tensor is called
Reynolds stress

TRe
Rϕ = −Σ

〈
vRe
R vRe

ϕ

〉
, (2.80)

where vRe is the velocity fluctuation. If the disc is magnetized, the magnetic field fluctu-
ations provide another source of transport

TM
Rϕ = Σ

〈
vARv

A
ϕ

〉
, (2.81)
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Figure 2.4: Detection (left panel) and non detection (right panel) of non-thermal motions in DM
Tau and MWC 480 from Flaherty et al. (2020).

where vA = B/
√
4πρ is the Alfvén velocity. Finally, if the disc is self-gravitating, the

perturbations of the gravitational field generate another source of angular momentum
transport in the form

TΦ
Rϕ = −Σ

〈
vΦRv

Φ
ϕ

〉
, (2.82)

where vΦ = Φ/
√
4πGρ (Lynden-Bell & Kalnajs 1972). Turbulence is supposed to arise

as a consequence of the development of disc instabilities such as hydrodynamic, grav-
itational or magneto-hydrodynamic. While it is a matter of debate whether pure hy-
drodynamic disc could produce instabilities, it is commonly thought that in the earliest
phases of star formation, gravitational instabilities can produce enough transport of an-
gular momentum (Kratter & Lodato 2016). As far as MHD instabilities are concerned,
Balbus & Hawley (1991) studied the so-called “Magneto Rotational Instability” (MRI)
that, under appropriate conditions, could explain the angular momentum transport in
protostellar discs. However, this is still an open problem called “angular momentum
problem”.

In any case, the stress generated by turbulent motions plays exactly the same role
as a viscous stress in the Navier Stokes equation; how can we estimate the magnitude
of such viscosity? A simple estimate has been provided by (Shakura & Sunyaev 1973),
based on a dimensional analysis: the stress tensor is a pressure, that is a density times
the square of a velocity. The simplest assumption is to consider the stress tensor to be
proportional to the vertically integrated pressure P = Σc2s

TRϕ =
d log Ω

d logR
αΣc2s, (2.83)

where d lnΩ/d logR is just a number and α is the proportionality factor. If we consider
the kinematic viscosity, we can express the Shakura & Sunyaev prescription in the usual
form

ν = αcsH. (2.84)

It is important to underline that the α prescription is not a theory of viscosity, but it is just
a simple parameterisation based on dimensional analysis; it simply moves the unknown
from ν to α.
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Under an observational point of view, several ways to quantify α have been pro-
posed. A first approach consists in measuring statistical properties of protoplanetary
discs at different ages (i.e. in different star forming regions), and comparing them with
viscous evolution theory (Andrews & Williams 2007; Lodato et al. 2017; Ansdell et al.
2018). The results indicate that the range of α is wide, ranging from 10−4 to 0.1. Another
method consists in directly measuring non-thermal motions in high resolution gas ob-
servations (Flaherty et al. 2020). Figure 2.4 shows two estimates of α from CO J = 2− 1
observations. The left panels show a detection of turbulent motions in the disc DM Tau,
while the right panel a non detection in MWC 480. For DM Tau, the estimate is α ≃ 0.08,
while for MWC 480 the upper limit is α < 0.006. To conclude, the value of α obtained so
far is still extremely uncertain, and some more steps need to be done in order to under-
stand the actual amount and the physical origin of turbulence in protostellar discs.



CHAPTER 3

Self-gravity and gravitational instability in protostellar
discs

Self-gravitation is the process through which the components of a body are held to-
gether by their own gravity. This mechanism is fundamental in astrophysics, from cos-
mic structures to stars and planetary rings. In the context of protoplanetary discs, self-
gravity is particularly important in the early stages of the disc lifetime. Indeed, there
is observational evidence that younger protostars host more massive discs: Tobin et al.
(2020) within the VANDAM survey found that the dust mass of protoplanetary discs
in younger star forming region, as Orion, is higher compared to older regions, as Lu-
pus Taurus or Upper Sco. Physically speaking, this can be easily understood: indeed,
younger systems are expected to be more massive, since most of their mass has not yet
been accreted by the central object.

A crucial consequence of the disc self-gravity in discs is the development of gravita-
tional instability. This mechanism is characterized by the formation of large scale spiral
structure, transporting angular momentum throughout the disc. The foundations of our
understanding of self-gravity and gravitational instability in discs comes from the field
of galactic dynamics. Indeed, during the second half of the last century, the so-called
“density wave theory” was developed to explain the origin of spiral structure in galaxies
(Lin & Shu 1964; Toomre 1964). Besides spiral galaxies, in protoplanetary discs several
spiral structures have been observed with ALMA, and some of them are attributed to
gravitational instability. A well-known example of a very young system (approximately
1.5 × 105 years old, class 0) where gravitational instability is at play is L1448 IRS3B (To-
bin et al. 2016). Furthermore, in class II systems, there is substantial evidence supporting
the idea that the spectacular spiral arms observed in Elias 2-27 result from gravitational
instability (Meru et al. 2017; Cadman et al. 2020; Veronesi et al. 2021; Paneque-Carreño
et al. 2021) (see also chapter 8). Figure 3.1 displays the dust continuum emission from
both sources, clearly showing the presence of spiral arms. As for other class II sources
such as IM Lup (Cadman et al. 2020; Lodato et al. 2023), GM Aur (Schwarz et al. 2021;
Lodato et al. 2023), AB Aur (Cadman et al. 2021) and WaOph6 (Cadman et al. 2020), there
is ongoing research exploring the potential influence of gravitational instability on their
evolutionary processes.

3.1 Self-gravitating discs : equilibrium state

In this section, we will present the relevant dynamical equations for a self-gravitating
discs. As for chapter 2, we make the thin disc hypothesis, whose consequences are the
same as before. The equations that govern gas dynamics are the continuity and the
Navier Stokes equations. The difference compared to the non-self-gravitating case is

27
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Figure 3.1: Left panel: ALMA 1.3mm image of the L1448 IRS3B disc showing a large scale spiral
structure (Tobin et al. 2016). Right panel: ALMA 1.3mm image of the Elias 2-27 disc, showing two
prominent spiral arms (Pérez et al. 2016).

that the gravitational potential Φ is given by the sum of the stellar contribution and the
disc self-gravity.

Gravitational potential of a disc

In this paragraph, we go through the derivation of the disc self-gravity contribution to
the gravitational potential, as done in (Bertin & Lodato 1999). We consider a distribution
of matter infinitesimally thin and axisymmetric, with a surface density given by Σ(R),
where (R,ϕ) are radial and azimuthal coordinates. The gravitational potential associated
to this matter distribution on the midplane is given by

Φ(R) = −2G

∫ π

0

dϕ

∫ ∞

0

dR′ Σ (R′)R′

(R2 +R′2 − 2RR′ cosϕ)
1/2

. (3.1)

The denominator of the last expression can be rewritten as (R2 + r′2 − 2RR′ cosϕ)1/2 =
[R+R′(1 + ζ2 cos(ϕ/2))], where ζ = 4R′/(R+R′)2. The potential is thus

Φ(R) = −4G

∫ ∞

0

K(ζ)
Σ (R′)R′dR′

(R+R′)
, (3.2)

where

K(ζ) =

∫ π/2

0

dt

1 + ζ2 cos2 t
(3.3)

is a complete elliptic integral of the first kind. We now define

K(0)(R,R′) =
1

π

√
R′

R
ζK(ζ), (3.4)

thus equation (3.2) reads

Φ(R) = −2πG

∫ ∞

0

dR′K(0) (R,R′) Σ (R′) . (3.5)
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The last equation diverges for ζ → 1, that corresponds to R → R′: this kind of diver-
gence is typical of infinitesimally thin disc, although the potential Φ is finite. Actually,
by integrating the expression, the divergence disappears. Mathematically, to avoid this
problem, we compute the gravitational potential at a finite vertical distance z ̸= 0 and
then take z → 0. In a cylindrical system of coordinates (R,ϕ, z), we thus rewrite ζ as

ζ2 =
4R′

(R+R′)2 + z2
. (3.6)

In the context of fluid equations, it is useful to write the radial derivative of the gravita-
tional potential, since it appears in the Navier Stokes equation. Differentiating equation
(3.5) with respect to R, we get

∂Φ

∂R
(R, z) =

G

R

∫ ∞

0

dR′
[
ζK − 2R

d(ζK)

dζ

∂ζ

∂R

]
Σ (R′)

√
R′

R
. (3.7)

The last expression can be simplified by using a property of elliptic integrals, that is

d(ζK)

dζ
=

E(ζ)

1− ζ2
, (3.8)

where

E(ζ) =

∫ π/2

0

dt
√
1− ζ2 cos2 t (3.9)

is another complete elliptic integral. The final equation is

∂Φd
∂R

(R, z) =
G

R

∫ ∞

0

dR′
[
K(ζ)− 1

4

(
ζ2

1− ζ2

)
×

×
(
R′

R
− R

R′ +
z2

RR′

)
E(ζ)

]√
R′

R
ζΣ (R′) .

(3.10)

The Mestel disc

One interesting case is the so-called Mestel disc (Mestel 1963), where the surface density
of the disc scales as Σ = Σ0R0/R and the disc extends out to infinity. In this case, the
gravitational potential is really simple, and reads

Φd = 2πGΣ(R)R. (3.11)

In the limit in which the central object is negligible, the rotation curve is determined only
by the disc, and it is

vϕ = 2πGΣ0R0, (3.12)

that is flat, and the angular frequency Ω ∝ R−1.

3.1.1 Hydrostatic equilibrium : density structure

The hydrostatic balance for a self-gravitating disc differs from a star dominated one.
Indeed, the hydrostatic equilibrium involves the total gravitational potential of the sys-
tem that, in this case, is given by the sum of the star and disc contribution. Hence, the
equation reads

1

ρ

∂P

∂z
= − ∂

∂z
(Φ⋆ +Φd) (3.13)
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It is possible to analytically solve the hydrostatic equilibrium by neglecting the star term,
namely for a completely self-gravitating object: this is known as self-gravitating isother-
mal slab of surface density Σ. Using the equation of state P = c2sρ and neglecting the
star contribution, the hydrostatic equilibrium becomes

c2s
ρ

∂ρ

∂z
= −2πGΣ, (3.14)

with Σ =
∫ z
0

dz′ρ(z′). As in chapter 2, we make the hypothesis that the sound speed
does not depend on the z coordinate. We write the previous equation as a function of Σ
rather than ρ, and we obtain

∂2Σ

∂z2
= −2πGΣ

∂Σ

∂z
. (3.15)

We define dimensionless variables σ = Σ/Σ0 and ζ = z/Hsg, where

Hsg =
c2s

πGΣ0
, (3.16)

is the typical scale height of a self-gravitating slab. The dimensionless hydrostatic equi-
librium reads

∂2σ

∂ζ2
= −2σ

∂σ

∂z
, (3.17)

with the boundary conditions ρ(0) = ρ0, σ(0) = 0 and σ′(0) = 1. The solution of the
equation is

Σ = Σ0 tanh

(
z

Hsg

)
, ρ = ρ0 cosh

−2

(
z

Hsg

)
. (3.18)

Now, we can ask a question: how massive has to be the disc, in order for self-gravity to
significantly affect its vertical structure? To answer, we compare the non-self-gravitating
and the self-gravitating scale height

Hsg

Hnsg
=

csΩ

πGΣ
. (3.19)

The two scale height are comparable when their ratio is one. The parameter on the
right is akin to the Toomre Q parameter (Toomre 1964), that controls the development of
gravitational instabilities in the disc. A thorough explanation of the onset of gravitational
instability is given in the next section.

One could in principle try to solve the complete equation 3.13. A smart way to rewrite
it is in terms of the typical scale heights of the self-gravitating and non self-gravitating
limits. In particular, if we use σ = Σ/Σ0 and ζ = z/Hnsg, the equation reads

∂2σ

∂ζ2
= −ζ ∂σ

∂ζ
− 2σ

Q

∂σ

∂ζ
, (3.20)

where Q is the Toomre parameter and the boundary conditions are σ(0) = 0 and σ′(0) =
1. This equation cannot be solved analytically, but a simple and accurate interpolation
formula between the two regimes has been obtained by Bertin & Lodato (1999). They
found that the typical scale height is

H =
c2s
πGΣ

(
π

4Q2

)[√
1 +

8Q2

π
− 1

]
, (3.21)

where Q determines the transition between the self-gravitating and non-self-gravitating
regime.
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3.1.2 Centrifugal balance : the rotation curve

The disc self-gravity also impacts the centrifugal balance of an accretion disc, giving a
super-Keplerian contribution to the azimuthal velocity. In section 2.1.1 we showed that
the radial component of the Navier Stokes reads

v2ϕ = R
∂Φ

∂R
+
R

ρ

∂P

∂R
, (3.22)

where Φ = Φ⋆ + Φd. The disc contribution to the rotation curve is given by eq. (3.10),
and it reads

R
∂Φd

∂R
(R, z) = G

∫ ∞

0

[
K(k)− 1

4

(
k2

1− k2

)
× (3.23)

(
R′

R
− R

R′ +
z2

RR′

)
E(k)

]√
R′

R
kΣ (R′) dR′.

The self-gravitating contribution depends on the disc surface density, hence on the disc
mass. In addition, this is a super-Keplerian contribution, unlike the pressure gradient.
A comprehensive model of the rotation curve, taking into account both self-gravity and
pressure gradient, is presented in chapter 4.

3.2 Linear theory of gravitational instability

To approach gravitational instability in protostellar discs, we must understand how to
describe a perturbation in a disc. We consider a disc basic state characterized by a density
ρ0, and a perturbation ρ1 << ρ0 so that the total density is ρ = ρ0 + ρ1. The perturbation
ρ1 can be decomposed into an even and an odd part ρ1 = ρ+ + ρ− with respect to the
disc midplane. Figure 3.2 shows the even and the odd part of a given perturbation on a
disc. Even perturbations are called density waves, since they are able to locally modify
the density. Conversely, an odd perturbation is a bending wave, that is simply distorting
the geometry, without changing the density. Examples of density or bending waves are
spirals and warps respectively. Figure 3.3 shows an actual example of this kind of waves
in Saturn’s A ring. Since spirals are density waves, because they change the background
density, we will focus our attention on them.

How can we describe an m−armed spiral perturbation? Firstly, we consider a razor-
thin disc, so that perturbations develop only in the radial R and azimuthal ϕ directions.
Within this framework, a spiral disturbance can be described as

mϕ+ ψ(R) = const, mod 2π (3.24)

where ψ(R) is the so-called phase function and m is the number of spiral arms. The
phase function is linked to the radial wavenumber, as

k =
dψ
dR

, (3.25)

while the azimuthal wavenumber is simply defined as m/R. The radial wavenumber is
a function of radius, and its sign determines the class of the wave. In particular, if the
disc rotates in the sense of increasing ϕ, k < 0 implies leading waves, whereas k > 0
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Density waves: + 0

Bending waves: = 0

Figure 3.2: Even (top) and odd (bottom) perturbations on a disc. Even perturbations are density
waves, and they are able to generate mass since the density changes. Odd perturbations do not
create mass, and they just bend the disc.

implies trailing waves. Another significant quantity to mention is the opening angle of
the spiral (pitch angle), that is given by

tanαp =
m

rk
. (3.26)

As an example, if the pitch angle is constant over the all radial extent of the disc, the
shape function is a logarithm.

As for the time dependence, the location of the spiral arm ϕ(R, t) is described by

ϕ(R, t) = ϕ0 +Ωpt, (3.27)

where Ωp is the spiral pattern speed.
The surface density of a disc with a spiral perturbation can simply be written as

the sum of the unperturbed axisymmetric component Σ0(R) and the spiral perturbation
Σ1(R,ϕ). Supposing that the perturbation Σ1 ∝ exp[i(mϕ + kR)], it is possible to show
(Binney & Tremaine 1987) that its gravitational potential is

Φ1 = −2πG

k
Σ1. (3.28)

This result will be essential in the following paragraphs.

3.2.1 The quadratic dispersion relation

In section 3.1, we focused our attention on examining the effects of disc self-gravity on
the equilibrium state, assuming the system to be stable. However, it is important to note
that this assumption should not be taken for granted. Indeed, gravitational instability
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Figure 3.3: Cassini spacecraft image of two types of waves in Saturn’s A ring: a spiral density
wave on the left of the image and a more pronounced spiral bending wave near the middle.
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occurs when the self-gravitating forces within the disc become dominant over the sta-
bilizing effects of pressure and rotation. How can we quantify this behaviour? A first
hint comes from the previous analysis regarding the structure of a self-gravitating disc.
Indeed, in eq. (3.19) we showed that the height of a self-gravitating disc is comparable
with the non-self-gravitating one when

Q ≃ csΩ

πGΣ
= 1, (3.29)

where the ratio is akin to the Toomre parameter. This number is easy to interpret, since
it basically represents the ratio between the stabilizing terms (pressure cs and rotation
Ω) and the destabilizing one (self-gravity Σ). However, to better understand the onset
of gravitational instability in protoplanetary discs, it is necessary to set a perturbative
analysis of the fluid equations, and obtain a dispersion relation. The theory was first
developed in the context of galactic dynamics, and it is the foundation of the density
wave theory for spiral galaxies (Safronov 1960; Lin & Shu 1964; Toomre 1964).

In cylindrical coordinates, the fluid equations for a thin axis disc are

∂Σ

∂t
+

1

R

∂

∂R
(ΣRvR) +

1

R

∂

∂ϕ
(Σvϕ) = 0, (3.30)

∂vR
∂t

+ vR
∂vR
∂R

+
vϕ
R

∂vR
∂ϕ

−
v2ϕ
R

= − ∂

∂R
(Φ + h) , (3.31)

∂vϕ
∂t

+ vR
∂vϕ
∂R

+
vϕ
R

∂vϕ
∂ϕ

= − 1

R

∂

∂R
(Φ + h) , (3.32)

∇2Φ = 4πGΣδ(z), (3.33)

dh = c2s
dΣ
Σ
, (3.34)

where h = c2s log Σ is the enthalpy. The basic equilibrium state is characterized by zero
radial velocity vR = 0, azimuthal velocity described in terms of angular velocity vϕ = RΩ
and, for the moment, we do not make any assumption on the form of cs, Φ, h and Σ. We
perturb the basic state quantities X0 with a perturbation X1 so that X1 << X0, and we
linearize the equations. The first order expressions are

∂Σ1

∂t
+

1

R

∂

∂R
(Σ0RvR1) +

1

R

∂

∂ϕ
(Σ0vϕ1 +Σ1vϕ0) = 0, (3.35)

∂vR1

∂t
+Ω

∂vR1

∂ϕ
− 2Ωvϕ1 = − ∂

∂R
(Φ1 + h1), (3.36)

∂vϕ1
∂t

− 2BvR1 +Ω
∂vϕ1
∂ϕ

= − 1

R

∂

∂ϕ
(Φ1 + h1), (3.37)

h1 = c2s
Σ1

Σ0
, (3.38)

∇2Φ1 = 4πGΣ1δ(z), (3.39)

where B = −1/2 [Ω + (ΩR)′] is the Oort constant (Oort 1927). Now, we make the as-
sumption that the wave modes are determined by local effects only. With this is mind,
we assume that the radial dependence of perturbed quantities has the form exp[ikR],
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where k is the radial wavenumber. This is known as WKB approximation. As for the
temporal and spatial dependence, we assume the perturbations to be proportional to
exp[i(−ωt + mϕ)]. Within this assumption, the radial, temporal and azimuthal deriva-
tives corresponds to ∂R → ik, ∂t → −iω and ∂ϕ → im. By using equation (3.28) for
the gravitational potential, we end up with three equations for surface density Σ1, radial
and azimuthal velocity vR1, vϕ1

−i(ω −mΩ)Σ1 + ikΣ0vR1 + i
mΣ0

R
= 0, (3.40)

−i(ω −mΩ)vR1 − 2ΩvR1 = ikΣ1

(
2πG

|k|
− c2s

Σ0

)
, (3.41)

−i(ω −mΩ)vϕ1 − 2BvR1 = i
mΣ1

R

(
2πG

|k|
− c2s

Σ0

)
. (3.42)

In order to obtain the standard quadratic dispersion relation (Lin & Shu 1964; Toomre
1964), we consider only tightly wound perturbation (i.e. small opening angle), and hence
we suppose that m/Rk << 1. This approximation allows us to simplify some terms in
the previous equations, that become

−i(ω −mΩ)Σ1 + ikΣ0vR1 = 0, (3.43)

−i(ω −mΩ)vR1 − 2ΩvR1 = ikΣ1

(
2πG

|k|
− c2s

Σ0

)
, (3.44)

−i(ω −mΩ)vϕ1 − 2BvR1 = 0. (3.45)

In order to obtain the dispersion relation ω(k), we write the coefficient matrix A so that
Ax = 0, where x = [Σ1, vR1, vϕ1]

A =


−i(ω −mΩ) ikΣ0 0

−ik
(

2πG
|k| − c2s

Σ0

)
−i(ω −mΩ) −2Ω

0 −2B −i(ω −mΩ)

 . (3.46)

The dispersion relation is simply given by imposing the determinant of this matrix to be
zero, and it reads

(ω −mΩ)2 = c2k2 − 2πGΣ|k|+ κ2, (3.47)

where κ2 = 2Ω/R(R2Ω)′ is the radial epicyclic frequency that, for a Keplerian potential,
it is simply Ωk. The last equation is a quadratic in k, and each term has a physical
interpretation. The left side term is the Doppler shifted perturbation frequency, and can
be re-written by underlying the spiral pattern frequency ω −mΩ = m(Ωp − Ω), where
Ωp is the spiral pattern frequency. The first term on the right side of eq. (3.47) is the
stabilizing pressure contribution. It is quadratic in k and hence it is important for large
wavenumbers - short wavelengths. The second term is the disc self-gravity, that is linear
with the wavenumber. Its contribution is more significant at intermediate wavelengths,
and its role is destabilizing. Finally, the third term is the disc rotation. It does not depend
on k and hence its stabilizing effect is dominant at large wavelengths. The competition
of these three effects determines the stability of the system.
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Stability of axisymmetric perturbations

We now consider axisymmetric disturbances, for which m = 0. The instability threshold
can be determined by studying the sign of ω2: when ω2 > 0, a perturbation simply
propagates as a wave; when ω2 < 0, an exponentially growing instability arises. Solving
the dispersion relation for axisymmetric disturbances, the perturbation is unstable if

Q =
csκ

πGΣ
< 1, (3.48)

where Q is the Toomre parameter. We recall that for a Keplerian disc κ = Ω. In a
protostellar disc, the sound speed and the surface density can be described as power
laws with the radius. We usually assume that cs ∝ R−q/2, and Σ ∝ R−γ : this implies
that Q ∝ Rγ−q/2−3/2. If γ > (q + 3)/2, the Toomre parameter decreases with the radius,
meaning that the outer part of the disc is more prone to be unstable. Conversely, if
γ > (q + 3)/2, the disc will be more likely gravitationally unstable in the inner regions.
If we consider a standard power-law exponent for temperature (q = 1/2), it is likely that
the condition will be met in the outer (inner) regions of the disc when γ < 7/4 (γ > 7/4).
Observations of discs have typically yielded power-law exponents within the range of
[0, 2] (Andrews & Williams 2007), making it more likely for the condition Q < 1 to be
fulfilled in the outer regions of a disc.

For the case of an unstable disc, the most unstable wavenumber kJ (i.e. where the
right-hand side of equation (3.47) is at its minimum) occurs at

kJ =
πGΣ

c2s
. (3.49)

When the disc is marginally unstable (Q = 1), only modes close to kuns are excited. If
we evaluate eq. (3.47) for Q = 1 and k = kJ , we get the condition Ωp = Ω, which
means that all excited modes are expected to be close to co-rotation. It is worth noting
that the most unstable wavenumber kJ is exactly the inverse of the disc thickness in the
self-gravitating limit. Equivalently, it is possible to define the most unstable wavelength

λJ =
2π

kJ
=

2c2s
GΣ

= 2πHSG. (3.50)

kJ and λJ are respectively the most unstable wavenumber and wavelength, often called
Jeans wavenumber and wavelength.

Marginal stability curve

An alternative way of looking at the dispersion relation is by asking whether there are
parameters for which Im(ω) < 0, meaning that the system is unstable. To do so, it
is possible to derive the marginal stability curve, that depicts the threshold between
stability and instability. Starting from the quadratic dispersion relation, we define the
dimensionless quantities

ν2 =
(ω −mΩ)2

κ2
, (3.51)

k̂ = 2
k

kJ
, λ̂ = k̂−1 (3.52)
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Figure 3.4: Left panel: dimensionless perturbation frequency ν2 as a function of the dimensionless
perturbation wavenumber k̂ for different values of the Toomre parameter Q = [0.9, 1, 1.1]. Right
panel: marginal stability curve for the quadratic dispersion relation (eq. (3.54)). The coloured lines
corresponds to Q = [0.9, 1, 1.1]: for Q > 1, the line does not cross the marginal stability curve, and
there are no unstable wavelengths, as shown in the left panel; for Q = 1, there is only an unstable
wavelength, that is k−1

J ; for Q < 1, there is an interval of unstable wavelengths, as shown in the
left panel.

so that eq. (3.2.1) can be rewritten as

ν2 = 1 +
1

4
Q2k̂2 + |k̂|. (3.53)

The marginal stability condition corresponds to ν2 = 0: this curve in the space (Q2, λ̂) is
the marginal stability curve. Hence, the region above the curve is stable, while the one
below is unstable. For the quadratic dispersion relation, the marginal stability curve is
simply a parabola, and it reads

Q2 = 4λ̂(1− λ̂). (3.54)

The maximum of the curve correspond to the instability threshold Q = 1, and it occurs
for k = kJ . Figure 3.4 displays a schematic view of the quadratic dispersion relation and
the marginal stability curve, for different values of the Toomre parameter.

3.2.2 Finite thickness effect

The dispersion relation (3.47) has been derived under important approximations. Firstly,
the equilibrium structure of the disc is assumed to be axisymmetric, and secondly (and
more important) the disc is infinitesimally thin. As we have discussed in the previous
chapter, protoplanetary discs have a finite vertical extent, and this is impacting the onset
of gravitational instability. In particular, the finite thickness of the disc dilutes the gravi-
tational field, giving an additional pressure like term. A simple way to take into account
for this effect is by modifying the quadratic dispersion relation as follows (Vandervoort
1970)

(ω −mΩ)2 = c2sk
2 − 2πGΣ|k|e−|kH| + κ2 ≃ (c2s + 2πGΣH)k2 − 2πGΣ|k|+ κ2, (3.55)
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where we have expanded to first order to make it clear the additional pressure term. In
this case, the marginal stability value decreases to Q ≃ 0.6 for a Keplerian disc.

3.2.3 Cubic dispersion relation

In the context of galactic dynamics, it was recognized (Ostriker & Peebles 1973; Hohl
1973) that discs that are locally stable according to the Q−criterion, might still generate
large scale spiral waves. This behaviour is due to the fact that such global modes are not
captured by the WKB tightly wound approximation, under which the quadratic disper-
sion relation has been obtained. As a matter of fact, the azimuthal wavenumber m/R
enters only in the Doppler-shifted perturbation frequency. A WKB description can still
be obtained under less restrictive conditions than the tightly wound approximation, as
done in Lau & Bertin (1978). The resulting dispersion relation is a cubic, and contains a
new dimensionless parameter J

J = m
πGΣ

Rκ2
4Ω

κ

∣∣∣∣d log Ω

d logR

∣∣∣∣1/2 ≃
√
6m

Md

M⋆
. (3.56)

Also J has a physical interpretation: whileQ balances rotation, pressure and self-gravity,
J is essentially a measurement of the disc to star mass ratio. In the limit of J → 0,
the cubic dispersion relation tends to the standard quadratic one. This happens for ax-
isymmetric perturbation (m = 0) or for low disc to star mass ratio. This parameter is
suggesting us that high mass discs behave differently from low mass ones.

3.3 Non-linear evolution

In the previous section, we presented an analytical framework to linearly describe the
gravitational instability. Now, we ask what is the non-linear evolution of such instability,
and whether it can lead to transport of angular momentum. To tackle this question, it
becomes imperative to employ numerical simulations of gravitationally unstable discs.
Over the past two decades, this topic has gained considerable attention, employing vari-
ous numerical techniques. These methods encompass local shearing sheet models (Gam-
mie 2001; Booth & Clarke 2019; Baehr & Zhu 2021a,b; Baehr et al. 2022), global Eulerian
grid-based models (Pickett et al. 2003; Mejı́a et al. 2005; Kratter & Matzner 2006; Kratter
et al. 2008, 2010; Paardekooper 2012; Deng et al. 2017), global Lagrangian particle-based
models (Rice et al. 2004; Lodato & Rice 2004; Rice et al. 2006; Meru & Bate 2010, 2011,
2012; Booth & Clarke 2016; Longarini et al. 2023a)). Remarkably, despite the diverse
approaches, the results appear to converge into an essentially coherent picture.

3.3.1 Self-regulation

To describe the non-linear evolution of gravitational instability, we start with the defi-
nition of the stability parameter Q. It is proportional to the disc sound speed, hence to
the temperature. This implies that colder discs are more likely to be unstable. We con-
sider an initially stable hot disc (Q >> 1). In the absence of external heating or cooling
mechanisms, the disc will cool down through radiative cooling, eventually reaching the
marginally stable condition Q ∼ 1. At this point, gravitational instability turns on: the
disc develops a spiral structure that, by means of compression and shocks, leads to an
efficient energy dissipation, and the disc heats up again. Hence, the stability condition
works as a thermostat, so that the heating turns on only when the disc becomes enough
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cold. If this thermostat mechanism works (see sections 3.3.3 and 3.3.4), we expect the
instability to self-regulate in such a way that the disc maintains Q ≃ 1.

It is possible to describe such a self-regulated state in terms of steady-state models of
self-gravitating accretion discs. Firstly, the self-regulation condition is simply

Q ≃ 1. (3.57)

As shown in chapter 2, at large radii the accretion rate for a steady state accretion disc
can be written

Ṁ = 2πνΣ

∣∣∣∣d log Ω

d logR

∣∣∣∣ , (3.58)

where we have not assumed that the disc is Keplerian. An interesting consequence of
the above relation arises when we use the α−prescription, and we assume that the disc
is self-gravitating H = HSG. In this case we obtain

Ṁ =
2αc3s
G

∣∣∣∣d log Ω

d logR

∣∣∣∣ . (3.59)

The last equation shows that for a self-gravitating disc, the accretion rate Ṁ depends
only on α and the sound speed. In particular, if we assume a constant value of α, the
disc must be approximately isothermal (Lodato 2008). If we assume a disc-dominated
potential, it is possible to provide an analytical self-similar solution to the model. We
consider a Mestel disc (see section 3.1) with Σ ∝ R−1, and we obtain

cs =

(
GṀ

2α

)1/3

, (3.60)

vϕ =
2
√
2

Q

(
GṀ

2α

)1/3

, (3.61)

and

Σ =
4

πGQ2R

(
GṀ

2α

)2/3

. (3.62)

This solution has very simple properties, having a flat profile of cs, vϕ and Q. Clearly,
this solution applies only at large radii, where the effect of the central point mass is
negligible.

3.3.2 Accretion and angular momentum transport: local or non-local?

One of the most significant consequences of gravitational instability is its ability to trans-
port angular momentum throughout the disc. This fact is well known since the ’70s in
the context of galactic dynamics (Lynden-Bell & Kalnajs 1972). As we have discussed in
chapter 2, the ability of transporting angular momentum can be linked to viscous pro-
cesses. Balbus & Papaloizou (1999) showed that it is possible to write the Rϕ component
of the GI stress tensor as

TGI
Rϕ =

∫ 〈gRgϕ
4πG

〉
dz, (3.63)
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where gR and gϕ are the radial and azimuthal component of the perturbed gravitational
field of the disc. Equation (3.63) only accounts for the transport induced by the gravita-
tional field itself. However, gravitational instability will also induce density and velocity
perturbations, that contribute to the transport and should be included in the calculations.
This contribution is enclosed in the Reynolds stress, that is simply

T
Reynolds
Rϕ = Σ⟨δvRδvϕ⟩, (3.64)

where δvR, δvϕ are the radial and azimuthal perturbations of the velocity field. Given
the expression for the gravitational stress tensor, one could be tempted to use the α pre-
scription, and to assume that TGI

Rϕ is simply proportional to the local pressure. However,
since viscosity is a local dissipation of energy, we need to verify whether GI stresses act
locally or not. If the locality condition is respected, it is possible to describe gravitational
instability within an α−framework.

Now, we turn our attention to the transport of energy and angular momentum through
the propagation of spiral density waves. From classical wave mechanics, the energy E
and the angular momentum L of a wave can be expressed in terms of the wave action A

E = ωA = mΩpA, (3.65)

L = mA. (3.66)

Within the WKB approximation, the wave action can be written as (Toomre 1969; Shu
1970; Fan & Lou 1999)

A =
m(Ωp − Ω)

8π2G2Σ
|δΦ|2, (3.67)

where δΦ is the perturbed gravitational potential, given by eq. (3.28). More explicitly,
the energy of the wave is given by the sum of two components

E =
Σ

2

m2

k2
Ω(Ωp − Ω)

(
δΣ

Σ

)2

+
Σ

2

m2

k2
(Ωp − Ω)2

(
δΣ

Σ

)2

. (3.68)

The first component is exactly the wave angular momentum L times the local angular
velocity Ω, and thus it represents a local viscous-like term. Conversely, the second term
is an anomalous energy transport term, that acts globally rather than locally (Balbus &
Papaloizou 1999). The ratio of the two terms measures the non-locality of the perturba-
tion, and it is

ξ =
|Ωp − Ω|

Ω
. (3.69)

Physically speaking, the transport of the angular momentum will be global if the waves
are able to travel far from their co-rotation (Ωp − Ω), and this ability is measured by
ξ. How does ξ relate to the disc properties? To answer this question, we examine the
Doppler shifted Mach number of the dominant mode M. Cossins et al. (2009) through
numerical simulations showed that M is remarkably close to unity, regardless of the disc
to star mass ratio of the disc

M =
|Ωp − Ω|R

cs
≃ 1, (3.70)

as shown in the top panel of figure 3.5. The meaning of this condition is explained as fol-
lows. A spiral wave generates a shock as soon as it travels far from the co-rotation. The
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Figure 3.5: Top panel: Bottom panel: Locality parameter ξ for different disc to star mass ratio. As
expected, the non locality parameter increases with the disc to star mass ratio, reaching ∼ 15% for
Md/M⋆ = 0.125. Image taken from Cossins et al. (2009).

sonic condition is telling us that this shock rapidly becomes sonic, dissipating the spiral
wave. Thanks to the sonic condition, it is possible to re-write the “locality” parameter as

ξ =
cs
RΩ

=
H

R
≃ Md

M⋆
, (3.71)

where the last identity is true for a marginally stable disc (Q = 1). This last expression
is really important because it is telling us that the disc to star mass ratio determines the
degree of non-locality of the perturbation, as shown in the bottom panel of figure 3.5.

The non-locality condition, together with the J parameter (see section (3.2.3)), sug-
gest that low mass and high mass discs behave differently. Under a morphological point
of view, Cossins et al. (2009) showed that the average mode number m varies inversely
with the mass ratio: hence, high mass discs show fewer spiral arms compared to low
mass ones, as depicted in figure 3.6, where we show the power spectrum of the spiral
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Md /M⋆ = 0.1 Md /M⋆ = 0.2 Md /M⋆ = 0.5

Figure 3.6: Top panel: Snapshots of three numerical SPH simulations of gravitationally unstable
protostellar discs, with three different disc to star mass ratios Md/M⋆ = (0.1, 0.2, 0.5). The simu-
lations have been performed with the code PHANTOM and the disc extent is [0.25, 25]au. Bottom
panel: power spectrum of the three snapshots at an intermediate radius of 10au. The orange ar-
row underline the dominant mode, that is decreasing with the disc to star mass ratio, as expected.
The morphology of the spiral clearly changes with the disc to star mass ratio: more massive discs
shows fewer spiral arms and their opening angle is bigger.

structure for different disc to star mass ratios. Additionally, the pitch angle of the spirals
is also linked to the disc mass. In particular, there is a positive correlation between the
two quantities: high mass discs show more open spiral arms. Moreover, under a dynam-
ical point of view, we have shown that more massive discs tend to become more subject
to non-local effects. In the scenario, the self-regulation can not be achieved, resulting in a
recurring pattern of highly temporally variable instabilities within the disc (Lodato et al.
2017). During these episodes, the torques generated by self-gravity can attain significant
magnitudes, redistributing very fast the gas material in the disc.

However, Lodato & Rice (2004) showed that for typical protostellar disc, (Md/M⋆ <
0.2), the transport of angular momentum by GI is local, since ξ remains small. Hence,
for such systems, GI acts as a viscous phenomenon.

3.3.3 Cooling driven GI

A key role in the evolution of self-gravitating protostellar disc is played by the cooling.
Indeed, we will show that the balance between the disc cooling and the internal heating
mechanisms allows the system to reach a self-regulated state. In addition, the cooling
also determines the amount of the angular momentum that is transported.

Although recently a lot of effort has been put into the development of realistic cooling
prescription (Stamatellos et al. 2007), for our purposes, a very simple cooling law can be
adopted to explore the role of the cooling timescale in the outcome of the gravitational
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Figure 3.7: Relationship between the density contrast of the spiral perturbation δΣ/Σ and cooling
factor β (Cossins et al. 2009). As expected from the energy balance, in thermal saturation regime
δΣ/Σ ∝ β−1/2

instability. It reads
de
dt

∣∣∣∣
cool

= − e

tcool
, (3.72)

where e is the internal energy of the fluid and tcool is the cooling timescale. It is impor-
tant to stress that the above description is not meant to reproduce any specific cooling
process. In the following part, we will suppose that the cooling time is proportional to
the dynamical time, and the constant of proportionality is called beta-cooling

β = Ωtcool. (3.73)

According to the value of β, there are two possible scenarios: a thermal saturation
regime, where the instability saturates and angular momentum is efficiently transported,
and the fragmentation of the spiral into gravitationally bounded objects.

Thermal saturation

When β > 3 (Gammie 2001; Deng et al. 2017), the heating provided by gravitational
instability compensates the imposed cooling, and the system reaches a thermal saturated
regime. This means that the amplitude of the spiral perturbation saturates at a given
value and the system sets in a self regulated state characterized by a constant Q = 1
profile. In this sense, the Q−stability condition acts as a thermostat so that heating turns
on only if the system is sufficiently cold, keeping it in a marginal stable state.

In terms of the heating, Cossins et al. (2009) obtained heating rate per unit mass due
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to the gravitational instability as

q+ = ϵΩc2s
MM̃
2

(
δΣ

Σ

)2

, (3.74)

where ϵ is the heating factor, defined as the cooling one and M and M̃ are the phase and
Doppler-shifted phase Mach numbers, defined as

M =
mΩp
kcs

, M̃ =
m|Ωp − Ω|

kcs
. (3.75)

Once the gravitational instability is saturated, we consider the disc to be in dynamic ther-
mal equilibrium, such that the energy released through spiral shocks and compression
heating is balanced by the imposed cooling, i.e q+ + q− = 0, where we recall the cooling
rate per unit mass

q− = − e

tcool
= − Ωc2s

γ(γ − 1)β
, (3.76)

where we have used e = c2s/γ(γ − 1) (eq. 2.73). Now, we can equate the heating and the
cooling rate per unit mass, and determine the relationship between the amplitude of the
spiral perturbation and the cooling factor(

δΣ

Σ

)2

=
2

ϵβ

1

γ(γ − 1)

(
1

MM̃

)
∝ β−1. (3.77)

This relationship is really important, since it tells us that the strength of the spiral pertur-
bation is proportional to β−1/2. This behaviour is confirmed by numerical simulations
(Cossins et al. 2009), as shown in figure 3.7.

Thus, for a disc in thermal saturated regime, there are two important parameters
that determines the morphology of the spiral. Firstly, the number of spiral arms and the
pitch angle are determined by the disc to star mass ratio. In particular, more massive
discs show fewer spiral arms, that are more open. Conversely, low mass discs show a
high number of spiral arms, that are tightly wound. The second important parameter is
the cooling factor, and it determines the amplitude of the spiral, according to eq. (3.77).
A summary of the morphological properties of GI spiral is given in figure 3.8.

Finally, we compute the relationship between the viscosity and the cooling time in
thermal equilibrium. Indeed, assuming that there is no other source of heating in the
disc, in equilibrium the heating rate provided by viscosity should balance the cooling.
Hence, by imposing tcool = tth (equations 3.73 and 2.74 respectively), we obtain that the
α−coefficient associated to gravitational instability is

αGI =
4

9γ(γ − 1)β
. (3.78)

Fragmentation

If the cooling is too fast, the heating provided by gravitational instability can not balance
it, resulting in the exponential growth of the spiral perturbation. In this regime, the
thermal saturation is not reached, and the spiral fragments into gravitationally bounded
objects.
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β = 8

β = 10

β = 15

Md /M⋆ = 0.05 Md /M⋆ = 0.1 Md /M⋆ = 0.25Md /M⋆ = 0.1 Md /M⋆ = 0.2 Md /M⋆ = 0.5

Figure 3.8: Morphology of GI spirals for different cooling factor β and disc to star mass ratio
Md/M⋆. All the simulations have been performed with the SPH code PHANTOM (Price et al.
2018b).

The critical value of beta has been a subject of extensive debate during the last twenty
years. Firstly, Gammie (2001) performed shearing box simulations of gravitational insta-
bility using the β−cooling prescription. He found that if the cooling timescale is faster
than approximately 3 times than the dynamical one, fragmentation occurs. Afterwards,
Rice et al. (2005) tackled this problem through three-dimensional global SPH simula-
tions. They found that, depending on the value of the γ coefficient, the critical value
of β is between 6 and 10. Meru & Bate (2010) and Meru & Bate (2011) performed high
resolution SPH simulations, and they did not find convergence in their results when
using a different number of gas particles. Lodato & Clarke (2011) proposed that this
behaviour could be driven by resolution effects. One year later, Meru & Bate (2012) ob-
tained evidence that convergence with increasing resolution occurs with SPH, as long as
the effects of numerical viscosity are taken into account1. Additionally, they also found
convergence for grid based codes, however the results were in contrast with the particle
based ones. From this analysis, they found that βcrit is larger than previously thought.
In particular, for γ = 5/3, the critical β is higher than 20, implying that young discs are
very likely to fragment. Finally, Deng et al. (2017) obtained convergence between SPH
and grid based codes, and the value of β below which fragmentation occurs is

βcrit = 3, (3.79)

as firstly proposed by Gammie (2001). A minimum value of β implies a maximum value
of α, i.e. the maximum amount of angular momentum that can be transported through

1In particular, the authors found that reducing the dissipation from the numerical viscosity leads to larger
values of the critical cooling time at a given resolution. This happens because the numerical dissipation in SPH
depends on the resolution.
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Figure 3.9: SPH simulation of a gravitationally unstable disc that shows fragmentation (left panel)
and thermal saturation (right panel) from Rice et al. (2005).

GI. For βcrit = 3, the maximum value of α is

αmax = 0.13, (3.80)

for γ = 5/3. Figure 3.9 shows both the cases of fragmentation and thermal saturation.

3.3.4 Accretion driven GI

In this section, we briefly discuss a second path to trigger gravitational instability, that is
the evolution of the disc surface density due to infall. We consider a disc with Q >> 1,
that undergoes infall from the environment such that Q, eventually, reaches the unity.
As the system reaches the marginal stability condition, gravitational instability turns on,
and transports angular momentum. In discs undergoing infall at some rate Ṁinf, it ex-
ists a regulation mechanism akin to thermal saturation. We suppose that gravitational
instability can provide accretion up to a maximum value Ṁmax,GI. If Ṁinf < Ṁmax,GI, the
disc can transport material at the same rate it is being fed, and the disc mass acts as a
regulator of the process (Kratter et al. 2010). Otherwise, if Ṁinf > Ṁmax,GI, the disc will
eventually fragment (Kratter et al. 2008). In order to predict what sets the maximum rate
of accretion induced by GI, Kratter et al. (2010) introduced two dimensionless param-
eters that are strong predictors of fragmentation driven by accretion. The parameters
are

ξ =
Ṁinf

c3s/G
(3.81)

and

Γ =
Ṁinf

MTΩ
, (3.82)

where MT is the total system mass (disc + envelope). The first parameter refers to the
isothermal sphere collapse rate, and the second one is the ratio between the dynamical
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Figure 3.10: Isothermal simulation of accretion driven gravitational instability from Kratter et al.
(2010). For different values of ξ and Γ, a steady configuration can be obtained (top left and bottom
left panel), or fragmentation can occur.

timescale and the mass doubling one. Kratter et al. (2010) performed a suite of three-
dimensional isothermal simulations of discs undergoing self-similar accretion (see figure
3.10), and found that fragmentation occurs when

Γ >
ξ2.5

850
. (3.83)

Afterwards, Offner et al. (2010) and Zhu et al. (2012) confirmed this results, using more
realistic thermal physics.

3.4 Planet formation through gas fragmentation

In the ’90s, the discovery of the first extrasolar giant planet (Mayor & Queloz 1995) pre-
sented a significant challenge to theorists, as the widely accepted core accretion model
could not explain the formation of such a massive planet, because of the too long timescale.
Boss (1997) proposed gravitational instability as an alternative paradigm for giant planet
formation. For disc to star mass ratios of the order of ≳ 0.1, the outer part of the disc
is likely to be marginally gravitationally unstable, according to the Q−criterion. If the
thermal saturation is not reached, because of a too short cooling time, gas fragmentation
can happen. Boss (1997) proposed gas fragmentation as a way to rapidly form planets in
the outer disc. One natural question to ask is: what is the typical mass of a GI fragment?
We expect that the mass of the fragment is of the order of the Jeans mass. In section 3.2.1
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we showed that the Jeans length for the quadratic dispersion relation is λJ = 2πHsg.
Thus, the Jeans mass is

MJ = Σλ2J = 4π

(
H

r

)4
M⋆

Md
M⋆ = 10−2

(
H/r

0.1

)4(
Md/M⋆

0.1

)−1

M⋆; (3.84)

this means that for a solar mass star, the typical Jeans mass is of the order of ∼ 10Mjup,
where Mjup is the Jupiter mass. It is important to note that this value is just an initial
mass. Indeed, the GI fragment will start accreting material in the disc, that is dense
because the disc is massive. This process will lead to runaway accretion, and to the
formation of a stellar companion (Kratter & Matzner 2006; Kratter & Lodato 2016) rather
than a planet. Indeed, the theoretical minimum mass a star must have to undergo fusion
at the core, is estimated to be about 75Mjup (Prialnik 2009), and it can be rapidly reached
in those conditions. Although it solves the timescale problem, the standard gravitational
instability scenario is not likely to explain the formation of planets, without invoking ad
hoc mechanisms, such as tidal downsizing Nayakshin (2017). However, there is ongoing
research whether this could explain the formation of giant planets in early discs, such as
AB Aur (Cadman et al. 2021).



CHAPTER 4

Gas kinematics in protostellar discs

Gas emission from planet-forming environments traces the kinematics of the disc, i.e.
the observed velocity field. Kinematics is a powerful tool to investigate physical phe-
nomena happening in protoplanetary discs, since it is possible to reach incredibly high
spatial and spectral resolution with ALMA telescope. This offers a unique opportunity to
map the velocity of these systems, investigating the physical conditions in which planets
form. Recently, ALMA observational campaigns have been pushing the resolution to in-
credible limits: an example is the MAPS large program (PI: K. Öberg, Öberg et al. (2021)),
whose aim was to map complex molecules’ emission in five protoplanetary discs. The
quality of these data is so high that velocities are measured with a precision of the order
of 100 m/s. Another ongoing ALMA large program is exoALMA (PI: R. Teague), whose
aim is to observe 15 protoplanetary discs at incredible high resolution to study the natal
environment of protoplanets. Here, the velocity resolution will be almost 4 times bet-
ter than in MAPS: these extraordinary data offer a unique opportunity to conduct high
precision kinematical studies

4.1 Velocity field in protostellar discs

The vast majority of the gas mass in protoplanetary discs is molecular hydrogen (H2)
that, because of its chemical structure, can’t be detected. This is primarily because the
molecule lacks a dipole moment due to its symmetry, and all ro-vibrational transitions
within the electronic ground state are quadrupolar, making them faintly observable in
the near infrared. Luckily, other gas tracers are available in protoplanetary discs: the
most abundant are isotopologues of carbon monoxide (CO). In particular, the most com-
monly used in kinematics are 12CO, 13CO and C18O. The spatial distribution of these
molecules depends on the disc characteristics and on the chemistry of these environ-
ments. In general, 12CO, which is the most abundant isotopologue, is not a good tracer
of the disc midplane, because its emission comes from the disc surface. On the contrary,
the other two less abundant CO isotopologues, 13CO and C18O, traces better the disc
midplane, since their emission is deeper. However, their spatial extent is smaller com-
pared to the 12CO. These molecules emit through rotational electromagnetic transitions
at a given rest frequency: this is called line emission. If the molecule is moving towards
the line of sight, the frequency of emission will be Doppler-shifted, according to its ve-
locity. By knowing the rest frequency and measuring the Doppler-shift, it is possible to
map the velocity field of protoplanetary discs.

What are the typical velocities in protostellar discs? Of course, the dominant motions
are the azimuthal ones. As a first approximation, azimuthal motions are Keplerian, and
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the magnitude is of the order of few km/s

vk =

√
GM⋆

R
= 2.97

(
M⋆

1M⊙

)1/2(
R

100au

)−1/2

km/s. (4.1)

In a pure viscous disc, radial motions are related to accretion processes; as shown in
chapter 2, their magnitude is very small, since accretion takes place in secular timescale.
A rough estimate of the radial velocity is

vR ≃ α

(
H

R

)2

vk = 0.297
( α

0.01

)(H/R
0.1

)2

m/s. (4.2)

The molecular emission is set both by the global velocity and the local linewidth.
In this context, a crucial velocity to take into account is the sound speed. As already
mentioned at the beginning of chapter 2, the sound speed is smaller compared to the
Keplerian motion, and its magnitude is of the order of ∼ 100m/s

cs =

√
kBT

µmp
= 281

(
T

20K

)1/2

m/s. (4.3)

4.2 A detailed model for the rotation curve of a protostellar disc

As mentioned before, the dominant motion in protostellar discs is the rotation around
the central object. Thanks to the incredibly high spatial and spectral resolution of ALMA
telescope, it is possible to study in detail the azimuthal velocity profile. Hence, a detailed
model for the rotation curve of a protostellar disc is needed. Here, we refer to the model
presented by Lodato et al. (2023).

In centrifugal balance, the rotation curve of a disc is given by

v2ϕ = R
∂Φ⋆
∂R

(R, z) +
R

ρ

∂P

∂R
(R, z) +R

∂Φd

∂R
(R, z), (4.4)

where the first term is the contribution of the stellar gravitational potential (see section
2.1.1)

R
∂Φ⋆
∂R

= v2k

(
1 +

z2

R2

)−3/2

, (4.5)

the second is the pressure gradient (see section 2.1.1)

R

ρ

∂P

∂R
= v2k

(
H

R

)2
∂ log ρ

∂ logR
, (4.6)

and the third term is the self-gravitating contribution of the disc (see section 3.1). We
assume that the disc surface density is described by the self-similar solution (see eq.
(2.44))

Σ(R) =
(2− γ)Md

2πR2
c

(
R

Rc

)−γ

exp

[
−
(
R

Rc

)2−γ
]
, (4.7)
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where Md is the disc mass and Rc is the scale radius. For what concerns the vertical disc
structure, we assume that the disc is vertically isothermal and that the density is given
by (see section 2.1.1)

ρ(R, z) = ρmid(R) exp

[
−R2

H2

(
1− 1√

1 + z2/R2

)]
. (4.8)

Radially, we assume the temperature to be a power law

T (R) = Tc

(
R

Rc

)−q

. (4.9)

Neglecting for the moment the disc contribution to the gravitational potential, the rota-
tion curve is given by

v2ϕ = v2k

{
1−

[
γ′ + (2− γ)

(
R

Rc

)2−γ
](

H

R

)2

− q

(
1− 1√

1 + (z/R)2

)}
, (4.10)

and this is valid for a tapered power law surface density, where v2k = GM⋆/R is the
Keplerian velocity and γ′ = γ + 3/2 + q/2. The disc contribution to the rotation curve is

v2d(R, z) = G

∫ ∞

0

[
K(k)− 1

4

(
k2

1− k2

)
× (4.11)

(
r

R
− R

r
+
z2

Rr

)
E(k)

]√
r

R
kΣ (r) dr,

and a discussion about this term is given in section 3.1. Since Σ scales as the disc mass,
it is easy to see that the disc contribution to the rotation curve is order O(Md/M⋆) with
respect to the standard Keplerian term.

We see that there are three corrections to a pure Keplerian profile. The first one is due
to the radial pressure gradient, it is sub-Keplerian (i.e. it is a negative contribution to v2ϕ
and is given by

δv2p
v2k

= −

[
γ′ + (2− γ)

(
R

Rc

)2−γ
](

H

R

)2

, (4.12)

where v2p is the pressure gradient contribution to the rotation curve (i.e. the term pro-
portional to (H/R)2 in eq. (4.10). This term is generally of the order of (H/R)2, and is
important in the outer part of the disc, since it increases with the radius. For typical val-
ues of γ′ and H/R, the correction due to the radial pressure gradient becomes important
for R ≳ 4Rc.

The second one is due to the fact that we evaluate the rotation curve at a finite height
z and is due to both the stellar gravitational field and the pressure gradient. It is also
sub-Keplerian and is given by

δv2z
v2k

= −q

(
1− 1√

1 + (z/R)2

)
≈ −q

2

( z
R

)2
, (4.13)

where v2z is given by the term proportional to q in eq. (4.10). Also this term is of order
of (H/R)2. Finally, the third correction is due to self-gravity, and it is a super-Keplerian
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Figure 4.1: The three sources of non Keplerianity in IM Lup as resulting from Lodato et al. (2023)
model. In blue, the self-gravitating term, in red the radial pressure gradient δv2p and in orange the
vertical height term δv2z (solid line for 12CO and dashed line for 13CO), emphasising the effect of
looking at the curve from an emission layer at a given height.
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contribution. The relative importance of these three corrections to Keplerian rotation
depends on the ordering of the two dimensionless parameters H/R and Md/M⋆. The
self-gravity correction is negligible when Md/M⋆ ≪ (H/R)2 ≈ 0.01. On the other hand,
for a marginally gravitationally unstable disc, for which Md/M⋆ ≈ H/R, the self-gravity
correction dominates over the pressure one1. At the same time, there may well be a
range of parameters such that (H/R)2 < Md/M⋆ < H/R, in which self-gravity gives
a dominant contribution to the rotation curve, while the disc is gravitationally stable
(Veronesi et al. 2021). Figure 4.1 shows the three sources of non Keplerianity for the disc
IM Lup, from Lodato et al. (2023). The most important terms are the pressure gradient
and the self-gravity, that contribute ∼ 5− 10% of the Keplerian velocity.

4.3 What we observe

The end product of molecular line observations is a datacube (see fig. 4.2). This object
has three axes, two spatial (sky coordinates) and a frequency one. Knowing the rest
frequency of the chosen molecular line and the systemic velocity of the system, the fre-
quency axis can be eventually converted into a velocity axis. As already mentioned,
most of the gas content of the disc is molecular hydrogen, that does not emit because of
its symmetry. Therefore, one should rely on molecular tracer such as CO isotopologues.
The emission of a molecule is spatially located in the region of the disc where it is most
abundant. This enables us to probe different vertical and radial regions of the disc with
different tracers. As an example, because of the different vertical distribution of the CO
isotopologues, the abundant 12CO traces a region that is about 3-4 times the hydrostatic
scale height H , while 13CO and C18O about one.

To understand what a velocity map looks like, we consider a protoplanetary disc
inclined towards the line of sight of an angle i. If we simply assume that gas particles
move with a purely azimuthal velocity, the projected velocity towards the line of sight
will be

vobs = vϕ sin i cosϕ, (4.14)

where vϕ is the azimuthal Keplerian velocity, ϕ is the azimuthal angle in the protoplan-
etary disc and i is the disc inclination (where i = 0 means a face-on disc). The observed
velocity field is divided into two parts: a blue-shifted one, where the observed velocity
is negative, and a red-shifted one, where it is positive. At a given frequency (veloc-
ity), molecular line emission is concentrated along an isovelocity curve, i.e. the region
where the projected velocity is constant. Since the velocity field of protostellar discs is
dominated by the Keplerian rotation, the isovelocity curves follow a butterfly pattern, as
shown in figure 4.2. In general, if the disc has azimuthal, radial and vertical velocities,
the observed velocity field will be

vobs = (vϕ cosϕ+ vR sinϕ) sin i+ vz cos i+ vsys. (4.15)

While pre-ALMA observations were able to probe just the Keplerian velocity of pro-
toplanetary discs (Sargent & Beckwith 1987; Dutrey et al. 2014), with ALMA it is possible
to spatially resolve the emission, and disentangle the upper and lower surface contribu-
tion (Disk Dynamics Collaboration et al. 2020).

An alternative way to look into kinematic data is to spectrally collapse the datacube
into moment maps. The most significant moment maps are the moment zero and the

1In the marginally unstable case Md/M⋆ ≈ H/R, and this comes from the fact that the Toomre-Q parameter
is equal to 1. Indeed, Q = H/R/(Md/M⋆).
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Figure 4.2: Graphical representation of a datacube, taken from Pinte et al. (2020).

moment one, and are computed as follows

M0 =

Nch∑
j

Ij , (4.16)

and

M1 =

Nch∑
j

Ijvj
M0

, (4.17)

where the index j runs over the channels and I is the intensity. The zeroth moment
displays the integrated intensity, hence it reveals the global morphology of the emission
(top right panel of figure 4.2), while the first moment is the intensity weighted average
velocity (central right panel of figure 4.2).

4.3.1 Extracting the height of the emitting layer

The combination of high spatial and spectral resolution and sensitivity offered by ALMA
allows us to directly map the disc thermal and kinematic structure, by resolving the gas
disc both radially and vertically. As a matter of fact, it is possible to locate gas emitting
surfaces, directly reconstructing the position and velocity of each layer. In this context,
discs at intermediate inclinations are ideal targets, as the Keplerian motion allows the
separation of the upper and lower emitting surfaces. The left panel of figure 4.3 displays
a schematic view of the various layers observed in the CO lines.

Pinte et al. (2018a) presented a simple geometrical method to reconstruct the position
of the CO emitting layers. To apply this method, the inclination and position angle of
the source should be known. Figure 4.3 displays the geometrical method. For a given
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Figure 4.3: Left panel: sketch of the various layers observed in the CO lines (Pinte et al. 2018a).
Right panel: schematic description of the geometrical method of Pinte et al. (2018a).

Figure 15. from
Charles J. Law et al 2022 Astrophys. J. 932 doi:10.3847/1538-4357/ac6c02
https://dx.doi.org/10.3847/1538-4357/ac6c02
© 2022. The Author(s). Published by the American Astronomical Society.

Figure 4.4: Upper and lower emission surfaces for 10 discs with mid-inclination, from Law et al.
(2022).

channel, the image is rotated of an angle PA, in order to have the disc semi major axis
parallel to the x axis. The position of the central object is marked by a star. For a given
offset δx along the disc major axis, there are two maxima in the emission (N and F), that
corresponds to the emission coming from the upper near and far side of the disc. These
points belong to the same inclined circular orbit, that is the white ellipsis. In order to
compute the ellipsis, the inclination of the disc is needed. At this point, the height of the
emission is simply computed as the offset between the centre of the ellipse (xc, yc) and
the star position (x⋆, y⋆), according to

h =
yc − y⋆
sin i

. (4.18)

In principle, if the data allows to, it is also possible to constrain the orientation of the
lower emitting surface. Figure 4.4 shows the geometrical method successfully applied
to a set of protostellar discs, where the two emission surfaces of CO are visible and
disentangled.
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Figure 4.5: Schematic view of the simple harmonic oscillator method to extract the velocity profiles
(Teague et al. 2018).

An important point to underline is that the geometrical method is valid if the emis-
sion originates from a vertically thin layer, so that the emitting layer is well-defined.
Thus, in the case of diffuse emission, this method does not give accurate results, as it
is not possible to define a proper emitting surface. A clear example of this is the outer
region of the IM Lup disc (Pinte et al. 2018a; Izquierdo et al. 2023), where the surface can
not be constrained. Another important assumption that has been made to derive this
method is that the disc is axisymmetric.

4.3.2 Extracting the velocity profiles

Extracting a velocity profile may appear straightforward at first, but it is a task full of
challenges. Several difficulties can emerge during the process, and there are instances
where the initial working assumptions are not respected, making this job exceptionally
demanding. Currently, there is significant ongoing research and effort to find the best
method to extract rotation profiles (e.g. Izquierdo et al. (2023)). So far, there are several
ways to do so: in this thesis we are not interested in characterizing each of them, and
we will present the “Simple harmonic oscillator” (SHO) method as an illustrative case.
We follow the explanation provided in Teague et al. (2018). Figure 4.5 gives a schematic
view of the process.

The first assumption we make is that the system is axisymmetric. If we know the
height of the emitting layer z(R) and the disc geometry (inclination and position angle),
we can associate the spectrum at any given (projected) location in the disc to its radial
distance from the centre of the disc. Because of the axisymmetric hypothesis, we expect
the spectra to have the same shape (i.e., peak and width), but to have their line centres
shifted by the local velocity of the disc, projected along the line of sight (vobs). Under
the assumption that the line profiles are the same, we can infer the underlying velocity
structure. The easiest approach to take into account the velocity shift is to describe the
line centroid as a harmonic oscillator. In the simplest case of only azimuthal motion, we
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recall the observed velocity

vobs(R,ϕ) = vϕ(R) sin i cosϕ+ vsys, (4.19)

where vϕ is the azimuthal velocity, vsys is the systemic velocity, i is the inclination of the
disc, and ϕ is the azimuthal angle in the disc plane. Note that ϕ and R are retrieved
from any projected location by assuming a thin emitting layer, with height z(R). Then,
there are different methods to fit the line centroids, as the Quadratic method and the
Gaussian method, each of them showing pros and cons. In particular, the Quadratic fit
is dependent on the velocity sampling, and it is also sensitive to the channel correlation.
As for the Gaussian method, note that the selected velocity range may affect the result
in case of skewed profiles. For a thorough explanation of these methods, see Teague
et al. (2018). Within this framework, the value of the azimuthal velocity at a fixed radial
location is the one that “aligns” the spectra (i.e. the location of their peak emission)
in the annulus in a velocity-azimuth plot, after shifting the spectrum at each azimuth
according to a cosine functional form. More generally, the Simple Harmonic Oscillator
(SHO) method is able to also obtain the radial velocity by modelling the velocity shift as

vobs(R,ϕ) = vϕ(R) sin i cosϕ+ vR(R) sin i sinϕ+ vsys. (4.20)

Yet, there is another feature that needs to be accounted for. It is known that the impact of
the disc lower emission surface on the observed velocities can be critical when it comes
to kinematical analyses of high resolution observations of molecular lines in discs (see
e.g. Izquierdo et al. (2021, 2022); Pinte et al. (2022); Izquierdo et al. (2023)). For instance,
the lower surface can systematically shift the centroid of the observed intensity profile
as a function of the disc coordinates, affecting the velocities derived via first moment
maps or via parametric fits to the line profile (see e.g. Fig A2 of Izquierdo et al. (2021)).
Alternatively, at the cost of velocity accuracy, some methods derive velocities around
the peak of the line profile to approximately account for the contribution of the disc
upper surface only (see e.g. Teague et al. (2018)). However, when the emission is opti-
cally thin, or even marginally optically thick, these methods struggle at distinguishing
between the two surfaces as the intensity contrast between both can be very small. An
alternative method to disentangle the signal coming from the upper and lower surface
is implemented in the code DISCMINER (Izquierdo et al. 2021, 2022, 2023), and consists
in using “double moment maps”, i.e. moment maps that fit the spectra with a double-
peak function. In this way, it is possible, in principle, to obtain the velocity field of both
surfaces. While this method works well for mid-high inclination discs, and for optically
thick tracers as the 12CO, when the emission coming from the upper and lower surfaces
can not be easily disentangled it fails. An example of this method working is shown in
figure 4.6, where both the signal coming from the upper and lower surface of the 12CO in
the disc HD 163296 have been successfully reconstructed using a double moment map.

4.3.3 Extracting the 2D thermal structure

Combining the line emitting surfaces and the peak surface brightness, it is possible to
extract the two-dimensional (R, z) temperature structure of protoplanetary discs. As
a matter of fact, the pixels in the datacube contain information about the peak surface
brightness that can be converted into gas temperature for optically thick lines. Hence, by
knowing the radial and vertical position of the emitting material, the temperature struc-
ture at the emitting layer can be probed. Combining multimolecular and / or different
transitions allows reconstructing the whole thermal structure of the disc. As already
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Figure 4.6: Reconstruction of centroid velocities from the lower and upper emitting surfaces of the
HD 163296 disc as observed in 12CO J = 2− 1 (Izquierdo et al. 2022).

mentioned, this method can be applied only to optically thick tracers, where the gas
brightness temperature is a good estimate of its temperature. At the typical densities
and temperatures of protoplanetary discs, the CO, and the 13CO J = 2 − 1 lines are
optically thick and in local thermal equilibrium (Weaver et al. 2018), hence these tracers
are perfect for this purpose. Each pixel of the datacube has the value of the peak surface
brightness Iν . Under the previous hypotheses, the associated gas temperature is

Tb =
hν

kB

[
log

(
2hν3

c2Iν

)
+ 1

]
. (4.21)

An example of this method applied to the discs belonging to the MAPS sample (Öberg
et al. 2021) is shown in figure 4.7 (Law et al. 2021).

4.4 Kinematic signatures

While the number of systems where kinematics studies can be performed is growing
year by year, it seems that most if not all the sources display kinematic substructures
on top of a smooth Keplerian rotation, when sufficient spatial and spectral resolution is
available. This is not surprising, since we know from dust continuum and scattered light
emission that protoplanetary discs are not flat, smooth and sub-structureless. In addi-
tion, inside these systems several physical phenomena take place, such as planet disc in-
teraction, disc binary interaction, disc instabilities, and these influence the velocity field
of gas particles. In figure 4.8 there is a collection of kinematic signatures, generated by
the presence of an embedded planet, a central binary, gravitational instability and verti-
cal shear instability. During the last few years, considerable attention has been devoted
to the study of kinematic signatures in planet forming discs, in order to characterize the
physical phenomena happening inside them.
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Figure 10. from
Charles J. Law et al 2021 Astrophys. J. Suppl. 257 doi:10.3847/1538-4365/ac1439
https://dx.doi.org/10.3847/1538-4365/ac1439
© 2021. The American Astronomical Society. All rights reserved.

Figure 4.7: Two-dimensional temperature structure of the discs in the MAPS sample, from Law
et al. (2021). The points correspond to the 12CO and 13CO emission, coming from different emitting
layers (the upper one is the 12CO, the lower one is the 13CO).

Figure 4.8: Collection of kinematic signatures in planet forming discs (Pinte et al. 2022).
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4.4.1 Planet-disc interaction: the kink

Protoplanetary discs are the environments where planets form, but directly imaging the
protoplanets is a hard job. The spectacular cases of PDS 70 Benisty et al. (2021); Fac-
chini et al. (2021) and HD 169142 (Hammond et al. 2023) are the only cases in which
we directly observe the emission coming from the planetary material, and these kinds
of detections have proven to be very challenging. Therefore, it is often more feasible to
investigate the effects that protoplanets exert on the accretion disc. One approach is to
study dust continuum emission, since we expect protoplanets to create dust substruc-
tures. Nonetheless, multiple mechanisms can explain the observed substructures, not
necessarily invoking the presence of an embedded planet (Bae et al. 2022; Paardekooper
et al. 2022). In this context, kinematics offers an alternative and complementary window
to investigate the presence of planets in protostellar discs (Disk Dynamics Collaboration
et al. 2020).

An embedded protoplanet interacts with the surrounding disc, exerting a gravita-
tional perturbation that leads to an exchange of energy and angular momentum. The the-
ory of satellite-disc interaction was first studied by Goldreich & Tremaine (1979, 1980),
who showed that a planet launches spiral density waves at the Lindblad resonances, in-
side and outside its orbit. These waves propagate away from the planet, disturbing the
density and velocity structure of the disc. While most of the previous works were in-
terested in the characterization of the density perturbations (Goodman & Rafikov 2001;
Rafikov 2002), recently Bollati et al. (2021) described the associated velocity field. Near
the planet, azimuthal disturbances prevail and are directly proportional to the planet’s
mass. In contrast, far away, radial motions dominate, and the deviations are propor-
tional to the square root of the planet mass. These perturbations can be up to 10% of the
Keplerian rotation. Under an observational point of view, the first kinematic evidence
of an embedded protoplanet was claimed by Pinte et al. (2019). What is the observed
kinematic feature associated to a planet? In a given channel map, the emission is con-
centrated along the isovelocity curve. In the presence of an embedded protoplanet, the
flow is gravitationally perturbed, and an additional Doppler shift is induced. Hence, the
isovelocity curve is distorted, and the emission shows a “kink”, localized in the position
of the planet. Hence, we expect to observe a strong non-Keplerian signature in the chan-
nel where the isovelocity curve crosses the embedded planet. Figure 4.9 from Pinte et al.
(2020) displays the kink in the HD 97048 system, showing how the kink corresponds
to the gap in dust continuum emission. Nevertheless, when enough spatial and spec-
tral resolution are available, it is also possible to appreciate the kinematic effects of the
planetary wake far from the position of the planet, as shown by Izquierdo et al. (2022);
Calcino et al. (2022) in the case of HD 163296. Another spectacular case of velocity kink
can be found in the system J 1604 (Stadler et al. 2023). Here, since the disc is almost face
on, vertical motions dominate the kinematics, showing a strong red-shifted signal at the
location of the planet.

4.4.2 Gravitational instability: the GI wiggle

As pointed out in the previous paragraph, the presence of a spiral density wave perturbs
the azimuthal and radial velocity components. In addition to planets, gravitational in-
stability also generates spiral density waves (Kratter & Lodato 2016).

Hall et al. (2020) demonstrated through numerical SPH simulations that a disc under-
going gravitational instability shows clear kinematic signatures in molecular line emis-
sion. These signatures are referred to as “GI wiggle”, and they consist in a “zig-zag”-like
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Figure 4.9: ALMA observations of the disc surrounding HD 97048, showing a kink in the 0.96km/s
channel of the 13CO J = 3− 2.

Figure 4.10: Left panel: observed velocity relative to Keplerian rotation, with the line vobs−vk,obs =
0 drawn in black. Central panel: surface density calculated by integrating along the line of sight
at an observed inclination angle i = 30◦. the line vobs − vk,obs = 0 is shown in black. Right panel:
comparison between GI and Keplerian channels, showing the “zig-zag” like feature. Taken from
(Hall et al. 2020).
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feature over all the channels. As a matter of fact, opposed to the planetary driven spi-
rals, these perturbations are global, rather than localized. Indeed, GI spirals continually
perturb the disc velocity field of the disc, regardless of the position. When crossing a
spiral arm, the velocity of the gas is perturbed. In particular, within the spiral arms,
the velocity increases compared to the Keplerian background. Consequently, this causes
emissions to shift towards the neighbouring channel associated with a higher velocity, as
displayed in the right panel of figure 4.10. Conversely, in the areas between the arms, the
opposite effect occurs. This leads to the emergence of the “interlocking finger” structure,
as depicted in the left panel of figure 4.10.

Since the velocity perturbations are caused by spiral arms, understanding their mor-
phology is crucial. As shown in chapter 3, the disc to star mass ratio and the cooling
factor determines the spirals’ properties. Hence, we expect these parameters to be re-
lated to the amplitude and the frequency of the wiggle. An analytical description of the
velocity perturbation driven by gravitational instability is given in chapter 6.



CHAPTER 5

Dust in protostellar discs

Solid particles in protoplanetary discs are considered the fundamental building blocks
for the planets. Specifically, according to the core accretion model, planets form sequen-
tially from the solid component within these discs. For this reason, studying the dynam-
ics of dust particles in protoplanetary discs is of paramount importance. Dust and gas in
planet forming environments aerodynamically interact through drag forces. Because of
their physical properties, the dynamical behaviour of the two components can be very
different, sometimes questioning our understanding of the planet formation process. In
addition, dust dominates the opacity of protoplanetary discs, determining the thermal
structure and the millimetric emission observable with ALMA.

5.1 Aerodynamical coupling: drag force

Although protoplanetary discs are considered to be a mixture of gas and dust, we begin
our description of dust dynamics by considering a system composed of a single solid
particle embedded in a gas fluid. At this stage, we also assume that the dust does not
affect the gas dynamics. This description can then be generalized to a two-fluid system.

We assume dust grains to be spherical with radius s, intrinsic density ρ0 and mass
mp = 4/3πρ0s

3. We will refer to dust velocity as vd, and for the gas vg . Since the drag
force between gas and dust tends to damp the relative velocity ∆v = vd−vg, it is directly
proportional to this velocity difference, and its expression is

|Fd| =
1

2
fCDπs

2ρ|∆v|2, (5.1)

where CD is a coefficient that depends on the drag regime, ρ is the total density1 and
f is a correction factor to take into account the case where the relative motion between
the gas and dust in protoplanetary discs is supersonic. Its expression is given by (Kwok
1975)

f =

√
1 +

9π

128

(
|∆v|
cs

)2

. (5.2)

The different aerodynamical coupling regimes depend upon the size of dust particles rel-
ative to the gas mean free path. It is possible to define a dimensionless parameter, called
the Knudsen number (Paardekooper & Mellema 2006), that measures this property

Kn =
9λg
4s

, (5.3)

1In the case of a single dust grain embedded into a gas fluid, the total density is just the gas density. In the
general case, the total density ρ is the sum of the gas and dust ones.
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Figure 5.1: Dust particle in Epstein (top) and Stokes (bottom) regime, taken from G. Dipierro PhD
Thesis.

where s is the dust particle size and λg is the gas particles’ mean free path, given by

λg =
µmp

ρgσcoll
, (5.4)

where σcoll is the cross-section of molecular hydrogen, µ = 2.1 is the mean molecular
weight, ρg is the gas density and mp is the mass of the proton. Typically, in protoplan-
etary discs, Kn > 1, meaning that the dust particles’ size is smaller than the gas mean
free path: this is called the Epstein regime. However, when the disc is very massive,
there is a transition between Epstein and Stokes regime (Kn < 1), since the gas density
increases. The main impact of this transition is that in the inner denser region of the disc,
where particles’ size is comparable with the gas mean free path, the drag force is weaker
compared to Epstein regime. The CD coefficient is given by (Fassio & Probstein 1970)

CD =


8vth
3|∆v| Kn > 1

24Re−1 Kn < 1, Re < 1

24Re−0.6 Kn < 1, 1 < Re < 800
0.44 Kn < 1, Re > 800

(5.5)

where cg is the gas sound speed and the Reynolds number based upon the difference of
velocity is given by

Re =
2s|∆v|
ν

= 4
s|∆v|
λgcs

, (5.6)

and the last equivalence is true for collisional viscosity. Another important quantity to
define is the stopping time, i.e. the time needed to modify the relative velocity between
gas and dust. The longer it is, the less the particles are coupled. For spherical grains, it
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is given by

ts =
md|∆v|
|FD|

=
8ρ0s

3CDρ|∆v|
. (5.7)

In order to measure the strength of the aerodynamical coupling, it is very useful to define
a dimensionless parameter as the ratio between the stopping time and the dynamical
one. It is called Stokes number and, in general, its expression is

St = tsΩ =
8

3CD

(
ρ0
ρ

)(
vk

|∆v|

)( s
R

)
. (5.8)

As mentioned before, for typical protoplanetary discs, the gas mean free path is much
larger than the dust particle size, hence the drag force is well described by the Epstein
regime. Expanding eq. (5.8) in the Epstein regime, we obtain

St = γ1/2
π

2

ρ0s

Σ(R)
exp

[
z2

2H2

]
= Stmid(R) exp

[
z2

2H2

]
, (5.9)

where we have used that ρ = Σ/
√
2πH2 exp

[
− z2

2H2

]
. The Stokes number is a function of

the position (R, z) in the disc, being inversely proportional to the density ρ. In general,
solid particles are less coupled in low-density regions, hence in the outer disc and at
z > H . We consider a protostellar disc with a mass of 0.01M⊙ and a radial extent of
100au, the typical Stokes number for mm-sized dust particles at the disc midplane is

St ≃ 1

(
Σ

1.4g/cm2

)−1(
ρ0

3g/cm3

)( s

1mm

)
. (5.10)

The smaller the Stokes number is, the more tightly the particles are coupled: so, for
St → 0, dust dynamics follows the gas one, while for St → ∞, the two fluids do not
aerodynamically influence each other. Hence, the Stokes number refers to the degree
of coupling of dust particles, since it compares the strength of the drag force with the
ones that are acting on the particles, i.e. the gravitational attraction of the central object.
However, this is not a general definition, since the main forces acting on particles can
be different. As an example, in the case of a particle accreting onto a planetary core, the
Stokes number should compare the stopping time with the free fall time, because the
gravitational attraction of the planetary core is driving the particle evolution.

The dynamics of dust particles within protoplanetary discs is influenced by the aero-
dynamical interaction with the surrounding gas, and vice-versa. Because the gas-to-dust
ratio is quite high during the formation of the disc, usually assumed to be 100, we can
in general describe the coupling between dust and gas using the framework that has
just been introduced. However, in some cases, the dynamical role of the dust is non-
negligible, being its concentration so high to drive gas evolution. Some of these cases
will be discussed at the end of this chapter.

So far, we have just described the dynamics of a single dust grain embedded into
a gas flow. Now, we make a step forward in modelling the dynamics of solid parti-
cles, by considering dust as a continuum. This approach allows computing macroscopic
fluid quantities, as density, velocity field, and describing the dynamics through the fluid
equations. A physical assumption that is always made is to consider dust as a presure-
less fluid. This is justified because the rate of collision between dust particles is very low
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compared to the one between particles and gas in protoplanetary discs. As a matter of
fact, the collision timescale between two equally-sized dust grains is

tcoll =
ρ0s

ρdvcoll
, (5.11)

where ρd is the dust volume density, ρ0 is the intrinsic density of a dust grain and vcoll
is the collisional velocity between two dust particles. To understand the importance of
dust-dust collisions, we compare this timescale with the stopping time in the Epstein
regime

tcoll

ts
=
ρg
ρd

cs
vcoll

. (5.12)

This ratio depends on the gas-to-dust ratio, which typically is >> 1, and on the ratio
between the sound speed and the collisional velocity. In a typical protoplanetary disc,
the relative velocity between dust particles is always sub-sonic (Cuzzi & Hogan 2003;
Ormel & Cuzzi 2007; Birnstiel et al. 2016), hence the ratio between the collision time and
the stopping time is higher than 1, making the presureless fluid hypothesis well justified.

5.2 Dust dynamics

In this section, we study the effects of the aerodynamical coupling on the dust dynamics.
The system we are going to analyse consists of a dust-gas mixture in a thin, axisymmet-
ric, non-magnetic, non-self-graviting, viscous and vertically isothermal disc. We treat
the dust phase as a pressureless and viscousless fluid of equally-sized solids. The fluid
equations for this system are

∂Σg
∂t

+∇ · (Σgvg) = 0, (5.13)

∂Σd
∂t

+∇ · (Σdvd) = 0 (5.14)

∂vg
∂t

+ (vg · ∇)vg = − 1

ρg
(∇P −∇ · σ)−∇Φ− 1

ρg
FVd , (5.15)

∂vd
∂t

+ (vd · ∇)vd = −∇Φ+
1

ρd
FVd , (5.16)

where FVd is the drag force per unit volume, defined as

FVd =
ρd
ts

∆v. (5.17)

We note that eq. (5.15) is the Navier-Stokes equation already discussed in the previous
chapter, with an additional force given by the dust backreaction. We underline that the
effect of the drag force onto the gas component is weaker of a factor ρd/ρg < 1, that is
the dust to gas ratio.

The main effects of the aerodynamical coupling between gas and dust in protoplane-
tary are the vertical settling and the radial drift of solid particles. These phenomena are
crucial in the context of planet formation.
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5.2.1 Vertical settling

Dust particles tend to settle into the midplane, and their behaviour depends on the cou-
pling with the gaseous component. In order to study this phenomenon, we write the
vertical equation of motion for the dust and we solve it. Writing eq. (5.16) in cylindrical
coordinates and assuming the backreaction to be negligible, the vertical motion of dust
grains is given by the Langevin equation (Youdin & Lithwick 2007)

∂vd,z
∂t

= −Ω2
kz +

vg,z − vd,z
ts

. (5.18)

Supposing that the gas flow is stationary (vg,z = 0), the equation of motion of dust grains
is

d2z

dt2
+

1

ts

dz
dt

+Ω2
kz = 0, (5.19)

that describes a damped harmonic oscillator. We re-scale the time t with respect to the
dynamical time of the system, defining τ = Ωkt, and the equation becomes

d2z

dτ2
+

1

St
dz

dτ
+ z = 0, (5.20)

where the Stokes number naturally appears. We solve the differential equation with the
ansatz z ∝ exp(λτ), and the characteristic polynomial is

λ2 +
λ

St
+ 1 = 0, (5.21)

which has the two solutions

λ1,2 = − 1

2St

(
1±

√
1− (2St)2

)
. (5.22)

According to the sign of the discriminant ∆ = 1 − (2St)2, there are two classes of solu-
tions. For ∆ > 0 and St < 1/2, λ1,2 are real and z(t) is an over damped oscillation; for
∆ < 0 and St > 1/2, λ1,2 are complex and z(t) is an under damped oscillation. Before
continuing, it is important to underline that we are considering the Stokes number to
be constant with z, which is not true in general (see eq. (5.10)). Hence, the following
arguments are valid only in the limit z << H , where H is the hydrostatic scale height of
the gas.

Over damped oscillation, St < 1/2

If St< 1/2, dust particles are strongly coupled. The solution in this case is

z(t) = A exp[λ1τ ] +B exp[λ2τ ], (5.23)

where A,B are set by the initial conditions, that are z(0) = z0 and ż(0) = 0. We expand
∆ for St<< 1/2

lim
St<<1/2

∆ = 1− 2St2 → λ1,2 = {−St,−1/St}, (5.24)

and this allows to write the solution as

z(t) = A exp[−Stτ ] +B exp[−τ/St]. (5.25)

Since second term goes to zero fast, the typical timescale for settling in this regime is

tsettle =
1

StΩk
> tdyn. (5.26)
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Underdamped oscillation, St > 1/2

If St> 1/2, dust particles tend to be decoupled from the gas ones. In this case, the solu-
tions of the characteristic polynomials are

λ1,2 = − 1

2St
∓ i

√
|∆|
2St

= − 1

2St
∓ iγ, (5.27)

and the solution of the equation of motion is

z(t) = z0 exp
[
− τ

2St

]
(sin(γτ) + cos(γτ)) . (5.28)

The typical timescale for settling in this regime is given by

tsettle =
2St
Ωk

> Ω−1
k = tdyn. (5.29)

We have just shown that if St < 1/2, the settling time grows like 1/St, while if St > 1/2,
the settling time grows linearly with the Stokes number: this happens because highly
coupled dust particles follow the gas vertical shape H , while uncoupled particles oscil-
lates vertically with a small drag force.

In Figure 5.2, the two solutions are shown. The blue line represents the behaviour
of strongly coupled dust particles, with the evolution of the variable z following an
exponential-like function. Conversely, the orange line illustrates the behaviour of weakly
coupled dust particles, characterized by oscillations around the midplane, gradually de-
creasing in amplitude.

5.2.2 Turbulent vertical settling

In the previous analysis, we assumed that the gas vertical motions are negligible com-
pared to the dust ones, which is only valid in absence of sustained turbulent motions.
However, the gas disc is expected to be highly turbulent, especially in the upper layers.
The turbulence is expected to stir dust particles up to high altitude and prevent dust
sedimentation.

We describe gas and dust as two different fluids, with density ρg(R, z) and ρd(R, z).
The dust density evolution due to settling and diffusion can be computed for low dust-
to-gas ratio ϵ = ρd/ρg << 1, and it reads (Clarke & Pringle 1988)

∂ρd
∂t

=
∂

∂z

[
Dd,zρg

∂

∂z

(
ρd
ρg

)]
+

∂

∂z
(zΩStρd), (5.30)

where Dd,z is the vertical diffusion coefficient for dust particles. This equation is called
advection diffusion equation, where the advective term is the first derivative (settling)
and the diffusive term is the second derivative (turbulent diffusion). We look for steady
solutions, and the equation becomes

1

ϵ

dϵ
dz

= −ΩStmid

Dd,z
z exp

[
z2

2H2
g

]
(5.31)

where we use eq. (5.9) for the Stokes number. In order to integrate the previous equa-
tion, the knowledge of Dd,z is required. In general, it is a function of z and of the Stokes
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Figure 5.2: Dust settling for different Stokes number. The curves show the two different regimes

number, however its expression is unknown. We make the hypothesis that it is con-
stant along the vertical direction, and that it can be approximated with the gas kinematic
viscosity ν. Making this hypothesis, the solution for the advection diffusion equation is

ρd(R, z) = ρd,0 exp

{
− z2

2H2
g

− Stmid

α

[
exp

(
z2

2H2
g

)
− 1

]}
, (5.32)

where we have used the α−prescription. Close to the midplane (z < Hg, and St ∼ Stmid),
this profile approaches to a Gaussian with scale height

Hd = Hg

√
α

α+ St
. (5.33)

This equation clearly shows that dust settling towards the midplane is balanced by tur-
bulent diffusion, which determines the thickness of the dust disc. Additionally, this
result shows that the sedimentation of particles is more effective in the outer part of the
disc, where the Stokes number is higher, the drag force is weaker and hence the turbu-
lence can not stir up dust particles.

5.2.3 Radial drift

As mentioned earlier, the aerodynamic interaction between gas and dust imparts a radial
motion to solid particles, which eventually prevents planet formation. The nature of this
phenomenon can be ascribed to the different motions between the two phases, both in
the radial and azimuthal direction. These kinematic differences are linked to the different
nature of the two fluids. Indeed, the gas feels the pressure, that makes its azimuthal
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velocity sub-Keplerian, and the viscosity, that generates a negative radial velocity. On
the contrary, the dust is pressureless and inviscid, hence a freely orbiting dust particle
feels only centrifugal forces and gravity, and should therefore be in a Keplerian orbit
without any radial motion.

Hence, dust particles feel a continuous headwind in the azimuthal direction, and a
crosswind towards the central object from the gas flow. The headwind causes dust parti-
cles to lose angular momentum, and spiral towards the central object. This behaviour is
a direct consequence of the aerodynamical coupling between the two components, since
the drag force tends to delete velocity differences. This is known as radial drift. On the
other hand, the crosswind pushes dust particles towards inner radii, according to the
viscous velocity of the gas. This is known as drag.

For simplicity, we write the gas azimuthal velocity as

vg,ϕ ≃ vk(1− η), (5.34)

where η = n/2(H/R)2 from eq. (2.26). We write equations (5.15) and (5.16) in cylindrical
coordinates, we rearrange them, and we obtain

dvd,R
dt

=
1

R
(v2d,ϕ − v2k)−

1

ts
(vd,R − vg,R), (5.35)

that is the centrifugal balance, and

d
dt

(Rvd,ϕ) = −R
ts
(vd,ϕ − vg,ϕ), (5.36)

that is the conservation of angular momentum. We suppose that the radial velocity is
smaller compared to the azimuthal one, meaning that the solid particles spiral towards
the central object through a succession of circular orbits. This allows us to re-write the
temporal derivative of the angular momentum as

d
dt

(Rvd,ϕ) = vd,R
d

dR
(Rvd,ϕ) ≃

1

2
vd,Rvk, (5.37)

where we have also assumed that the dust azimuthal velocity is Keplerian, at zeroth
order. The dust radial velocity is hence

vd,R = − 2

St
(vd,ϕ − vg,ϕ). (5.38)

We are interested in steady state solutions, hence we set the time derivative of eq. (5.35)
to zero, and we obtain

1

R
(vd,ϕ − vk)(vd,ϕ + vk)−

1

ts
(vd,R − vg,R) ≃

2vk
R

(vd,ϕ − vk)−
1

ts
(vd,R − vg,R) = 0, (5.39)

where we have used vd,ϕ + vk ≃ 2vk. After some algebra, we get the expression for the
radial and azimuthal velocity of dust particles

vd,R = −|vg,R|+ 2ηvkSt
1 + St2

, (5.40)

vd,ϕ =
St2

1 + St2

[
vk − vg,ϕ

(
1− 1 + St2

St2

)]
. (5.41)
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Figure 5.3: Radial and azimuthal velocity of solid particles for different value of the η parameter
and for vg,R = 10−5vk. The effect of the radial drift (left panel) is maximum for St= 1

The left panel of figure 5.3 shows the radial velocity of dust particles for different
values of the η parameter (i.e. different gas pressure gradient). It is evident that the
radial velocity of dust tends to the gas one for St → 0, that is the standard viscous
velocity. For St= 1, solid particles experiences the strongest radial drift, since |vd,R| is at
its maximum. For St → ∞, solid particles are decoupled from the gas and the role of the
drag force becomes negligible, and their radial velocity is zero.

It is useful to evaluate the radial drift timescale for St = 1 particles, to understand the
strength of this process. For St = 1, the dust radial velocity is vd,R ≃ 2ηvk ≃ (H/R)2vk,
and so

tdrift =
R

vd,R
≃
(
H

R

)−2

Ω−1 = 100

(
H/R

0.1

)−2(
R

1au

)3/2

yr. (5.42)

At 1au the radial drift timescale is of the order of ∼ 100yr, that is incredibly small com-
pared to the disc lifetime. Hence, as soon as the Stokes number of dust particles reaches
1, they inevitably drift towards the central object in a very small timescale. In a typical
protoplanetary disc, this occurs for mm-sized dust particles (see eq. (5.10)). Hence, we
expect that millimetre dust grains rapidly drift towards the central object, preventing the
formation of planetary objects. This is known as radial drift barrier to planet formation
(Weidenschilling 1977).

5.2.4 Dust trapping

Under an observational perspective, there is evidence of millimetre dust grains in pro-
tostellar environments, even though we would expect them to be drifted towards the
central object because of the radial drift. To explain the retention of marginally cou-
pled solid particles in protostellar discs, a mechanism that slows down the radial drift
is needed, usually referred to as “dust traps”. Several ideas have been proposed, such
as planet-disc interaction, spiral arms, vortices, snowlines, magnetic winds (Pinilla et al.
2012; Rice et al. 2004; Dipierro et al. 2015a; Gonzalez et al. 2017; Suriano et al. 2018).
These are just a handful of examples, and the common feature of these effects is a ra-
dial and/or azimuthal inhomogeneity in the gas density that traps dust particles in the
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Figure 5.4: Illustration of the dust trapping mechanism, from Whipple (1972). Since the gas pres-
sure gradient changes from positive to negative on one side of the inhomogeneity to negative on
the other, the gas orbital velocity changes from super- to sub-Keplerian causing dust grains to drift
toward the density/pressure maxima.

over-pressure region. As a matter of fact, as a consequence of the barotropic hypothesis
(P = c2sρ), the pressure is proportional to the density, and hence a density maximum
corresponds to a pressure maximum. Since the gas pressure gradient changes sign when
crossing the inhomogeneity, the gas azimuthal velocity changes from sub-Keplerian to
super-Keplerian, causing dust grains to drift towards the density/pressure maximum.
This mechanism is generally referred to as dust trap, and it is able to prevent radial drift
of solid particles. A schematic view of the dust trapping mechanism is shown in figure
5.4 taken from Whipple (1972).

Observationally speaking, there are several evidences of dust trapping. One remark-
able example is given by Rosotti et al. (2020). They compared the dust brightness tem-
perature profile with the rotation curve of gas, after subtracting a Keplerian background.
This quantity is tracing the non-Keplerian component of the rotation curve that, in the
case of negligible disc self-gravity, is the pressure gradient. This term, as shown in chap-
ter 4, is proportional to the derivative of the pressure profile. In figure 5.5 it is possible
to see that the maxima of the dust brightness temperature (i.e. dust rings) correspond
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Figure 5.5: Dust continuum emission profile (top panel) where the location of the continuum peaks
are marked, and rotation curve (bottom panel) of HD 163296 (Rosotti et al. 2020). The continuum
peaks corresponds to the location where the rotation curve transitions from super-Keplerian to
sub-Keplerian. This is an indication that dust trapping in gas pressure maxima is the origin of
dust substructures.

to the zero velocity shift, indicating that dust overdensities are caused by trapping in
pressure maxima.

5.3 Planet formation: core accretion theory

Studying dust dynamics is essential to understand planet formation. As a matter of
fact, the classical theory of planet formation is the Core Accretion model (Safronov 1969;
Goldreich & Ward 1973) (hereafter CA), and it is completely focused on dust dynamics.
Four stages can be identified, according to the grains’ size and Stokes number: (i) dust
growth, (ii) planetesimal formation, (iii) collisional growth and (iv) core accretion.

Dust growth

The first stage is called “dust growth” (Drażkowska & Dullemond 2014) as dust coagu-
lates from micron-size to centimetre-size through microphysical mechanisms. The way
in which dust can grow up to cm-size is fostered by the vertical settling of the dust disc,
and in general it is very well understood, both theoretically and observationally (Testi
et al. 2014). At this stage, the Stokes number is below unity, and it increases according to
the dust grains’ size. The problem arises when St = 1 is reached: indeed, at this point,
radial drift is maximum, stopping the process of dust growth. In addition, when St = 1,
the critical dust size scrit is proportional to the surface density Σ according to 5.10. As
the disc evolves, the surface density decreases because of accretion, and the critical dust
size does so. This fact goes against planet formation, since the radial drift barrier occurs
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sooner.

Planetesimal formation

The second stage is called “planetesimal formation” and it has not yet been completely
understood. As a matter of fact, it is not clear how dust grows from centimetre to kilo-
metre size, forming the so-called planetesimals. Indeed, during this stage the Stokes
number is ∼ 1 and thus radial drift effect is maximum. For this reason, the presence of
a mechanism that stops radial drift is fundamental for planet formation, otherwise dust
growth would stop (Weidenschilling 1977).

Collisional growth

The third step is called “collisional growth”. Through scattering and collisions, planetes-
imals grow, eventually reaching planetary cores sizes. Collisions between planetesimals
are fostered by the so-called “gravitational focusing”. According to this mechanism, the
geometrical cross-section increases because of gravitational attraction, making planetes-
imal collisions more likely to happen. Through classic Newtonian physics, it is possible
to show that for two planetesimals with mass mpl, radius Rpl and relative velocity σpl,
the effective cross-section is

Γeff = Γg

(
1 +

v2esc

σ2
pl

)
, (5.43)

where Γg = πR2
pl is the standard geometrical cross-section and v2esc = 4Gmpl/Rpl is

the escape velocity. Hence, the effect of gravitational focusing is significant if the es-
cape velocity is higher compared to the relative velocity of the planetesimals. This lat-
ter quantity can be interpreted as a dispersion velocity of the dust planetesimal layer.
Since the planetesimal mass scales as mpl ∝ R3

pl, the escape velocity is proportional to

v2esc ∝ R2
pl ∝ m

2/3
pl . In terms of cross-section, it reads

Γeff ∝

{
m

2/3
pl , vesc < σpl

m
4/3
pl , vesc > σpl

(5.44)

This means that the higher is the mass of the planetesimals, the bigger is the effect of
gravitational focusing. This effect promotes the growth of bigger planetesimals and for
this reason it is called “oligarchic growth” (Kokubo & Ida 1998).

Core accretion

The last stage is “core accretion”, in which planetary cores accrete gas forming their
atmospheres and, under certain conditions, become gaseous giants (Stevenson 1982).
By imposing the hydrostatic equilibrium for the planetary core and its atmosphere2, it
is possible to show that there is a critical core mass, above which the atmosphere is
unstable. This corresponds to the formation of a gaseous giant planet. The value of the
critical mass is

Mcr = 12

(
Ṁc

10−6M⊕/yr

)1/4(
kR

1cm2/g

)1/4

M⊕. (5.45)

2To do so, it is necessary to specify the core accretion rate Ṁc and the atmosphere opacity kR.
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It is not easy to reach the critical mass since the required accretion rate is high. In partic-
ular, in the outer disc, where the surface density is low, the accretion onto the core is less
efficient.

Although this model currently provides the most popular explanation for the for-
mation of planets, it has been shown that formation timescales may be anywhere up
to ∼ 10Myr, exceeding typical disc lifetimes (Haisch et al. 2001), specifically in the case
of giant planets in the outer disc. For example, the formation of systems as HD100546
(Fedele et al. 2021) or CIDA 1 (Pinilla et al. 2021; Curone et al. 2022) is particularly chal-
lenging for CA theory.

Table 5.1: Table that resumes size of dust grains and Stokes number of different stages in Core
Accretion theory.

Stage Grain size St
Dust growth µm → m < 1
Planetesimal formation m→ 10km ∼ 1
Collisional growth Planetary cores > 1
Core accretion Planets -

5.4 Dust and self-gravity

So far, we have just studied situations in which the dust density is so low that it is neg-
ligible in terms of global evolution of the disc. However, this condition may be violated
due to interplay between vertical settling, radial drift and dust trapping. In particular,
if dust concentration is high enough, the role of its self-gravity becomes dynamically
important, and new physical effects may occur. In this section, we present the so-called
“Goldreich-Ward” mechanism, we discuss how gravitational instability works in a two
phases fluid and how dust is trapped inside gas spiral arms.

5.4.1 Goldreich-Ward mechanism

Safronov (1969) and, independently, Goldreich & Ward (1973) proposed that a thin dust
layer located at the disc midplane may be gravitational unstable, and such instability
might result in the prompt for planetesimal formation. The basic idea is illustrated in
figure 5.6, and it involves three stages

1. Initially, dust particles are well mixed with the gas. The degree of solid particles
concentration is too low to be dynamically important.

2. Over the time, dust grows and settles to the midplane, forming a dense thin layer
around the z = 0 plane. Also radial drift can play an important role in increasing
dust concentration.

3. The combination of high surface density and low dispersion velocity makes the
dust layer gravitationally unstable, and this may lead to the formation of bound
clumps of particles, which rapidly agglomerate to form planetesimals.

Although this mechanism might seem a possible way to solve the conundrum of
planetesimal formation, there are some caveats that we should point out. Firstly, we
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assume that the dust possess a dispersion velocity cd, and that it is related to its scale
height Hd according to the hydrostatic equilibrium

cd = HdΩ. (5.46)

At zeroth order, the stability of a particle layer can be determined according to the
Toomre criterion, defining the Toomre parameter for the dust

Qd =
cdΩ

πGΣd
= Qg

Hd

Hg
ϵ−1, (5.47)

where ϵ is the dust to gas ratio. The Qd = 1 condition can be translated into

Hd =
ϵHg

Qg
≃ Hg

100Qg
, (5.48)

where we took a dust-to-gas ratio of 1/100. Hence, the thickness of the dust layer must
be, at least, two order of magnitude smaller compared to the gas one. Such a razor-thin
disc is not implausible, indeed the vertical thickness of Saturn’s rings, for example, is
of the order of only 10 m. However, in a gas-rich environment such a protoplanetary
disc, we need to verify whether turbulence will preclude the particle layer from ever
becoming so thin. Using eq. (5.33) for the dust scale height, it is clear that the Goldreich-
Ward mechanism can not work for small dust particles (low Stokes number), unless α is
very small. Additionally, since the Stokes number is higher at large radii, it is likely that
Goldreich-Ward mechanism works in that region of the outer disc.

Cuzzi et al. (1993) introduced the concept of self-induced turbulence, that can prevent
the dust particle layer to settle to the point of being unstable. If we consider a thin dust
layer settled at the midplane, the gas is sub-dominant and the orbital velocity of the
flow is determined by solid particles, being then Keplerian. Just above the particle layer,
the gas becomes dominant and hence the velocity of the flow is comparable with the
gas one, being sub-Keplerian. As a consequence, there is a vertical shear that can, in
principle, be unstable to the development of Kelvin-Helmholtz instability. This self-
excited turbulence can prevent the particle layer from ever settling to the point where
self-gravity could set in.

5.4.2 Two-fluid instability

It is possible to move toward a more realistic description of the gravitational stability
of a two phases fluid. The stability for a multi-phase fluid is, in general, different from
the single-fluid case. This topic first captured interest within the context of galactic dy-
namics. In galaxies, the two components are stars and gas. Stars are the most abundant
and the “hot” component, where hot refers to the dispersion velocity of the fluid. As
for the gas, it is less abundant and cold. In protoplanetary discs, the situation is similar:
here, the hot (cold) and most abundant (less abundant) component is the gas (dust). The
two components can be described as two different fluids with surface density Σh, Σc and
sound speed3 ch and cc, where the subscript h refers to the hot component (stars in galax-
ies, gas in protostellar discs) and c to the cold one (gas in galaxies and dust in protostellar
discs.). In both galaxies and protoplanetary discs, the hot component is more abundant

3In protoplanetary discs, the gas possesses a sound speed that is generated by thermal processes (c2g ∝ T ).
As for the dust, this quantity is a dispersion velocity, that is not related to thermal processes, assuming that the
dust is a collisonless fluid.
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Figure 5.6: Sketch of the Goldreich & Ward mechanism for planetesimal formation taken from
Armitage (2013).
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Σh > Σc and, clearly, hotter ch > cc. It is possible to define two parameters that measure
these properties: the first one is the relative abundance of the cold component

ϵ =
Σc
Σh

, (5.49)

that, in the context of protoplanetary disc, is the dust-to-gas ratio; the second one is the
relative temperature

ξ =

(
cc
ch

)2

. (5.50)

The one-component fluid limit is given by the condition ϵ→ 0.
Kato (1972) first proposed that the presence of a second cold component can trigger

gravitational instability at small scales. Jog & Solomon (1984) first tackled the problem of
a galactic disc of stars and gas, by treating the disc as a two-fluid system. In this model,
the two components are coupled to each other only through the common gravitational
field. They derived the dispersion relation, that reads

ω4 − ω2(αh + αc) + (αhαc − βhβc) = 0, (5.51)

with αi = κ2 + c2i k
2 − 2πGΣi|k| and βi = 2πGΣi|k|. Bertin & Romeo (1988) then deter-

mined a global stability criteria for a two-fluid disc, defining a marginal stability curve
given by

Q2
h = 2λ̂

ξ

[
(ϵ+ ξ)− λ̂(1 + ξ)+√

λ̂2(1− ξ)2 − 2λ̂(1− ξ)(ϵ− ξ) + (ϵ+ ξ)2
]
,

(5.52)

where the parameter Qh is the Toomre parameter of the hot component, and λ̂ is the
dimensionless wavelength, defined as

λ̂ =
kJ
2k

=
πGΣ

2c2gk
, (5.53)

as in chapter 3. A comparison between the marginal stability curve of the one-component
fluid model and the two-component one is shown in figure 5.7. The profile of Qh may
exhibit two peaks, one arising from instability in the hot component, at intermediate
wavelengths, and one at smaller wavelengths, dominated by the cold component. This
second peak emerges when the second component is sufficiently abundant and cold:
Bertin & Romeo (1988) found that there is a transition from hot to cold driven instability
when ϵ >

√
ξ.

In the two-component fluid model, the Jeans length is defined as the wavelength at
which Q2

h has its maximum, so when instability is cold-driven, the Jeans length is smaller
compared to the hot-driven case. A peculiar characteristic of the cold-driven gravitational
instability is that it occurs at higher values of the Toomre parameter Q (Bertin & Romeo
1988). An application to protoplanetary discs, generalized taking into account the drag
force, is given in chapter 9.

5.4.3 Dust trapping and collapse in gas spiral arms

How dust grows beyond cm-sizes remains one of the biggest problems in the planet for-
mation scenario. As a matter of fact, as shown in section 5.3, a mechanism that traps
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Figure 5.7: Marginal stability curve of the one-component fluid model (red line) and of the two-
component fluid one (black lines) for ξ = 0.01 and different values of ϵ. It can be seen that for
ϵ <

√
ξ the “hot” peak is dominant, while for ϵ >

√
ξ the “cold” peak at smaller wavelengths is

higher.

dust is needed in order to overcome the St= 1 barrier. As mentioned previously, dust is
trapped in pressure maxima, and GI spiral arms are so. As a matter of fact, a spiral den-
sity wave creates both an azimuthal and radial gradient of pressure, efficiently collecting
dust particles (Dipierro et al. 2015a).

The interplay between dust trapping and dust self-gravity has been proposed as a
path to solve the conundrum of planetesimal formation in protostellar discs (Rice et al.
2004, 2006). According to this model, solid cores can form rapidly in the outer disc from
dust concentration in the spiral structure of a non-fragmenting gravitationally unstable
disc. Inside gas spiral arms, the dust to gas ratio can reach unity, making the dust unsta-
ble itself. Rice et al. (2006) found that, if the dust self-gravity is taken into account, the
solid component fragments, forming clumps of the order of the Earth mass. Clearly, the
degree of concentration of dust particles is determined by the Stokes number. This effect
is at its maximum for St = 1 particles (Rice et al. 2004; Dipierro et al. 2015a). After those
works, the topic of dust dynamics in gas spiral arms gained interest. Walmswell et al.
(2013) studied the dynamics of weakly coupled solid particles in gravitoturbulent discs,
showing that it is well described by a series of perturbations through gravitational scat-
tering by the spiral arm. As a matter of fact, the spiral arm is “kicking” dust particles,
exciting them and potentially preventing the collapse. Booth & Clarke (2016) tackled this
problem through two-dimensional SPH simulations. The level of dust particle excitation
relies on the strength of the spiral perturbation and its aerodynamical interaction with
gas. Notably, they determined that the dust dispersion velocity grows as the amplitude
of the spiral perturbation increases. Specifically, when the spiral density contrast δΣ/Σ is
higher, the kick becomes more powerful, leading to greater particle dispersion velocity.
It is worth noting, as discussed in Chapter 3, that δΣ/Σ is proportional to β−1/2. This im-
plies that if cooling is more rapid (low β), dust becomes more efficiently excited. As far



80 5.4 Dust and self-gravity

Figure 5.8: Snapshot of a numerical SPH simulation (Rice et al. 2006) of a gravitationally unstable
disc showing the surface density of gas (left) and dust (right) component.

as the aerodynamical coupling is concerned, the drag force has the role of damping the
kick: indeed, if a solid particle is strongly coupled, it is excited less effectively. Hence,
they found that for St > 1, the excitation of dust particles scales as St1/2. The interplay
between dust concentration and excitation determines the possibility of collapse inside
spiral arms.
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CHAPTER 6

Kinematic signatures of gravitational instability

This chapter is based on the paper ”Investigating protoplanetary disc cooling through kinemat-
ics: analytical GI Wiggle” by Cristiano Longarini, Giuseppe Lodato, Claudia Toci, Benedetta
Veronesi, Cassandra Hall, Ruobing Dong and Jason P. Terry, published in Astrophysical Journal
in October 2021.

For cold massive discs, the role of the disc self-gravity becomes dynamically impor-
tant, affecting the vertical and radial structure of the system (Kratter & Lodato 2016;
Bertin & Lodato 1999). In this context, gravitational instabilities often arise, determining
the evolution of the system and playing a fundamental role in the transport of angular
momentum. On the one hand, a possible outcome of GI in protostellar environments is
the fragmentation of the disc: this phenomenon can potentially lead to the formation of
low-mass stellar companions (Kratter & Matzner 2006; Stamatellos et al. 2007; Cadman
et al. 2020), because the initial clump mass is of the order of several Jupiter masses, too
high to form a planet (Kratter & Lodato 2016). On the other hand, GI is a very effec-
tive way to transport angular momentum within the disc, by means of a global spiral
perturbation (Lodato & Rice 2004; Rice et al. 2004).

High resolution observations with ALMA have revealed that most of the observed
protostellar discs possess substructures as rings or spirals. The origin of rings is often
explained by planets (Dipierro et al. 2015a, 2018; Toci et al. 2020a; Veronesi et al. 2020),
however what causes the spirals is still ambiguous. Indeed, super-Jupiter objects can
excite spiral density waves with azimuthal wavenumberm ∼ 1−2, that match with good
agreement the observed structures in scattered light (Dong et al. 2015; Dong & Fung
2017; Veronesi et al. 2019). In addition, some spirals may also be induced by an inner or
outer stellar companion (Price et al. 2018a), or by a flyby (Cuello et al. 2019, 2020). At the
same time, large scale spiral perturbations also characterize self-gravitating discs, with
a typical m ∼M⋆/Md, where Md is the disc mass and M⋆ is the mass of the star (Cossins
et al. 2009). Distinguishing the origin of a spiral is difficult, but recent high resolution
observations of protostellar environments allow us to conduct kinematic studies that
might shed some light on this issue. It is well known that the presence of a perturber
inside the disc creates a localized deviation from the Keplerian observed velocity, called
“kink” (Pinte et al. 2018b; Teague et al. 2018): when the perturber is a planet, the kink
can be used as a proxy for its mass (Bollati et al. 2021). As far as GI is concerned, Hall
et al. (2020) showed, based on hydrodynamical simulations, that the spiral perturbation
deeply affects the gas kinematic: in particular, it creates a global (rather than a localized)
deviation from Keplerian observed velocity - a “global kink” - dubbed GI wiggle by Hall
et al. (2020), that is apparent in the observed velocity field (Paneque-Carreño et al. 2021).
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In this chapter, we present an analytical study of the response of a self-gravitating
protostellar disc to a spiral density wave in WKB regime. We focus our attention on
the velocity perturbations (hereafter referred as VPs). We show that unstable discs have
clear kinematic imprints into the gas component across the entire disc extent, due to the
GI spiral wave perturbation, resulting in deviations from Keplerian rotation. The VPs
are related to the disc structure, in particular, they are determined by the disc mass and
the strength of GI (described in terms of cooling factor). By detecting these features,
we can put constraints on protoplanetary discs cooling and hence on the transport of
angular momentum. The analytical theory enables us to compute the observed velocity
field, and then to make a connection to observations.

6.1 Velocity perturbations

In this paragraph we obtain the velocity perturbations induced by gravitational instabil-
ity. To do so, we start with the fluid equations for a thin self-gravitating axisymmetric
gas disc, we perturb them, and we keep only the first order terms. We basically fol-
low the same procedure of section 3.2.1, but here, we are interested into the first order
velocity perturbations. We solve for them and we obtain

vR1 =
i

∆

[
(ω −mΩ)

∂

∂R
(Φ1 + h1)−

2mΩ

R
(Φ1 + h1)

]
,

vϕ1 = − 1

∆

[
2B

∂

∂R
(Φ1 + h1) +

m(ω −mΩ)

R
(Φ1 + h1)

]
,

(6.1)

whereB(r) = − 1
2

d(Ωr)
dr +Ω is one of the Oort parameter (Oort 1927), Φ1 is given by (3.28),

h1 = c2sΣ1/Σ0 and ∆ = κ2 − (ω −mΩ)2. These equations are well known in literature
(Binney & Tremaine 1987).

Now we make some assumptions: firstly, we write the perturbation as

X1(R,ϕ, t) = Re
[
δX(R)ei(mϕ−ωt+ψ)

]
, (6.2)

where δX is exclusively a function of the radius. Secondly, we consider a marginally
stable accretion disc with Q = 1, meaning that ∆ = κ2 and k = kuns. Thirdly, both the
potential (δΦ) and the enthalpy (δh) perturbations are linked to the density one that, for
a self regulate state, is connected to the basic state through the cooling rate. Hence, the
perturbed potential and enthalpy are just a function of the basic state quantities and the
cooling β

δΦ = −2πG

|k|
δΣ = −2c2sβ

−1/2, (6.3)

δh = c2s
δΣ

Σ0
= c2sβ

−1/2 = −1

2
δΦ. (6.4)

Finally, the VPs are

δvR =
2imΩ

Rκ2
β−1/2c2s,

δvϕ =
2iB

κ2
dψ
dR

β−1/2c2s.

(6.5)
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6.1.1 Nearly Keplerian disc

Now, we make the hypothesis of nearly Keplerian disc. This enables us to write the VPs
as a function of the Keplerian speed and Keplerian frequency. This regime is identified
by the conditions that

κ− Ωk
Ωk

< 1,
Ω− Ωk
Ωk

< 1. (6.6)

This assumption allows us to write κ ≃ Ω ≃ Ωk ∝ R−3/2 and B ≃ −Ω/4. With these
assumptions, the equations for the VPs are

δvR = 2imβ−1/2

(
Md(R)

M⋆

)2

vk

δvϕ = − iβ
−1/2

2

(
Md(R)

M⋆

)
vk,

(6.7)

where vk is the Keplerian speed. Finally, the velocity field is given by

vR = Re
[
δvRe

i(mϕ−ωt+ψ)
]
, (6.8)

vϕ = RΩ+ Re
[
δvϕe

i(mϕ−ωt+ψ)
]
. (6.9)

To obtain these expressions we used that Q = 1 and that dψ/dR = k = kuns. Note
that δvR/δvϕ ≃ 4mMd/M⋆ : for example, when m = 2, a relatively light disc having
Md = 0.125M⋆ has δvR = δvϕ.

In the analysis above, we have neglected the effect of pressure gradients. This is
for two main reasons: firstly, it influences only the basic state of the system, not the
perturbations, at least to first order. Secondly, when we consider a marginally unstable
self-gravitating disc (Q = 1), we expect the contribution of the pressure gradient to the
velocity field to be sub-dominant with respect to the self-gravity one. Indeed, for such a
disc, the self-gravitating contribution is of the order of H/R, while the pressure term is
O(H2/R2) (Kratter & Lodato 2016; Veronesi et al. 2021). The effects of pressure gradients
are stronger when considering much lower disc to star mass ratios (e.g., see Rosenfeld
et al. 2013). For the massive discs that we consider in this work, the pressure gradient can
thus be neglected. In the light of this, while considering the pressure gradient is critical
when one wants to explore the basic state, as done in Veronesi et al. (2021); Lodato et al.
(2023), this is not strictly necessary in our perturbation theory.

6.1.2 Not constant cooling factor

So far we have considered only the case of constant β−cooling. However, self-consistent
models of GI discs (Clarke 2009; Rice & Armitage 2009) show that β varies with the
radius (Hall et al. 2016). This happens because these models give a realistic cooling pre-
scription, i.e. radiative cooling, and its rate depends on the temperature of the disc at the
midplane and on the Rosseland opacity (Bell & Lin 1994). If one sets the density profile
to be a power law with radius, the cooling prescription can be written as a collection of
power laws with indices ni, depending on the density and the temperature.

In general, we can choose any cooling law β(R, ρ(R), T (R)) and then obtain the VPs
thorugh equations (6.5).
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6.2 Connection with observations: observed velocity field

In this paragraph, we want to connect what we have found to observations: what are
the observational imprints of these perturbations? The observed velocity field of the
gas is obtained by calculating the intensity weighted average velocity of the emission
line profile, i.e. the “moment-1” map. In this work, we do not take into account line
emission processes, and instead we simply compute the projected velocity field along
the line of sight and we study the impact of velocity perturbations that we have just
obtained.

We assume two-dimensional polar system of coordinates (R,ϕ) centred upon the star,
so that the velocity vector can be written as v = (vR, vϕ). We consider the disc inclined
with an angle θ, that in the following we take equal to π/6. Within this framework, the
projected velocity field can be written as

vobs = vR sinϕ sin θ + vϕ cosϕ sin θ + vsyst, (6.10)

where vsyst is the velocity of the system projected towards the line of sight. A channel
map is defined as the iso-velocity contours for a chosen observed velocity.

Hence, by knowing the radial and the azimuthal components of the perturbed veloc-
ity field (equations 6.7), we can sketch the projected velocity field (moment-1 equivalent)
and the channel maps, as shown in the top and central panels of figure 6.1. As already
noted in Hall et al. (2020), the VPs due to gravitational instability appear throughout the
whole extent of the disc, rather than being localised in position and velocity, as occurs
for the kink produced by an embedded protoplanet. This is clearly shown in the bottom
panel of figure 6.1, where we subtract the Keplerian field to the perturbed one: an “in-
terlocking fingers” structure is present, as already pointed out in Hall et al. (2020). If we
look at the central channel, the deviations from the Keplerian behaviour exactly match
with the fingers pattern.

We want to underline that in this work we are only considering the projection of the
velocity field along the line of sight, without making any assumptions about the gas
emission processes. In order to convert velocities to fluxes, it is necessary to include the
physics of the gas, specifying the selected tracer and the emission lines observed and
considering also the effect of the beam size and the possible presence of observational
noise.

6.3 Constraining the cooling factor - mock test

So far, we have seen that the cooling factor deeply influences the shape of the channel
maps. Thanks to this property, we propose a method with which we can constrain ef-
fectively the cooling factor of observed systems. In order to verify the accuracy of the
calculations we have made, we apply the method just described to a numerical simu-
lation. We perform an SPH simulation using the code PHANTOM (Price et al. 2018b).
This code is widely used in astrophysical community to study gas and dust dynamics in
accretion discs (Toci et al. 2020b; Ragusa et al. 2020; Veronesi et al. 2020); in this work, we
used the so-called “one fluid” method and we simulated a gas only disc, neglecting the
dust component. The initial conditions of the disc are Rin = 1au, Rout = 50au, Σ ∝ R−1,
Md = 0.5M⋆, M⋆ = 1M⊙. The cooling factor β has been set to β = 8 and the two pa-
rameters that control the artificial viscosity to αAV = 0.1, βAV = 0.2, in order to reduce
as much as possible the effects of artificial dissipation (Lodato & Rice 2004). The initial
sound speed profile follows a simple power law cs ∝ R−0.25. However, this profile is



Kinematic signatures of gravitational instability 87

Figure 6.1: Moment one map (top panel) and channel maps (middle panel) for a self-gravitating
accretion disc seen with an inclination angle of π/6 and with a systemic velocity vsyst = 0. (Bottom
panel) Left side: projected map of the velocity perturbation, after subtraction of the Keplerian field.
A system of interlocking fingers is clearly visible, as already noted by Hall et al. (2020). Central
side: the vobs = 0 contour (blue line) overlaid with the spiral shape (grey line). The deviations
from the Keplerian channel (that is simply a straight line) perfectly match with the spiral pattern.
Right side: surface density of the disc. The parameters of the disc are the following: rin = 1au,
rout = 100au, M⋆ = 1M⊙, Md = 0.3M⋆, p = −1, β = 5, αp = 15◦ and m = 2.
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Figure 6.2: Comparison between analyical (black line) and numerical (green line) perturbation for
different viewing angle of the simulated GI disc. Each picture is rotated along the z-axis of an
angle of π/2.

rapidly modified by the cooling. For this simulation, we used N = 5 × 105 particles
of gas. the simulation shows a predominance of the m = 2 azimuthal mode and the
computed pitch angle is αp ∼ 13◦.

We now constrain the cooling factor using the method described previously, and
make a comparison with the actual value set in the simulation. First of all we com-
pute the rotation curve, azimuthally averaging uϕ(R,ϕ). Then, we find the value of the
disc mass that best describe the curve using equation (4.10): the best value corresponds
to Md = 0.5M⋆, as expected. We have broken the degeneracy between the mass and the
cooling: thus, we are now able to constrain the cooling β through the wiggle amplitude.
Figure 6.2 shows the central channel of the projected velocity field of the simulation com-
pared with the one from the analytical model, for different spiral angles: as expected, a
wiggle is present. The amplitude of the simulated wiggle is Asim = 0.11rad. The am-
plitude of the wiggle as a function of the cooling factor, for the parameters previously
reported, is described by A(β) = Ainβ

−0.5, where Ain = 0.33rad. The estimated cooling
factor is then βsim = (Asim/Ain)

−2 ≃ 9, that is in good agreement with the real value
β = 8. The overestimated value of β can actually be interpreted by the lack of viscosity
in our analytical model. Indeed, because of its dissipative nature, we expect it to damp
GI-driven perturbations, resulting in a less pronounced wiggle. This behaviour is visi-
ble in the comparison with the numerical simulations, hence the simulated perturbation
appears less wide than the analytical one.

Figure 6.2 shows a comparison between the analytical and the numerical wiggle, for
different viewing angle of the spiral structure (the observer is assumed to be along a
vertical line on the bottom of the images). There is a very good agreement in the top left
panel and bottom left for which the line of sight intercept the largest extent of the spiral,
while the perturbation is overestimated in panel top right and bottom right in which
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the prominent spiral structure lies on a line perpendicular to the line of sight. For the
former case, the agreement between our model and the simulation is remarkable. For
the two other orientations, while there is good agreement in the inner disc (where the
perturbation is however smaller), our model overestimates the perturbation in the outer
disc, where in the simulation the spiral structure vanishes. This suggests that in actual
observations, our analysis is most reliable when a density spiral (for example traced by
the dust continuum) is also visible superimposed to the kinematical wiggle.

6.4 Discussion

6.4.1 Shape of the wiggle

So far, we have seen that deviations from the Keplerian behaviour are visible in every
channel map, however we now focus on the central velocity channel that, in a case where
vsyst = 0, corresponds to vobs = 0. This channel is particularly interesting since in the Ke-
plerian case it is simply a straight line, because the radial velocity is zero. In the GI case,
the central channel shows oscillation around the Keplerian value (i.e. the wiggle): this
happens because the spiral wave perturbs both the azimuthal and the radial component.
The amplitude and the radial frequency of the wiggle depend on the strength of the spi-
ral wave (that is related to the cooling factor β), the opening angle αp and the number of
arms m (figure 6.4), and on the structure of the underlying disc, in particular its mass.

It is possible to quantify the amplitude of the VPs by considering the integrated geo-
metrical distance between the perturbed and the unperturbed channel. Mathematically,
a channel map Cv is a 2D curve defined parametrically from a one-dimensional interval
I to a two-dimensional space R2. In our case, the two-dimensional space is the cylin-
drical space (R,ϕ) and the interval I depends on the parameterization we choose: for
simplicity, we take I = [0, 1]. For a given channel velocity v, we call the Keplerian chan-
nel map Ckv and the perturbed one Cpv . Mathematically speaking, the two channel maps
can be written parametrically as

Ckv (s) =

(
fk
R(s)

fk
ϕ (s)

)
, Cpv (s) =

(
fp
R(s)

fp
ϕ(s)

)
, (6.11)

where s is a parameter in the interval I, in our case s ∈ [0, 1]. The amplitude of the
perturbation is then computed as

Av =

[∫ 1

0

ds||Cpv − Ckv ||2
]1/2

, (6.12)

that is the length of the curve Cpv − Ckv . The top panel of figure 6.3 schematically shows
the quantities involved in equation (6.12). The amplitude is determined by both the cool-
ing factor and the disc mass: a smaller β generates a bigger deviation from the Keplerian
case, because the amplitude of the spiral is inversely proportional to β. On the bottom
panel of figure 6.3 we show the amplitude of the wiggle (vobs = 0) as a function of the
cooling parameter β: it is possible to describe the relation between A and β as a power
law, with an index of −1/2, and this can be easily seen from equations (6.7). The role
of the cooling factor acts as the planet mass in the case of planetary kinks: indeed, the
amplitude of the kink is determined by the mass of the embedded protoplanet, and it
follows the relation A ∝M

1/2
p (Bollati et al. 2021). In addition, the amplitude of the wig-

gle is also determined by the disc mass: in particular, it affects the perturbed velocities
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because it is related to the sound speed. Indeed, with the hypothesis of Q ≃ 1 we get
cs = vkH/R ≃ vkMd/M⋆. The disc mass is directly proportional to the sound speed,
and then bigger cs means faster propagation of density waves. The bottom panel of fig-
ure 6.3 shows how the amplitude of the wiggle depends on the disc mass. The trend
is easily explained by looking at the equations of the VPs (6.7): in the radial perturba-
tion, the disc mass appears with a quadratic dependence, while in the azimuthal one, it
appears linearly. The amplitude of the channel (6.12) is proportional to the root sum of
squares, thus A ∝

√
c1M2

d + c2M4
d , where c1, c2 are two constants that depend on the

other parameters, as the cooling.
The mass of the disc and the cooling β are degenerate parameters when we consider

the shape of the wiggle: as a matter of fact, they both contribute to its amplitude. Is it
possible to break the degeneracy? This can be done if an independent method to measure
Md is available. For example, using again the gas kinematics, one could measure the disc
mass through rotation curve (Veronesi et al. 2021; Lodato et al. 2023). Conversely, when
an approach like this is not possible, we can give a rough estimate of the disc mass
through dust emission. Indeed, from dust thermal emission it is possible to measure the
dust mass of the disc and then, assuming a dust to gas ratio, we can estimate also the
total mass of the disc.

Interestingly, if we look at the perturbed velocity field, there could also be a purely
kinematical way to break the degeneracy between disc mass and cooling. Indeed if we
write the observed velocity field for ϕ = π/2 (semi-minor axis of the disc) we get

vobs = vR sin θ = Re
[
δvR(R)e

i(mπ/2+ψ)
]
sin θ = f1(R)β

−1/2

(
Md

M⋆

)2

vk, (6.13)

where f1 is a known function of radius; conversely, for ϕ = 0 (semi-major axis of the
disc) we get

vobs = vϕ sin i =
(
RΩ+ Re

[
δvϕ(R)e

iψ
])

sin i = f2(R)β
−1/2Md

M⋆
vk +RΩsin i, (6.14)

where f2 is a known function of the radius. Since the perturbed velocities scale differ-
ently with disc mass, if we could measure accurately the ratio of the two components of
the perturbed velocity, we could in principle directly obtain a measurement of the disc
mass. However, we note that it is challenging to extract these information from an actual
observation.

Breaking the degeneracy allows us to constrain the cooling parameter β, which gives
important information about the physical processes that are happening in the protoplan-
etary environment, and on the tendency of the disc to fragment into bound clumps and
the amount of angular momentum transported by the GI.

So far we have described what determines the amplitude of the wiggle: as far as its
frequency is concerned, it is determined by the pitch angle and by the number of spiral
arms. In figure 6.4 we show the shape of the wiggle for different values of αp and m. We
clearly see that the frequency of the wiggle is bigger when decreasing αp and increasing
m.

6.4.2 Limitations

As can be seen in figure 6.4, the number of spiral arms slightly influences the amplitude
of the wiggle: all the calculations have been made under the WKB assumption, that re-
quires m/rk << 1. Thus, for high m, this assumption is not valid anymore: in fact,
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Figure 6.3: Schematic view of how the amplitude of the wiggle is computed. Top panel: the red
line is the Keplerian channel map, while the blue line is the perturbed one. The amplitude of
the perturbation is computed using equation 6.12. Amplitude of the perturbation in the central
channel as a function of the cooling parameter β (bottom left panel) for a disc mass Md/M⋆ = 0.3
and of the mass of the disc (bottom right panel) for a cooling parameter β = 5. The black dots are
the results of the analytical model so far described.
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Figure 6.4: Shape of the wiggle varying (from left to right) the cooling factor β, the mass of the
disc Md, the pitch angle αp in degrees and the azimuthal wavenumber m. The reference disc
parameters are rin = 1au, rout = 50au, M⋆ = 1M⊙, Md = 0.3M⋆, p = −1, β = 5, αp = 15◦ and
m = 2.

we are not considering the relations between the number of spiral arms and the mass
of the disc, or its thickness; the only way to take into account these non-linear effects
is by means of numerical simulations (Terry et al. 2022). This argument is better under-
stood when looking at the quadratic dispersion relation (eq. (3.2.1)): in the tight winding
approximation (WKB), m does not enter explicitly in the dispersion relation (except in
the Doppler-shifted frequency), thus both axisymmetric (m = 0) and non-axisymmetric
(m ̸= 0) perturbations have the same instability threshold. However, it is well known
(Ostriker & Peebles 1973) that massive discs are subject to large scale non-axisymmetric
instabilities even though Q > 1. Indeed, a local dispersion relation can also be obtained
in the case of open spiral structures (see sect. 3.2.3).

Another important point to stress is that we built a 2D model of the disc, neglecting
its height. Thus, we are considering only what happens in the disc midplane. The main
effect of the disc thickness is to “dilute” the gravity field, and this can be incorporated
into the quadratic dispersion relation (see section 3.2.2). Observationally speaking, the
disc thickness is important when we take into account the molecular line emission of CO
isotopologues. As a matter of fact, 12CO, that is the most abundant isotopologue, is not
a good tracer of the disc midplane, because it becomes optically thick at the disc surface.
On the contrary, other less abundant CO isotopologues as 13CO or C18O have more
optically thin lines and as a consequence they trace better the disc midplane (Miotello
et al. 2014).

Finally our analysis takes into account a single spiral mode m, while it is well known
that for small disc -to-star mass ratio, there could be a superposition of modes. However
this is not an actual problem: indeed, we know that after filtering out through the ALMA
response (that we do not do in this paper), as shown in Dipierro et al. (2014), only the
dominant mode appears. This makes our single-mode analysis still valid.

6.5 Conclusion

In this chapter, we have analytically studied the velocity perturbations in a self-gravitating
disc caused by the presence of a spiral density wave in the WKB regime. We then ap-
plied this result to obtain the projected velocity field (moment one equivalent) and the
channel maps, studying their deviations from the Keplerian case. We found what Hall
et al. (2020) have already seen from numerical simulations, that deviations from Kep-
lerian rotation are a global phenomenon, resulting in velocity “kinks” across the entire
radial and azimuthal extent of the disc. The kinematics deviations, called GI wiggles,
depend on the structure of the spiral density wave, namely its amplitude (connected to
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the cooling and to the disc mass) and its radial frequency (connected to the pitch angle
and to the azimuthal wavenumber).

Pinte et al. (2020) found nine deviations from Keplerian rotation pattern in the DSHARP
circumstellar discs: three of them, Elias 2-27 (Pérez et al. 2016; Paneque-Carreño et al.
2021), IM Lup and WaOph6 show also spiral structures in the millimetric continuum
emission. These three systems are believed to be self-gravitating (Huang et al. 2018a),
thus their deviations from Keplerian rotation may be interpreted as wiggles. In addition,
Veronesi et al. (2021) have shown that the rotation curve of Elias 2-27 is better described
adding the contribution of the disc gravitational potential, meaning that the effects of
disc self-gravity are not negligible.

Higher resolution observations of systems like those will make it possible to inves-
tigate the cooling of protoplanetary discs: indeed, the degeneracy between mass and
cooling can be broken by means of the rotation curve, and thus the cooling parameter
β can be constrained effectively through the wiggle’s amplitude, as we have shown in
section 6.3. Knowing more about the cooling will give us insights about the gravitational
instability process.





CHAPTER 7

Weighing and sizing protoplanetary discs with gravity

This chapter is based on the papers “Weighing protoplanetary discs with kinematics: physical
model, method and benchmark” by Benedetta Veronesi, Cristiano Longarini, Giuseppe Lodato,
Guillaume Laibe, Cassandra Hall, Stefano Facchini and Leonardo Testi, submitted to Astron-
omy & Astrophysics, and “Rotation curves in protoplanetary discs with thermal stratification”
by Paola Martire, Cristiano Longarini, Giuseppe Lodato, Giovanni Rosotti, Andrew Winter,
Stefano Facchini, Caitlyn Hardimann, Myriam Benisty, Jochen Stadler, Andrés Felipe Izquierdo
and Leonardo Testi, submitted to Astronomy & Astrophysics.

The mass of protoplanetary discs sets the amount of material available for planet for-
mation, determines the level of coupling between gas and dust, and possibly sets the
onset of gravitational instabilities. Measuring mass of discs is challenging, since it is
not possible to directly detect H2, and CO-based estimates remain poorly constrained.
An alternative method, that does not rely on tracers-to-H2 ratios, consists in dynamically
measure the disc mass, together with star mass and scale radius, by looking at deviations
from Keplerian rotation induced by the self-gravity of the disc. This method rely on re-
sults of Bertin & Lodato (1999), and it has been used for the first time in the context of
protoplanetary discs by Veronesi et al. (2021), and then improved by Lodato et al. (2023).
In this chapter, we benchmark through numerical simulations the vertically isothermal
model, as presented in chapter 4, and then we generalize it by including thermal stratifi-
cation. The benchmarking of the vertically isothermal model (section 7.1) is based on the
paper Veronesi, Longarini et al. and the modelling of the thermal stratification (sections
7.2, 7.3) on Martire, Longarini et al.

7.1 Benchmarking the isothermal model

The aim of this work is to benchmark the vertically isothermal model, assessing the
minimum measurable disc mass and the accuracy of the measurement. The vertical
isothermal model we refer to is the one in section 4.2. For completeness, we write the
equation for the azimuthal velocity

v2ϕ = v2k

{
1−

[
γ′ + (2− γ)

(
R

Rc

)2−γ
](

H

R

)2

(7.1)

−q

(
1− 1√

1 + (z/R)2

)}
+ v2d ,
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where γ′ = γ + 3/2 + q/2, v2k = GM⋆/R and

v2d = G

∫ ∞

0

[
K(k)− 1

4

(
k2

1− k2

)
× (7.2)

(
r

R
− R

r
+
z2

Rr

)
E(k)

]√
r

R
kΣ (r) dr .

K(k) andE(k) are complete elliptic integrals and k2 = 4Rr/[(R+r)2+z2]. To benchmark
the model, we follow this pipeline

• Hydrodynamical simulations: we perform a set of hydrodynamical simulations of
vertically isothermal protostellar discs with the code PHANTOM (Price et al. 2018b),
varying the disc to star mass ration in the range [0.01, 0.15];

• Radiative transfer simulations: we post-process the hydrodynamical simulations
with the code MCFOST (Pinte et al. 2006, 2009), simulating the 12CO and 13CO
J=2-1 line emission;

• Spatial and spectral convolution: we spatially and spectrally convolve the syn-
thetic datacube to simulate the effect of a spatial and spectral beam, as in actual
observations;

• Emitting surface and rotation curve extraction: we extract the height of the emit-
ting layer with the geometrical method of Pinte et al. (2018a) using the code DISKSURF
(Teague et al. 2021) and then we retrieve the azimuthal velocity using the simple
harmonic oscillator method (Teague et al. 2018), implemented in EDDY (Teague
2019);

• Fitting procedure: we fit for disc mass, star mass and scale radius with the verti-
cally isothermal model, and we assess the accuracy of the method. The parameters
we fix are the disc inclination, the height of the emitting layer, and the disc tem-
perature.

7.1.1 Hydrodynamical simulations

We perform a suite of 3D Smoothed Particle Hydrodynamics (SPH) simulations of gaseous
protoplanetary discs, using the code PHANTOM (Price et al. 2018b). The system con-
sists of a central star of mass M⋆ = 1M⊙ surrounded by a gas disc with mass Md =
[0.01, 0.025, 0.05, 0.1, 0.15]M⊙. These simulations can be rescaled in terms of disc-to-star
mass ratio. The disc extends from Rin = 10 au to Rout = 300 au, and is simulated with
106 SPH particles. The initial profile of surface density is a relaxed exponential tapered
power law, with Rc = 100 au and γ = 1. Simulations include the disc self-gravity as
described in Price et al. (2018b), adopting a locally isothermal equation of state P = c2sρg
with q = 0.5 for the power-law index of the temperature radial profile. Despite the non-
negligible disc to star mass ratio, all the discs are gravitationally stable according to the
Toomre criterion (Q > 1), hence the discs appear smooth and sub-structureless.

The disc is vertically extended by initially setting up an initial disc aspect ratio of
(H/R)c = 0.075 with a Gaussian profile for the volume density, ensuring nearly vertical
hydrostatic equilibrium. We model the angular momentum transport throughout the
disc using the SPH shock capturing viscosity (Price et al. 2018b, see Sec. 2.6) with αAV ≃
0.19, which results in a Shakura & Sunyaev (1973) viscous parameter αSS ≈ 0.005.
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7.1.2 Radiative transfer and synthetic observations

We compute the 3D thermal structure and we simulate the emission of the hydrodynam-
ical discs using code MCFOST (Pinte et al. 2006, 2009). We use a Voronoi tesselation where
each MCFOST cell corresponds to a gas SPH particle. The goal is to generate mock 12CO
and 13CO isotopologue channel maps, from which we will extract disc rotation curves.

The main inputs for the radiative transfer modelling are the source of luminosity,
i.e. the star, the gas density profile extracted from the simulations, and models for dust
opacities and densities. Self-gravitating isothermal discs do not present any kind of sub-
structures, and the underlying dust density profile can therefore assumed to be smooth.
We do not account for an eventual dust drift, since Stokes numbers are expected to be
small in these discs, and we consider short-enough disc evolutions. The dust contribu-
tion to the gravitational potential of the disc is also negligible. As such, we adopt a con-
stant dust-to-gas ratio of ∼ 10−2 that corresponds to a standard averaged ISM (Draine
2011).

The thermal structure of the disc is computed with the following assumptions. At
first, emission is at local thermal equilibrium and Tgas = Tdust. This assumption is valid
for rotational transitions of CO isotopologues, as dust and gas a thermally coupled (Fac-
chini et al. 2017; Bae et al. 2021). Dust is treated as a mixture of silicates (70%) and
carbon (30%) (Draine & Lee 1984), and the optical properties are calculated using Mie
theory for spheres (Andrews et al. 2009). Opacities are computed following the proce-
dure described in the DIANA model (Woitke et al. 2016; Min et al. 2016). We assume an
ISM-like grain size distribution (dn/ds ∝ s−3.5), with smin = 0.01µm and smax = 1 mm.
The disc is heated passively, i.e. the source of radiation is only the central star, which is
assumed to radiate isotropically with a Kurucz spectrum at 4000 K. The expected chan-
nel maps are computed via ray-tracing, using 108 photon packets to sample the radiation
field. The disc inclination with respect to the line of sight is i = 30◦, and the system is
simulated to be located at 140 pc, which corresponds to a typical protostellar discs in a
star-forming region such as Taurus. For 12CO and 13CO, we consider the J=2-1 transi-
tion and assume abundances of 10−4 and 1.4 × 10−6 respectively. MCFOST simulations
are post-processed with PYMCFOST 1, by simulating a velocity resolution of 0.1 km/s. We
then spatially convolve the channels with a Gaussian beam of 0.1 arcsec, similarly to the
value of the MAPS survey (Öberg et al. 2021). We finally introduce Gaussian noise with
an RMS of 5mJy/beam.

7.1.3 Extracting the emitting layer and the rotation curve

From the synthetic datacubes, we first extract the height of the emitting layer with
DISKSURF (Teague et al. 2021). The emitting layer is defined as the region where the
emission we observe originates. Since different molecules have specific optical depth
and column density, the location of the emitting layer changes accordingly. Having a
precise estimate of the height of the emitting layer is crucial to correctly deproject az-
imuthal velocities and to evaluate the model.

We then use EDDY (Teague 2019) to extract the rotation curves with the simple har-
monic oscillator method (Teague et al. 2018). Two methods have currently been de-
veloped to fit the line centroids: the quadratic and the Gaussian methods, as outlined
in section 4.3.2. To perform our analysis we chose the quadratic method, and we will
briefly discuss this choice in Sec. 7.1.3.

1https://github.com/cpinte/pymcfost

https://github.com/cpinte/pymcfost
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Figure 7.1: Example (12CO, Md = 0.1M⊙) of one of the emitting layer derived with DISKSURF
(grey dots) and then fitted with an exponentially tapered power-law (solid line). We also show the
16th (dotted line) and the 84th (dashed line) percentiles, which we take into account to compute
the rotation curve errors.

Retrieving the height of the emitting layer

We use the code DISKSURF (Teague et al. 2021) to extract the height of the emitting layer
zn (ri) of the i-th radial bin for the n-th channel. DISKSURF implements the method pre-
sented in Pinte et al. (2018a). Briefly, this is a geometrical method that allow to trace the
emission maxima of each velocity channel and reconstruct the position of the CO layers.
For each bin, we determine the heights zn16 (ri), zn50 (ri) and zn84 (ri) that corresponds to
the 16-th, 50-th and 84-th percentile of the emitting layer distribution respectively. We
then use the tapered power-law

z(R) = z0 [arcsec]
(

R

1arcsec

)ψ
exp

[
−
(
R

Rt

)qt]
, (7.3)

to parametrize continuously the emitting surfaces z16(R), z50(R) and z84(R). We choose
to extract three emitting layers to estimate the uncertainties associated to the extraction
procedure.

Table 7.1 presents the results obtained for zem (r) that will be used as reference surface
through the following analysis. As an example, Fig. 7.1 shows the emission surface
(grey markers) obtained with DISKSURF for the 12CO datacube, from mock observations
generated by a simulation with Mdisc = 0.1M⊙. The three lines are the fits of the data
points, namely z50 (solid line), as well as z16 (dotted line) and z84 (dashed line).

Extracting the rotation curve

We extract the azimuthal velocity with EDDY (Teague 2019) using the harmonic oscillator
method, following Teague et al. (2018)



Weighing and sizing protoplanetary discs with gravity 99

Table 7.1: 12CO and 13CO fit results for the disc emitting layer relevant parameters (z0, ψ, Rt, qt)
obtained with DISKSURF from the 50th percentiles of the particle vertical distribution.

md0.01 md0.025 md0.05 md0.1 md0.15
12CO
z0 0.83 0.24 0.38 0.45 0.33
ψ 3.06 1.88 1.66 1.85 1.13
Rt 0.49 3.7 3.54 2.76 5.1
qt 0.69 1.77 1.46 1.11 9.47
13CO
z0 0.078 0.09 0.097 0.09 0.09
ψ 1.25 1.52 1.72 1.82 2.04
Rt 3.01 3.25 3.35 3.46 3.38
qt 6.27 5.39 4.22 3.54 2.83

For each emitting layers z16, zem = z50 and z84, we compute three rotation curves v16,
v50 and v84. We then assume the azimuthal velocity of the system to be vϕ = v50, with
an uncertainty σv estimated as

σv =
√
|v84 − v16|2 + σ2

eddy , (7.4)

where σeddy is the numerical error obtained with EDDY. This procedure refines the ap-
proach of Lodato et al. (2023), since it includes uncertainties associated to estimate of the
height the emitting layer.

Since we fixed the inclination of the disc to be i = 30◦, we use the Quadratic method
to extract the rotation curve, that fits only the peak of emission, which is less sensitive
to the lower surface. Indeed, using instead the Gaussian method provides the following
bias: the emission coming from the lower surface systematically shifts the position of the
line centroids, resulting in a systematic error for the velocity estimate. Fig. 7.2 shows a
comparison between the quadratic and the Gaussian methods. Interestingly, despite be-
ing smoother, the curve obtained with the Gaussian method underestimates the velocity
in the inner disc and overestimates it in the outer disc. This happens because the method
tries to fit a double-peaked spectrum with a single Gaussian.

Fig. 7.3 shows the rotation curves obtained with the quadratic method following the
procedure above, for both CO isotopologues (12CO in the left panel, 13CO in the right
panel). We compare them with the analytical rotation curve obtained assuming a disc of
zero mass (black dashed-dot line).

7.1.4 Fitting procedure and uncertainties estimate

For every simulation, we obtain two rotation curves: one for 12CO and another for 13CO.
These curves are then fitted using the self-gravitating model of Eq. 7.1. The free parame-
ters are the star and disc mass, and the disc scale radius Rc. The fits are performed with
an MCMC algorithm as implemented in EMCEE (Foreman-Mackey et al. 2013) using the
code DYSC https://github.com/crislong/DySc. We choose a simple Gaussian
likelihood, and flat priors respectively [0, 5]M⊙ for the star mass, [50, 300]au for the scale
radius and [0, 0.5]M⊙ for the disc mass. We choose 250 walkers and 1000 steps (having
verified that convergence is reached). We fit the two isotopologues both individually,
and then simultaneously.

https://github.com/crislong/DySc
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Figure 7.2: Differences between rotation curves obtained with the Gaussian and quadratic meth-
ods. Left panel: comparison between the rotation curves from the model (black line, Eq. 7.1 with
a disc mass Md = 0.1M⊙), the Gaussian method (blue line) and the quadratic method (orange
line). We observe that the Gaussian curve is systematically shifted with respect to the model.
Right panel: difference between the extracted rotation curve (Gaussian method in blue, quadratic
method in orange) and the model vϕ from Eq. 7.1). Gaussian extraction is biased by the lower sur-
face, shifting the curve towards lower velocity in most of the radial extent of the disc. Conversely,
the quadratic method, although noisier, better reproduces the theoretical model.
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Figure 7.3: Quadratic rotation curves obtained for all the disc masses simulation (from Mdisc =
0.01M⊙ toMdisc = 0.15M⊙) for the 12CO isotopologue (solid lines in the left panel) and the 13CO
isotopologue (dashed lines in the right panel). The black dashed-dot line shows the analytical
rotation curve obtained by only considering the star and pressure gradient contribution.
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Table 7.2: Results for the 12CO, 13CO and the combined fit procedure. True values are: M⋆ =
1M⊙, Md = [0.01, 0.025, 0.05, 0.1, 0.15]M⊙, Rc = 100 au.

12CO ∆X/X12
13CO ∆X/X13 Combined ∆X/X

md0.01
M⋆ = 1.02
Md = 0.03
Rc = 80.00

0.02
1.99
0.2

M⋆ = 0.99
Md = 0.00
Rc = 105.15

0.01
1.0
0.05

M⋆ = 0.99
Md = 0.00
Rc = 103.7

0.01
1.0
0.037

md0.025
M⋆ = 0.99
Md = 0.04
Rc = 92.17

0.01
0.6
0.078

M⋆ = 0.99
Md = 0.00
Rc = 115.55

0.01
1.0
0.15

M⋆ = 0.99
Md = 0.00
Rc = 115.2

0.01
1.0
0.15

md0.05
M⋆ = 0.99
Md = 0.044
Rc = 102.78

0.01
0.12
0.028

M⋆ = 0.97
Md = 0.07
Rc = 94.27

0.03
0.4
0.057

M⋆ = 0.98
Md = 0.055
Rc = 97.8

0.02
0.099
0.022

md0.1
M⋆ = 1.04
Md = 0.09
Rc = 88.33

0.04
0.10
0.117

M⋆ = 0.97
Md = 0.12
Rc = 90.8

0.03
0.20
0.09

M⋆ = 0.97
Md = 0.12
Rc = 91.2

0.03
0.19
0.088

md0.15
M⋆ = 1.00
Md = 0.18
Rc = 86.00

0.0
0.2
0.14

M⋆ = 1.00
Md = 0.15
Rc = 87.5

0.0
0.0
0.125

M⋆ = 1.00
Md = 0.15
Rc = 88.114

0.0
0.0
0.12

Table 7.2 collects the best fit values for the star mass M⋆, the disc mass Md and the
disc scale radius Rc. The disc-to-star mass ratio threshold below which the disc mass
can not be recovered is 0.05.

Uncertainties

When analysing actual data, the three main sources of uncertainties are the height of
the emitting layer, the aspect ratio of the disc and its inclination. Uncertainties on z (R)
have been estimated through the extraction of z16 and z84. As for the aspect ratio and
the inclination, so far in the fitting procedure we have enforced their value to the true
one from the numerical simulations. To estimate the uncertainties associated to those
parameters, we perform again the fitting procedure over the same synthetic channel
maps, by using different values ofH/R and i. ForH/R, we simply perform new fits over
the rotation curves previously extracted. For a set up value ofH/R = 0.075, we testH/R
= [0.05, 0.07, 0.08, 0.1]. For the inclination, the estimate of the uncertainty requires the
extraction of new disc emitting layers and rotation curves. For a set up value of i = 30◦,
we test i = [27, 29, 31, 33]◦. The values of the uncertainties obtained by this procedure
are summarized in Table. 7.2. Fig. 7.4 shows how the value of the disc mass changes
according to H/R and i. A key result of this study is that disc masses of self-gravitating
discs can be estimated from channel maps with averaged systematic uncertainties of
order ∼ 25%. The three parameters H/R, i and z have similar contributions as sources
of errors. No clear trend appears when varying H/R and z. Values that differ from the
expected one still provide a mass estimates with a same level of uncertainty. On the
other hand, precise values of i provide uncertainties of order 5 − 10% whereas an error
of a few degrees provide uncertainties of order 20−30%. Hence, the ability to accurately
determine disc masses by our procedure is quite reliable. For instance, when recovering
a disc mass of 0.1M⊙, the estimated range spans from 0.075 to 0.125.
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Figure 7.4: Uncertainties related to the fitting procedure for the disc mass Md. Estimates are given
as functions of the aspect ratio of the disc H/R (left column), the disc inclination (middle column)
and the disc emitting layer z(R) (right column). Different markers and lines styles represent results
obtained for simulations with different disc masses.

7.2 Thermal stratification: model and testing

In recent years the gas kinematics probed by molecular lines detected with ALMA has
opened a new window to study protoplanetary discs. High spatial and spectral reso-
lution observations have revealed the complexity of protoplanetary disc structure and
correctly interpreting these data allow us to gain a better comprehension of the planet
formation process. In this work, we make a step forward and we investigate the im-
pact of thermal stratification on the azimuthal velocity of protoplanetary discs. High
resolution gas observations are showing velocity differences between CO isotopologues,
which cannot be adequately explained with vertically isothermal models. We analyti-
cally solve the hydrostatic equilibrium for a stratified disc, and we derive the azimuthal
velocity. We test the model with SPH numerical simulations, and then we use it to fit for
star mass, disc mass and scale radius of the sources in the MAPS sample. In particular,
we use 12CO and 13CO datacubes.

7.2.1 Assumptions

In our analytical calculations, we do not make any assumption on the surface density
Σ, considering it as arbitrary. However, in order to apply the model to observations, we
are forced to choose a parameterisation for the surface density and we assume that it is
described by the self-similar solution of Lynden-Bell & Pringle (1974)

Σ =
(2− γ)Md

2πR2
c

(
R

Rc

)−γ

exp

[
−

(
R

Rc

)2−γ]
, (7.5)

where Md and Rc are the disc mass and the scale radius respectively, R is the cylindrical
radius and γ is a free parameter describing the steepness of the surface density. The disc
density at the midplane ρmid is

ρmid =
Σ√

2πHmid
∝ R−(γ+(3−q)/2) exp

[
−

(
R

Rc

)2−γ]
, (7.6)
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where Hmid = cs,mid/Ωk is the typical scale height of the disc at the midplane, cs,mid =√
kbTmid/(µmp) ∝ R−q/2 is the sound speed at the disc midplane, kb is the Boltzmann

constant, Tmid = Tmid,100(R/100au)−q is the temperature at midplane, µ is the mean
molecular weight (usually assumed to be 2.1),mp is the proton mass and Ωk =

√
GM⋆/R3

is the Keplerian angular velocity (G is the gravitational constant and M⋆ is the stellar
mass).

From literature (Chiang & Goldreich 1997; Dullemond et al. 2020) and observational
data (Rosenfeld et al. 2013; Pinte et al. 2018a; Law et al. 2021), we know that protoplane-
tary discs are thermally stratified. We take this into account by defining a function f that
describes the dependency of the temperature T on height such that

T (R, z) = Tmid(R)f(R, z), (7.7)

c2s (R, z) = c2s,mid(R)f(R, z). (7.8)

We underline that the isothermal case can be obtained considering f ≡ 1, thus T =
Tmid(R). As for the density, we assume that

ρ = ρ(R, z) = ρmid(R)g(R, z), (7.9)

where g describes how the density changes vertically. Note that in order to smoothly
connect the functions above to their value at midplane it is necessary that f(z = 0) =
1 = g(z = 0). Assuming a barotropic fluid, the pressure P is given by

P (R, z) = Pmid(R)fg(R, z) = c2s,mid(R)ρmid(R)fg(R, z). (7.10)

While the profile of f is arbitrary, this does not hold for g, whose value is set by solving
the vertical hydrostatic equilibrium.

7.2.2 Hydrostatic equilibrium and rotation curve

To compute the vertical density profile we assume a non-self-gravitating disc under the
condition of hydrostatic equilibrium in the vertical direction:

1

ρ

dP

dz
= −dΦ⋆

dz
, (7.11)

where Φ⋆ = −GM⋆/r is the stellar potential (r =
√
R2 + z2 is the spherical radius).

Equation (7.11) can be written as:

c2s,mid
f
d log(fg)

dz
= −Ω2

kz

[
1 +

(
z

R

)2]−3/2

. (7.12)

Solving for log(fg), we find

log(fg) = − 1

H2
mid

∫ z

0

z′

f

[
1 +

(
z′

R

)2
]−3/2

dz′ (7.13)

and hence the density is given by

ρ(R, z) =
ρmid(R)

f(R, z)
exp

− 1

H2
mid

∫ z

0

z′

f(R, z′)

[
1 +

(
z′

R

)2
]−3/2

dz′

 . (7.14)
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Assuming the condition of centrifugal balance, the rotation curve is given by the radial
component of Navier-Stokes equation

v2ϕ(R, z) =
R

ρ

dP

dR
(R, z) +R

dΦ⋆
dR

(R, z), (7.15)

where we are neglecting the self-gravitating contribution. The first term in eq.(7.15) can
be written as

R

ρ

dP

dR
= c2s,mid

f

[
d logPmid

d logR
+
d log(fg)

d logR

]
, (7.16)

and the second one as

R
dΦ⋆
dR

(R, z) = v2k

[
1 +

( z
R

)2]−3/2

, (7.17)

where vk =
√
GM⋆/R is the Keplerian velocity. Therefore, the rotation curve is

v2ϕ(R, z) = v2k

{[
1 +

( z
R

)2]−3/2

+

[
d logPmid

d logR
+

+
d log(fg)

d logR

](
H

R

)2

mid
f(R, z)

}
,

(7.18)

which in the self-similar case becomes

v2ϕ(R, z) = v2k

{[
1 +

( z
R

)2]−3/2

−

[
γ′ + (2− γ)

(
R

Rc

)2−γ

−

−d log(fg)

d logR

](
H

R

)2

mid
f(R, z)

}
,

(7.19)

where γ′ = γ + (3 + q)/2. Each term of equation (7.19) can be easily interpreted: [1 +

(z/R)2]−3/2 is the star contribution at the height z, γ′ is the effect of the power law scaling
of the pressure, (2 − γ)(R/Rc)

2−γ is the effect of the exponential truncation and the
logarithmic term is the effect of the vertical stratification. Since the latter is the derivative
of a product, we do not know a priori its sign and thus if the rotation is accelerated or
slowed down by thermal stratification. In any case, in all our attempts this term never
dominates over the variation of gravity with z. Thus, we found rotation to slow down
with z and this effect is more pronounced as compared to the isothermal case when
considering the parameters of the MAPS sample.

We underline that for the isothermal case (f ≡ 1), this expression reduces to the one
derived and analysed by Lodato et al. (2023), while Eq. (7.13) simplifies as

log g = − 1

H2
mid

∫ z

0

z′dz′

[1 + (z′/R)2]3/2
= − R2

H2
mid

(
1− 1√

1 + z2/R2

)
. (7.20)

Therefore, the density in the isothermal case is given by

ρ(R, z) = ρmid(R) exp

[
R2

H2
mid

(
1√

1 + z2/R2
− 1

)]
. (7.21)
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Figure 7.5: Comparison between the analytical models and the simulation after 8 outer orbits and
at z = 20au. Left panel: density field. The red dots represent the data of the simulation, while
the blue and orange line show the thermally stratified model and the isothermal one respectively.
Right panel: pressure gradient term of the rotation curve. The red dots represent the simulation
data, while the blue and orange line show the thermally stratified model and the isothermal one
respectively. The model with thermal stratification matches very well the simulation.

7.2.3 Temperature prescriptions

The two parametrisations of the vertical temperature more often used are given by Dar-
tois et al. (2003) and Dullemond et al. (2020). In this work we will use the one by Dulle-
mond et al. (2020), which is given by:

T (R, z)4 = T 4
ϵ (R) +

1

2
T 4

atm(R)

[
1 + tanh

( z

Zq(R)
− α

)]
(7.22)

and thus

f(R, z) =

{(
Tϵ
Tmid

)4

+
1

2

(
Tatm

Tmid

)4

(R)

[
1 + tanh

( z

Zq(R)
− α

)]}1/4

, (7.23)

where the atmospheric temperature is parameterised as Tatm(R) = Tatm,100(R/100au)−qatm ,
Tϵ is considered as an approximation of the temperature at midplane Tϵ ≃ Tmid, Zq(R) is
defined as Zq(R) = ζ100(R/100au)β and α is a parameter that describes where the transi-
tion from midplane to atmospheric temperature occurs in the vertical direction. We note
that in this case f(R, z = 0) ̸= 1 and thus the temperature does not smoothly connect to
its value at midplane. We underline that Eq. (7.22) is a good approximation for the five
discs within the MAPS large program in most of the radial extent of the disc.

Once the function f is defined, Eq.(7.14) and (7.18) can be solved semi-analytically
and completely specify the rotation curve. We have implemented this calculation in
DYSC2.

2The code is publicly available at https://github.com/crislong/DySc

https://github.com/crislong/DySc
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7.2.4 Comparison with numerical simulations

In this work, we performed numerical Smoothed Particle Hydrodynamics (SPH) simu-
lations of protostellar discs using the code PHANTOM (Price et al. 2018b). This code is
widely used in the astrophysical community to study gas and dust dynamics in accre-
tion discs (Dipierro et al. 2015b; Ragusa et al. 2017; Curone et al. 2022) and recently it has
also been employed for kinematical studies (Pinte et al. 2018b; Hall et al. 2020; Terry et al.
2022; Verrios et al. 2022). The aim of this simulation is to test the model before applying
it to actual data.

To test the analytical model, we simulated a thermally stratified disc using the param-
eters of MWC 480 presented in Law et al. (2021). The simulation has been performed
with N = 106 gas particles, initially distributed as a tapered power law density pro-
file, smoothed at inner radius, with γ = 1 and Rc = 150au, between Rin = 10au and
Rout = 400au. The mass of the star is 2.1M⊙. For the temperature structure we used the
Dullemond prescription (Eq. (7.22)), with ζ0 = 7au, α = 2.78, β = −0.05, Tmid,100 = 27K,
q = 0.23, Tatm,100 = 69K, qatm = 0.7. The αSS Shakura & Sunyaev (Shakura & Sunyaev
1973) viscosity coefficient has been set to 0.005. No self-gravity or dust have been in-
cluded in the simulation.

We let the system evolve and reach hydrostatic equilibrium. We observed that after
a couple of orbits the system reaches a relaxed state. We decided to analyse the output
of the simulation after 8 outer orbits (∼ 45kyr). In figure 7.5 we show a comparison
between the density and the velocity of the simulations (red dots) at z = 20au and both
the isothermal and stratified model predictions. The red dots represent the azimuthal
average of the respective quantity computed by averaging over all SPH particles within
each of the 50 radial bins and the error bar is the corresponding standard deviation. The
stratified model perfectly describes the density and the velocity field of the simulation
and is a significant improvement over the isothermal one. In particular, in the right
panel of figure 7.5 we see that the difference between the azimuthal velocity and the
Keplerian velocity (v2k −v2ϕ)/v2k reaches the 10−12% and only the stratified model is able
to reproduce it.

7.3 Kinematic evidence of thermal stratification in MAPS discs

In this section, we applied the model to the entire sample of discs from the MAPS ALMA
Large Program (Öberg et al. 2021). We performed our fits under the assumption of ver-
tically isothermal or stratified disc in order to compare the results. For the vertically
isothermal model, the thermal structure is defined by the hydrostatic height of the disc
at R = 100au and the power law coefficient of the temperature profile q. These pa-
rameters are taken by Zhang et al. (2021). As for the stratified model, Law et al. (2021)
obtained the two-dimensional temperature structure of the MAPS discs, using the Dulle-
mond et al. (2020) prescription (Eq. 7.22). Note that the rotation curve traced by a specific
molecule is defined by

v2rot(R) = v2ϕ(R, z(R)), (7.24)

where z(R) is the height of the emitting layer of the considered molecule. For the emit-
ting layer, we use

z(R) = z0

(
R

100au

)ψ
exp

[
−
(
R

Rt

)qt]
, (7.25)

where the best fit parameters have been obtained by Izquierdo et al. (2022).
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Figure 7.6: 12CO and 13CO rotation curves of the MAPS discs extracted with DISCMINER.
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Figure 7.7: Relative difference between the squares of observed 12CO and 13CO rotation curves
predicted by the thermally stratified model (blue line), the isothermal model (orange line) and the
data (red dots). Except for AS 209, where this quantity is negative in the inner part, it is clearly
visible that data are well reproduced by the stratified model. Indeed, the difference of speed
between the two curves cannot be explained just in terms of different height.



Weighing and sizing protoplanetary discs with gravity 109

Table 7.3: Velocity extraction method, orientation parameters, thermal parameters and emitting
surfaces for 12CO and 13CO data of the MAPS discs. The orientation parameters and the emitting
surfaces are taken from Izquierdo et al. (2023), the thermal parameters for the isothermal model
are taken from Zhang et al. (2021), for the stratified model from Law et al. (2021).

MWC 480 IM Lup GM Aur HD 163296 AS 209

Orientation

i [deg] -37.00 -47.50 53.20 46.69 -39.95
PA [deg] 58.15 54.50 -36.02 42.75 -4.80

Isothermal

H100[au] 10 10 7.5 8.4 6
q 0.82 0.66 0.3 0.84 0.5

Stratified

Tmid[K] 27 25 20 24 25
Tatm[K] 69 36 48 63 37
q 0.23 0.02 0.01 0.18 0.18
qatm 0.7 -0.03 0.55 0.61 0.59
ζ0[au] 7 3 13 9 5
α 2.78 4.91 2.57 3.01 3.31
β -0.05 2.07 0.54 0.42 0.02

12CO Surface

z0[au] 17.04 34.13 32.00 27.14 16.47
ψ 1.35 0.99 0.97 1.07 1.24
Rt[au] 579.43 889.40 729.91 534.00 327.52
qt 1.63 3.18 3.22 2.99 3.01

13CO Surface

z0[au] 11.52 22.84 18.21 16.09 4.13
ψ 1.09 1.27 1.14 1.12 0.96
Rt[au] 402.77 529.06 512.13 392.75 180.22
qt 1.87 1.65 2.73 3.43 3.59
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Figure 7.8: Left panel: rotation curve of MWC 480 obtained from 12CO data (red points), along
with our best fitting curve for the stratified model (blue line) and the isothermal one (orange line).
Right panel: same for the 13CO data.

Rotation curves (Fig. 7.6) can be obtained through different moment maps, according
to the disc emission (Izquierdo et al. in prep). All the parameters used are summarised
in table 7.3.

7.3.1 Results

We fitted simultaneously the 12CO and 13CO data with both the isothermal and stratified
model including the self-gravitating contribution. The results are shown in figures 7.8,
7.9, 7.10, 7.11 and 7.12, and the best fitting parameters are reported in table 7.4.

In order to quantify the importance of thermal stratification, we computed the rela-
tive difference between the squares of 12CO and 13CO rotation curves, as shown in figure
7.7. According to the vertical isothermal model, this quantity is

(
v213 − v212

)
iso = v2kq

√
1 + z212/R

2 −
√
1 + z213/R

2√
(1 + z213/R

2) (1 + z212/R
2)
, (7.26)

which solely depends on the different height of the tracer, since it is assumed that the
temperature does not change vertically. As for the stratified model, the expression is
more complex, since it involves the evaluation of the term (7.13) at different heights. In
this case, we expect to observe larger differences between the two isotopologues’ veloc-
ity, since there is an additional shift caused by the different emission temperature. In
order to determine the importance of vertical stratification, we quantify the maximum
value of the velocity shift between 12CO and 13CO that can be predicted in the isothermal
case: (

v213 − v212
)

iso

v2k
≈ q

∆z2

2R2
< 5%, (7.27)

where we used that typically z/R < 0.5. Hence, if the quantity (v213 − v212)/v
2
k is higher

than 5%, the system cannot be described by an isothermal model, while it is likely that
vertical stratification plays a significant role. It is important to note that the eq. (7.27)
depends on the star mass through v2k. However, when dealing with data, it is useful
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Figure 7.9: Same as figure 7.8 but for IM Lup.
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Figure 7.10: Same as figure 7.8 but for GM Aur.

to normalize the squared difference by the velocity of the 13CO, since this quantity re-
lies only on the data, without any assumption on the star mass. Figure 7.7 shows this
quantity for the studied systems.

In the next paragraphs, we will present the results of each disc, discussing the im-
portance of thermal stratification. In order to compare the results, we performed our fits
for both the vertically isothermal and stratified case. In addition, we computed the dust
mass from millimetric emission at 283GHz, using (Hildebrand 1983)

Mdust =
d2Fν

κνBν(T )
, (7.28)

where d is the distance, Fν is the flux density in Jy, κν = 2.3(ν/230GHz)0.4cm2g−1 is the
dust opacity and Bν is the blackbody spectrum. In our analysis, we assumed T = 20K
and ν = 283GHz, while the flux densities have been extracted from MAPS data. We
remind that this equation implies that dust emission is optically thin. The results are
reported in table 7.5.
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Figure 7.11: Same as figure 7.8 but for HD 163296.
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Figure 7.12: Same as figure 7.8 but for AS 209.

MWC 480

MWC 480 is a ∼ 7Myr Herbig Ae star located in the Taurus-Aurigae star forming region
at a distance of d = 162pc (Montesinos et al. 2009). The most recent value of the stellar
mass has been derived dynamically by Teague et al. (2021) to be M⋆ = 2.1M⊙, which is
the one adopted in the MAPS papers (Öberg et al. 2021). Zhang et al. (2021) through 2D
thermochemical models computed disc mass and scale radius of the MAPS discs. For
MWC 480, these values are Md = 0.16M⊙ and Rc = 200au.

By inspecting the 12CO and 13CO rotation curves (fig. 7.6), no evident sign of thermal
stratification is visible, since the two curves do not differ significantly. Figure 7.8 shows
that the two models are nearly indistinguishable, but in figure 7.7 we see that the strat-
ified model better reproduces data. When we assume an isothermal model, we obtain
M⋆ = 1.969±0.002M⊙,Md = 0.201±0.002M⊙ andRc = 80±1au, while for the stratified
model M⋆ = 2.027 ± 0.002M⊙, Md = 0.150 ± 0.002M⊙ and Rc = 128 ± 1au. The disc
mass obtained with the stratified model is in agreement with the literature value (Zhang
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et al. 2021). Since the reduced chi-squared χ2
red is smaller in the stratified case (see table

7.4), we adopt it as the best fit model.

IM Lup

IM Lup is a young pre-main sequence star (∼ 1Myr) located in the Lupus star forming
region at a distance of 158pc (Gaia Collaboration et al. 2018). The dynamical stellar mass
is estimated to be 1.1M⊙ (Teague et al. 2021), and it hosts an unusually large disc, ex-
tending out to ≈ 300 au in the dust continuum and out to ≈ 1000 au in the gas (Cleeves
et al. 2016). The dust continuum emission shows clear evidence of a spiral morphol-
ogy, which may be triggered by gravitational instability (Huang et al. 2018a). Cleeves
et al. (2016) firstly estimated the disc mass from mm visibilities and found a massive
disc of 0.2M⊙. Verrios et al. (2022) claimed that the spiral structure of IM Lup could be
generated by an embedded protoplanet. They performed numerical SPH simulations of
planet-disc interaction and then post-processed them to compare their results with CO,
dust and scattered light emission. Interestingly, a high disc mass (∼ 0.1M⊙) is required
to match the scattered light image, in order for sub-micron sized grains to remain well
coupled in the top layers of the disc. Cleeves et al. (2016) first estimated the disc scale
radius Rc = 100au by comparing SED to a simple tapered power-law density profile.
Afterwards, Pinte et al. (2018a) analysed CO data and found that a tapered power law
density profile with Rc = 284au better reproduces the data. They also analysed the ro-
tation curve of the disc and found that while the inner disc is in good agreement with
Keplerian rotation around a 1± 0.1M⊙ star, both the 12CO and the 13CO rotation curves
become sub-Keplerian in the outer disc. The authors attributed this effect to the pressure
gradient. Lodato et al. (2023) analysed 12CO and 13CO rotation curves and fitted for star
mass, disc mass and scale radius with an isothermal model3.

Figure 7.9 shows both the isothermal and stratified fit. While for 12CO both models
describe well the rotation curve, for 13CO the isothermal model fails, since the velocity
shift is so high that cannot be explained just in terms of emitting surface. This difference
is clearly visible when considering the χ2

red, which for the stratified model is considerably
smaller. The best fit parameters for the isothermal model are M⋆ = 1.055 ± 0.002M⊙,
Md = 0.200 ± 0.003M⊙ and Rc = 55 ± 1au, while for the stratified model are M⋆ =
1.1994 ± 0.002M⊙, Md = 0.106 ± 0.002M⊙ and Rc = 115 ± 1au. The effects of thermal
stratification are visible in figure 7.7. At R ∼ 250au, the difference in the data between
12CO and 13 CO is of the order of ∼ 10%, and it significantly increases in the outer part.
There, neither the stratified model is able to explain that difference. Izquierdo et al.
(2023) pointed out that the emission from the outer disc is so diffuse that the retrieval
of the emitting surface, as well as the velocity extraction, needs to be taken with care.
This is possibly an effect of external photoevaporation. Indeed, despite the very weak
external radiation field irradiating IM Lup, Haworth et al. (2017) showed that the disc
is sufficiently large that the outer part, which is weakly gravitationally bounded, can
undergo photoevaporation.

GM Aur

GM Aur is a T-Tauri star in the Taurus-Auriga star-forming region, hosting a transition
disc. The stellar mass has been estimated dynamically to beM⋆ = 1.1M⊙ by Teague et al.

3In particular, the authors found that for the rotation curves extracted with EDDY the best fit are M⋆ =
1.012 ± 0.003M⊙,Md = 0.096 ± 0.003M⊙, Rc = 89 ± 1au and DISCMINER are M⋆ = 1.02 ± 0.02,Md =
0.10± 0.01M⊙, Rc = 66± 1au.
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(2021), in agreement with previous measurements (Macı́as et al. 2018). Its CO morphol-
ogy is very complex, showing spiral arms, tails and interactions with the environments
(Huang et al. 2021). From thermochemical models of MAPS data, Schwarz et al. (2021)
obtained a disc mass of Md = 0.2M⊙ and a scale radius of Rc = 111au, making GM
Aur a possibly gravitationally unstable disc. Lodato et al. (2023) fitted for star mass,
disc mass and scale radius using an isothermal model and found that for GM Aur the
two CO lines provide inconsistent rotation curves, which cannot be attributed only to a
difference in the height of the emitting layer. In addition, the authors provided a simple
order of magnitude estimate of the expected velocity shift due to thermal stratification
concluding that the difference between the two rotation curves could not be explained
by this effect. They drew this conclusion by taking into account the different temperature
of the two molecules at their emission height zi(R) given by Law et al. (2021). However,
what matters in the azimuthal velocity is not only the temperature at (R, z), but also its
radial and vertical gradient at that location.

By analysing the rotation curves of the two CO isotopologues (fig. 7.6), a systematic
shift between 12CO and 13CO curves is clearly visible, possibly attributed to thermal
stratification. When we fit with the isothermal model, we obtain as the best fit parame-
ters M⋆ = 0.872 ± 0.003M⊙, Md = 0.312 ± 0.003M⊙ and Rc = 56 ± 1au, in agreement
with Lodato et al. (2023), which lead to a high χ2

red(see table 7.4). As a matter of fact,
figure 7.10 shows that an isothermal model is not able to reproduce both 12CO and 13CO
rotation curves. Conversely, when thermal stratification is taken into account, the two
rotation curves are compatible and are in agreement with data, especially forR > 180au.
In this case, the best fit value for the star mass is M⋆ = 1.128± 0.002M⊙, which is in line
with the literature values (Teague et al. 2021; Macı́as et al. 2018). As for the disc mass,
the best fit value is Md = 0.118± 0.002M⊙. Finally, the best fit value for the scale radius
is Rc = 96 ± 1au, almost twice the value obtained with the isothermal model and in
good agreement with Schwarz et al. (2021). A stratified model reproduces very well the
difference between 12CO and 13CO rotation curves, as shown in fig. 7.7 and leads to a
significant decrease of the χ2

red.

HD 163296

HD 163296 is one of the most well-studied Herbig Ae star system at millimetre wave-
lengths due to its relative close distance (d = 101pc) and bright disc. The disc presents
several features that suggest ongoing planet formation, as dust rings, deviations from
Keplerian velocities due to gas pressure variations, ‘kinks’ in the CO emission, and
meridional flows (Isella et al. 2016, 2018; Pinte et al. 2018b; Teague et al. 2018; Pinte
et al. 2020; Calcino et al. 2022; Izquierdo et al. 2022, 2023). This system has also been
extensively studied because there are evidences of a massive disc. Powell et al. (2019)
through modelling of dust lines found that the disc mass is Md = 0.21M⊙. Booth &
Clarke (2019) observed the 13C17O in HD 163296, a very rare CO isotoplogue that allows
to give precise disc mass measurement. They found that the disc mass that better re-
produces observations is Md = 0.31M⊙. As for the scale radius, de Gregorio-Monsalvo
et al. (2013) through radiative transfer modelling found that Rc = 125au is the value
that better reproduces dust and CO ALMA observations. Guidi et al. (2016) presented a
multiwavelength ALMA and VLA study of the disc and through visibilities modelling
found that the best fit value of the scale radius is Rc = 118au, in agreement with de
Gregorio-Monsalvo et al. (2013).

When we fit data with a vertical isothermal model, we obtain as the best fit pa-
rameters M⋆ = 1.842 ± 0.002M⊙, Md = 0.124 ± 0.001M⊙ and Rc = 38 ± 1au. While
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the star mass is realistic, the scale radius is unrealistically small compared to the gas
emission extent of the order of 400au (Law et al. 2021). Additionally, the isothermal
model is not able to reproduce the difference between the rotation curves of the two
CO isotopologues (see fig. 7.7), resulting in a relatively poor fit with a large χ2

red. If
we include the 2D thermal structure, the quality of the fit increases (see χ2

red in table
7.4). In this case, the best fit for stellar mass and disc mass does not change signifi-
cantly (M⋆ = 1.948 ± 0.002M⊙,Md = 0.134 ± 0.001M⊙), while the scale radius does
to Rc = 91 ± 1au. Comparing our result for the disc mass to the literature values, we
observe that our fit gives a value that is roughly half. Figure 7.11 shows that both the
isothermal and the stratified model describe well the rotation curve of 12CO and 13CO.
However, the shift between them, presented in figure 7.7, is well recovered only by the
stratified model, which partially managed to explain the significant increase of the plot-
ted quantity. The presence of pressure modulated substructures in the rotation curves
(Izquierdo et al. 2023) impacts the quality of the fit and they are clearly visible in fig-
ure 7.7. A possible development would be to model them, including them in the fitting
model.

AS 209

AS 209 is a young T-Tauri star in the Ophiucus star forming region (d ∼ 121pc). The
most recent stellar mass estimate is M⋆ = 1.2M⊙ (Teague et al. 2021). Fedele et al. (2018)
gave an estimate for the scale radius Rc = 80au through mm visibilities modelling.
Afterwards, through thermochemical modelling, they found a dust mass of Mdust =
3.5 × 10−4M⊙ that, with a gas-to-dust ratio of 100, translates into Md = 0.0035M⊙, in
agreement with the recent value Md = 0.0045M⊙ of Zhang et al. (2021). Interestingly,
when inspecting the rotation curves of AS 209 (fig. 7.6), the 13CO is slower compared to
the 12CO, despite it being closer to the midplane. This trend is observed up to ∼ 125au.
A possible explanation for this is that the inclination of the disc is low, and hence the
emitting surfaces should be taken with care. When we fit with the isothermal model,
we obtain as the best fit parameters M⋆ = 1.272 ± 0.003M⊙, Md = 0.042 ± 0.003M⊙
and Rc = 45 ± 1au. When we fit with the stratified model, we obtain as the best fit
parameters M⋆ = 1.311 ± 0.001M⊙, and Rc = 126 ± 2au, while for the disc mass we
report a 3 − σ upper limit of Md = 0.00025 ± 0.00025M⊙, since the best fit parameter
is compatible with zero. In figure 7.12 both models are shown. As for 12CO, the two
models behave in the same way, showing little difference in the outer edge. Conversely,
for 13CO the isothermal model works better in the inner part, where 13CO is slower,
while in the outer part the stratified model describes well the rotation curve. According
to the χ2

red, the stratified model describes better the data (see table 7.4).

7.3.2 Thermal stratification in MAPS discs

Table 7.4 presents a summary of the findings of this study, comparing the isothermal
model with the stratified one. It is evident from the results that the reduced χ2 value
consistently decreases when employing the stratified model. This indicates that the in-
clusion of thermal stratification provides a more effective way of describing the observed
data. In this context, MWC 480 is particularly interesting. Despite the small kinematic
signatures of thermal stratification, as depicted in figure 7.7, the quality of the stratified
fit is higher and it yields more reliable values for star mass, disc mass, and scale radius.
On the opposite side, GM Aur is the system that shows the strongest effects of thermal
stratification, being the 12CO and 13CO systematically shifted over all the radial extent of
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Table 7.4: Results of the fitting procedure and reduced chi-squared for the two different models:
isothermal and stratified.

M⋆ [M⊙] Md [M⊙] Rc [au] χ2
red

MWC 480

Isothermal 1.969 ±0.002 0.201±0.002 80±1 11.21
Stratified 2.027±0.002 0.150± 0.002 128 ±1 6.14

IM Lup

Isothermal 1.055 ±0.002 0.200±0.003 55±1 35.68
Stratified 1.194±0.002 0.106± 0.002 115 ±1 6.29

GM Aur

Isothermal 0.872 ±0.003 0.312±0.003 56±1 90.84
Stratified 1.128±0.002 0.118±0.002 96 ±1 8.48

HD 163296

Isothermal 1.842 ±0.002 0.124±0.001 38±1 29.60
Stratified 1.948±0.002 0.134± 0.001 91 ±1 19.74

AS 209

Isothermal 1.272 ±0.003 0.042±0.003 45±1 25.13
Stratified 1.311±0.001 0.0002± 0.0002 126 ±2 10.55
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Table 7.5: Continuum fluxes at 283 GHz, dust masses from eq. (7.28) and gas-to-dust ratio using
the best fit value of the disc mass of the stratified model.

F283 [mJy] Mdust [M⊙] Gas-to-dust ratio

MWC 480 943.51 0.00138 108
IM Lup 536.25 0.00075 134
GM Aur 347.95 0.00049 240
HD 163296 1127.97 0.00064 202
AS 209 414.83 0.00034 < 192

the disc. The introduction of thermal stratification is able to reconcile these differences,
reducing by an order of magnitude the χ2

red. The only case where the stratified model
encounters challenges in accurately describing both curves is AS 209. This system is pe-
culiar because the CO emission is more compact compared to the other ones (see fig. 7.6).
In addition, the low inclination of AS 209 influences the extraction of emission surfaces.
Consequently, contrary to what expected, we observe that the 13CO rotates slower than
the 12CO in the inner part. Despite that, the χ2

red is smaller when thermal stratification is
taken into account.

7.3.3 Gas-to-dust ratio

With the knowledge of the disc mass, it is possible to evaluate the gas-to-dust ratio,
using eq. (7.28) for the dust mass. The results are shown in table 7.5, and we found
values between 100 − 250, within only a factor of 2 from the usually assumed valued
of 100. This is surprisingly, due to the several assumptions we made to obtain the dust
mass. Indeed, as we have already mentioned, the optically thin hypothesis for dust
emission could lead to a difference of a more than a factor 2 in the dust mass calculation
(Guidi et al. 2016), underestimating it. In addition, the dust opacity could also vary of a
factor ∼ 10 depending on the grain size and composition. Hence, overall, it is significant
that the inferred gas-to-dust ratio is so close to the standard value. As for AS 209, we
estimate an upper limit for this quantity. Indeed, according to Veronesi et al. (in prep),
the minimum measurable mass with the rotation curve is 5% of the star mass. Taking
this value as an upper limit for AS 209 disc mass, it is possible to give an upper limit for
the gas-to-dust ratio.

7.3.4 Toomre Q

In order to investigate the presence of gravitational instability we use our best fit param-
eters for the stratified model to compute the Toomre parameter (Toomre 1964) which, in
the hypothesis of nearly Keplerian disc (κ ≃ Ω), is

Q ≃ csΩ

πGΣ
= 2

H

R

∣∣∣∣
mid

M⋆

Md

(
R

Rc

)−1

exp

[
R

Rc

]
, (7.29)

where we used eq. (7.5) for the surface density. According to the WKB quadratic disper-
sion relation (Lin & Shu 1964; Toomre 1964), the onset of the instability happens when
Q ∼ 1. Figure 7.13 shows the profile of the Q parameter for the MAPS sample, except
for AS209, since its disc mass estimate is compatible with zero. Every disc is gravitation-
ally stable, according to the Toomre criterion, since Q > 1. Interestingly, the two discs
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Figure 7.13: Toomre Q parameter of the MAPS discs with the best fit parameters of the stratified
model. We excluded AS 209 because its best fit disc mass is compatible with zero.

that shows spiral structures (IM Lup and GM Aur), have the Toomre profile lower com-
pared to the others, with a minimum value of ∼ 4 for GM Aur and ∼ 6 for IM Lup. Lau
& Bertin (1978) showed that a WKB description of gravitational instability can still be
obtained under less restrictive conditions compared to the quadratic relation and they
showed that discs that are locally stable according to the Q criterion might still generate
large scale spiral waves. In general, other mechanisms could increase the critical value
of the Toomre parameter, such as external irradiation (Lin & Kratter 2016; Löhnert et al.
2020) or dust driven gravitational instability (Longarini et al. 2023a,b). Hence, we do not
exclude that gravitational instability is at play in GM Aur and IM Lup.

7.3.5 Conclusions

Kinematic data of protoplanetary discs show velocity differences between 12CO and
13CO that cannot be explained through a vertically isothermal model, given the sys-
tematic shift between rotation curves of CO isotopologues. In this work, we predict
how thermal stratification affects the density and the velocity field of a protoplanetary
disc. We use SPH simulations to test our model, finding excellent agreement, and then
we apply it to the MAPS sample. We extract rotation curve of CO isotopologues (12CO
and 13CO) and we fit for star mass, disc mass and scale radius both with a vertically
isothermal and a stratified model. The quality of the fit significantly improves when
thermal stratification is taken into account and the best fit parameter are more realistic
and aligned with literature. All the results are summarised in table 7.4.

Typically, when thermal stratification is considered, the best fit value for the star
mass tends to rise. This can be intuitively understood, as an isothermal model would
favour a star mass that lies between that of 13CO and 12CO, in this way underestimating
it due to the slower rotation of 12CO. Conversely, the stratified model encapsulates the
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difference between the two curves, mitigating the underestimation issue and resulting
in a more accurate mass estimate. While an isothermal model provides a satisfactory fit
at small radii, the fit worsens at large radii where the difference between 12CO and 13CO
is larger. The fit tries to compensate for this by increasing the disc mass, most of which
resides at large radii, thereby changing the predicted curve only in the outer parts of the
disc. Ultimately, a more accurate description of the thermal structure through a stratified
model leads to a realistic estimate of the scale radius.

We note that the inclusion of thermal stratification into our model enhances our com-
prehension of the observed data within protoplanetary discs. This addition leads to more
accurate estimate of disc properties, resulting in improved χ2 values across all systems
under examination.





CHAPTER 8

Kinematic study of a gravitational unstable disc : Elias 2-27

This chapter is based on the paper “Angular momentum transport through gravitational insta-
bility in Elias 2-27” by Cristiano Longarini et al., in preparation.

Gravitational instability is thought to be the main driver of angular momentum trans-
port in young protoplanetary discs. Elias 2-27 offers a unique example of gravitational
instability at play, being massive, showing two prominent spiral arms in dust contin-
uum emission and global kinematic signatures in molecular line emission. In this work,
we measure the angular momentum transport in this system using kinematical pertur-
bations generated by gravitational instability. The α−viscosity coefficient we find is
αGI = 0.038, that describes very well the observed accretion rate onto the protostar.
The excellent agreement with the observed value is a further proof that gravitational
instability is at play in this system.

8.1 The source: Elias 2-27

Elias 2-27 is a young (∼ 0.5Myr) M0 star located at a distance of 116 pc (Gaia Collabo-
ration et al. 2018) in the ρ−Oph star forming region. The star hosts a circumstellar disc,
where two large-scale trailing spiral arms in dust continuum emission have been de-
tected (Pérez et al. 2016), whose origin was first imputed to gravitational instability, due
to the high dust mass. Later, Meru et al. (2017) performed three-dimensional numerical
SPH simulations to investigate the origin of the spiral structure: by comparing gravi-
tational instability, internal and external companion scenarios, they found that GI best
reproduces the observed morphology. Similar results have also been found by Hall et al.
(2018). In addition, due to its high brightness, Elias 2-27 became part of the DSHARP
sample (Andrews et al. 2018), allowing more thorough studies of its dust morphology
(Huang et al. 2018b). Even though the main focus of DSHARP program was dust emis-
sion, also kinematic data of CO isotopologues were collected. Pinte et al. (2020) found
complex kinematic features in Elias 2-27 system, showing global perturbation to the ve-
locity field. However, due to the low resolution of the data, a detailed analysis could not
be possible. Paneque-Carreño et al. (2021) presented new data of this system, and con-
ducted a detailed analysis of the morphology and the kinematics. Global perturbations
in the velocity field of 13CO and C18O were found, and their morphology follows the
shape of the spiral, possibly being GI Wiggles (Hall et al. 2020; Longarini et al. 2021b;
Terry et al. 2022). From the same dataset, Veronesi et al. (2021) extracted the rotation
curve and obtained a disc mass estimate of Md = 0.08M⊙, by measuring the super-
Keplerian contribution of the disc self-gravity. The estimated disc to star mass ratio is
∼ 17%, making the role of the disc self-gravity non-negligible in this system.
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Figure 8.1: Toomre profile of Elias 2-27, where the shaded region indicates the uncertainties on the
disc and star mass from Veronesi et al. (2021).

In this work, we use the 13CO and C18O J = 3− 2 datacubes presented in Paneque-
Carreño et al. (2021). The images have been obtained with a robust parameter of 0.5,
resulting in a beam size of 0.26′′×0.25′′ for the 13CO and 0.31′′×0.29′′ for the C18O, and
a spectral resolution of ∆v = 111m/s.

8.2 Evidence of gravitational instability at play in Elias 2-27

8.2.1 Toomre parameter

Veronesi et al. (2021) estimated the dynamical mass of Elias 2-27 from 13CO and C18O
rotation curves, and they foundM⋆ = 0.46M⊙±0.03 andMd = 0.08±0.04M⊙. They fixed
the scale radius toRc = 200au and the thermal structure T (60au) = 20K from Pérez et al.
(2016). With this information, it is possible to compute the Toomre parameter profile
for Elias 2-27, as displayed in figure 8.1. Despite not being exactly Q = 1, the Toomre
profile is enough close to the critical threshold to consider gravitational instability to be
significant. In addition, we are not considering uncertainties on the thermal structure,
that could impact on the Q−parameter estimate.

8.2.2 Location of the perturbations

A GI spiral density wave induces perturbations in the velocity field that are apparent in
molecular line emission (Hall et al. 2020). Longarini et al. (2021b) have determined both
the amplitude and phase of these velocity perturbations, establishing their correlation
with the characteristics of the spiral. Specifically, the mathematical description of a spiral
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wave involves three key parameters. The first parameter is the number of spiral armsm.
The second one is the phase function ψ(R) and it indicates how the shape of the spiral
changes radially. The shape function is related to the opening angle αp according to

dψ
dR

=
m

R tanαp
, (8.1)

and for a constant pitch angle, the shape function is logarithmic. The third parameter
is the amplitude of the perturbation. For a GI spiral wave in thermal saturation regime,
the amplitude of the perturbation δΣ is linked to the cooling factor β according to

δΣ ∝ Σβ−1/2. (8.2)

We underline that the amplitude of the density perturbation is a real quantity. As for the
velocity perturbations, their amplitude are

δvR = 2imβ−1/2

(
Md

M⋆

)2

vk, (8.3)

δvϕ =
iβ−1/2

2

(
Md

M⋆

)
vk. (8.4)

Conversely to the density perturbation, the amplitude of the velocity ones is an imagi-
nary quantity.

The perturbed fields can be written by summing the basic unperturbed state with the
real part of the amplitude times the exponential term exp[imϕ+ iψ]. Hence, the surface
density of a GI disc is

Σ(R,ϕ) = Σ0(R) + Re [δΣ(R) exp(imϕ+ iψ)] = Σ0(R) + cos(mϕ+ ψ), (8.5)

and the velocity components are

vR(R,ϕ) = Re [δvR(R) exp(imϕ+ iψ)] = −|δvR(R)| sin(mϕ+ ψ), (8.6)

vϕ(R,ϕ) = RΩ+ Re [δvϕ(R) exp(imϕ+ iψ)] = RΩ− |δvϕ(R)| sin(mϕ+ ψ), (8.7)

where we took as axisymmetric basic state Σ0(R) for the surface density, RΩ for the
azimuthal velocity and zero radial velocity. Interestingly, the density and velocity per-
turbations are shifted of a factor π/2. This means that the maximum of the density per-
turbation corresponds to the zero velocity shift. Conversely, the maximum/minimum of
the velocity perturbation is co-located with the zero density perturbation, where Σ = Σ0.
Hence, we expect to observe the maximum velocity shift between two spiral arms. This
is exactly what we observe in Elias 2-27 13CO data. Indeed, figure 8.2 shows two chan-
nels of the 13CO and C18O datacube at 1.88km/s (the central channel) and 1.55km/s,
where the kinematic structures are located between two spiral arms, as expected. While
these offsets are more prominent in 13CO, we see that also C18O emission traces them. To
produce those figures, we used the spiral parameters of Paneque-Carreño et al. (2021):
we assume a logarithmic spiral with pitch angle αp = 13◦, the solid lines trace the con-
tinuum spirals, the dashed lines represent how the spiral would continue in the outer
part of the disc.
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Figure 8.2: 13CO and C18O channels at 1.88km/s and 1.55km/s of Elias 2-27. The blue lines are the
two spiral arms from dust continuum emission and the arrows indicate the regions of the emission
that are perturbed by the spiral arms. As expected, the perturbed emission is between the spiral
arms, and not co-located with them. While these offsets are more prominent in 13CO, we see that
also C18O emission traces them.
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8.3 Model of the GI Wiggle of Elias 2-27

In the analytical model for the GI wiggle of Longarini et al. (2021b), the amplitude of
the velocity perturbations is determined by the disc to star mass ratio and the cooling
factor. There is a degeneracy between the two quantities, however in the case of Elias
2-27 the value of the disc to star mass ratio is known (Veronesi et al. 2021). We extract
the isovelocity curve relative to the central channel by using Gaussian moment maps,
and the value of β that reproduces the amplitude of the perturbation is β = 10.5, having
fixed Md/M⋆ = 0.17, m = 2 and αp = 13◦. To obtain this result, we made the usual
hypothesis that β is constant over the radial extent of the disc, meaning that the cooling
timescale is proportional to the dynamical one with β as a proportionality factor.

8.3.1 Angular momentum transport

Under the hypothesis of thermally saturated gravitational instability, the cooling factor
determines the amount of angular momentum that is transported throughout the disc.
As a matter of fact, as shown in Cossins et al. (2009), the effective α−viscosity generated
by gravitational instability is

αGI =
4

9γ(γ − 1)β
, (8.8)

where γ is the adiabatic index γ = 5/3. For Elias 2-27, the amount of angular momen-
tum transported through gravitational instability is αGI = 0.038. In this way, kinematics
offers a unique opportunity to quantify the transport of angular momentum of a gravita-
tionally unstable disc. In Longarini et al. (2021b), the authors showed that the amplitude
of the GI wiggle is proportional to β−1/2: however, the true quantity that contributes to
the perturbation is αGI, not β. As a matter of fact, the quantity we are constraining is
the surface density perturbation δΣ, that is linked to the amount of the angular momen-
tum that is transported. The β−cooling prescription is just a simple way in which we
describe the strength of the gravitational instability. Thus, regardless of the origin of the
gravitational instability, the actual parameter we are constraining with the GI wiggle is
the amount of angular momentum that the spiral transports, that is αGI.

8.3.2 Accretion rate

Measuring the α−viscosity of a disc is a unique opportunity to investigate the angular
momentum transport within it. In particular, since the viscosity is responsible for the
accretion process, it is useful to predict the expected accretion rate onto the central object,
and compare it with the observed one.

According to the self-similar solution, the surface density and the accretion rate of
the disc can be written as

Σ =
Md

2πR2
c

(
R

Rc

)−1

exp

[
− R

Rc

]
, (8.9)

Ṁ =
3Mdνc
2R2

c

exp

[
− R

Rc

](
1− 2R

Rc

)
, (8.10)

where we have supposed that ν = νc(R/Rc). Within a α−viscosity framework, the
kinematic viscosity ν is

ν = αGIcsH = αGI

(
H

R

)2

vkR. (8.11)
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Figure 8.3: Analytical model of the observed velocity field of Elias 2-27, with M⋆ = 0.46M⊙,
Md = 0.08M⊙, Rc = 200au for the disc, m = 2, αp = 13◦, αGI = 0.038 for the spiral and i = 56.2◦.

In this way, we can write the accretion rate onto the central object as the limit for R → 0
of eq. (8.10)

Ṁ⋆ = −3αGI

2

(
H

R

)2

Rc

MdΩc, (8.12)

where Ωc = Ω(Rc) =
√
GM⋆/R3

c .
Using αGI = 0.038, it is possible to compute the accretion rate onto the central object

by using Eq. (8.12), and we obtain

log10 Ṁ⋆[M⊙/yr] = −6.92± 0.16, (8.13)

where the error has been computed through propagation from the disc and star mass
ones. The model for the accretion rate of Elias 2-27 reproduces very well the one mea-
sured by Natta et al. (2006) that is log10 Ṁ⋆[M⊙/yr] = −7.2± 0.5.

8.4 Discussion

The ability of our model to correctly reproduce the observed accretion rate points to the
fact that gravitational instability is responsible for angular momentum transport in this
system. As a matter of fact, the value of the α−viscosity we get from the GI wiggle is the
one required to explain the observed accretion rate onto the central object, having fixed
Elias 2-27 density structure. In addition, the strong hypothesis we made is that viscous
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processes are responsible for accretion. The inferred value for the α−viscosity is higher
than the usually assumed (∼ 10−3 − 10−4). This is not surprisingly, since the strength of
the viscosity generated by turbulent motions is higher.

8.4.1 Infall and interaction with the environment

Elias 2-27 is a young system, and its interactions with the surrounding environment
are possibly perturbing the disc. Specifically, the disc is partially embedded within the
molecular cloud, which absorbs both 12CO and a portion of the 13CO emissions Pérez
et al. (2016); Paneque-Carreño et al. (2021). Moreover, the interaction with the cloud
may influence the dynamics and morphology of the disc. In particular, simulations of
infall predict the formation of spiral structures in the surface density (Kratter & Matzner
2006; Kratter et al. 2008; Lesur et al. 2015; Hennebelle et al. 2017), and the detection of
infall-driven spirals has been asserted in a Class I disk (Lee et al. 2020).

In the CO datacubes of Elias 2-27 there is evidence of infall and interaction with the
molecular cloud. Paneque-Carreño et al. (2021) found a striped pattern in the chan-
nel maps, that is possibly caused by stream of materials moving at the same velocity.
However, the data lacks appropriate uv-coverage to accurately sample the whole field
of view, that extends more than 20′′.

Even though the spiral structure is generated by infall, our α−viscosity argument
remains valid. As a matter of fact, as commented before, we are directly measuring the
amplitude of the density perturbation δΣ from the wiggle, and it is linked to the amount
of angular momentum that is transferred. An interesting thing to investigate would be
to link the δΣ to the infall rate from the cloud, and hence constraining it from the wiggle.

8.4.2 Planet formation in Elias 2-27

Longarini et al. (2023a,b) investigated the possibility of forming planetary cores in grav-
itationally unstable discs through dust collapse. They found that for sufficiently long
cooling time β > 10 and high disc to star mass ratio Md/M⋆ ∼ 0.2, dust efficiently col-
lects inside spiral arms, and its dispersion velocity is so low to directly collapse into
bounded objects with mass ∼ 10M⊕. The inferred disc to star mass ratio (Veronesi et al.
2021) and the cooling time for Elias 2-27 make it a perfect candidate for planet formation
through dust collapse.

Huang et al. (2018a) characterized annular substructures in the discs within the DSHARP
sample, and found that Elias 2-27 has a gap at Rg = 69.1 ± 0.4au with a width of
∆ = 14.3 ± 1.1au. Although several mechanisms can explain the origin of gaps in pro-
toplanetary discs, a common explanation is planet disc interaction. Under the planetary
interpretation, the width of the gap scales as the Hill radius of the planet, defined as

Rh =

(
Mp

3M⋆

)1/3

Rg, (8.14)

where Mp is the mas of the protoplanet. Following Lodato et al. (2019), the relation
between the gap width and the Hill radius is

∆ = 5.5Rh, (8.15)

that translates into

Mp = 3

(
∆

5.5Rg

)3

M⋆. (8.16)
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Using the gap width and location of Huang et al. (2018a), and the star mass of Veronesi
et al. (2021), the inferred mass of the protoplanet isMp = 24±6M⊕. This result is in good
agreement with the mass range of Longarini et al. (2023a,b). Another element that points
towards the dust collapse is the value of the Toomre parameter. As shown in Longarini
et al. (2023a), when the gravitational instability is driven by the cold component (dust in
this case), the critical value of the Toomre parameter is > 1, as observed in Elias.

8.5 Conclusion

In this chapter, we investigated the kinematic signatures of gravitational instability in
the protoplanetary disc Elias 2-27. It is well known that gravitational instability leaves
clear kinematic perturbations in molecular line emission (Hall et al. 2020), and their char-
acteristics are related to the spiral density wave (Longarini et al. 2021b). We verified that
the shape and the position of the velocity perturbations is compatible with the GI expec-
tations, and we extract their amplitude. Under the hypothesis that angular momentum
is transported through the GI spiral, we estimated the effective α−viscosity of the sys-
tem (Cossins et al. 2009), and linked it to the accretion onto the central object. We found
very good agreement between the observed accretion rate and the one estimated from
our model, pointing to the fact that gravitational instability is at play in this system.
The range of disc mass and cooling factor inferred by our model makes Elias 2-27 a per-
fect candidate for dust collapse and planetary cores formation in spiral arms. The gap
present in dust continuum emission at ∼ 70au points to the presence of a ∼ 20M⊕ proto-
planet, in agreement with the planetary cores characteristics of Longarini et al. (2023b).
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Dynamics of self-gravitating
protostellar discs





CHAPTER 9

The interplay between drag force and gravitational
instability

This chapter is based on the paper ”The role of the drag force in the gravitational stability of dusty
planet forming disc - I. Analytical theory” by Cristiano Longarini, Giuseppe Lodato, Giuseppe
Bertin and Philip J. Armitage, published in Monthly Notices of the Royal Astronomical Society
in February 2023.

Recent observations show that planet formation is already underway in young sys-
tems, when the protostar is still embedded into the molecular cloud and the accretion
disc is massive. In such environments, the role of self-gravity (SG) and gravitational
instability (GI) is crucial in determining the dynamical evolution of the disc. In this
work, we study the dynamical role of drag force in self-gravitating discs as a way to
form planetesimals in early protoplanetary stages. We obtain the dispersion relation for
density-wave perturbations on a fluid composed of two phases (gas and dust) interact-
ing through the common gravitation field and the mutual drag force, and we find that
the stability threshold is determined by three parameters: the local dust-to-gas density
ratio, the dust relative temperature and the relevant Stokes number. In a region of pa-
rameters space, where young protoplanetary discs are likely to be found, the instability
can be dust driven, occurring at small wavelengths. In this regime, the Jeans mass is
much smaller than the one predicted by the standard gravitational instability model.
This mechanism can be a viable way to form planetary cores in protostellar discs, since
their predicted mass is about ∼ 10M⊕.

9.1 Gravitational and aerodynamical coupling between gas and dust

In this analysis, we consider a gas and dust disc, where the two components are coupled
through both gravitational and drag force. The gravitational interaction is described by
the Poisson equation, that for this system is

∇2Φ = 4πGδ(z)(Σg +Σd), (9.1)

where Φ is the total gravitational potential, Σg,Σd are the surface densities of gas and
dust respectively and δ(z) is the Dirac Delta function. Equation (9.1) is telling us that
both gas and dust contribute to the total gravitational potential. As for the aerodynami-
cal coupling, it appears in the Euler equations

∂tvg + (vg · ∇)vg = −∇(Φ + hg) +
1

Σg
Fd, (9.2)
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∂tvd + (vd · ∇)vd = −∇(Φ + hd)−
1

Σd
Fd, (9.3)

where vg,vd are gas and dust velocity vectors, hg, hd are gas and dust enthalpies1 and
Fd is the drag force per unit surface, defined as

Fd =
Σd
ts

(vd − vg), (9.4)

where ts is the stopping time of dust particles, i.e. the time in which drag modifies the
relative velocity significantly. By these definitions, it is evident that the effect of the drag
onto the gas component is smaller than the dust one of a factor ϵ = Σd/Σg , the so-called
“dust to gas ratio”, that is considered to be ϵ ∼ 0.01 from ISM abundances (Draine 2011).
Because of the small value of ϵ, we firstly neglect the effect of the backreaction (i.e. we
neglect the last term in Eq. 9.2): this allows us to deal with simpler algebra; then, we add
it, and we evaluate its effect.

9.1.1 Instability without backreaction

Here, we record the dispersion relation Dnbr(ω, k) without taking into account the back-
reaction. To do so, we perform a first order perturbation analysis of the fluid equations
(for an outline of the derivation, see Appendix B). We find a fifth order equation with
complex coefficients, that reads

Dnbr(ω, k) = −iω5 + 2ω4

ts
+ iω3

(
αg + αd +

1
t2s

)
+

−ω2

ts

(
2αg + αd − βd − κ2

)
+

−iω
[
αgαd − βgβd +

1
t2s
(αg − βd)

]
+

+ 1
ts

[
αgαd − βgβd − κ2(αg − βd)

]
= 0,

(9.5)

where αi = κ2 + c2i k
2 − 2πGΣi|k| and βi = 2πGΣi|k|, in which the subscript i takes on

the values g or d to denote which species the various quantities refer to. The dispersion
relation can be divided into two parts, one that contains the drag coupling and one
“drag-free”, that corresponds to the two-component fluid model one

Dnbr(ω, k) = −iωD2f(ω, k) +
1

ts
Ddrag(ω, k), (9.6)

with D2f does not contain drag terms, as the one obtained by Jog & Solomon (1984), and

Ddrag(ω, k) = 2ω4 + iω3

ts
− ω2(2αg + αd − βd − κ2)+

− iω
ts
(αg − βd) +

[
αgαd − βgβd − κ2(αg − βd)

]
.

(9.7)

One should note that in the limit of weak aerodynamical coupling, ts >> κ−1, where
κ−1 ≃ Ω−1 is the dynamical time of the system, the dispersion relation reduces to the
two-component fluid model one.

In order to compare this result with one and two-component fluid model, we com-
pute the marginal stability curve. In this case, there are three parameters that determine
the instability: ϵ and ξ, defined as before, and the Stokes number St = tsκ, that measures
the strength of the aerodynamical coupling. Since the dispersion relation has complex
coefficients, the instability threshold is given by Im(ω) = 0.

1The enthalpy is related to the sound speed: dh = c2dΣ/Σ.
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We first study the high drag limit St = tsκ << 1: in this case, Eq. 9.7 is dominated
by the two imaginary terms and we neglect the others, so we can get analytically the
marginal stability curve. As for the general case, we obtain numerically the marginal
stability curve by imposing the imaginary part of the roots of Eq. (9.5) to be zero, and
we find that it is well reproduced by the high drag approximation; this is also true when
we take into account the backreaction.

In the high drag regime, the dispersion relation has the following form

ω4 − ω2

(
αg + αd +

1

t2s

)
+

[
αgαd − βgβd +

1

t2s
(αg − βd)

]
= 0. (9.8)

To write the marginal stability curve, we set ω = 0 in Eq. 9.8, we write it in a dimension-
less form, and we solve for Q2

g , obtaining

Q2
g =

2λ̂
ξ

{
(ϵ+ ξ)− λ̂(1 + ξ + St−2)+

+

√[
λ̂(1 + ξ + St−2)− (ϵ+ ξ)

]2
+

−4ξ
[
λ̂2
(
1 + St−2)− λ̂

(
1 + ϵ+ (1 + ϵ)St−2)]} .

(9.9)

It is important to note that for St → ∞, Eq. (9.9) reduces to (5.52) since drag force is
negligible. On the contrary, when St → 0, the system behaves as a single-component
fluid with Σ = Σg + Σd Figure 9.1 shows marginal stability curves for different values
of ϵ, ξ and St compared to the one and two-component fluid models. The role of the
drag force is to connect with continuity the one and two fluid instability. We define Q2

1f,
Q2

2f and Q2
D as the marginal stability curve of the one-component fluid model2, of the

two-component fluid model and of the drag model; once we fix ϵ and ξ, the following
condition is always respected

Q2
1f ≤ Q2

D(St) ≤ Q2
2f. (9.10)

As we have already pointed out, Bertin & Romeo (1988) found that the transition
from gas to dust driven instability happens when ϵ >

√
ξ: when we take into account

the drag force, this relation changes. Indeed, when St → 0, gas and dust are strongly
coupled, and they can be considered as one fluid: in this case, physically speaking, we
expect that the velocity dispersion is the same (ξ = 1), and thus the instability is gas
driven. This is just an approximation: in general, the thermal velocity of small dust
particles is set by Brownian motions. Modelling this phenomenon is not the purpose
of this work, hence we make the approximation that for St → 0 , cd = cg . Under a
mathematical point of view, even though St → 0, if ϵ ̸= 0, there is always a value of
ξ under which the instability becomes dust driven. Conversely, when St → ∞, the
system tends to the two-component fluid model, where the drag interaction is not taken
into account, and thus the transition condition is the same of Bertin & Romeo (1988).
Now, we want to generalize the transition condition taking into account the role of the
drag force: we argue that the value of ϵ at which the transition from gas to dust driven
instability occurs can be written as

ϵtr = f(St)
√
ξ, (9.11)

2In the one-component fluid model, the surface density is given by Σ = Σg +Σd
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Figure 9.1: Examples of marginal stability curves for different values of ϵ, ξ and St. The blue line
is the two-component fluid model without drag force, the red line is one-component fluid model
and the black lines represents the two-component fluid model with drag force, without taking into
account the backreaction; the solid line corresponds to St = 1 and the dashed line St = 0.5.
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Figure 9.2: Transition curves for different Stokes number in the (ξ, ϵ) diagram obtained by Eq.
(9.13). For a chosen Stokes number, in the region above the transition curve the instability is dust-
driven, while below is gas-driven. The St → ∞ case recovers the well known result ϵ =

√
ξ.

where f is a function for the Stokes number. This function must respect two conditions

lim
St→∞

f(St) = 1, lim
St→0

f(St) = ∞, (9.12)

in order to recover one and two fluid limits. For simplicity, we hypothesize that f has
the following form

f(St) = 1 + aStb, (9.13)

and we found that the two best fit coefficients are a = 0.72, b = −1.36. Figure 9.2 shows
the transition curves for different values of the Stokes number in the (ξ, ϵ) diagram: for
a chosen St, in the region above the curve the instability is dust-driven, while below is
gas-driven.

9.1.2 Instability with backreaction

Now we follow the same path as before, but taking into account the backreaction. We
start from the same hypotheses of section 9.1.1, and we get the dispersion relationDbr(ω, k)
(an outline of the derivation is given in Appendix B)

−iω5 + 2ω4

ts
(1 + ϵ) + iω3

[
αg + αd +

1
t2s
(1 + 2ϵ+ ϵ2)

]
+

−ω2

ts

[
(2αg + αd − κ2)(1 + ϵ)− βd

]
+

−iω
[
αgαd − βgβd +

1
t2s
(αg − βd+

+ϵ(αg + αd − βg − βd) + ϵ2(αd − βg))
]
+

+ 1
ts

[
(αgαd − βgβd)(1 + ϵ)− κ2 (αg − βd − ϵ(αd − βg))

]
= 0.

(9.14)

As before, we write the dispersion relation in the high drag regime, given by the condi-
tion St = tsκ << 1
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Figure 9.3: The effect of the backreaction onto the marginal stability curve. Left panel: marginal
stability curve with and without backreaction, for ϵ = 0.1, ξ = 0.05 and St = 0.5. The effect of
the backreaction is maximum in correspondence to the gaseous peak. Right panel: the quantity ∆
that quantifies the effect of the backreaction as a function of dust-to-gas ratio, for different values
of Stokes number and for ξ = 0.05.

ω4 − ω2
[
αg + αd +

1
t2s
(1 + 2ϵ+ ϵ2)

]
+ [αgαd − βgβd+

+ 1
t2s
(αg − βd + ϵ(αg + αd − βg − βd) + ϵ2(αd − βg))

]
.

(9.15)

We obtain the marginal stability curve by setting ω = 0 in the last equation

Q2
g =

2λ̂
ξ

{
(ϵ+ ξ)− λ̂(1 + ξ + St−2 + f1)+

+

√[
λ̂(1 + ξ + St−2 + f1)− (ϵ+ ξ)

]2
+

−4ξ
[
λ̂2
(
1 + St−2 + f2

)
− λ̂

(
1 + ϵ+ (1 + ϵ)St−2 + f3

)]}
,

(9.16)

where
f1(ϵ, St) =

ϵ

St2
(1 + ξ + ϵξ), (9.17)

f2(ϵ, St) =
ϵ

St2
(2 + ϵ), (9.18)

f3(ϵ, St) =
ϵ

St2
[2(1 + ϵ) + ϵ(ϵ+ 1)], (9.19)

are three correction factors.
Physically speaking, the backreaction is the effect of the drag force onto the gas com-

ponent: hence we expect to see differences at intermediate wavelengths, where the in-
stability is gas-driven. The left panel of figure 9.3 shows a comparison between the
marginal stability curve with and without the backreaction: as expected, the height of
the gaseous peak is different. In particular, when we take into account the backreaction,
the system is more unstable i.e. the gaseous peak is higher. This is in agreement with
what found in secular GI: backreaction makes the secular GI operational at intermediate
wavelengths (Takahashi & Inutsuka 2014). In addition, the effect of the backreaction is
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stronger when the dust-to-gas ratio is bigger and the Stokes number is smaller: in order
to measure the effects of the backreaction, we define a new quantity

∆ = Max
[∣∣Q2

br −Q2
nbr

∣∣] , (9.20)

shown in right panel of figure 9.3. It can be clearly seen that the effect of the backreaction
is small, even for extreme cases (high dust-to-gas ratio and low Stokes number): from
now on, we will use the dispersion relation without backreaction, for computational
convenience.

9.2 Application to protostellar discs

In the previous section we showed that the instability threshold is determined by three
parameters, ϵ = Σd/Σg , ξ = (cd/cg)

2 and St = tsκ. Here, we aim at understanding
instability conditions in protostellar discs: to do so, we need to choose realistic values of
these parameters.

Firstly, the value of ϵ in protostellar discs is usually chosen ϵ ∼ 0.01. However, the
gas disc is usually larger than the dust one, because of the radial drift: for this reason,
locally, ϵ can reach higher values.

Secondly, the value of ξ is more complex to determine: indeed, dust particles stirring
in protoplanetary discs is due to gravitational, aerodynamical and turbulent effects. In
this work, we neglect turbulent phenomena since their magnitude is smaller in these
systems. A simple relation between the two parameters, taking into account only the
role of drag force, can be easily found Youdin & Lithwick (2007), and it reads

ξ =
αSS
1 + St

, (9.21)

where αSS is the α−viscosity (Shakura & Sunyaev 1973). The relative temperature is
of course related to the viscosity of the disc: indeed, the threshold below which dust
particles behave the same as gas ones is given by St < αSS .

Thirdly, the Stokes number of dust particles is essentially determined by the gas sur-
face density and the dust particles’ size. There are two main regimes of drag coupling,
according to the value of the so-called Knudsen number

Kn =
9λg
4s

, (9.22)

where λg is the gas mean free path and s is the dust particles’ size. Epstein regime occurs
when Kn> 1, whereas Stokes regime when Kn< 1. Although typical protoplanetary
discs are well described by the Epstein regime, self-gravitating systems are between the
two regimes (Rice et al. 2006). It means that, for the same particles’ size, the Stokes
number tends to be higher in self-gravitating discs3.

9.2.1 Small dust particles

Small dust particles are strongly coupled to the gas (St → 0), thus they can be considered
as a single fluid with a unique sound speed. The condition ξ = 1 means that cd = cg , thus
drag force has no effects because of the basic state we choose: indeed, ud0 = ug0, and if

3This is particularly true in the inner part of the disc, where the Knudsen number is lower since the gas
density increases.
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Figure 9.4: Stability for small dust particles. Left panel: marginal stability curve in the high drag
regime with ξ = 1 and St → 0. The parameter that controls the stability is ϵ. Right panel: maxi-
mum ofQ2

g as a function of the dust-to-gas ratio with ξ = 1 and St → 0. For increasing dust-to-gas
ratio, the system is more unstable.

the dispersion velocities are the same, the response of the two fluids to the perturbations
is equal (ug1 = ud1), and drag force does not act since it depends on the difference of
speed. Actually, the basic velocity of gas and dust is different because of the gas pressure
gradient, that is the cause of the radial drift: this issue will be discussed in the following
paragraphs.

Hence, in this regime, the stability threshold is determined only by ϵ and we recover
the one fluid limit with Σtot = Σg +Σd = Σg(1+ ϵ), as also shown in the context of secu-
lar GI (Takahashi & Inutsuka 2014). In this case, the cold component has a destabilizing
role, since it increases the surface density of a factor 1+ ϵ. Figure 9.4 shows the situation
described so far: the left panel illustrates the marginal stability curve for different values
of the dust-to-gas ratio, and the right panel shows the maximum of the curve as a func-
tion of ϵ. This value represents the critical Toomre parameter, and it increases for higher
dust concentration.

9.2.2 Large dust particles

Large dust particles are less coupled, and in general their sound speed is different from
the gas one. As we have shown the Stokes number and ξ are linked through Eq. (9.21),
so we can study the instability threshold as a function of the Stokes number alone, for
different values of dust-to-gas ratio and α−viscosity.

Figure 9.5 shows how the maximum of the marginal stability curve (i.e. the squared
critical Toomre parameter) changes as a function of the Stokes number for different val-
ues of ϵ and αSS . For low Stokes number (St < αSS), ξ → 1 and, we recover the previous
case: the instability threshold is determined by the parameter ϵ. Increasing the Stokes
number, the maximum of Q2

g remains essentially constant until St ∼ 1 and then it starts
rising: this happens because for St > 1 the relation between ξ and St is decreasing. When
St ∈ [10, 1000], depending on ϵ and αSS , the curve rises exponentially: this happens
because there is a transition from gas-driven instability (gaseous peak) to dust-driven
instability (dusty peak). Additionally, the lower the α−viscosity is, the sooner the tran-
sition between gas to dust driven GI happens. In general, for a disc in gravito-turbulent
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Figure 9.5: Marginal stability curve for large dust particles, where we assumed the relation be-
tween ξ and St to be equation (9.21), for different values of dust to gas ratio (left panel, αSS = 0.1)
and the α−viscosity (right panel, ϵ = 0.1). The curve start rising for St > 1, and it has an exponen-
tial growth when St ≳ ϵ−2αSS .

regime, the value of αSS can be relatively high αSS ∼ 0.05− 0.1 (Kratter & Lodato 2016),
being GI an effective way to transfer angular momentum.

It is possible to find an approximate relation between the critical Stokes number for
which the instability is driven by the dust and ϵ parameter, that reads

Stcrit ≃ ϵ−2αSS , (9.23)

where the last relation is obtained through a fit. Hence, systems with smaller dust-to-gas
ratio and higher α−viscosity show the transition at higher Stokes number, being more
stable.

9.2.3 Planetesimal formation through gravitational instability

Now that we have obtained a general relation between ξ and St, we can study the Jeans
length and Jeans mass of the perturbation. The left panel of figure 9.6 shows the Jeans
length of our model λdrag

J normalized to the one-component fluid model one λ1f
J , and,

as expected, for St > ϵ−2 the value of λdrag
J decreases because the instability becomes

dust-driven. The right panel of figure 9.6 shows the Jeans mass of our model Mdrag
J

normalized to the one fluid oneM 1f
J . As for the Jeans wavelength, Mdrag

J decreases when
St > ϵ−2, reaching values of ∼ 10−3.

The classical framework4 of gravitational instability (for a review see Kratter & Lodato
(2016)) can not explain the formation of planets, since the value of the Jeans mass is too
high.

Within our model, it is possible to obtain Earth-like bodies through gravitational in-
stability when it is dust-driven: as a matter of fact, the right panel of figure 9.6 shows
that Mdrag

J ∼ 10−2/−3M 1f
J , leading to a clump mass of the order of several Earth masses.

4With “classical framework” we refer to the case of a gas-only disc, with Jeans length computed from one-
component fluid model.
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Figure 9.6: Jeans length (left panel) and Jeans mass (right panel) normalized to the LS one as a
function of the Stokes number, for varying dust to gas ratio and αSS = 0.1. For typical proto-
planetary disc parameters, the Jeans mass µJ ∼ 1Mj , meaning that dust-triggered instability could
potentially lead to fragments of several Earth masses.

A mechanism that may allow the formation of Earth-like bodies as a consequence
of Gravitational Instability (GI) was proposed by Rice et al. (2006). Concentration of
solid particles in spiral arms, together with vertical settling, can lead to gravitational
collapse in the solid component. Our findings are in agreement with the work Rice
et al. (2006), however, higher resolution is needed in order to properly assess the mass
of the fragments. In addition, it is known that gas spiral arms act as dust traps, since
they are pressure maxima (Shi et al. 2016). Solid particles collect inside them (Dipierro
et al. 2015b), reaching dust to gas ratio that can be of the order of unity. Conversely,
the interaction between gas spiral arms and dust particles can excite them, imparting
random motions that reduce the peak density and potential for collapse (Riols et al.
2020). Walmswell et al. (2013) found that large dust particles experience gravitational
scattering by the spiral arms, while Booth & Clarke (2016) related the level of excitation
of solid particles with the aerodynamical coupling and the cooling factor. Marginally
coupled solid particles are less excited by spiral arms, while, in rapidly cooled discs, the
level of dust excitation is higher. Baehr & Zhu (2021a) confirmed that trend through 3D
shearing box simulations.

A possible scenario in which dust driven GI can be promoted is during stellar flybys
(Cuello et al. 2023). Indeed, a flyby can rip away the external part of a protostellar disc
that, because of radial drift, is low in dust (Cuello et al. 2019). Hence, after the interaction
with the perturber, the dust to gas ratio in the inner part is significantly higher, fostering
dust driven GI and, possibly, formation of planetesimals.

9.2.4 Comparison with previous works

In protoplanetary discs literature, the interplay between drag force and gravitational in-
stability has been studied in the context of “Secular gravitational instability” (Youdin
2011; Takahashi & Inutsuka 2014; Tominaga et al. 2020), hereafter SGI. The general for-
mulation of SGI is presented in Youdin (2011). In this model, dust particles are subject to
turbulent diffusion (Eq. 11a of Youdin (2011)), dust self-gravity, drag force, and they are
characterized by random velocities. The gas background is stable, and the role of its self-



The interplay between drag force and gravitational instability 141

gravity is negligible (i.e. Qg → ∞). The results are that there is a low frequency mode
instability, that corresponds to a secular time instability, responsible for the creation of
dust overdensities in a gravitationally stable gas disc (Qg >> 1). More refined models
have been presented in the following years (Takahashi & Inutsuka 2014; Tominaga et al.
2020), however the crucial difference between SGI and the model we propose here is
that drag force is essential for SGI to arise, while in our model the instability already
exists in the limit of St → ∞ (Jog & Solomon 1984; Bertin & Romeo 1988). Moreover,
our model investigates the gravitational stability of a two fluid system, and we are inter-
ested in understanding how the presence of dust destabilizes the system. In this work,
the two components have different sound speed and are coupled through gravitational
and drag force, without turbulent diffusion. The origin of gas and dust sound speed is
different: as for the gas, it is generated by collision of particles (thermal origin), while for
the dust, it is caused by stirring processes. In addition, the instability described in our
model happens on a dynamical timescale, not in a secular one as for SGI. We decided not
to include diffusive terms due to gas turbulence since, in the hydrodynamic equations
the gas is considered as an inviscid fluid. As we have mentioned in section 3.1, the in-
stability threshold in the limit of St → 0 obtained within our model is in good agreement
with what secular GI predicts, when diffusion is negligible.

9.2.5 The role of the asymmetric drift

As we have pointed out in paragraph 9.2.1, in this analysis we are not considering the
difference of velocity in the basic state between gas and dust due to the pressure gradi-
ent. In the context of protostellar discs, this is particularly important since it is the main
cause of the radial drift of solid particles.

Bertin & Cava (2006) obtained the dispersion relation for a self-gravitating disc made
of two components in relative motion, without any coupling between them. In a rotating
self-gravitating axisymmetric fluid disc at equilibrium, the radial gravitational force is
balanced by rotation, with a contribution from the pressure gradient

Ω2 =
1

RΣ

dP
dR

+
1

R

dΦ
dR

, (9.24)

where P is the pressure. Since the pressure is connected to the sound speed, two fluids
with different temperature have different angular frequency (Ωg ̸= Ωd in protostellar
case). For cool fluids, the pressure gradient is negligible, and this is the case of dust in
protostellar discs, whereas it is important for hotter fluids, i.e. the gas. Bertin & Cava
(2006) showed that there are two new parameters that determine the stability of the
system, that are

δ =
Ωd
Ωg

, (9.25)

η = m(δ − 1)(Ωg/κg). (9.26)

In the case of axisymmetric disturbances, η = 0 and so the only important parameter is δ.
Since the hot component moves slower than the cool one because of the pressure gradi-
ent, usually δ > 1. It is possible to show that in this regime the instability conditions are
the same as the two fluid component model (Jog & Solomon 1984), with an appropriate
rescaling5 of ϵ and ξ.

5ϵ → ϵ/δ2 and ξ → ξ/δ2. Formally, for axisymmetric perturbations, the required rescaling indicates that a
two-component model in which the presence of asymmetric drift is recognized explicitly is more stable than
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In turn, form ̸= 0 a two-component disk in which the presence of asymmetric drift is
recognized explicitly, taken to be marginally stable with respect to m = 0 perturbations,
may be unstable even for small values of η. This fact is particularly interesting in pro-
tostellar discs: indeed, the number of spiral arms generated by gravitational instability
m is inversely proportional to the disc-to-star mass ratio q (Cossins et al. 2009), and thus
we expect to find m >> 1 for relatively light discs.

In protoplanetary discs, we are able to exactly determine the asymmetric drift, and
thus the value of δ and η. To do so, we neglect the dust pressure gradient, and we
consider the two components to be coupled through the drag force. It is possible to
show (Armitage 2013) that, in absence of gas radial motion, the azimuthal velocities are

ug0 = uk (1− γ)
1/2

, (9.27)

ud0 =
St2

1 + St2

[
uk − ug0

(
1− 1 + St2

St2

)]
, (9.28)

where uk =
√
GM⋆/R, and γ is proportional to the disc temperature, and it is a positive

quantity. Hence, the strength of the asymmetric drift is connected to the Stokes number:
when gas and dust are strongly coupled (St << 1), they move with the same velocity,
and thus the asymmetric drift is zero (δ = 1, η = 0), conversely when they are uncoupled
(St >> 1), the asymmetric drift is maximum. Hence, the value of δ in protostellar discs
is simply

δ =
ud0
ug0

. (9.29)

Figure 9.7 shows δ and η parameters for a protoplanetary disc as a function of the Stokes
number. Even if we take extreme values of δ = 1.05 and η = 0.25 and we use the dis-
persion relation without drag6 obtained by Bertin & Cava (2006), the marginal stability
curve does not change significantly. Thus, even though the asymmetric drift is crucial
in protoplanetary disc evolution, since it causes the radial drift, in terms of gravitational
instability it can be neglected, at a linear level.

9.2.6 Non-linear evolution

If we consider a perturbed disc, the value of ϵ and ξ significantly changes because of the
spiral density wave. As for the gas-to-dust ratio, it increases inside the spirals for two
reasons: firstly, because the perturbation is a minimum of gravitational potential and
secondly since it is a gas pressure maximum, and thus the dust experiences trapping.
In addition, as pointed out by Rice et al. (2004), dust growth is accelerated inside GI
spirals, since its density is enhanced (the dust-to-gas ratio ϵ can reach values of the order
of unity) and because of the effect of gravitational focusing. As for ξ, Booth & Clarke
(2016) computed the dust dispersion velocity for gravito-turbulent discs7 as a function
of the Stokes number, and they found that the gravitational potential perturbation is
effective only for St ≳ 1, and in this regime ξ ∝ St1/2. The minimum ξ is reached for

a model without such drift and with the same values of surface densities, temperatures, and rotation curve
(because the corresponding value of the effective Q which determines marginal stability is lower for the model
with the drift).

6By what we have shown in this work, if we do not take into account drag interaction, the system will
always be more unstable compared to the drag case. Hence, by evaluating the instability threshold with Bertin
& Cava (2006), we give an upper limit to the instability boundary.

7In this work, the authors considered a marginally unstable disc with a constant cooling rate βcool = Ωtcool.
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Figure 9.7: δ and η parameters for a protostellar disc. Left panel: ratio between dust and gas
azimuthal velocity in the steady state, i.e. δ, for different values of γ, i.e. pressure gradient, as a
function of the Stokes number. For St→ 0, the dust velocity is equal to the gas one, since the two
components are strongly coupled. Conversely, for St→ ∞, dust velocity is higher than the gaseous
one, and it tends to the Keplerian speed uk and the asymmetric drift is maximum. Right panel: η
parameter as a function for the Stokes number for different values of the azimuthal wavenumber
m, for γ = 0.1 and Ωg/κg = 1.

St ∼ 1, because dust particles are forced to stay into the spiral arms by both the effect of
the gravitational potential and drag force. There, the dust to gas ratio is of the order of
unity, and the median dispersion velocity of dust particles is cd ≃ 10−1cg .

One can think to locally apply our linear theory with the parameters of the perturbed
disc, using ϵ = 1, ξ = 0.01 and St = 1. In this regime, the instability is dust driven and the
most unstable wavelength is λ̂ ≃ 0.2 where the critical value of Qg,cr ≃ 6; the Jeans mass
is between 2 and 3 order of magnitude lower than the one fluid one, that corresponds
approximately to MJ ∼ 10M⊕.

However, we should be cautious with these results, since we are using a linear theory
to describe the non-linear evolution of the system. To properly investigate the non-linear
evolution of the system, numerical simulations of gas and dust discs are needed.

9.2.7 Drag force in the context of galactic dynamics

A natural comparison can be made in the context of galactic dynamics. In disc galaxies,
drag force is connected to the phenomenon of dynamical friction (Chandrasekhar 1943).
Ostriker (1999) evaluated this effect on a star travelling at a velocity v⋆ through a uniform
gaseous medium with sound speed cg : gaseous drag is generally more efficient when
M⋆ = v⋆/cg > 1, meaning that the star motion is supersonic. This is a particularly
interesting case, since gas sound speed in the Milky Way is cg ≃ 10km/s (Fux 1999) and
the typical star velocity is v⋆ ≃ 30km/s. Although drag force in galactic environments is
less relevant than in protostellar ones, it would be worth to evaluate its impact on global
spiral modes.
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9.3 Conclusions

In this work, we study the dynamical role of drag force in gravitational instability, and
we propose a path to form planetesimals in early protoplanetary stages. The problem
of the classical Gravitational Instability scenario of planet formation (Boss 1997) is that
the Jeans mass is too large to form a planet, conversely it is an effective way to form low
mass stellar companions.

The classical GI consider the system composed of one fluid, however, protoplanetary
discs are made up of two components, gas and dust. When we consider the dynamical
role of the second component, GI outcome can significantly change. Indeed, the insta-
bility threshold is always higher, and the presence of the second cold component can
trigger instability at very short wavelengths, reducing of several order of magnitudes
the Jeans length and mass.

Nevertheless, a step forward can be made: indeed, gas and dust in protoplanetary
discs are aerodynamically coupled, and the role of drag force is crucial in determining
their dynamical evolution. When we take into account the coupling between the two
components (section 6.1), gravitational instability threshold is determined by three pa-
rameters, that are the relative concentration of the two fluids ϵ, the relative temperature
ξ and the Stokes number, that measures the strength of the aerodynamical coupling. The
effect of drag force in terms of gravitational instability is to connect one-component fluid
model and two-component fluid model: in particular, if drag coupling is strong, the sys-
tem behaves as a one fluid, conversely, if the two components are poorly coupled, the
system behaves as two-component fluid.

We then applied this model to investigate gravitational instability in protoplanetary
discs (section 9.2). We first hypothesize that dust velocity dispersion is completely deter-
mined by stirring processes, so that it can be written as a function of the Stokes number.
Within this hypothesis, we found that instability is dust driven when St > ϵ−2: hence, the
Jeans mass is 3-4 order of magnitude smaller; thus, dust driven gravitational instability
can be a viable way to form planetesimals in massive protostellar systems.

In addition, we studied the role of the asymmetric drift, that in protostellar discs is
significant: we quantified its effect, and we stated that it does not impact on the value of
the most unstable wavelength, but only on the critical Qg . Then, we discussed the non-
linear evolution of the system, showing that GI spirals significantly modify the value
of the stability parameters. We made a comparison between our model and numerical
simulations of Rice et al. (2006); Booth & Clarke (2016) and we found good agreement.
However, we should pay attention to this because our theory describes the linear be-
haviour of the system.

To conclude, we briefly discussed a possible application of this work in the context
of galactic dynamics.



CHAPTER 10

Planetary cores formation through dust collapse in
gravitationally unstable discs

This chapter is based on the paper ”The role of the drag force in the gravitational stability of dusty
planet forming disc - II. Numerical simulations” by Cristiano Longarini, Philip J. Armitage,
Giuseppe Lodato, Daniel J. Price and Simone Ceppi, published in Monthly Notices of the Royal
Astronomical Society in July 2023.

Young protostellar discs are likely to be both self-gravitating, and to support grain
growth to sizes where the particles decouple from the gas. This combination could lead
to short-wavelength fragmentation of the solid component in otherwise non-fragmenting
gas discs, forming Earth-mass solid cores during the Class 0 / I stages of Young Stel-
lar Object evolution, as presented in Longarini et al. (2023b). In this chapter, we use
three-dimensional smoothed particle hydrodynamics simulations of two-fluid discs, in
the regime where the Stokes number of the particles St > 1, to study how the forma-
tion of solid clumps depends on the disc-to-star mass ratio, the strength of gravitational
instability, and the Stokes number. Gravitational instability of the simulated discs is sus-
tained by local cooling. We find that the ability of the spiral structures to concentrate
solids increases with the cooling time, and decreases with the Stokes number, while the
relative dynamical temperature between gas and dust of the particles decreases with the
cooling time and the disc-to-star mass ratio, and increases with the Stokes number. Dust
collapse occurs in a subset of high disc mass simulations, yielding clumps whose mass
is close to linear theory estimates, namely 1–10 M⊕. Our results suggest that if planet
formation occurs via this mechanism, the best conditions correspond to near the end of
the self-gravitating phase, when the cooling time is long and the Stokes number close to
unity. This mechanism could possibly solve the conundrum of planetesimal formation,
directly forming planetary cores in young systems.

10.1 Numerical simulations

In this work, we perform numerical SPH simulations of gas and dust protostellar discs
using the code PHANTOM (Price et al. 2018b). This code is widely used in the astro-
physical community to study gas and dust dynamics in accretion discs (Dipierro et al.
2015b; Ragusa et al. 2020), both in a single fluid mixture (Veronesi et al. 2019) or dust-
as-particles approach (Longarini et al. 2021a). In this work, we use the dust-as-particles
formulation.
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Figure 10.1: Dust dynamics in gas spiral arms: large and small dust particles surface density for
different cooling factor and Md/M⋆ = 0.05.
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Figure 10.2: Dust dynamics in gas spiral arms: large and small dust particles surface density for
different cooling factor and Md/M⋆ = 0.1.
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Figure 10.3: Dust dynamics in gas spiral arms: large and small dust particles surface density for
different cooling factor and Md/M⋆ = 0.2.
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10.1.1 Numerical setup

We perform simulations with three different disc-to-star mass ratiosMd/M⋆ = {0.05, 0.1, 0.2},
three different cooling times βcool = {8, 10, 15} and two different dust particle sizes, for
a total of 18 simulations. See below for further details. We first initialize a gas-only disc
around a solar mass star, with Rin = 0.25au, Rout = 25au, and Σg ∝ R−1. We set the
aspect ratio so that Qext = 2 initially and because of the cooling, it decreases, eventually
reaching Q = 1. The shock viscosity coefficients αAV = 0.1, βAV = 0.2 as in Rice et al.
(2005). As a test, we performed a simulation with βAV = 2, and we did not find any dif-
ferences in terms of the relevant quantities in this work. The self-gravity of both gas and
dust is taken into account, as well as the dust back-reaction. We performed simulations
at two different numerical resolutions: the standard runs are performed with Ng = 106

and the high resolution ones with Ng = 2 × 106. In both cases, Nd = Ng/5, where Ng
and Nd are the number of gas and dust particles respectively. We verify that the results
are consistent with the different resolutions.

We let the system evolve for an outer thermal time (βcoolΩ
−1 at the outer radius),

and then we add dust particles and evolve for a further 5 outer dynamical times (i.e.
5 × 103 inner dynamical times). The dust particles are added proportional to the gas
distribution.1 Distributing dust particles proportional to the gas is a valid assumption
only for St < 10. Zhu et al. (2012) showed that for uncoupled particles gravitational
interactions and stirring become quite relevant, and hence dust distribution is closer to
a uniform one. This is particularly clear for St ∼ 100. In our simulations of large dust
grains, although the initial distribution is proportional to the gas one, we observe that
the spiral is less prominent compared to smaller grains.

Dust back-reaction and dust self-gravity are always taken into account. Since the aim
of the work is to study the effect of the drag force in GI, we use two different dust sizes:
a larger one, to reproduce weakly coupled solid particles, and a smaller one, to study
marginally coupled particles. Since the disc mass is different across our set of simula-
tion, we chose to adapt the particles’ size in order to obtain the same Stokes number
distribution. To do so, we computed the radially averaged Stokes number as a function
of the particle size for different disc-to-star mass ratio, starting from the initial conditions
of the gas disc, taking into account the transition between Epstein and Stokes regime. We
decided to choose the small particles’ size so that the radially averaged Stokes number
⟨St⟩ = 8, and for the large ones ⟨St⟩ = 40: in this way we effectively cover a Stokes
number range from 1 to 10 with smaller grains, and from 10 to 100 for larger ones. One
exception is that the small dust particles for the highest disc-to-star mass ratio simula-
tions are chosen to have ⟨St⟩ = 16 for computational reasons. In addition, as we will
show in the next section, a higher disc-to-star mass ratio makes the dust unstable, and
collapse can happen: for that reason, dust in simulations S16, S17 and S18 is evolved
only for an outer dynamical time. In every simulation, dust intrinsic density is fixed
ρ0 = 5g/cm3.

Self-gravitating discs may be more radially extended than our models, which can be
rescaled. If we rescale the outer radius of a factor λ, how does the dust particles’ size
need to be rescaled? Since St ∝ s/Σ ∝ sR2

out, if we change the outer radius accord-
ing to R′

out = λRout, in order to maintain the same Stokes number, the corresponding
rescaling for dust particles size should be s′ = λ−2s. Hence, if we consider a larger disc

1We benchmarked our simulations with the ones of Rice et al. (2004), as they started with an initial uniform
dust distribution, with a fixed thickness. We obtained the same results, since dust trapping is very efficient in
these systems. Something that should be pointed out is that Rice et al. (2004) did not account for self-gravity
acting on the solid particles.



150 10.2 Analysis and Results

Table 10.1: Parameters of simulations: disc-to-star mass ratio Md/M⋆, cooling factor βcool, size of
dust particles s, average Stokes number ⟨St⟩ and corresponding dust particles size in a 10 times
bigger disc s10.

Simulation Md/M⋆ βcool s [cm] ⟨St⟩ s10 [cm]

S1 0.05 8 300 40 3
S2 0.05 10 300 40 3
S3 0.05 15 300 40 3
S4 0.05 8 60 8 0.6
S5 0.05 10 60 8 0.6
S6 0.05 15 60 8 0.6
S7 0.1 8 600 40 6
S8 0.1 10 600 40 6
S9 0.1 15 600 40 6
S10 0.1 8 120 8 1.2
S11 0.1 10 120 8 1.2
S12 0.1 15 120 8 1.2
S13 0.2 8 1500 40 15
S14 0.2 10 1500 40 15
S15 0.2 15 1500 40 15
S16 0.2 8 600 16 6
S17 0.2 10 600 16 6
S18 0.2 15 600 16 6

with R′
out = 10Rout = 250 au, the corresponding particle sizes should be rescaled as

s′ = s/100. Dust properties are summarized in Table 10.1, where we also include the
rescaled dust particles’ size. Snapshots of the hydrodynamical simulations are shown in
Figures 10.1, 10.2, 10.3.

10.2 Analysis and Results

In this section, we present the analysis of the numerical simulations. Since the simula-
tions use a two-fluid approach (Laibe & Price 2012a,b), gas and dust particles are treated
as two different sets of particles, thus they occupy different locations and carry their own
physical information. In order to obtain properties that depend on both gas and dust,
such as dust to gas ratio, or Stokes number, we interpolate gas properties to the location
of dust particles. In addition, since dust is modelled as a pressureless fluid, it has no
internal energy and no thermal sound speed. However, stirring phenomena induce a
velocity dispersion onto dust particles (Youdin & Lithwick 2007): to obtain this quantity,
we compute it with an SPH interpolation over neighbouring dust particles, via

c2d,i =

Nneigh∑
j=1

mj
(vd,i − vd,j)

2

ρj
Wij (hi) . (10.1)

For our analysis, we will mainly focus our attention on the dust to gas ratio ϵ, the rela-
tive temperature between gas and dust ξ = (cd/cg)

2, the Stokes number St, the cooling
factor βcool and the disc-to-star mass ratio Md/M⋆. These parameters are related to dif-
ferent physical phenomena: the dust to gas ratio and the relative temperature trace dust
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trapping and dust excitation respectively, the cooling factor is linked to the gas spiral
amplitude (and hence to the strength of GI), the Stokes number determines the power
of the aerodynamical coupling and the disc-to-star mass ratio is connected to the spiral
morphology.

10.2.1 Dust trapping: the ϵ parameter

GI spiral arms trap dust particles (Dipierro et al. 2015a), since they are both pressure
maxima and gravitational potential minima. We use the simulations to quantify how
this phenomenon depends on the model parameters. Figure 10.4 shows the distribution
of the dust to gas ratio for different βcool and Md/M⋆, for a set of simulations with large
dust particles. The initial value of the dust to gas ratio is 10−2. In Figure 10.4 the higher
tail of the distributions reaches values of ≳ 10−1, implying that dust concentration by up
to approximately an order of magnitude is happening. Figure 10.5 shows a comparison
between the dust to gas ratio distributions of large and small particles. As expected,
dust concentration in spiral arms is stronger for smaller particles, and it can approach
values of the order of unity, since their aerodynamical coupling with gas is stronger.
The strength of dust trapping is determined by both the aerodynamic coupling between
gas and dust and the gravitational potential of gas spiral arms. The combined effect of
gravitational and drag interaction is maximised when St ≃ Q ≃ 1 (Baehr & Zhu 2021a),
thus, in our simulations, smaller particles reach higher values of the dust to gas ratio. No
particular correlations are found between ϵ and the disc to star mass ratio, while there
is a slight dependence on the cooling factor. In order to understand this relationship,
Figure 10.6 shows the quantity δΣ/Σ0 for gas (orange dots) and dust (large particles
- blue dots, small particles - green dots) as a function of the cooling factor βcool. The
quantity Σ0 is the azimuthally averaged surface density at a fiducial radius of 10 au, and
the quantity δΣ is its standard deviation. For the gas, it is known that δΣg/Σg0 ∝ β

−1/2
cool

(Cossins et al. 2009), and we recover this behaviour in our simulations. For the dust,
the situation is different. We do not find any evident correlation between the density
contrast and the cooling factor. So, if we assume that

δΣg
Σg0

∝ β
−1/2
cool ,

δΣd
Σd0

= const, (10.2)

the ratio between these two quantities is

δΣg
Σg0

Σd0
δΣd

= 0.01ϵ−1 ∝ β
−1/2
cool , (10.3)

where Σd0/Σg0 = 1/100, meaning that ϵ ∝ β
1/2
cool. This is the positive correlation we

found before. Why do we not find any evident correlation between the dust density
contrast and the cooling factor? Physically, the dust experiences the effect of the gas
cooling through gravitational and drag forces. When St ≪ 1, dust and gas particles are
indistinguishable, and so δΣg/Σg0 = δΣd/Σd0 ∝ β

−1/2
cool . For higher Stokes number, the

drag force is weaker, and the dust is less influenced by the gas cooling. In this case,
we expect the relationship between δΣd/Σd0 and βcool to be flatter than β

−1/2
cool : if this

condition is respected, the correlation between ϵ and βcool will be positive. In general,
δΣd/Σd0 is a function of both the cooling factor and the Stokes number.
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Figure 10.4: Distribution of the dust to gas ratio for different values of cooling factor (top
panel) and disc to star mass ratio (bottom panel). The simulations shown in these plots are
S1,S2,S3,S7,S13.
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Figure 10.5: Comparison of the distribution of dust to gas ratio of large (orange line) and small
(blue line) dust particles. The simulations shown in this plot are S1 and S4.

Figure 10.6: Density contrast δΣ/Σ0 of gas (orange), large dust grains (blue) and small dust grains
(green) as a function of the cooling factor, for Md/M⋆ = 0.05.
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Figure 10.7: Distribution of the relative temperature for different values of cooling factor (top
panel) and disc to star mass ratio (bottom panel). The simulations shown in these plots are
S1,S2,S3,S7,S13.
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10.2.2 Dust excitation: the ξ parameter

To investigate dust excitation by spiral arms, we study how the relative temperature
ξ = (cd/cg)

2 varies as a function of the simulation parameters. Figure 10.7 shows the
distribution of the dust relative temperature ξ for different values of βcool and Md/M⋆

for a set of simulations with large dust particles. We observe that for the simulations in
which dust collapse is not happening, the dust dispersion velocity reaches very quickly
(< 1 outer orbital time) a steady value. The relative temperature shows a negative cor-
relation with both the disc-to-star mass ratio and the cooling factor. For the disc-to-star
mass ratio, this can be understood by considering the relationship with the spiral mor-
phology: Md/M⋆ is inversely proportional to the azimuthal wavenumber m (Cossins
et al. 2009), hence massive discs have fewer spiral arms. Since dust is excited because
of “spiral kicks” (Walmswell et al. 2013), the lower the number of spiral arms, the less
the dust is excited. For the cooling factor, the negative correlation can be understood in
two ways. First, the cooling rate βcool is linked to the amplitude of the spiral perturba-
tion according to eq. 10.2. Since gas spiral arms excite dust particles by kicking them
every passage, the higher is the perturbation, the stronger is the kick, and so the exci-
tation. Second, in gravito-turbulent regime, transport of angular momentum is driven
by the spiral perturbation, and it is possible to define an α−viscosity coefficient related
to the cooling rate (eq. 3.78). The height of a dust layer is determined by the interaction
with the gas and by the vertical diffusion. In the hypothesis that the vertical diffusion
coefficient is equal to the azimuthal one, we can obtain the height of the dust layer as

Hd = Hg

√
α

α+ St
. (10.4)

If we assume that α = αGI, the dust layer height, and thus the dust dispersion velocity,
is inversely proportional to βcool.

Figure 10.8 compares the relative temperature distributions of large and small dust
particles. Small particles are colder than the large ones, and their relative temperature is
almost completely enclosed in the interval ξsmall ∈ [10−2, 1], meaning that their random
motions are subsonic. On average, the distribution of ξsmall is shifted by one order of
magnitude compared to ξlarge. This behaviour is in agreement with what Booth & Clarke
(2016) found: larger particles tend to be dynamically hotter, because the kicks of the gas
spiral are more effective, while if the coupling with the gas is stronger, the kicks are
damped because of the drag force.

In principle, the observed trend would imply that increasing βcool would lead to an
arbitrarily thin dust layer, eventually causing gravitational collapse. This would be a
direct analogue of the classical Goldreich & Ward (1973) mechanism for planetesimal
formation in a (weakly) self-gravitating context, and in a more realistic model it likely be
limited in a similar way by the excitation of shear turbulence (Cuzzi et al. 1993). How-
ever, there is an upper limit for βcool set by the value above which the transfer of angular
momentum would be driven by some process other than gravitational instability. To
compute an estimate of the maximum cooling time, we require αGI to be larger than
10−3. Observations of protoplanetary discs that are not expected to be self-gravitating
suggest that this is a reasonable upper limit to the strength of turbulence (Flaherty et al.
2017). Thus, we obtain

βmax
cool = 400

( α

10−3

)−1

, (10.5)
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Table 10.2: Table that summarizes the correlations between ϵ, ξ and βcool, Md/M⋆ and St.

βcool Md/M⋆ St
ϵ Positive None Negative
ξ Negative Negative Positive

Figure 10.8: Comparison of the distribution of relative temperature of large (orange line) and small
(blue line) dust particles. The simulations shown in this plot are S1 and S4.

that corresponds to a minimum density perturbation

δΣg
Σg0

∣∣∣∣
min

= 0.05
( α

10−3

)1/2
. (10.6)

Table 10.2 summarizes the relationships we have discussed in these paragraphs.
Booth & Clarke (2016) studied the relationship between the dust excitation and both

the cooling and the Stokes number. They found that cd ∝ β−1/2St1/2vk, where vk is the
Keplerian speed. To compare with Booth & Clarke (2016), we use our data to reproduce
Figures 7 and 13 of their paper, that show a relationship between the dust velocity dis-
persion and βcool and St. To do so, we divided the particles into equally spaced intervals
of Stokes number and, for each particle, we computed the mean value of cd/cg =

√
ξ.

The comparison is shown in Figure 10.9, where we show the results of simulations with
Md/M⋆ = 0.05, for both standard and high resolution cases. The previously derived
relationships with the Stokes number (the left panel) and with the cooling factor (the
right panel) are well recovered. Using our two fluid algorithm, it is too computationally
expensive to analyse properly the case of St < 1. However, in this case we expect that as
the aerodynamical coupling with the gas is stronger, cd/cg should increase, eventually
reaching cd = cg for St → 0. This growth for St < 1 has been shown by Booth & Clarke
(2016).
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Figure 10.9: Comparison with Booth & Clarke (2016). The left panel shows how dust dispersion
velocity depends on the Stokes number, for different values of cooling factor. The right panel,
shows how dust dispersion velocity depends on the cooling factor, for different values of Stokes
number, compared to the expected relationship ∝ β

−1/2
cool . All the simulations shown in these

plots have Md/M⋆ = 0.05. The diamonds are the values obtained from the standard resolution
simulations, while the squares from the high resolution ones.

10.2.3 Two fluid instability

In this section, we apply the two fluid instability theory presented in Chapter 9. The
gas-only and gas-and-dust models for gravitational instability have both been devel-
oped within a linear framework; hence, in principle, the quantities ϵ, ξ and St should be
evaluated in the unperturbed state. However, in this work, we are evaluating them in
the perturbed one. Although not completely self-consistent, it gives us an idea of the
most unstable regions of the disc. Figure 10.10 shows the distribution of large (blue)
and small (orange) dust particles in the (ξ, ϵ) diagram: the black lines corresponds to the
dust driven GI threshold for St = ∞ (solid line) and for St = 0.5 (dashed line), using eq.
(9.13). We choose St = 0.5 as a minimum value since the number of particles with Stokes
number lower than this is negligible. The particles above the region are in a dust driven
GI regime. We find that the number of small particles for which the instability is dust
driven is greater compared to large ones: this is because small particles have both larger
dust to gas ratio and lower dispersion velocity. In addition, the number of dust driven
particles increases with the cooling factor and with the disc to star mass ratio, as already
discussed in previous sections. To understand the spatial location of these particles in
the disc, Figure 10.11 shows the particles that satisfy condition ϵ >

√
ξ superimposed

on the total density map. As expected, the most unstable regions of the disc are not
randomly distributed, but correspond with the spiral arms.

Figure 10.12 shows the value of the Jeans mass for Md/M⋆ = 0.05 as a function of
the Stokes number. The Jeans mass has been computed from the two component fluid
model with drag force, as shwon in Chapter 9.

The curve can be divided into two parts: for St ∈ (0, 5), the Jeans mass is decreasing
with the Stokes number, reaching its minimum at about St ∼ 3. This happens because
for St → 0, the particles are indistinguishable, and the instability is gas driven. It is
important to notice that the number of particles with small Stokes number is low, hence
the binning in Stokes number presents a considerable scatter. By increasing the Stokes
number, ξ decreases and the two fluids behave more and more differently. When the
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Stokes number is approximately 1, the relative temperature is a minimum and the dust to
gas ratio is high, so the instability becomes dust driven. Otherwise, for St > 5, the Jeans
mass increases with the Stokes number. Indeed, the relative temperature increases, and
the dust to gas ratio decreases. Hence, the system transitions from dust into gas driven
instability, again, eventually reaching the gas-only component model value.

10.3 Discussion

10.3.1 Dust collapse

The simulations with Md/M⋆ = 0.2 and small dust particles do not reach 5 outer orbits,
since the simulation stops due to the onset of dust collapse. This happens because the
stopping time of collapsing dust particles becomes smaller than the time step of the
code. Indeed, the stopping time is inversely proportional to the total density ρtot =
ρg + ρd, and since the dust density is increasing, because of the collapse, the stopping
time tends to zero. The top panel of Figure 10.13 shows the maximum dust density as
a function of time for small and large dust particles, in the run with Md/M⋆ = 0.2 and
β = 15. While large dust particles reach a quasi-steady state, the small particle density
exponentially increases in the first orbit. This is the signature of dust collapse. This
phenomenon is visible in simulations S16, S17 and S18, and happens only in the dust
component. The bottom panel of Figure 10.13 shows a comparison between gas and
small dust averaged density as a function of time, for Md/M⋆ = 0.2 and β = 15. At
t = 0, ⟨ρd⟩ = 10−2⟨ρg⟩. Whereas the gas average density is constant with time, the dust
density increases because of dust trapping, eventually exceeding that of the gas. This
means that any clumps forming from this mechanism would be substantially made up
of solids, and would likely be identified with the rocky core of a giant planet. However,
in this work we do not want to characterize the outcome of this collapse, which is a
complex topic. Indeed, simulations of planetesimal collapse (Nesvorný et al. 2021) show
that a rotating self-gravitating cloud of dust does not monolithically collapse, meaning
that it is not possible to directly equate the cloud mass with the planetary core one.

To identify and analyse dust clumps in more detail, we define the numerical condi-
tions that should be respected for a clump to be physical and not affected by resolution.
For a clump radius rclump the smoothing length of the dust particle hi should be less
than a fraction of the clump radius, in order to be resolved. This condition translates
into hi < ηrclump, where η is less than unity. We take η = 1/2. Physically, a gravitation-
ally bound clump is a collection of particles whose thermal support does not balance
the gravitational one. We define the thermal and gravitational energy of particles inside
rclump as follows:

eth =

i∈rclump∑
i

mic
2
i , (10.7)

egr = −1

2

i∈rclump∑
i

j∈rclump∑
j=i

mimj [φ(rij , hi) + φ(rij , hj)], (10.8)

where φ is the gravitational softening kernel and rij = |ri − rj |. We used a cubic spline
softening kernel, and the detailed expression can be found in the appendix of Price &
Monaghan (2007). According to the virial theorem, if the force between any two particles
can be described in terms of a potential energy Φ ∝ rn, where r is the distance between
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Figure 10.10: Distribution of large (blue) and small (orange) dust particles in the (ϵ, ξ) diagram,
for different values of disc-to-star mass ratio and cooling factor. The black lines corresponds to the
dust driven GI threshold for St = ∞ (solid line) and for St = 0.5 (dashed line), using eq. (9.13).
We choose St = 0.5 as a minimum value since the number of particles with Stokes number lower
than this is negligible. The particles above the region are in a dust driven GI regime.
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Figure 10.11: Total density maps for small dust particles simulations
(S4,S5,S6,S10,S11,S12,S16,S17,S18 in order). Yellow dots correspond to particles for which
the instability is dust driven.
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Figure 10.12: Jeans mass evaluated at each dust particle location as a function of the Stokes num-
ber, for Md/M⋆ = 0.05 and βcool = 8.

Table 10.3: Comparison between the expected and the observed Jeans Mass in the simulations
where dust collapse happens.

# Expected MJ [M⊕] Simulation [M⊕]
S16 2 0.6
S17 2.2 1.
S18 4.5 3.2

two particles, the equilibrium state respects the following condition

2⟨T ⟩ = n⟨Φ⟩, (10.9)

where T is the kinetic energy. In the case of gravitational interaction, the virial theorem
reads ⟨T ⟩/⟨Φ⟩ = −1/2. We define a clump as a region of the space where the dimension-
less quantity αJ = −eth/egr < 1/2. Then, in order to be sure that the collapse is physical,
and not artificial, we verify that hg < hd in the region where there is the dust clump.
The last condition requires that the resolution of the gas in the region where there is a
possible clump should be higher compared to the dust resolution.

To summarize, the conditions under which we define a dust clump are the following

• hg,i ≤ hd,i,

• hd,i < ηrclump,

• αJ < 1/2.

In simulations S16, S17 and S18 there are particles that respect the previous con-
ditions, implying that dust collapse has happened. Table 10.3 shows the mass of the
clumps, obtained by summing the mass of each particle that is gravitationally bound
and the one obtained from analytical theory of Longarini et al. (2023a). The masses are
broadly in agreement with analytic expectations. For S16, for example, the derived Jeans
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Table 10.4: Stopping, dynamical and free fall timescales for the simulations that show dust col-
lapse

# ts [yr] tdyn [yr] tff [yr] ts/tdyn ts/tff
S16 2.7 7.9 0.4 0.3 6
S17 5.6 14.1 0.7 0.4 8
S18 7.2 17.7 1.6 0.4 4

mass is of the order of an Earth mass. In general, the mass of the clump computed from
the simulation is smaller compared to the one expected from the analytical theory: this is
not surprising, since with the simulation we are only able to appreciate the initial phase
of the collapse. Indeed, as soon as the stopping time is smaller than the time step, the
simulation stops. To avoid this problem, one could decrease the time step of the code,
but it is computationally expensive. Otherwise, one could not consider the dust density
when computing the stopping time: this procedure has been applied in previous works
to increase the velocity of the simulations (Poblete et al. 2019; Longarini et al. 2021a) but
this approximation is valid only for small dust to gas ratios. While there this was justi-
fied, here this is not possible, since dust is collapsing and the dust to gas ratio becomes
higher than unity. Finally, to study the early evolution of clumps with an SPH code, it
would be possible to simulate them as sink particles: so far, the creation of dust sink
particles is not possible in PHANTOM.

Gas-dust coupling during the collapse

The bottom panel of Figure 10.13 shows that the collapse happens only in the dust com-
ponent, and the gas is not influenced. This could sound surprising: indeed, in high
density regions, we expect the stopping time to be small. So, why is the dust collapse
not influencing the gas? The degree of coupling is measured with the Stokes number,
that compares the strength of the drag force with the ones that are acting on the particle.
Usually, in a flat protoplanetary disc, the Stokes number is computed as the ratio of the
stopping time and the dynamical time, that is the typical timescale of a particle orbiting
around a central object at a distance R. However, in this situation, the dust clump is
driving the dynamics of the surrounding particles, and hence we should compare the
stopping time with the free fall time in order to understand the degree of coupling of
particles. The typical timescale of the infall of a spherically-symmetric distribution of
mass is

tff =

√
3π

32Gρ
. (10.10)

Comparing the stopping time and the free fall time in the simulations where dust
collapse is happening (Table 10.4), we obtain that the particles in the collapsing region
are uncoupled, since the ratio between the two timescales is higher than one.

It is possible to quantify the critical density a clump should reach so that tff < tdyn,
that is

ρcrit =
3π

32

M⋆

R3
: (10.11)

when a clump reaches this density, the evolution of the surrounding particles is deter-
mined by the clump, and not by the star anymore. From that point, the aerodynamical
coupling should be quantified by taking the ratio between the stopping time and the free
fall time. Hence, for ρ < ρcrit, St ∝ ρ−1, since the dynamical time does not depend on the
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Figure 10.13: Maximum dust density as a function of time for simulations S15 (Md/M⋆ = 0.2, β =
15, large dust particles, blue line) and S18 (Md/M⋆ = 0.2, β = 15, small dust particles, blue line).
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density. For ρ > ρcrit, the scaling changes since the free fall time depends on the density
St ∝ ρ−1/2, and so does the degree of coupling.

10.3.2 Gravitational instability in the context of protoplanetary disc evolution

In this work, we focused on cooling driven GI, but it is also possible to trigger it through
infall. Kratter et al. (2008) found that in the infall-driven case the strength of the spiral
perturbation is controlled by two dimensionless parameters, a thermal one, that relates
the infall mass accretion rate Ṁinf to the characteristic sound speed of the disc, and a
rotational one, that compares the relative strength of rotation and gravity in the core.
Obviously, the higher the accretion rate, the stronger is the spiral perturbation in the
disc. We can naively associate the dust evolution we have modelled in the limit of fast
(slow) cooling with high (low) infall rate. This association is expected to be qualitatively
correct, however a detailed comparison between these two regimes is given by Kratter
& Lodato (2016).

By studying the non-linear evolution of gas and dust in protoplanetary discs, we
found that the instability conditions for the two components are different. It is well es-
tablished that spiral fragmentation occurs in fast cooling gas discs, and it is possible to
define a critical value of βcool below which fragmentation occurs. Simulations of cooling-
driven fragmentation (Gammie 2001; Rice et al. 2005; Lodato & Clarke 2011; Meru &
Bate 2012) currently suggest that βmin ≃ 3 (Deng et al. 2017). For the dust, Booth &
Clarke (2016) found that dust becomes more unstable for higher βcool, and we confirm
this trend with 3D simulations. The differing behaviour of gas and dust suggests an
interesting evolution in the outcome of gravitational instability within protoplanetary
discs. During a first stage, at the beginning of the disc lifetime, we expect a very massive
disc system characterized by strong GI, caused by the high infall rate from the molecular
cloud. If conditions allow gas fragmentation, because of the high Jeans mass, low mass
stellar companions can be formed (Kratter et al. 2008). A second stage is characterized
by a less massive disc, with lower infall rate, or equivalently longer cooling time. If
conditions during this epoch trigger gravitational instability, it will lead to dust-driven
fragmentation that could be responsible for the formation of rocky cores of giant plan-
ets. Then, in the third stage, there is a protostar surrounded by a planet hosting disc,
characterized by substructures such as gaps, rings or planetary spirals. In this stage, GI
is not effective anymore because the disc mass is small and the transport of angular mo-
mentum is controlled by disc winds (Tabone et al. 2022) or other, non-self-gravitating,
sources of turbulence (Lesur et al. 2022). A schematic view of these stages is given by
figure 10.14.

10.3.3 Application to an actual case: HL Tau

HL Tau is a young (< 1Myr) protostellar system that shows axisymmetric structures
(gaps and rings) in dust continuum emission (ALMA Partnership et al. 2015). The origin
of rings and gaps is usually attributed to planet disc interaction (Lin & Papaloizou 1986),
with Dipierro et al. (2015b) finding that three protoplanets with masses Mp1 = 61M⊕,
Mp2 = 83M⊕, Mp3 = 170M⊕ at Rp1 = 13.2au, Rp2 = 32.3au and Rp3 = 68.8au best
match the observations. The formation of super-Earth mass planets at large radii, in such
a young system, is a challenge for core accretion theory. If planets can form via the dust-
induced collapse mechanism we have discussed in this work, HL Tau is a plausible ex-
ample of what the resulting planetary system might look like. We note that the inferred
trend of increasing mass with radius can be interpreted within our model. In a simplistic
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Figure 10.14: Scheme of the three stages of disc lifetime

way, we assume that St ∝ Σ−1 ∝ R, and that ξ ∝ β−1
coolSt ∝ R4.5R = R5.5, where we have

supposed a realistic cooling law, according to which βcool ∝ R−4.5 (Rafikov 2009; Clarke
2009). Supposing that the dust to gas ratio is constant, the Jeans mass of the gas-and-dust
fluid model will be an increasing function of the radius, since the relative temperature
is smaller for particles closer to the central star. So, within this hypothesis, we expect
that the mass of the dust driven GI protoplanets will be an increasing function of the ra-
dius. We want to point out that this is just a qualitative argument. Indeed, to thoroughly
investigate whether HL Tau planets can be formed through dust driven GI, one should
properly model the system. In addition, planet migration and planet accretion should
also be considered.

10.4 Conclusions

Self-gravitating gas discs may be ubiquitous during the Class 0/I phases of YSO evolu-
tion. Observations suggest that the self-gravity can in some systems be strong enough
as to trigger fragmentation (Tobin et al. 2016), while in other cases, such as the massive
disc of the more evolved IM Lup system (Lodato et al. 2023) the instability is expected
to be more gentle. If that fragmentation occurs in the gas, as in the L1448 IRS3B sys-
tem, the outcome is typically star or brown dwarf formation. Lower mass objects can
be formed if the fragmenting fluid is instead the solid component of a two-fluid self-
gravitating disc, given disc conditions that allows the collisional growth of dust to small
macroscopic dimensions while the disc remains self-gravitating. Analytic estimates sug-
gest that planetary cores of ∼ 1−10M⊕ could form from this mechanism at large orbital
radius, with properties that could be identified with the population of ALMA-inferred
disc-embedded planets (Andrews 2020).

In this paper, we presented the results of SPH simulations of gas and dust in proto-
planetary discs, studying the role of aerodynamic coupling in the context of gravitational
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instability. We analysed our results in the framework of two fluid gravitational instabil-
ity, and compared our findings with previous numerical works, finding generally good
agreement.

Our main results can be summarized as follows:

1. We studied the relationship between the dust to gas ratio ϵ, the relative tempera-
ture between gas and dust ξ and the cooling factor βcool, the disc to star mass ratio
and the Stokes number. We found that the dust to gas ratio increases with the cool-
ing factor and decreases with the Stokes number, and that the relative temperature
increases with the Stokes number and decreases with the cooling factor and the
disc to star mass ratio. It is possible to explain these relationships by consider-
ing the interaction between dust particles and gas spiral arms. We compared our
findings with Booth & Clarke (2016) and found good agreement.

2. We investigated the role of dust in gravitational instability, and found that the most
unstable regions of the disc are the spiral arms, where the instability tends to be
dust driven. In addition, we studied the relationship between the theoretical Jeans
mass and the Stokes number. We found that the Jeans mass — when the instability
is dust driven — can reach values of the order of the Earth mass.

3. We observe three cases of dust collapse in our set of simulation, which occur (as
expected) in the high disc mass models. The values of the clump masses obtained
numerically are close to those predicted by linear theory.

In applying our results to the possibility of early planet formation in Class 0/I discs,
the main prerequisite is the requirement that dust is able to grow via coagulation to a
large enough Stokes number, with a top-heavy particle mass function, in a short enough
time. Our simulations that explicitly exhibited dust collapse had solid particles with an
average Stokes number ⟨St⟩ = 16, which would correspond (rescaling our simulations
to a disc size of Rout = 250au) to particles with sizes between a few cm and a few metres.
Fragmentation and radial drift pose barriers to growth to the required sizes (Birnstiel
et al. 2016), and further work is needed to assess whether there are circumstances where
the required Stokes numbers can be reached. Simulations with a constant Stokes number,
along with runs with St ∼ 1 (a regime which is numerically difficult to access using our
code), would also help to better define the regime where dust can fragment in a gas disc
that is itself stable against fragmentation.

In an evolutionary context, our results imply that planet formation — if it is able to
occur via the mechanism of dust-dominated gravitational disc instability — is likely to
occur toward the end of the self-gravitating phase. This is when the competing effects
of particle trapping and particle excitation are jointly most favourable for collapse. The
masses and orbital radii of the planets formed via dust collapse are qualitatively in agree-
ment with those inferred for the HL Tau system, and we speculate that they may form
from the collapse of solids in the spiral arms of a formerly self-gravitating protostellar
disc.



CHAPTER 11

Conclusions and future directions

In this thesis, I explored the role of self-gravity and gravitational instability on the evolu-
tion of protostellar discs and planet formation. There is a growing evidence suggesting
that planet formation is already underway in young systems, particularly when the disc
exhibits significant mass, and self-gravity plays a crucial role in its dynamics. Conse-
quently, understanding the effects of self-gravity on the evolution of these systems is
essential to develop a comprehensive view of the planet formation process. Historically,
gravitational instability has lost favour as a planet-forming scenario, primarily due to
the higher likelihood of forming stellar companions rather than planets. However, in
this thesis, we consider the synergy between gravitational instability and dust dynam-
ics, opening new pathways for forming planets in young protostellar stages.

The two macro topics of this dissertation aim at characterizing (i) gas kinematics and
(ii) dust dynamics in self gravitating discs. The first part builds a bridge between the-
ory and observations, describing the expected effects of self-gravity and gravitational
instability on molecular line emission, and then applying these results to actual cases.
The second part, instead, is focussed on the theoretical side, analytically and numeri-
cally modelling the dynamics of solid particles in young protoplanetary discs. The main
results of this work can be summarized as follows

• Investigating the kinematic signatures of gravitational instability.

The outcome of gravitational instability is the formation of a large scale spiral struc-
ture that shapes the density field of the protostellar disc. In addition to the density,
also the velocity field is influenced by the spiral, displaying a discernible perturbed
pattern on a global scale. These kinematic signatures are visible in molecular line
emission of CO isotopolgues, and they are called “GI Wiggles” (Hall et al. 2020).
My contribution to this topic involves analytically deriving the velocity perturba-
tions, as presented in chapter 6. I carried out a first order perturbation analysis to
the fluid equations, and I found that for a gravitationally unstable disc in thermal
saturation regime, the kinematic deviations depend on the structure of the spi-
ral density wave, namely its amplitude (connected to the cooling and to the disc
mass) and its radial frequency (connected to the pitch angle and to the azimuthal
wavenumber). Measuring the amplitude of the GI Wiggle offers an incredible op-
portunity to quantify the cooling time, that is crucial in determining the amount of
angular momentum transported by gravitational instability.

• Quantifying the amount of angular momentum transport in a gravitational un-
stable disc: Elias 2-27.

There is convincing evidence that the protoplanetary disc Elias 2-27 is gravitation-
ally unstable. In addition to two large scale spiral arms in dust continuum emission
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(Pérez et al. 2016), it shows global kinematic perturbations (Paneque-Carreño et al.
2021). In the work presented in chapter 8, I verified that the shape of the veloc-
ity perturbations is compatible with the GI predictions, displaying a shift with the
density spiral. Then, relying on the knowledge of the disc mass (Veronesi et al.
2021), I constrained the cooling factor of the system through the amplitude of the
GI wiggle. I found a value of β = 10.5, corresponding to an effective α−viscosity
of 0.046. Assuming the self-similarity solution for the surface density of the disc, I
computed the expected accretion rate, that is in good agreement with the observed
one.

• Measuring the self gravitating contribution to the rotation curve through high
resolution kinematic observations.

When a disc is massive enough, its gravitational potential contributes to the gas
rotation curve, making it super-Keplerian. High resolution ALMA observation are
able to probe this effect, as shown in Veronesi et al. (2021) and Lodato et al. (2023).
Measuring the self gravitating contribution to the rotation curve provides an effec-
tive way to determine the disc mass. This method does not rely on tracers-to-H2

ratios, giving an accurate estimate of this quantity. In chapter 7 I benchmark this
method with hydrodynamical and radiative transfer simulations. The minimum
mass that is measurable through this approach is 5% of the star mass, with an
uncertainty of about 25%. Afterwards, I relax the hypothesis of vertical isother-
mal disc, studying how the rotation curves changes when thermal stratification is
taken into account, and I apply the new model to the MAPS sample. I show that
the quality of the fit significantly increases when thermal stratification is included.

• Investigating the dynamical role of dust in the gravitational stability of a proto-
planetary disc.

In the context of galactic dynamics, it is well established since the ’80s that the
gravitational stability of a multi-fluid system can be substantially different from
the one-fluid case (Kwok 1975; Jog & Solomon 1984; Bertin & Romeo 1988). In
particular, the presence of a second cold component can drive gravitational insta-
bility at short wavelengths, characterized by a higher value of the critical Toomre
parameter Q. In the context of galactic dynamics, this becomes important when
considering the galactic fluid composed of stars and gas, where the gas is the sec-
ond “cold” component, according to its lower dispersion velocity. In chapter 9 I
adapt this framework to protoplanetary discs, where the two components are gas
and dust. In particular, the gas is the most abundant and hot component, while the
dust is less abundant and cold. Additionally, I generalize the galactic model by in-
cluding the aerodynamical interaction between the two components, fundamental
in protostellar discs, while negligible in galactic ones. I obtain the dispersion rela-
tion for such system, and I find that the stability threshold is determined by three
parameters: the local dust-to-gas density ratio, the dust relative temperature and
the Stokes number. In a region of parameters space, where young protoplanetary
discs are likely to be found, the instability can be driven by dust, occurring at small
wavelengths. In this regime, the Jeans mass is much smaller than the one predicted
by the standard gravitational instability model, being of the order of ∼ 10M⊕. This
mechanism can be a viable way to form planetary cores in young protostellar discs.

• Assessing the viability to form planetary cores in young protostellar discs through
dust collapse.
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Gas spiral arms effectively collect dust inside them (Dipierro et al. 2014), reach-
ing concentrations for which the influence of dust self-gravity becomes significant.
Young protostellar discs are likely to be both self-gravitating, and to support grain
growth to sizes where the particles are marginally coupled with the gas, suggest-
ing that dust trapping is likely at its peak. Concurrently, gas spiral arms have the
capacity to excite solid particles, inducing a “kicking” effect during each interac-
tion. The potential for dust to undergo gravitational collapse within spiral arms,
giving rise to planetary cores, depends on the interplay between these two effects.
In chapter 10, I use three-dimensional smoothed particle hydrodynamics simula-
tions of two-fluid discs, focussing on the regime where the Stokes number of the
particles St ≳ 1. The aim is to study the interplay between dust concentration and
dust excitation, and understand how the formation of solid clumps depends on the
disc to star mass ratio, the strength of gravitational instability (i.e. cooling time),
and the Stokes number. I find that the ability of the spiral structures to concen-
trate solids increases with the cooling time, and decreases with the Stokes number,
while the relative dynamical temperature between gas and dust of the particles
decreases with the cooling time and the disc-to-star mass ratio, and increases with
the Stokes number. I observe dust collapse in a subset of our simulations, yield-
ing clumps whose mass is close to linear theory estimates, namely 1− 10M⊕. Our
results suggest that if planet formation occurs via this mechanism, the best con-
ditions correspond to near the end of the self-gravitating phase, when the cooling
time is long and the Stokes number close to unity. If these planetary cores are able
to survive in such environments, they could form giant planets in the outer disc,
serving as the embryos of class II protoplanets.

To summarize, taking into account the role of the disc self-gravity in young proto-
planetary discs is crucial to understand the long term evolution of such systems and
planet formation. Self-gravity is a powerful way to measure the disc mass, with the
lowest number of assumptions, yielding accurate results. In addition, characterizing
gravitational instability in protoplanetary discs offers a unique way to investigate fun-
damental questions in accretion disc theory, such as the amount of angular momentum
transported within it. Finally, accounting for the dynamical role of dust in gravitation-
ally unstable discs is of paramount importance. The physical conditions within these
discs can lead to the gravitational collapse of the dust component, potentially forming
the embryos of class II planets.

Future perspectives

Starting from the work presented in this thesis, I have identified several perspectives that
I would like to address in the future. These developments are divided into two parts,
the first one is related to gas kinematics and the second one to dust dynamics.

Gas kinematics

• Kinematic signatures of the interaction between disc and environment:

In chapter 6 I investigated the kinematics of young protostellar discs, focussing
my attention on the signatures generated by gravitational instability. However,
young systems are strongly influenced by the environment, through infall from
the molecular cloud or dynamical interactions with nearby protostars. These inter-
actions shape the discs, determining their morphology and characteristics. While
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gas dynamics is well understood in such environments (Kratter & Matzner 2006;
Kratter et al. 2010; Cuello et al. 2023), a comprehensive study of gas kinematics is
still lacking. A possible direction to follow is to characterize kinematic signatures
of flybys, binary disc interaction and infall. Since for these phenomena an analyt-
ical derivation of the velocity field is not feasible, I intend to perform numerical
simulations and then post process them with radiative transfer codes, to assess the
nature of the kinematic signatures and their observability.

• Investigate thermal stratification in gravitationally unstable discs:

The topic of thermal stratification in gravitationally unstable discs has never been
explored so far. Currently, hydrodynamical simulations of gravitationally unsta-
ble discs use cooling prescriptions to trigger GI, and hence they are not suitable to
study the thermal stratification. As a matter of fact, by imposing a cooling prescrip-
tion, the disc is forced to behave as vertically isothermal. A possible path to follow
in this context would be to couple a radiative transfer code to the hydrodynamical
simulation, to compute live the temperature structure. In this way, the disc will
cool due to radiative cooling, triggering gravitational instability without imposing
any cooling prescription. In such a system, it is possible to investigate whether GI
discs show peculiar thermal profiles. In case they are, this characteristic may be
used as an observational evidence of gravitational instability. Indeed, the vertical
thermal structure of protoplanetary disc can be easily probed with optically thick
lines.

• Infer the disc thermal structure from the rotation curves:

In chapter 7, we have shown that there are distinct kinematic signatures of thermal
stratification when comparing rotation curves of multiple molecular species. So far,
in our methodology we have fixed a 2D thermal structure of the disc, to correctly
interpret rotation curves and determine the relevant parameters (Md,M⋆, Rc). In
principle, if rotation curves from various molecular tracers or different transitions
are available, it becomes viable to directly investigate the 2D thermal structure,
without fixing it. The exoALMA dataset potentially offers three rotation curves
(12CO J=3-2, 13CO J=3-2, and CS), and when combined with archival data, it pro-
vides an opportunity to evaluate the feasibility of this approach. The advantages
of such method is that rotation curves of any molecular tracer can be used, with-
out making assumptions about the optical depth. In contrast, when extracting the
thermal structure channel by channel at a specific height z = z(R), the emission
must be optically thick.

Dust dynamics

• Investigate the interplay between planetary accretion and migration in young
protoplanetary discs:

In chapter 10 we showed that planetary cores can form in the outer disc from
dust concentration and collapse in the spiral structure of a gravitationally unstable
disc. This mechanism potentially solves the conundrum of planetesimal forma-
tion, overcoming the radial drift barrier to planet formation. However, the fate of
planetary cores in massive protostellar discs has not been investigated. On one
hand, a planetary object embedded into a gas disc tends to migrate towards the
central object, with a rate that depends on its mass. For low mass planets, the mi-
gration timescale is very rapid (type I migration) while massive objects can open a



gap, slowing down this process (type II migration). On the other hand, the plane-
tary core accretes disc material, potentially undergoing runaway accretion (Pollack
et al. 1996) and becoming a gaseous giant. The interplay between these two mech-
anisms ultimately determines the fate of the planetary cores. Investigating the
likelihood of a planetary core surviving in a young protostellar disc is essential to
establish whether the collapse of dust in gravitationally unstable spirals is a viable
way for generating the embryos of Class II ALMA planets.

In this context, a viable concept is to integrate into hydrodynamical codes, like
PHANTOM, the capability to generate a sink particle originating from the dust com-
ponent, a feature currently unavailable. Presently, the creation of sink particles is
limited to those composed of gas, given the well-established clumping conditions
(i.e., comparison between gas pressure and self-gravity). Regarding the dust, as
outlined in chapter 10, we established its dispersion velocity within an SPH frame-
work. Employing this definition enables the extension of clumping conditions to
pressureless particles. Implementing this feature allows running long term simula-
tions, investigating both the formation and the early evolution of planetary cores.

• Study dust dynamics in thermally stratified discs:

As discussed in this thesis, protoplanetary discs exhibit thermal stratification. We
have presented a methodology to probe the 2D thermal structure and modeling gas
kinematics within such systems. However, a comprehensive model for the dynam-
ics of dust in stratified discs is still lacking. In a study by Takeuchi & Lin (2002),
the radial migration of dust particles in vertically isothermal protoplanetary discs
was examined. A notable finding was that at high altitudes from the disc mid-
plane, gas rotates faster than particles due to the inward pressure gradient force,
causing particles to move outward radially. My objective is to address the issue of
dust dynamics in thermally stratified discs. With the analytical model developed
in chapter 7, it becomes feasible to calculate the gas velocity at any radial and ver-
tical position in the disc, accounting for thermal stratification. Building upon this
foundation, I will compute the drag force acting on dust particles and investigate
their evolutionary dynamics. A semi-analytical approach is viable for this study,
and I also plan to compare the obtained results with numerical simulations.
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APPENDIX A

Numerical methods: Smoothed particle hydrodynamics

A.1 Two different approaches

In astrophysics, numerical simulations are deeply exploited in order to test theoretical
models, to model observed systems and to investigate physical mechanisms. As a matter
of fact, most of the time is it not possible to set up a laboratory experiment and the ob-
servations are limited in space and time. Historically, two principal methodologies have
been pursued in numerical hydrodynamics: the Eulerian and Lagrangian approaches.

Within the Eulerian framework, the observer tracks the evolution of fluid variables
at specific points in space. Consequently, numerical Eulerian codes make use of geo-
metric grids, which can either be fixed or adaptive. An example of an Eulerian code ap-
plied in the context of planet formation is exemplified by FARGO3D (Benı́tez-Llambay
& Masset 2016). Conversely, the Lagrangian approach considers the evolution of the
fluid variables for any given fluid element. These elements, in general, do not main-
tain constant positions. Hence, Lagrangian codes compute fluid properties at positions
that move with the fluid’s motion. A typical approach consists in using discrete parti-
cles that move with the flow, and hydrodynamic properties are evaluated at the particle
positions and calculated by means of weighted averages. In this way, each particle is
smoothed over a finite volume of fixed mass. From here, the name “Smoothed Particle
Hydrodynamics” (SPH).

Both these approaches come with their own set of advantages and disadvantages in
comparison to each other. The core distinction lies in the presence of a grid, which serves
as both an asset and a drawback. On one hand, when we have prior knowledge of the
problem’s geometry, we can design a suitable grid that yields accurate results at a rel-
atively low computational cost. On the other side, once the grid is chosen, it remains
fixed and cannot be adjusted. This limitation can result in the grid failing to capture
changes in the fluid flow. Another concern is grid resolution: once the spacing between
grid cells is established, it remains unalterable. Consequently, if there are abrupt varia-
tions in fluid properties, our ability to precisely track the fluid diminishes. To address
this challenge, Adaptive Mesh Refinement (AMR) techniques can be employed, though
they tend to be intricate. Nevertheless, AMR codes offer superior resolution with a given
number of grid cells compared to SPH codes using an equivalent number of particles.
Additionally, they can be configured to adapt to diverse flow parameters, albeit with
some complexity, whereas SPH primarily adapts based on density and excels in han-
dling shocks. Conversely, SPH naturally manages vacuum boundary conditions, while
AMR codes require large grids to prevent the flow from escaping the computational do-
main’s edges, as previously mentioned. SPH, being a Lagrangian method, deals with the
advection of flow properties, a task that presents challenges for AMR codes. Similarly,
SPH codes can be implemented in a manner that inherently conserves mass, momentum,
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angular momentum, and energy, and, unless explicitly accounted for in shocks, they also
conserve entropy. In summary, we can characterize SPH and Eulerian methods as some-
what complementary; each excels in areas where the other encounters limitations.

A.1.1 Equations of hydrodynamics

The equation of hydrodynamics can be written in two different forms, Eulerian and La-
grangian. The continuity equation expresses the mass conservation, and in the Eulerian
form is

∂ρ

∂t
+∇ · (ρu) = 0, (A.1)

while in Lagrangian one is
Dρ
Dt

= −ρ∇ · u, (A.2)

where D/Dt is the Lagrangian derivative

D
Dt

:= u ·∇+
∂

∂t
. (A.3)

The Euler equation expresses momentum conservation for an inviscid fluid, in Eulerian
form is

ρ

[
∂u

∂t
+ (u ·∇)u

]
= −∇P + f , (A.4)

where f is contains non fluid external forces, while in Lagrangian form is

ρ
Du

Dt
= ∇P + f . (A.5)

Finally the energy equation expresses energy conservation for a dissipationless fluid, in
Eulerian form is

∂e

∂t
+ u ·∇e = −P

ρ
∇ · u+ q̇, (A.6)

where e is s the internal thermal energy and q̇ is the external heat, while in Lagrangian
form is

De
Dt

= −P
ρ
∇ · u+ q̇. (A.7)

The meaning of the lagrangian derivative is the following. When we consider a fluid
quantity in Lagrangian formalism, its temporal derivative needs to take into account
the fact that the quantity at the particle location is changing because of both physical
mechanisms (i.e. the density changes because a planet is perturbing it) and the fact that
the particle is moving.

Now, we will focus our attention on Lagrangian SPH codes.

A.2 How to calculate density in SPH

SPH algorithms have as a starting point a fundamental question, that is “how does one
compute the density from a distribution of point mass particles?” (Price 2012). This is a funda-
mental problem because, answering this question, makes us able to deal with problems
coming from different field of physics, as solving the Poisson equation ∇2Φ = 4πGρ
starting from a collection of point-like masses.

Three common approaches to compute density from an arbitrary collection of point
mass particles are shown in figure A.1.
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Figure A.1: Three common approaches to compute density from an arbitrary collection of point
mass particles (Price 2012)

• Particle-mesh methods: the density is computed by interpolating the mass to a
grid; this method tends to over/under resolve clustered/sparse regions.

• Adaptive sampling: the density is computed by constructing a volume around
the sampling point, whose dimension depends on the local number density of the
considered region.

• SPH approach: the density is computed by means of weighted sums over neigh-
bouring particles, with the weight scaled according to a factor h.

We focus on the third approach, that is the basis of SPH. The density estimator in this
case is

ρ(r) =

Nneigh∑
b=1

mbW (r− rb, h) , (A.1)

where W is a weight function, h is a scale parameter determining the rate of decay of W ,
mb is the mass of the b-th particle and rb is its position. The conservation of total mass
reads ∫

V

ρdV =

Nneigh∑
b=1

mb, (A.2)

that implies the normalisation of the weight function (hereafter referred to as the smooth-
ing kernel) ∫

V

W (r′ − rb, h) dV
′ = 1. (A.3)

It is clear that the accuracy of the density estimation depends on the choice of the smooth-
ing kernel, that must have some properties

• it is positive, it decreases monotonically with distance, and it has smooth deriva-
tives;

• it is symmetric with respect to r− r′, i.e. W (r′ − r, h) ≡W (|r′ − r| , h);

• it has a flat central region in which the density is not affected by a small change in
position.
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The most natural choice that respects all the requests is a Gaussian smoothing kernel,
however it has the disadvantage of requiring interaction with all the particles in the
domain, that means a big computational effort. In practise, it is useful to use a Gaussian-
like kernel truncated at a finite radius; the most used smoothing kernels are the B-Spline
functions (Monaghan & Lattanzio 1985) Mn. These functions give a better approxima-
tion to the Gaussian at higher n, both by increasing the radius of truncation and by
increasing the smoothness.

As far as the smoothing length is concerned, it has to adapt to the local numerical
density of particles, in order to resolve both sparser and denser region. Hence, it is
computed as

h(r) ∝ n(r)−1/d; n(r) =
∑
b

W [r− rb, h(r)] , (A.4)

with d the space dimension. Since the density is a function of the smoothing length and,
in turn, the smoothing length depends on the density, at the location of particle a, we
have to solve simultaneously two equations

ρ (ra) =
∑
b

mbW (ra − rb, ha) ; h (ra) = η

(
ma

ρa

)1/d

, (A.5)

where η is a constant, that represents the smoothing length in unit of (m/ρ)1/d. It is
usually assumed η = 1.2.

A.3 Equations of motion

So far, we have discussed the density estimate because this is the only freedom we have
if we want to obtain a fully conservative SPH algorithm. Indeed, the entire algorithm can
be derived only by means of the density estimate. To implement an SPH algorithm, we
must be able to calculate spatial derivatives of any given quantity. It can be shown that
all derivatives of arbitrary quantities can be computed by means of the kernel deriva-
tives. Although this argument is not needed to derive SPH equations, it is important
for two main reasons: it allows us to interpret SPH equations and to study dissipa-
tive effects, that involve second derivatives. In this work, we avoid deriving the spatial
derivatives, that can be found in Price (2012).

A.3.1 The discrete Lagrangian

For a system of point-like masses with velocity v, internal energy per unit mass e and
entropy per unit mass s, the discrete Lagrangian can be written as

L =
∑
b

mb

[
1

2
v2b − eb (ρb, sb)

]
. (A.1)

According to the least action principle, we can derive the equations of motion, given by
Euler-Lagrange equations

d

dt

(
∂L

∂va

)
− ∂L

∂ra
= 0. (A.2)

Substituting the expression of the Lagrangian, we have

∂L

∂va
= mava;

∂L

∂ra
= −

∑
b

mb
∂eb
∂ρb

∣∣∣∣∣
s

∂ρb
∂ra

, (A.3)
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where to obtain the last equation, we made two important assumptions: the first one is
that we derived it non considering explicitly the discrete nature of the time integral, the
second one is that we assumed that the Lagrangian is differentiable, completely exclud-
ing the possibility of discontinuous solutions.

A.3.2 Thermodynamics of the fluid

To obtain an expression for the internal energy, we consider the first principle of thermo-
dynamics

dE = TdS − PdV, (A.4)

that, in unit mass, is

de = Tds+
P

ρ
dρ. (A.5)

At constant entropy, the variation of thermal energy is

∂eb
∂ρb

∣∣∣∣
s

=
Pb
ρ2b
, (A.6)

and, from the last equation, it follows that

dea
dt

=
Pa
ρ2a

dρa
dt

. (A.7)

Taking the time derivative of the density, we obtain the evolution equation for e

dea
dt

=
Pa

Ωaρ2a

∑
b

mb (va − vb) · ∇aWab (ha) . (A.8)

A.3.3 Density gradients

In equation (A.3) it appears the gradient of the density, that can be computed from the
smoothing kernel (see Price (2012)). Its expression is

∂ρb
∂ra

=
1

Ωb

∑
c

mc∇aWbc (hb) (δba − δca) , (A.9)

where Wbc(hb) = W (rb − rc, hb), ∇a is the gradient with respect to the position of the
particle a and

Ωa ≡

[
1− ∂ha

∂ρa

∑
b

mb
∂Wab (ha)

∂ha

]
. (A.10)

A.3.4 Equations of motion

We are now able to derive the equations of motion by substituting relations (A.6) and
(A.9) in (A.3)

∂L

∂ra
= −

∑
b

mb
Pb

Ωbρ2b

∑
c

mc∇aWbc (hb) (δba − δca) , (A.11)
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that, in a simplified form can be written as

dva
dt

= −
∑
b

mb

[
Pa

Ωaρ2a

∂Wab (ha)

∂ra
+

Pb
Ωbρ2b

∂Wab (hb)

∂ra

]
. (A.12)

We underline an important result, without showing the mathematical demonstration
(see Price (2012)): global quantities, as momentum, angular momentum and energy, are
all simultaneously conserved. This feature derives directly from the Lagrangian nature
of SPH. Since the particles move according to the Euler-Lagrange equations for the dis-
crete Lagrangian, for every symmetry in the Lagrangian there is a corresponding con-
served quantity.

Continuity equation

In order to obtain the continuity equation, we take the time derivative of the SPH density,
and we obtain

dρa
dt

=
∑
b

mb (va − vb) ·∇aWab (ha) , (A.13)

where, for simplicity, we assumed constant smoothing length and Ω = 1. Expanding the
last equation, we obtain the continuity equation in Lagrangian form

dρa
dt

= va ·
∑
b

mb

ρb
ρb∇aWab −

∑
b

mb

ρb
(ρbvb) · ∇aWab ≈

≈ va ·∇ρ−∇ · (ρv) ≈ −ρa(∇ · v)a.
(A.14)

Thus, SPH enforces naturally the continuity equation. This is not surprising, since the
continuity equation is the conservation of mass, that is fixed, because the particle masses
do not change in time.

Euler equation

In order to obtain the Euler equation, we rewrite the first left side term of equation (A.12)

−
∑
b

mb

(
Pa
ρ2a

+
Pb
ρ2b

)
∇aWab ≈ − P

ρ2
∇ρ−∇

(
P

ρ

)
≈ −∇P

ρ
, (A.15)

where we considered the smoothing length constant. As expected, we have obtained the
pressure term of the Euler equation.

Energy equation

As far as the energy equation is concerned, we can substitute the continuity equation in
(A.7) and get

dea
dt

= −Pa
ρa

∇ · u, (A.16)

that is the energy equation in Lagrangian form.
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A.4 Focus on PHANTOM: dust and GI

The dust formulation is based on the continuum fluid equations in the form

∂ρg
∂t

+ (vg · ∇) ρg = −ρg (∇ · vg) , (A.1)

∂ρd
∂t

+ (vd · ∇) ρd = −ρd (∇ · vd) , (A.2)

∂vg

∂t
+ (vg · ∇)vg = −∇P

ρg
+
K

ρg
(vd − vg) , (A.3)

∂vd

∂t
+ (vd · ∇)vd = −K

ρd
(vd − vg) , (A.4)

where the subscripts g and d refer to gas and dust properties. We define the stopping
time, that is given by

ts ≡
ρgρd

K(ρg + ρd)
, (A.5)

where the drag coefficient K depends on the physical drag regime the system is in. In
general, it is given by

K = ρgρd
1

2
CD

πs2

md
|∆v|, (A.6)

where CD is defined as before.
In the PHANTOM implementation, the two phases are modelled as two distinct sets

of particles: hereafter, we adopt the convention of Price et al. (2018b), and refer to gas
particles with the subscripts a, b, c and to dust particles with i, j, k. Gas and dust densi-
ties are computed by weighted summation over the particles of the same type according
to

ρa =
∑
b

mbWab (ha) ; ha = hfact

(
ma

ρa

)1/3

, (A.7)

ρi =
∑
j

mjWij (hi) ; hi = hfact

(
mi

ρi

)1/3

, (A.8)

where the kernel W is the same for gas and dust, h is the smoothing length and hfact =
1/2. The drag terms of the equations of motion are discretized by using a “double hump”
kernel (Laibe & Price 2012a) that, instead of the bell-shaped kernel, goes to zero at r = 0
and has a peak at r/h ≲ 1. 1

A.4.1 Heating and cooling

In order to take into account the effect of cooling or heating phenomena, we write the
complete equation for the evolution of gas internal energy e

∂e

∂t
+ (vg · ∇) e = − P

ρg
(∇ · vg) + Λshock −

Λcool

ρg
+

Λdrag

ρg
, (A.9)

1Laibe & Price (2012a) showed that using a double-hump kernel gives a factor of 10 better accuracy at no
additional computational cost. For further information, see Section 2.13.4 of Price et al. (2018b).
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where the first term on the RHS is the PdV work, the second is a heating term due to the
shock viscosity, the third is the cooling of the disc and the last term is the drag heating
term. Usually, an adiabatic equation of state is assumed. For an ideal gas, it is possible
to link pressure and density as follows

P = (γ − 1)ρge =
c2gρg

γ
, (A.10)

where γ = 5/3 and cg is the gas sound speed, that is initialized as a power law cg ∝
R−0.25.

The shock viscosity term can be written as

Λshock = c1α
AVhg
H

+ c2β
AV
(
hg
H

)2

, (A.11)

where c1, c2 are two numerical factors, whose dimension is a specific energy per unit
time, αAV and βAV are respectively the linear and the quadratic viscosity coefficients,
and hg/Hg is related to the numerical resolution2. The viscosity term is dissipative, so it
heats the disc. We did so since in these systems the main driver of angular momentum
transport is GI.

For the cooling we use the prescription from Gammie (2001) and Rice et al. (2004),
in which the cooling time tcool is proportional to the dynamical time, with a factor of
proportionality βcool

tcool = βcoolΩ
−1 (A.12)

Under the assumption that the transfer of angular momentum driven by gravito-turbulence
occurs locally (Lodato & Rice 2004), we can relate the cooling parameter to an effective
α−viscosity parameter

αGI =
4

9

1

γ(γ − 1)βcool
. (A.13)

We need to introduce a cooling prescription for the system in order to trigger GI. Finally,
the drag heating term is

Λdrag = K|vd − vg|2. (A.14)

Currently, PHANTOM neglects any thermal coupling between the dust and the gas, aside
from the drag heating.

2This quantity tells how many smoothing lengths are included in the disc thickness.



APPENDIX B

Two fluid dispersion relation

In this appendix we present the calculations to obtain the dispersion relations for ax-
isymmetric perturbations, with and without taking into account the backreaction.

We consider an infinitesimally thin disc composed of two fluids (gas and dust, hence-
forth with the subscripts g and d). The two components interact through gravitational
and drag force. We call Σi the surface density, vi the radial velocity, ui the azimuthal
velocity, hi the enthalpy. In a two-dimensional polar system of coordinates (R,ϕ), the
fluid equations are

∂tΣg +R−1∂R (ΣgRvg) +
1

R
∂ϕ(Σgug) = 0, (A.1)

∂tvg + vg∂Rvg −
u2g
R

+
ug
R
∂ϕvg = −∂R (Φ + hg) +

Σd
Σgts

(vd − vg) , (A.2)

∂tug + vg∂Rug −
ugvg
R

+
ug
R
∂ϕug = − 1

R
∂ϕ (Φ + hg) +

Σd
Σgts

(ud − ug) , (A.3)

dhg = c2g
dΣg
Σg

, (A.4)

∂tΣd +R−1∂R (ΣdRvd) +
1

R
∂ϕ(Σdud) = 0, (A.5)

∂tvd + vd∂Rvd −
u2d
R

+
ud
R
∂ϕvd = −∂R (Φ + hd)−

1

ts
(vd − vg) , (A.6)

∂tud + vg∂Rud −
udvd
R

+
ud
R
∂ϕud = − 1

R
∂ϕ (Φ + hd)−

1

ts
(ud − ug) , (A.7)

dhd = c2d
dΣd
Σd

, (A.8)

∇2Φ = 4πGδ(z)(Σg +Σd). (A.9)

The basic state we consider is characterized by uniform surface densities Σg0,Σd0,
azimuthal velocity ug0 = ud0 = RΩ, zero radial velocity vg0 = vd0 = 0 and constant
dispersion velocities cg, cd.

We now perform a first order perturbation analysis of the previous equations: we
consider a perturbation to the basic equilibrium state X0 +X1(R,ϕ, t) that have spatial
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and temporal dependence like X1 ∝ exp[i(kR − ωt + mϕ)]. We focus our attention on
axisymmetric perturbations (m = 0): we substitute the perturbed quantities into the
fluid equations, and we discard any term that is quadratic in them: the six first order
perturbed equations are

−i(ω −mΩ)Σg1 + ikΣg0vg1 = 0, (A.10)

−i(ω −mΩ)vg1 − 2Ωug1 −
Σd0
Σg0

1

ts
(vd1 − vg1) = −∂R (Φ1 + hg1) , (A.11)

−i(ω −mΩ)ug1 − 2Bvg1 −
Σd0
Σg0

1

ts
(ud1 − ug1) = 0, (A.12)

−i(ω −mΩ)Σd1 + ikΣd0vd1 = 0, (A.13)

−i(ω −mΩ)vd1 − 2Ωud1 +
1

ts
(vd1 − vg1) = −∂R (Φ1 + hd1) , (A.14)

−i(ω −mΩ)ud1 − 2Bvd1 +
1

ts
(ud1 − ug1) = 0, (A.15)

where B(R) = − 1
2

d(ΩR)
dR +Ω is the Oort parameter and 4BΩ2 = −κ2. Once we know the

form of the density perturbation, it is possible to solve the Poisson equation and get the
potential perturbation: it is possible to show that

Φ1 = −2πG

|k|
(Σg1 +Σd1) , (A.16)

and the enthalpy can be written as

hi,1 = c2i
Σi,1
Σi,0

. (A.17)

Hence, it is possible to write the r.h.s of Euler equations as a function of the perturbed
densities

−∂R(Φ1 + hi,1) = ikΣi,1

(
2πG

|k|
− c2i

Σi,0

)
+ ik

2πG

|k|
Σj,1, i ̸= j. (A.18)

Now, we’ll consider the case of axisymmetric perturbations (m = 0).

Without backreaction

Here, we do not take into account the backreaction, so the drag terms appear only in dust
equations. In this case, we can write the matrix of coefficients of x = (Σg1, vg1, ug1,Σd1, vd1, ud1)
that is

A =



−iω iΣg0k 0 0 0 0

−ik
(

2πG
|k| − c2g

Σg0

)
−iω −2Ω2 −ik 2πG

|k| 0 0

0 −2B −iω 0 0 0
0 0 0 −iω iΣd0k 0

−ik 2πG
|k| − 1

ts
0 −ik

(
2πG
|k| − c2d

Σd0

)
1
ts

− iω −2Ω2

0 0 − 1
ts

0 −2B 1
ts

− iω


,

(A.19)
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such that Ax = 0. In order to compute the dispersion relation, we impose that the
determinant of A is zero: for simplicity, we express the relationship as a function of
y = −iω. To be consistent with (Bertin & Romeo 1988), we define

αi = κ2 − λi = κ2 + c2i k
2 − 2πGΣi0|k|, (A.20)

and
βi = 2πGΣi0|k|, (A.21)

and we get

y5 + 2t−1
s y4 + y3(αg + αd + t−2

s ) + t−1
s y2(2αg + αd − κ2 − βd)+

+y[αgαd − βgβd + t−2
s (αg − βd)] + t−1

s [αgαd − βgβd − κ2(αg − βd)] = 0.
(A.22)

With backreaction

Starting from the same basic state as before, now we consider the backreaction, i.e. the
effect of the drag force onto the gas component. In this case, the coefficients’ matrix is

AB =



−iω iΣg0k 0 0 0 0

−ik
(

2πG
|k| − c2g

Σg0

)
ϵ 1
ts

− iω −2Ω2 −ik 2πG
|k| −ϵ 1

ts
0

0 −2B ϵ 1
ts

− iω 0 0 −ϵ 1
ts

0 0 0 −iω iΣd0k 0

−ik 2πG
|k| − 1

ts
0 −ik

(
2πG
|k| − c2d

Σd0

)
1
ts

− iω −2Ω2

0 0 − 1
ts

0 −2B 1
ts

− iω


,

(A.23)
where ϵ = Σd0/Σg0. As before, by imposing that the determinant of AB is zero, we
obtain

y5 + 2t−1
s y4(1 + ϵ) + y3

[
αg + αd + t−2

s (1 + 2ϵ+ ϵ2)
]
+ y2t−1

s [(2αg + αd − 1)(1 + ϵ)− βd − ϵβg] +
+y
[
αgαd − βgβd + t−2

s

(
αg − βd + ϵ(αg + αd − βg − βd) + ϵ2(αd − βg)

)]
+

+t−1
s [(αgαd − βgβd) (1 + ϵ)− (αg − βd)− ϵ (αd − βg)] = 0.

(A.24)
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