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Chapter 1

Introduction

Since its introduction thanks to the work of Alexandrov [Ale62], the method of moving planes has
seen a widespread use in various applications of geometric analysis. Brought to the attention of
the PDE community with the seminal work of Serrin [Ser71], it has been a useful tool to prove a
large variety of results, including symmetry results for overdetermined and rigidity problems. This
thesis investigates three such problems from a quantitative viewpoint, by employing the method of
moving planes and developing tools and techniques to prove symmetry and approximate symmetry
results.

1.1 Overdetermined & Rigidity Problems

Overdetermined problems are boundary value problems on which an additional condition is imposed.
The boundary value problem taken into account is usually well posed; any further hypothesis makes
it overdetermined, forcing a symmetry on the problem if a solution still exists. The study of
overdetermined problems started with the aforementioned [Ser71], in which the author considers
the solution u in a bounded domain Ω ⊂ Rn of the torsion problem{

−∆u = 1 in Ω,

u = 0 on ∂Ω.
(1.1)

Together with the Dirichlet condition in (1.1), a Neumann condition is also prescribed

∂νu = c on ∂Ω, (1.2)

where ν is the outer normal vector to ∂Ω. Under some regularity hypothesis on the set Ω (namely,
asking for ∂Ω to be of class C2), Serrin proves that a solution u of (1.1)-(1.2) exists if and only
if the set Ω is actually a ball, and the function u is then radial and radially decreasing about the
center of the ball. We stress out that the symmetry of the problem is double-faceted: on the one
end the underlying domain turns out to be symmetrical; on the other end, the solution u inherits
the symmetry of the domain. The study of problem (1.1) has two physical motivations: it arises
both in fluid dynamics and in the linear theory of torsion. Regarding the latter, as Serrin himself
points out in his paper, his result “states that, when a solid straight bar is subject to torsion, the
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6 CHAPTER 1. INTRODUCTION

magnitude of the resulting traction which occurs at the surface of the bar is independent of position
if and only if the bar has a circular cross section”.

The research field started with the work of Serrin is still very active: in the literature it is
possible to find several results regarding symmetry of overdetermined problems involving more
general elliptic operators, problems in which a different overdetermined condition is considered or
overdetermined problems on manifolds: we highlight some of them in what follows, heading towards
the main theorems presented in this work.

A somewhat discrete analogue of the Serrin’s problem can be considered by replacing the overde-
termined condition (1.2) with the so called parallel surface condition. Namely, we actually start by
considering a smooth and bounded open set G ⊂ Rn, the ball BR of radius R > 0 centered at the
origin and we let Ω := G+BR be the Minkowski sum of G and BR, where we recall that for every
two sets X,Y ⊂ Rn we have

X + Y := { x+ y | x ∈ X, y ∈ Y }.

The overdetermined condition is then given by

u = c on ∂G. (1.3)

With enough regularity hypotheses, ∂G is a surface parallel to ∂Ω (for further details, see the
introduction of Chapter 4). Problem (1.1)-(1.3) was first studied by Shahgolian in [Sha12] in which
the author, just like in the thesis of Serrin’s theorem, proves that a solution u satisfying (1.1) and
(1.3) exists if and only if Ω is a ball; u is then radial and radially decreasing about the center of the
ball. We can see why problem (1.1)-(1.3) can be seen as the discrete analogue of Serrin’s problem
by considering a smooth solution u of 1.1 such that u = ck > 0 on a family Γk of surfaces which
are at distance 1/k from the boundary of Ω. Then, the sequence kck converges to some constant
c by regularity and u satisfies (1.2). This was also noted in [CM14]. The parallel surface torsion
problem (1.1)-(1.3) arises in the study of invariant isothermic surfaces for fast diffusion equations
(we refer to [MS10], [MS13], [CM14] and [CMS15] for further details) - for its nonlocal counterpart,
which is presented shortly after, we also give an interpretation in terms of population dynamics in
the last section of Chapter 4.

An exterior variant of problem (1.1)-(1.2) comes from capacity and was considered in [Rei97], in
which the author proves symmetry for the bounded domain Ω provided that there exists a solution
uΩ of 

∆uΩ = 0 in Rn \ Ω,
uΩ = 1 on ∂Ω,
uΩ(x) → 0 as |x| → +∞ ,

(1.4)

that also satisfies (1.2). This problem arises from potential theory and it is the Euler-Lagrange
equation associated to the capacitary problem for a set Ω, where we set the capacity of Ω as

cap(Ω) := inf

{
1

2

∫
Rn

|∇v|2
∣∣∣∣ v ∈ C∞

c (Rn), v|Ω ≥ 1

}
,

From a physical point of view, cap(Ω) represents the capacitance of the set Ω, that is the total charge
that the set can hold while embedded in a dielectric medium and maintaining a given potential
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energy with respect to an idealized ground at infinity (see [Rei97] and references therein for more
details). A similar result can be formulated for the relative capacity, that is for annular domains
of the form A := E \D, where D ⊂ E ⊂ Rn are both bounded domains. In this setting, the decay
condition in (1.4) is replaced with the homogeneous Dirichlet boundary condition on ∂E.

Among the several generalizations of these two overdetermined problems, in this thesis we
consider their nonlocal counterparts. In the last couple of decades there has been a growing interest
in the study of PDEs involving nonlocal operators, also in the context of overdetermined problems.
In particular, Fall & Jarohs [FJ15] and Soave & Valdinoci [SV19] prove symmetry results for the
nonlocal counterpart of problems (1.1) and (1.4), respectively. The differential operator taken into
account is the fractional Laplacian, which is defined in (1.15) and is properly introduced in Chapter
2.

Together with Serrin’s overdetermined results, the celebrated work of Gidas, Ni & Nirenberg
[GNN79] is another milestone where the method of moving planes has been employed. In this paper,
the authors consider the solution u of a semilinear elliptic problem in the unit ball B1,

−∆u = f(u) in B1,

u > 0 in B1,

u = 0 on ∂B1.

(1.5)

Under minimal hypotheses on the regularity of the function f (namely, only asking for f to be
locally Lipschitz), they are able to prove that the solution u is radial and radially decreasing. This
result stemmed several generalizations: for a brief review, we refer to the beginning of Chapter 3.

1.2 Quantitative stability
The scope of the present work is to investigate the problems just showcased in a quantitative way,
starting from the following question regarding overdetermined problems: given that the overdeter-
mined condition implies symmetry, is it possible to show that if said condition is almost satisfied
the problem turns out to be almost symmetrical? A similar question can be posed for rigidity
problems: is it possible to perform a perturbation so that the problem itself is almost symmetrical?

Naturally, part of the work is giving a mathematically accurate definition of what the word
“almost” means. Regarding symmetry results for the underlying domain, a way to measure how
much Ω is close to a ball is given by the quantity

ρ(Ω) := inf{ t− s | ∃p ∈ Ω such that Bs(p) ⊂ E ⊂ Bt(p) }. (1.6)

From the definition it is clear that Ω gets closer to a ball as ρ(Ω) approaches zero. When
investigating the symmetry of the solution instead, a good way to measure how much a function
u : B1 → R is close to being radial might be estimating the quantity

ς(u) := sup{ |u(x)− u(y)| | x, y ∈ B1, with |x| = |y| }. (1.7)

Giving stability results for overdetermined problems means perturbing the overdetermined con-
dition or the problem, identifying a deficit and providing a quantitative estimate of the distance of
the domain or the solution from the symmetrical configuration, namely giving estimates for (1.6) or
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(1.7) in terms of the perturbation. It is worth pointing out that (1.6) and (1.7) are just two of the
possible ways to measure proximity to symmetry, which arise from the proof of the specific problem
taken into account once a proper perturbation is performed. Some more examples are introduced
in what follows.

The research for quantitative versions of already established results has been present in the
literature for some decades and has typically involved geometrical or functional inequalities, with the
two main examples being the isoperimetric inequality and the Sobolev inequality. The isoperimetric
inequality states that balls are minimizers for the perimeter functional in the class of Borel sets
with fixed (and finite) Lebesgue measure; in particular, if E is a Borel set in Rn with |E| < +∞
and n ≥ 2 we have that

nω1/n
n |E|(n−1)/n ≤ P (E), (1.8)

where P (E) denotes the distributional perimeter of E and ωn is the measure of the unit ball of
dimension n. It was De Giorgi [DG58] who first proved (1.8) in the general framework of sets of
finite perimeter. A very natural question is then the following: is it possible to measure how close a
general set E is to being a ball depending on how close (1.8) is to being an equality? For a complete
review on the history of the problem we refer to Fusco, Maggi & Pratelli [FMP08], who also proved
a sharp quantitative result. Namely, by setting

λ(E) := min
x∈Rn

|E△Br(x)|
rn

and I(E) :=
P (E)

nω
1/n
n |E|(n−1)/n

− 1,

where r > 0 is such that |Br| = |E| and A△B denotes the symmetric difference between sets
A,B ⊂ Rn, the authors show that

λ(E) ≤ C
√

I(E),

where C > 0 is a dimensional constant. Notice how the Fraenkel asymmetry λ(E) is a measure of
closeness to the symmetry configuration different from ρ(Ω) and suited for the problem taken into
exam.

The Sobolev inequality with exponent 2 states that, for any n ≥ 3 and any u ∈ H1(Rn), it holds
that

S ∥u∥L2∗ ≤ ∥∇u∥L2 , (1.9)

where 2∗ = 2n/(n− 2) and S > 0 is a dimensional constant. Thanks to the work of Aubin [Aub76]
and Talenti [Tal76], the optimal value of S is known together with the optimizers of the Sobolev
inequality: the functions that satisfy the equality in (1.9) are the so called Talenti bubbles

U [c, z, λ](x) :=
c

(1 + λ2|x− z|2)(n−2)/2
for all x ∈ Rn,

where c ∈ R, λ ∈ (0,+∞) and z ∈ Rn. Once (1.9) is established, it is natural to look for a
quantitative version, asking if a solution u which almost satisfies the Sobolev inequality is close to
a Talenti bubble, as suggested by Brezis & Lieb [BL85, Question (c) on p. 75]. Bianchi & Egnell
[BE91] give a positive answer to this question by proving that for any u ∈ H1(Rn) it holds that

inf
z∈Rn, λ>0, c∈R

∥∇(u− U [c, z, λ])∥2L2 ≤ C
(
∥∇u∥2L2 − S2 ∥u∥2L2∗

)
,

where C > 0 is again a dimensional constant. Tackling the problem from a different point of view,
Struwe [Str84], Ding [Din86], Ciraolo, Figalli & Maggi [CFM18] and Figalli & Glaudo [FG20] deal



1.2. QUANTITATIVE STABILITY 9

with solutions and almost solutions to the corresponding Euler-Lagrange equation associated to
(1.9), namely (up to a suitable scaling)

∆u+ u|u|2
∗−2 ∼ 0.

Regarding quantitative stability results for overdetermined problem, the first instance is due to
Aftalion, Busca & Reichel [ABR99], where the authors prove approximate radial symmetry for the
overdetermined Serrin problem. Under suitable assumptions, they prove the stability estimate

ρ(Ω) ≤ C | log
(
∥∂νu− d∥C1(∂Ω)

)
|1/n (1.10)

for smooth solutions u of (1.1) with f(u) on the right-hand side, where C > 0 is a constant
depending on the data and d a suitable constant. Their estimate is improved in [BNST08a] only for
the case of the torsion problem in two ways: the logarithmic dependence on the deficit in (1.10) is
replaced with a Hölder-type estimate and the C1-norm is replaced by the L1-norm. A version of the
result for Monge-Ampère equations is also available in [BNST09] (see also [BNST08b]). Inequality
(1.10) is also improved by Ciraolo, Magnanini & Vespri [CMV16] with a Hölder-type estimate in
terms of the Lipschitz seminorm of the derivative on the boundary at the cost of restricting the
class of admissible sets Ω (which include convex sets). More recently, Feldman [Fel18] provides an
approximate symmetry result for the Serrin problem by giving a linear estimate for the Fraenkel
asymmetry of the domain in terms of the L2-norm of the derivative at the boundary. Building
up from the techniques first showcased in [BNST08a], Magnanini & Poggesi [MP20] provide an
estimate on ρ(Ω) in terms of the L2-norm of ∂νu on the boundary (see also [MP19] and [MP20]).
Lastly, Pacella, Poggesi & Roncoroni [PPR23] investigate the problem in convex cones.

It is worth pointing out that the “bubbling” phenomenon was observed in [BNST08a]: [BNST08a,
Theorem 1] shows that the set Ω could be close to a finite number of balls joined together by long
thin tentacles even assuming that the set is connected. Bubbling is a classical phenomenon in PDEs
and geometric analysis (see for instance [CM17] and [DMMN18] for results regarding Alexandrov’s
Soap Bubble Theorem). Later works on approximate symmetry for the aforementioned problems
include additional hypotheses (i.e. uniform interior sphere condition) to ensure that the underlying
domain Ω is actually close to just one ball.

For the local parallel surface torsion problem Ciraolo, Magnanini & Sakaguchi [CMS16] prove
approximate symmetry with a linear estimate in terms of the Lipschitz seminorm of the solution on
the parallel surface. Looking at the nonlocal setting, Ciraolo, Figalli, Maggi & Novaga [CFMN18]
prove the nonlocal counterpart to the Alexandrov’s Soap Bubble Theorem. For nonlocal overde-
termined PDEs, as far as we know [CDP+23] is the first instance of a quantitative stability result.
The work has been very recently improved in [DPTV23a]; later in [DPTV23b] the authors prove
approximate symmetry for the overdetermined nonlocal Serrin problem.

Taking into account problem (1.5), we point out that, while [GNN79] stemmed several gen-
eralizations (some of which are discussed in the introduction of Chapter 3), to the best of our
knowledge, no other quantitative result for the rigidity problem (1.14) is available with the only
exception being the work of Rosset [Ros94], which deals with the problem in a small perturbation
of the unit ball. Therefore, the results presented in Chapter 3 (from which we can also recover
[Ros94]), represent quite a novelty in this regard.
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1.3 Main results
As stated at the beginning, the bulk of this thesis revolves around quantitative stability for three
different problems, one local rigidity problem and two nonlocal overdetermined problems. Each
one of them has a devoted chapter. We will present them starting with the qualitative results from
which they stem and give a loose description of the quantitative versions before stating the main
theorems. A more in-depth analysis of the specific problem is of course left to the corresponding
chapter.

The first is a quantitative version of the aforementioned result by Gidas, Ni & Nirenberg,
[GNN79]: in Chapter 3 we investigate a perturbed version of problem (1.5) where the right hand
side of the differential equation is multiplied by a function κ : B1 → R. We then measure the
almost radiality and almost monotonicity of the solutions in terms of a deficit depending on the
perturbation κ. Namely, we consider

−∆u = κ f(u) in B1,

u > 0 in B1,

u = 0 on ∂B1,

(1.11)

for some continuously differentiable function κ : B1 → [0,+∞]. When f is non-negative and κ is
radially symmetric and decreasing, solutions of (1.11) are also radially symmetric and decreasing.
This was already observed by Gidas, Ni & Nirenberg—see [GNN79, Theorem 1′]. In order to prove
a quantitative version of the result, we introduce the deficit

def(κ) := ∥∇Tκ∥L∞(B1) + ∥∂+r κ∥L∞(B1),

where ∂+r denotes the positive part of the radial derivative ∂r := x
|x| · ∇ (i.e., ∂+r κ := max {0, ∂rκ}),

while ∇T := ∇− x
|x| ∂r indicates the angular gradient. Observe that the deficit of κ vanishes if and

only if κ is radially symmetric and non-decreasing. The main result regarding this problem is the
following

Theorem 1.3.1. Let f : [0,+∞) → R be a non-negative locally Lipschitz continuous function and
κ ∈ C1(B1) be a non-negative function. Let u ∈ C2(B1)∩C0(B1) be a solution of (1.11) satisfying

1

C0
≤ ∥u∥L∞(B1) ≤ C0, (1.12)

for some constant C0 ≥ 1. Then,

|u(x)− u(y)| ≤ C def(κ)α for all x, y ∈ B1 such that |x| = |y| (1.13)

and
∂ru(x) ≤ C def(κ)α for all x ∈ B1 \ {0}, (1.14)

for some constants α ∈ (0, 1] and C > 0 depending only on n, ∥f∥C0,1([0,C0]), ∥κ∥L∞(B1), and C0.

Formulas (1.13) and (1.14) embody the approximate radial symmetry and the approximate
monotonicity of the solution, respectively. If def(κ) vanishes, we recover the symmetry result of
[GNN79, Theorem 1′]. In order to obtain the result we need quantitative informations on the
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positivity and on the boundedness of the solution u, thus the assumption (1.12). This makes the
constants α and C in Theorem 1.3.1 dependent on C0. In Chapter 3 we also prescribe conditions
on the function f for the growth estimate in (1.12) to hold, therefore removing the dependence on
the size of u from estimates (1.13)-(1.14) - see Corollary 3.0.3 for a precise statement. Moreover, in
Chapter 3 we also prove approximate symmetry for problem (1.11) with a more general right-hand
side in Theorem 3.0.5. The results presented are all contained in [CCPP23].

The other problems that we consider in this thesis both have a nonlocal setting as the operator
taken into account is the fractional Laplacian, defined for a function u : Rn → R as

(−∆)su(x) := cn,s P.V.

∫
Rn

u(x)− u(z)

|x− z|n+2s
dz, (1.15)

where s ∈ (0, 1), the integral is intended in the principal value sense (see (2.6)) and cn,s > 0 is
a constant depending on the dimension n and the parameter s. This operator has its roots in
various disciplines spanning from harmonic analysis to probability. It found its way to the PDE
community with the seminal paper of Caffarelli & Silvestre [CS07] and has been intensively studied
in the last few decades. Its popularity is also due to its ability to model phenomena in which long-
term interactions between particles occur, leading to its various applications in physics, population
dynamics and finance among others. A proper introduction to the fractional Laplacian is given in
Chapter 2.

The first nonlocal overdetermined problem starts by considering the so called fractional torsion
problem {

(−∆)su = 1 in Ω,

u = 0 in Rn \ Ω.
(1.16)

Note that due to the nonlocal nature of the operator the Dirichlet condition in (1.1) is replaced
with a condition on Rn \ Ω. For the overdetermined condition, we ask for the solution u of (1.16)
to be constant on a surface parallel to the boundary.

As already seen for the local case, we consider a smooth and bounded open set G ⊂ Rn, the
ball BR of radius R > 0 centered at the origin and we let Ω := G + BR be the Minkowski sum
of G and BR. The overdetermined condition is then given by (1.3). Just like in Serrin’s problem,
a solution u satisfying (1.16) and (1.3) exists if and only if Ω is a ball; u will then be radial and
radially decreasing about the center of the ball. The precise statement is the following.

Theorem 1.3.2. Let G be an open bounded set of Rn with ∂G of class C1 and set Ω := G+ BR,
for some R > 0. There exists a solution u ∈ Cs(Ω) of (1.16) satisfying the additional condition
(1.3) if and only if G (and therefore Ω) is a ball.

Perturbing condition (1.3) means asking for the function u to be almost constant on ∂G. The
quantity ρ(Ω) will then be estimated in terms of the Lipschitz seminorm of the solution on the
parallel surface, which we define as

[u]Γ := sup
x,y∈Γ, x ̸=y

|u(x)− u(y)|
|x− y|

where Γ is a surface in Ω. We have the following result.
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Theorem 1.3.3. Let G be an open and bounded set of Rn with ∂G of class C1 and let Ω := G+BR.
Assume that ∂Ω is of class C2. Let u ∈ C2(Ω)∩C(Rn) be a solution of (1.16). Then, we have that

ρ(Ω) ≤ C∗ [u]
1

s+2

∂G ,

where C∗ > 0 is an explicit constant only depending on n, s, R, and the diameter diam(Ω) of Ω.

Chapter 4 is devoted to the discussion and proof of Theorem 1.3.2 and Theorem 1.3.3 - the
results presented are all contained in [CDP+23].

The last class of problems we take into account are the capacitary counterpart of problem (1.16)
and (1.3) in exterior and annular sets, which are the main topic of Chapter 5. We consider the
solution uΩ of 

(−∆)suΩ = 0 in Rn \ Ω,
uΩ = 1 in Ω,

uΩ(x) → 0 as |x| → +∞ ,

(1.17)

where Ω is a bounded domain and we again ask for uΩ to be constant on a surface parallel to the
boundary. The symmetry result is the following.

Theorem 1.3.4. Let Ω be a bounded domain in Rn. Let R > 0 and assume that G := Ω + BR is
such that ∂G of class C1. Then, there exists a solution u ∈ Hs(Rn) ∩ C(Rn) of (1.17) such that
(1.3) holds for for some constant c if and only if G and Ω are concentric balls and u is radially
symmetric.

Please note that in Theorem 1.3.3 it holds Ω ⊂ G, while in Theorem 1.3.1 the roles are inter-
changed. This is rather natural since the equation for u is now set in the complement of Ω.

Once symmetry is established we tackle the quantitative stability for the problem in the same
way as we did with the fractional torsion, namely giving an estimate of the quantity ρ(Ω) in terms
of the Lipschitz seminorm of the solution uΩ on the parallel surface. We have the following

Theorem 1.3.5. Let Ω be a bounded domain of Rn with ∂Ω of class C2. Let R > 0 and let
G = Ω+BR be such that ∂G is of class C2. Let u ∈ Cs(Rn) be a solution of (1.17). Then, we have
that

ρ(Ω) ≤ C∗ [u]
1

s+2

∂G ,

with C∗ = C∗(n, s,R,diam(Ω), |Ω|, reΩ) > 0, where diam(Ω) and |Ω| denote the diameter and the
volume of Ω, respectively, and reΩ is the radius of the exterior touching ball condition at Ω.

By employing the same technique we can prove that symmetry and approximate symmetry
results hold for solutions uA of 

(−∆)suA = 0 in A,
uA = 1 in D,
uA = 0 in Rn \ E,

for some D ⊂ E ⊂ Rn, with A := E \ D being an annular set. We refer to Theorem 5.0.3 and
Theorem 5.0.4 for precise statements. The results shown in Chapter 5 are present in [CP23].
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1.4 Proof techniques
Since its original publication, a variety of techniques has been devised to give different proofs of
Serrin’s theorem, which have been extended to various degrees to some of its generalizations; a nice
easy-to-read introduction on the topic is given by [NT18], while the survey [Mag17] also offers an
overview on the more recent stability results for both the Serrin problem and the Alexandrov’s Soap
Bubble Theorem. The most well-known techniques either rely on the method of moving planes or
carry on the proof via integral identities. The first instance of the latter is [Wei71], which appears
in the same issue of the journal in which [Ser71] is published and makes use of integration by parts,
the Cauchy-Schwarz inequality and the Pohozaev identity for an auxiliary function (the so called
P -function) related to the solution. It is worth noting that Reilly, inspired by [Wei71], finds a
proof of the Soap Bubble Theorem via integral identities in [Rei82]. Other alternative proofs for
the Serrin problem are presented in [PS89] and [CH98].

Likewise, the symmetry result for problem (1.5) was first proved in [GNN79] through the method
of moving planes. As we will also point out in Chapter 3, proofs of generalized versions of the result
through integral inequalities are then given by Lions [Lio81], Kesavan & Pacella [KF94], and Serra
[Ser13]. All the results present in this work stay true to the originals, employing the moving
planes’ procedure as the primary component for the proofs - for a thorough review of the various
applications of the method we refer to [CR18] and to the references therein.

Another key ingredient in the proof of the main theorems are maximum principles, which are
a family of results involving subsolutions and supersolutions of elliptic differential equations: their
common trait is that they recover informations on a given function (its sign, its derivatives etc.)
inside a domain with hypotheses on the operator. Strong and weak maximum principles, compari-
son principles and Hopf-type lemmas all belong to this family. These results need to be tailored on
the differential operator taken into account and while being a required step in the proofs of these
problems, they are standalone results of independent interest. In particular, when handling prob-
lems which involve the fractional Laplacian, the right tools needed seem to be maximum principles
for antisymmetric functions. They were firstly introduced in [JW16]; later in [FJ15] the authors
use fractional maximum principles and a Hopf type lemma for antisymmetric functions to prove
symmetry for the fractional Serrin problem (we also refer to [CLL17] for an overview on the nonlocal
symmetry results).

When dealing with approximate symmetry, qualitative maximum principles need to be replaced
with their quantitative counterparts, that is, some versions of Harnack-type inequalities. The
quantitative tools for Theorem 1.3.1 were already present in literature: we employ a version of
the ABP estimate due to Cabré [Cab95] and a weak Harnack inequality (available i.e. in [GT01,
Theorem 9.22]). The case of nonlocal operators is quite different: quantitative maximum principles
for antisymmetric functions are starting to appear in literature very recently. Starting from a result
present in [FJ15], a quantitative version of a Hopf type lemma is proved in Chapter 4 together
with a new boundary Harnack inequality. After their publication in [CDP+23], the authors in
[DPTV23b] generalized these results proving approximate symmetry for the Serrin problem.

Once the quantitative tools are available, there is a somewhat common strategy in the proof of
approximate symmetry, which follows the lines of the one showcased in Section 4 of [CR18]. We
start by perturbing the overdetermined condition or the rigidity problem and by identifying a deficit
related to the perturbation: we then use it to control the quantities which estimate the symmetry of
our problem (in our cases, either ρ(Ω) or ς(u)). We then proceed to prove approximate symmetry
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with respect to one specific direction: this is typically the bulk of the proof, in which maximum
principles come into play. Once this is done, the last step is to obtain approximate symmetry with
respect to any direction. This is immediate for Theorem 1.3.1 (with only a slightly more careful
examination needed for the general operator in Theorem 3.0.4), while for Theorem 1.3.3 and 1.3.5
a more thorough but standard proof is needed, which is presented in Chapter 4.5. This follows the
lines of [CFMN18, Lemma 4.1], which in turn improves the technique first presented in [AB98].

This thesis is organized as follows. Chapter 2 gives some preliminary notions and results which
represent the theoretical framework for the following chapters. In particular, we present the method
of moving planes and introduce its notationì and give an overview on the fractional Laplacian. Chap-
ter 3 is devoted to the quantitative stability for the perturbed problem (1.5) and its generalization;
these results are present in [CCPP23]. Chapter 4 deals with approximate symmetry for the par-
allel surface fractional torsion problem in bounded domains - the results are present in [CDP+23].
Chapter 5 deals with the parallel surface fractional capacitary problem in exterior and annular sets,
whose results are present in [CP23].



Chapter 2

Preliminaries

This chapter is devoted to preliminary notions and basic properties which serve as background for
the results presented in Chapter 3, 4 and 5. In particular, Section 2.1 introduces the method of
moving planes with its notation and, for the convenience of the reader, proofs of both the Serrin’s
problem and the Gidas, Ni & Nirenberg result in the unit ball, which serve as a road-map for
their various generalizations and, in particular, their quantitative counterparts. Section 2.2 focuses
instead on the fractional Laplacian, providing some definitions and basic properties. Because of its
introductory nature, this chapter can be skipped to a first read.

2.1 The method of moving planes

As already mentioned in Chapter 1, the method of moving planes was first introduced by Alexandrov
[Ale62] to prove what is nowadays called Alexandrov’s Soap Bubble Theorem, which states that
spheres are the only connected closed embedded hypersurfaces with constant mean curvature (the
method of moving planes was then called Reflection Principle). Some years later, Serrin [Ser71]
employed the same method to prove a symmetry result in potential theory, which gave rise to the
research field of the overdetermined problems.

Both results originated a great interest in the geometric analysis and PDE communities. In
particular, one of the most influencing applications of the method of moving planes is the approach
of Gidas, Ni & Nirenberg [GNN79], [GNN81]. For a review on the influence and many applications
of the method of moving planes, we refer to the survey [CR18]. In what follows, we describe how
the method works and show symmetry for both problem (1.14) and for problem (1.1)-(1.2), which
will be the backbone for the main theorems presented in Chapter 3 and Chapter 4 & 5, respectively.

We introduce some notation which is useful for the application of the method of moving planes.

15
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Given an arbitrary set E ⊂ Rn, a unit vector e ∈ Sn−1 and a parameter λ ∈ R, we define

Tλ = T e
λ = {x ∈ Rn |x · e = λ} a hyperplane orthogonal to e,

Hλ = He
λ = {x ∈ Rn |x · e > λ} the “positive” half space with respect to Tλ,

Eλ = E ∩Hλ the “positive” cap of E,
x′λ = x− 2(x · e− λ) e the reflection of x with respect to Tλ,
Qλ = Qe

λ : Rn → Rn, x 7→ x′λ the reflection with respect to Tλ.

When there is no chance of ambiguity, the dependence on the unit vector e in the notation will
be promptly dropped. The method of moving planes works as follows. We now choose E bounded
and smooth enough and for a fixed direction e we consider the family of hyperplanes {Tλ}λ∈R. Since
E is bounded, for λ large enough the plane Tλ will not intersect E. We can then decrease the value
of λ (which correspond to a sliding of Tλ towards E, thus explaining the word moving in the name
of the method) until Tλ and E are touching. Then, since ∂E is smooth (∂E of class C1 is enough,
see [Fra00]), we can keep decreasing λ and, at least for some values, the reflection Qλ(Eλ) of the
cap will still be contained in the set E itself.

Formally, for an open bounded set E ⊂ Rn with boundary of class C1 we define

Λe := sup{ x · e | x ∈ E }

and
λe = inf{ λ ∈ R | Qλ̃(Eλ̃) ⊂ E, for all λ̃ ∈ (λ,Λe) }.

From this point on, given a direction e ∈ Sn−1, we refer to Tλe = T e and Eλe = Ê as the critical
hyperplane and the critical cap with respect to e, respectively, and call λe the critical value in the
direction e. We now recall from [Ser71] that, for any given direction e, at least one of the following
two conditions holds:

Case 1 - The boundary of the reflected cap Q(Ê) becomes internally tangent to the boundary
of E at some point P ̸∈ T ;

Case 2 - the critical hyperplane T becomes orthogonal to the boundary of E at some point
Q ∈ T .

This is the point where maximum principles come into play to prove symmetry and approximate
symmetry. The rough idea for both the Serrin’s problem and the Gidas, Ni & Nirenberg result is
to compare the solution u of the problem taken into account with its reflection, as we show below.

Now that the method of moving planes has been properly introduced, we are ready to tackle
the proof of Serrin’s theorem [Ser71, Theorem 1].

Theorem 2.1.1. Let Ω ⊂ Rn a bounded domain with ∂Ω of class C2. A solution u ∈ C2(Ω) of{
−∆u = 1 in Ω,

u = 0 on ∂Ω,

with the overdetermined condition
∂νu = c on ∂Ω

exists if and only if Ω is a ball.
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Together with Weak and Strong Maximum Principles and the Hopf’s Lemma (for a reference,
see for example [Eva10, Chapter 6.5]), we also need a refinement of Hopf’s Lemma which is [Ser71,
Lemma 1] and is known in literature as Serrin’s corner lemma. We present it here and refer to the
original paper by Serrin for its proof.

Lemma 2.1.2 (Serrin’s Corner Lemma). Let Ω ⊂ Rn be a C2 domain of Rn and let ξ be a
direction such that ξ · ν(y) = 0 for some y ∈ ∂Ω. Let H(ν) be an open half space with outer normal
ν, Ω(H) := Ω ∩H(ν) and let w ∈ C2(Ω(H)) satisfy

−∆w ≥ 0 in Ω(H),

w ≥ 0 on Ω(H),

w(y) = 0.

If θ is a direction in y entering Ω(H) such that θ · ν ̸= 0, then either

∂θw(y) > 0 or ∂2θw(y) > 0, (2.1)

unless w ≡ 0.

Proof of Theorem 2.1.1. We apply the method of moving planes to the set Ω. Let e ∈ Sn−1 be a
fixed direction and λe the corresponding critical value. Without loss of generality, we can assume
e = e1 and that the critical hyperplane T goes through the origin (that is, λe = 0). We consider
the function

v(x) := u(x)− u(x′) for x ∈ Q(Ω̂),

where Q(Ω̂) is the reflection of the critical cap. We notice that{
−∆v = 0 in Q(Ω̂),

v ≥ 0 on ∂Q(Ω̂).

Therefore, by the weak maximum principle we know that v ≥ 0 in Q(Ω̂) and then the strong
maximum principle actually tells us that either v ≡ 0 in Q(Ω̂) or v > 0 in Q(Ω̂). We want to
show that the latter cannot occur. Indeed, let us assume that v > 0 and show that we reach a
contradiction.

Case 1 - Let P ∈ ∂Q(Ω̂) \T be the point at the intersection of the boundary of the critical cap
with the boundary of Ω.

Of course we have that v(P ) = 0 and thus applying the Hopf’s Lemma we have that ∂νv(P ) < 0.
At the same time though we have that

∂νv(P ) = ∂νu(P )− ∂νu(P
′) = c− c = 0,

which is a contradiction.
Case 2 - The critical hyperplane T becomes orthogonal to the boundary of E at some point

Q ∈ T .
Hopf’s Lemma cannot be applied in this case; we therefore need a refinement of the result, which

is Lemma 2.1.2. The goal is to show that v has a second order zero in Q. In order to do this, we fix
a coordinate system with the origin at Q, the xn axis in the direction of the inward normal to ∂Ω
at Q and the x1 axis normal to T . In this coordinate system the boundary of Ω is locally given by

xn = ϕ(x1; . . . , xn−1) for some ϕ of class C2.
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Since u is of class C2, differentiating twice and making use of the boundary conditions yields

∂2iju+ c ∂2ijϕ = 0 for i, j = 1, . . . , n− 1,

∂2niu(Q) = 0 for i = 1, . . . , n− 1

and

∂2nnu(Q) = −
n−1∑
i=1

∂2i u(Q)− 1 = c∆ϕ(Q)− 1.

By construction Q(Ω̂) ⊂ Ω and ∂2iju(Q) = 0 for j = 2, . . . , n−1, because ∂1ϕ has an extremum point
atQ with respect to all but the first coordinates directions. Since u′(x) = u(x′) = u(−x1, x2, . . . , xn)
by the previous identities we have that all the first and second derivatives of u and u′ coincide at
Q, hence

∇v(Q) = 0 and D2v(Q) = 0. (2.2)

On the other hand, v satisfies 
−∆v = 0 in Q(Ω̂),

v > 0 in Q(Ω̂),

v(Q) = 0.

The contradiction is then obtained by applying Lemma 2.1.2. Indeed, let θ be any direction not
parallel to ν. Lemma 2.1.2 ensures that (2.1) holds, which is a contradiction with (2.2).

We have then proved that v ≡ 0 and that Ω is actually symmetric with respect to direction e1.
By performing the same proof with respect to any other direction e ∈ Sn−1 we obtain the result.

We now turn our attention to the result by Gidas, Ni & Nirenberg. The approach here is slighlty
different: since we are working in the unit ball, the critical value for the method of moving planes
with respect to any direction will always be λ = 0, where both Case 1 and Case 2 occur. The idea
here is still to compare the solution with its reflection in the cap by proving a strict inequality and
keep sliding the plane Tλ as long as the inequality hold.

Theorem 2.1.3. Let u ∈ C2(B1) be a solution of
−∆u = f(u) in B1,

u > 0 in B1,

u = 0 on ∂B1,

(2.3)

with f locally Lipschitz. Then, u is radial and radially decreasing.

The proof, which follows the one in [Eva10, Chapter 9.5], also makes use of boundary estimate
for solutions of (2.3) ([Eva10, Lemma 2 in Chapter 9.5], which we present below.

Lemma 2.1.4. Let u ∈ C2(B1) satisfy 2.3. Then at each point x̃ ∈ ∂B1 ∩ {x1 > 0}, either

∂1u(x̃) < 0

or else
∂1u(x̃) = 0, ∂21u(x̃) > 0.

In either case, u is strictly decreasing as a function of x1 near x̃.
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Proof of Theorem 2.1.3. We apply the method of moving planes by fixing a direction e = e1 ∈ Sn−1,
by letting λ ∈ [0, 1] and Tλ := {x1 = λ}, Σλ := B1 ∩ {x1 > λ}.

We consider the set

Λ :=
{
λ ∈ (0, 1) : uµ ≥ u in Σµ for all µ ∈ [λ, 1)

}
.

An application of Lemma 2.1.4 on u tells us that uλ > u in Σλ for λ < 1 at least if 1 − λ is
small enough; that is, Λ is non-empty. We set set λ⋆ := inf Λ and will show that λ⋆ = 0.

Assume instead that λ⋆ > 0. We set v(x) := u(xλ⋆
)− u(x) for x ∈ Σλ⋆

and see that{
−∆v + cv = 0 inΣλ⋆

,

v ≤ 0 inΣλ⋆
,

where c(x) := −
∫ 1

0
f ′(su(xλ⋆) + (1− s)u(x))ds. From the Maximum Principle and Hopf’s Lemma

we then deduce that v > 0 in Σλ⋆ and that ∂1v > 0 on Tλ⋆ ∩B1. Thus, u(xλ⋆) > u(x) in Σλ⋆ and
∂1u > 0 on Tλ⋆

∩B1. Using again Lemma 2.1.4 we conclude that for a small enough ε0 > 0 we have
that

u(xλ⋆−ε) > u(x) in Σλ⋆−ε for all 0 ≤ ε ≤ ε0,

which contradicts our choice of λ⋆ > 0.

Since λ⋆ = 0, we see that u(−x1, x2, . . . , xn) ≥ u(x1, x2, . . . , xn) for all x ∈ Σ0. A similar
argument shows the opposite inequality. Thus u is symmetric with respect to the plane T0 = {x1 =
0}. The same argument applies after any rotation of coordinates and so the theorem follows.

2.2 The fractional Laplacian
The fractional Laplacian is an integro-differential operator that is, in some sense, the non-local
equivalent to the classical Laplacian. Although nonlocal equations and the fractional Sobolev
spaces to which they’re tied to are a topic that has been present in the literature for quite some
time (see for example [Ste70] and [Lan72]), they saw a huge increase in popularity in the last
couple of decades especially in the PDE community starting from the celebrated work of Cafarelli
& Silvestre [CS07].

Thanks to its ability to model phenomena with long-term interactions between objects and parti-
cles, it sees widespread applications in different fields spanning from physics, population dynamics
and finance among others. To name a few, Bucur & Valdinoci in [BV16] show how the one-
dimensional fractional Laplacian models random walks with arbitrarily long jumps and is present
in a payoff model related to finance. Later in the same work, the authors use it to model a problem
arising in crystal dislocation. We also refer to [DNPV12] for a more detailed description of the
problems and models which involve the fractional Laplacian.

The aim of this section is to present the definition and some basic properties related to the
fractional Laplacian with a focus on maximum principles. While not trying to be exhaustive by any
means, it represents the baseline knowledge needed in order to deal with the problems presented in
Chapter 4 and Chapter 5. Our main references for this section are [BV16] and [DNPV12].

We start by recalling the definition of the Fourier transform and inverse Fourier transforms for
smooth functions.
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Definition 2.2.1 (Fourier transform). Given a function f : R → R regular enough, denoting the
space variable x ∈ Rn and the frequency variable ξ ∈ Rn, we define the Fourier transform and the
inverse Fourier transform respectively as

f̂(ξ) := F [f ](ξ) :=

∫
Rn

f(x)e−2πix·ξdx and F−1[f̂ ](x) :=

∫
Rn

f̂(ξ)e2πix·ξdξ

We can now give the definition of the fractional Laplacian.

Definition 2.2.2 (Fractional Laplacian). Given s ∈ (0, 1) and a function u : Rn → R regular
enough, we define the fractional Laplacian of u in x ∈ Rn as

(−∆)
s
u(x) := −cn,s

2

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy, (2.4)

where cn,s is a positive constant depending only on n and s.

There are some alternative ways to define the operator (actually, at least ten, as you can see here
[Kwa17]): we present in what follows the one given via an integral in the principal value sense, quite
similar to Definition 2.2.2 and often handier in applications, and the one given via Fourier transform,
which helps us understand why the operator (−∆)s is the fractional version of the Laplacian. The
equivalence between (2.4) and the definition below follows from an easy computation which can be
found for instance in [BV16, Chapter 3.1].

Definition 2.2.3 (Fractional Laplacian, via P.V.). Given s ∈ (0, 1) and a function u : Rn → R
regular enough, we define the fractional Laplacian in the P.V. (principal value) sense of u in x ∈ Rn

as
(−∆)

s
u(x) := cn,s P.V.

∫
Rn

u(z)− u(x)

|x− z|n+2s
dz, (2.5)

where the integral in (2.5) is intended in the principal value sense, that is

P.V.

∫
Rn

u(z)− u(x)

|x− z|n+2s
dz = lim

ε→0+

∫
Rn\Bε(x)

u(z)− u(x)

|x− z|n+2s
dz. (2.6)

The similarity between the classical Laplacian and the fractional one are highlighted thanks to
next definition of the operator, which uses the inverse Fourier transform.

Definition 2.2.4 (Fractional Laplacian, via Fourier Transform). Given s ∈ (0, 1) and a function
u : Rn → R regular enough, we define the fractional Laplacian via the Fourier transform of u in
x ∈ Rn as

(−∆u)sF (x) := F−1((2π| · |)2sû)(x) =
∫
Rn

|ξ|2sû(ξ)eiξxdξ

(the subscript is only used to point out which specific definition we are currently using and will be
promptly removed as soon as we show their equivalence).

A computation shows the equivalence of (2.4) and 2.2.4.

Proposition 2.2.5. Given u ∈ S(Rn), then for every s in (0, 1) and for x in Rn

(−∆u)s(x) = (−∆u)sF (x).
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Proof. Let us apply the Fourier transform to (2.4):

F [(−∆u)s](ξ) =
cn,s
2

∫
Rn

F [2u(·)− u(·+ y)− u(· − y)](ξ)

|y|n+2s
dy

=
cn,s
2

∫
Rn

û(ξ)
2− e2πiy·ξ − e−2πiy·ξ

|y|n+2s
dy

= cn,s û(ξ)

∫
Rn

1− cos(2πξ · y)
|y|n+2s

dy.

We now operate the change of variables z = |ξ| y in the above integral and obtain that

J(ξ) :=

∫
Rn

1− cos(2πξ · y)
|y|n+2s

dy = |ξ|2s
∫
Rn

1− cos( 2πξ|ξ| · z)
|z|n+2s

dz.

Let us now consider a rotation R (with RT its transpose) such that Re1 = ξ/|ξ| and apply the
change of variables ω = RT z obtaining

J(ξ) = |ξ|2s
∫
Rn

1− cos(2πRe1 · z)
|z|n+2s

dz = |ξ|2s
∫
Rn

1− cos(2πRT z · e1)
|RT z|n+2s

dz

= |ξ|2s
∫
Rn

1− cos(2πω1)

|ω|n+2s
dω = (2π|ξ|)2s

∫
Rn

1− cos(η1)

|η|n+2s
dη,

where we used that η = 2πω in the last equality. We now notice that the latter integral is finite,
since ∫

Rn\B1

1− cos(η1)

|η|n+2s
dη ≤

∫
Rn\B1

2

|η|n+2s
dη < +∞

and by looking at the Taylor expansion inside the unit ball we have∫
B1

1− cos(η1)

|η|n+2s
dη ≤

∫
B1

|η|2

|η|n+2s
dη ≤

∫
B1

dη

|η|n+2s−2
< +∞.

Therefore, by choosing

cn,s :=

(∫
Rn

1− cos(η1)

|η|n+2s
dη

)−1

(2.7)

we can then write

J(ξ) =
(2π|ξ|)2s

cn,s
.

By putting all together we obtain that

F [(−∆u)s](ξ) = cn,s û(ξ)J(ξ) = (2π|ξ|2s)û(ξ).

Remark 2.2.6. Throughout the proof we were also able to compute the normalization constant
cn,s > 0 introduced in (2.4), which is showcased in (2.7).
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In studying the asymptotics as s goes to 0+ or to 1− of the fractional Laplacian, it is useful to
study the behaviour of the constant cn,s just introduced, for which the following proposition holds
([DNPV12, Corollary 4.2], to which we refer for its proof).

Proposition 2.2.7. It holds that

lim
s→1−

cn,s
s(1− s)

=
4n

ωn−1
and lim

s→0+

cn,s
s(1− s)

=
2

ωn−1
.

The following simple remark together with Proposition 2.2.5 shows why (2.2.2) is the fractional
version of the classical Laplace operator, as proved rigorously in Proposition 2.2.9.

Remark 2.2.8. We can rewrite the classical Laplacian via the Fourier transform:

−∆u(x) = −∆(F−1(û))(x) = −∆

∫
Rn

û(ξ)e2πix·ξdξ

=

∫
Rn

(2π|ξ|)2û(ξ)e2πix·ξdξ = F−1((2π|ξ|)2û(ξ))(x).

Proposition 2.2.9. Given u ∈ S(Rn), then for every x in Rn

lim
s→0+

(−∆)
s
u(x) = u(x) and lim

s→1−
(−∆)

s
u(x) = −∆u(x). (2.8)

Proof. We start by proving the first identity. Fix x ∈ Rn, R0 > 0 such that suppu ⊂ BR0(0) and
set R = R0 + |x|+ 1. First,∣∣∣∣∫

BR

2u(x)− u(x+ y)− u(x− y)

|x− y|n+2s
dy

∣∣∣∣ ≤ ∥u∥C2(Rn)

∫
BR

|y|2

|y|n + 2s
dy

≤ ωn−1∥u∥C2(Rn)

∫ R

0

1

ρ2s−1
dρ =

ωn−1∥u∥C2(Rn)R
2−2s

2(1− s)
.

By Proposition 2.2.7 we then get that

lim
s→0+

cn,s
2

∫
BR

2u(x)− u(x+ y)− u(x− y)

|x− y|n+2s
dy = 0.

On the other hand, we see that |y| ≥ R yelds |x± y| ≥ |y| − |x| ≥ R − |x| > R0 and consequently
u(x± y) = 0. Therefore,

1

2

∫
Rn\BR

2u(x)− u(x+ y)− u(x− y)

|x− y|n+2s
dy = u(x)

∫
Rn\BR

1

|y|n+2s
dy

= ωn−1 u(x)

∫ +∞

R

1

ρ2s+1
dρ =

ωn−1R
−2s

2s
u(x).

From the previous computations and making again use of Proposition 2.2.7 we obtain

lim
s→0+

(−∆u)s = lim
s→0+

cn,s
2

∫
BR

2u(x)− u(x+ y)− u(x− y)

|x− y|n+2s
dy = lim

s→0+

cn,s ωn−1R
−2s

2s
u(x).
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Now turning our attention to the second identity in (2.8), we start by computing the contribution
outside the unit ball, which turns out to be zero. Indeed,∣∣∣∣∣

∫
Rn\B1

2u(x)− u(x+ y)− u(x− y)

|x− y|n+2s
dy

∣∣∣∣∣ ≤ 4∥u∥L∞(Rn)

∫
Rn\B1

1

|y|n+2s
dy

≤ ωn−1∥u∥L∞(Rn)

∫ +∞

1

1

ρ2s+1
dρ =

2ωn−1

s
∥u∥L∞(Rn),

which, making again use of Proposition 2.2.7, yields

lim
s→1−

cn,s
2

∫
Rn\B1

2u(x)− u(x+ y)− u(x− y)

|x− y|n+2s
dy = 0

By looking at what happens in the unit ball we have∣∣∣∣∫
B1

2u(x)− u(x+ y)− u(x− y)−D2u(x)y · y
|y|n+2s

dy

∣∣∣∣ ≤ ∥u∥C3(Rn)

∫
B1

|y|3

|y|n+2s
dy

≤ ωn−1∥u∥C3(Rn)

∫ 1

0

1

ρ2s−2
dρ =

ωn−1∥u∥C3(Rn)

3− 2s

from which we get that

lim
s→1−

cn,s
2

∫
B1

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy = lim

s→1−

cn,s
2

∫
B1

D2u(x)y · y
|y|n+2s

dy.

Now notice that if i, j = 1, . . . , n with i ̸= j then∫
B1

∂2iju(x)yj · yjdy = −
∫
B1

∂2iju(x)ỹj · ỹjdỹ

where we set ỹk = yk for any k ̸= j and ỹj = −yj ; therefore∫
B1

∂2iju(x)yj · yjdy = 0.

Moreover, we see that∫
B1

∂2i u(x)y
2
i

|y|n+2s
dy = ∂2i u(x)

∫
B1

y2i
|y|n+2s

dy = ∂2i u(x)

∫
B1

y21
|y|n+2s

dy

=
∂2i u(x)

n

n∑
j=1

∫
B1

y2j
|y|n+2s

dy =
∂2i u(x)

n

∫
B1

|y|2

|y|n+2s
dy.

Finally, we obtain

lim
s→1−

(∆)su(x) = lim
s→1−

cn,s
2

∫
B1

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy

= lim
s→1−

cn,s
2

∫
B1

D2u(x)y · y
|y|n+2s

dy =
cn,s
2

n∑
j=1

∫
B1

∂2i u(x)y
2
i

|y|n+2s
dy

= lim
s→1−

cn,sωn−1

4n(1− s)

n∑
j=1

∂2i u(x) = −∆u(x).
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So far we’ve been elusive regarding the regularity assumptions in the definitions and properties
of the fractional Laplacian. What follows, while highlighting the connection between the operator
and fractional Sobolev spaces, should explain why we only dealt with smooth functions.

First, given an open set Ω ⊂ Rn, for s ∈ (0, 1) and p ∈ (1,+∞) we define the Gagliardo
seminorm of a function u as

[u]W s,p(Ω) :=

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

)p

.

We can then introduce the fractional Sobolev spaces.

Definition 2.2.10. Let Ω ⊂ Rn be an open set. For s ∈ (0, 1) and p ∈ (1,+∞) we define

W s,p(Ω) :=
{
u ∈ Lp(Ω) | [u]pW s,p(Ω) < +∞

}
W s,p(Ω) will then be a Banach space endowed with the norm

∥u∥W s,p(Ω) :=
(
∥u∥pLp(Ω) + [u]pW s,p(Ω)

)p
.

As in the classical case, when Ω = Rn, any function in the fractional Sobolev space can be
approximated with smooth functions of compact support.

Theorem 2.2.11. For any s ∈ (0, 1) and p ∈ (1,+∞), the space C∞
0 (Rn) is dense in W s,p(Rn).

When p = 2 we set Hs(Ω) := W s,2(Ω) and define the scalar product for two functions u, v ∈
Hs(Rn) as

E(u, v) =
∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy .

the following result shows the relationship between Hs and the fractional Laplace operator. It
can be found with proof in [DNPV12, Propsition 3.6]

Proposition 2.2.12. Let s ∈ (0, 1) and u ∈ Hs(Rn). Then

[u]2Hs(Rn) = ∥(−∆)s/2u∥2L2(Rn).

In the second part of this section we focus on maximum principles for the fractional Laplacian,
key ingredients in order to perform the proofs of the results showcased in Chapter 1.3.

We start with a proposition which serves the purpose of highlighting a major difference with
the classical case: it is not enough to prescribe the sign of a function inside the set in which it is
s-harmonic in order to have a Harnack-type result. The proposition, with the sketch of the proof
that we present below, can be found in [BV16, Theorem 2.3.1]

Proposition 2.2.13. There exists a bounded function u which is s-harmonic in B1, non-negative
in B1, but such that infB1

u = 0.

Proof. Let M ≥ 0 and let uM be the function satisfying
(−∆)suM = 0 in B1,

uM = 1−M in B3 \B2,

uM = 1 in Rn \
(
(B3 \B2) ∪B1

)
.

(2.9)
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When M = 0, the function uM is identically 1, while we expect uM to “bend down” when M > 0 ,
since the fact that the fractional Laplacian vanishes in B1 forces the second order quotient to vanish
in average. Indeed, we claim that there exists M∗ > 0 such that uM∗ ≥ 0 in B1 with infB1

uM∗ = 0.
Then, Proposition 2.2.13 would be proved by choosing u := uM∗ .

To check the existence of such M∗, we show that infB1
uM → −∞ as M → +∞. Indeed, we

argue by contradiction and suppose this cannot happen. Then, for any M ≥ 0 we would have that

inf
B1

uM ≥ −a, (2.10)

for some fixed a ∈ R. We then set

vM :=
uM +M − 1

M
.

Then, by (2.9) we have 
(−∆)svM = 0 in B1,

vM = 0 in B3 \B2,

vM = 1 in Rn \
(
(B3 \B2) ∪B1

)
.

Also, by (2.10), for any x ∈ B1

vM (x) ≥ −a+M − 1

M
.

As m→ +∞, the function vM approaches a function v∞ which satisfies
(−∆)sv∞ = 0 in B1,

v∞ = 0 in B3 \B2,

v∞ = 1 in Rn \
(
(B3 \B2) ∪B1

)
.

and, for any x ∈ B1,
v∞(x) ≥ 1.

In particular, the maximum of v∞ is attained at some point x∗ ∈ B1, with v∞(x∗) ≥ 1. Accordingly,

0 = P.V.

∫
Rn

v∞(x∗)− v∞(y)

|x∗ − y|n+2s
≥ P.V.

∫
B3\B2

1− 0

|x∗ − y|n+2s
> 0,

which is a contradiction.

An inspection of the proof of Proposition 2.2.13 hints at the right hypotheses needed to prove
qualitative and quantitative fractional maximum principles: by making no assumptions on the
sign of the function u on the outside of the unit ball, we are allowed to choose it as negative as
we want. The nonlocality of the operator lets then the bending described in the proof take place.
Prescribing the sign of the function on the whole space should fix the issue, as shown in the following
propositions.

Proposition 2.2.14 (Fractional Weak Maximum Principle). If (−∆)su ≥ 0 in B1 and u ≥ 0 in
Rn \B1, then u ≥ 0 in B1.
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Proof. Suppose by contradiction that in the minimal point x⋆ ∈ B1 we have u(x⋆) < 0. Since u is
positive outside of B1, x⋆ is a minimum point for u in the whole space Rn. Therefore, for y ∈ B2

we have 2u(x⋆) − u(x⋆ + y) − u(x⋆ − y) ≤ 0. On the other hand, for y ∈ Rn \ B2, we have that
(x⋆ ± y) ∈ Rn \B1, hence u(x⋆ ± y) ≥ 0. We thus have

0 ≤
∫
Rn

2u(x⋆)− u(x⋆ + y)− u(x⋆ − y)

|y|n+2s
dy ≤

∫
Rn\B2

2u(x⋆)− u(x⋆ + y)− u(x⋆ − y)

|y|n+2s
dy

≤
∫
Rn\B2

2u(x⋆)

|y|n+2s
dy < 0,

which is a contradiction.

Proposition 2.2.15 (Fractional Strong Maximum Principle). If (−∆)su ≥ 0 in B1 and u ≥ 0 in
Rn \B1, then u > 0 in B1 unless u vanishes identically.

Proof. Thanks to Proposition 2.2.14 we know that u ≥ 0 in the whole space. Assuming u is not
strictly positive in the unit ball, there exists x0 ∈ B1 such that u(x0) = 0. Then,

0 ≤
∫
Rn

2u(x0)− u(x0 + y)− u(x0 − y)

|y|n+2s
dy = −

∫
Rn

u(x0 + y) + u(x0 − y)

|y|n+2s
dy.

Now, both u(x0 + y) and u(x0 − y) are non-negative; therefore, the latter integral is less or equal
than zero, and so it must vanish identically, meaning that u also must vanish identically.

As pointed out in the Chapter 1.4 and in [CLL17], applying the method of moving planes
for nonlocal problems will result in having to deal with antisymmetric functions for which proper
maximum principles are proved in the devoted chapters.

Lastly, throughout Chapter 4 and Chapter 5 we will make repeated use of the explicit solution
ψBr(x0) of the s-torsion problem in a ball Br(x0) of radius r > 0 and centered in x0 ∈ Rn. Dyda
[Dyd12] shows that the function ψBr(x0) satisfying{

(−∆)sψBr(x0) = 1 in Br(x0)

ψBr(x0) = 0 in Rn \Br(x0) ,

has the explicit expression
ψBr(x0)(x) := γn,s(r

2 − |x− x0|2)s+ (2.11)

for any x ∈ Rn, where where

γn,s :=
4−sΓ(n/2)

Γ(n/2 + s)Γ(1 + s)
.



Chapter 3

The Gidas-Ni-Nirenberg result in the
Unit Ball

This chapter is devoted to the quantitative counterpart of a famous result by Gidas, Ni & Nirenberg
involving solutions to semilinear elliptic problems inside the unit ball B1. We start by recalling the
original symmetry result.

Theorem 3.0.1 ([GNN79]). Let f : [0,+∞) → R be a locally Lipschitz continuous function and
u ∈ C2(B1) ∩ C0(B1) be a solution of

−∆u = f(u) in B1,

u > 0 in B1,

u = 0 on ∂B1.

(3.1)

Then,u is radially symmetric and strictly decreasing in the radial direction.

After its publication, Theorem 3.0.1 has been extended in several directions. To name just
a few of these generalizations, Berestycki & Nirenberg [BN91] and Dancer [Dan92] weakened the
notion of solution and provided a simplified proof, Damascelli & Pacella [DP98] and Damascelli &
Sciunzi [DS04] extended the result to the case of the p-Laplace operator and Berchio, Gazzola &
Weth [BGW08] dealt with the problem for polylaplacians; more recently, Jarohs & Weth [JW16]
and Chen, Li & Li [CLL17] treated generalized the result for nonlocal operators. On the other
hand, different proofs have been devised in order to deal with other kinds of nonlinearities. In
this regard, Brock [Bro98] dealt with continuous, non-negative f by using the continuous Steiner
symmetrization, while Lions [Lio81], Kesavan & Pacella [KF94], and Serra [Ser13] even allowed for
a class of discontinuous f through the aid of integral methods based on the isoperimetric inequality
and Pohozaev’s identity.

In what follows we consider a perturbed version of problem (3.1), namely
−∆u = κf(u) in B1,

u > 0 in B1,

u = 0 on ∂B1,

(3.2)

27
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for some continuously differentiable function κ : B1 → [0,+∞]. As already noted in [GNN79,
Theorem 1′], when f is non-negative and κ is radially symmetric and decreasing, solutions of (3.2)
are also radially symmetric and decreasing. In order to establish a quantitative version of this
result, we introduce the deficit

def(κ) := ∥∇Tκ∥L∞(B1) + ∥∂+r κ∥L∞(B1),

where ∂+r denotes the positive part of the radial derivative ∂r := x
|x| · ∇ (i.e., ∂+r κ := max {0, ∂rκ}),

while ∇T := ∇− x
|x| ∂r indicates the angular gradient. Observe that the deficit of κ vanishes if and

only if κ is radially symmetric and non-decreasing. Our first result is the following.

Theorem 3.0.2. Let f : [0,+∞) → R be a non-negative locally Lipschitz continuous function and
κ ∈ C1(B1) be a non-negative function. Let u ∈ C2(B1) ∩ C0(B1) be a solution of (3.2) satisfying

1

C0
≤ ∥u∥L∞(B1) ≤ C0, (3.3)

for some constant C0 ≥ 1. Then,

|u(x)− u(y)| ≤ C def(κ)α for all x, y ∈ B1 such that |x| = |y| (3.4)

and
∂ru(x) ≤ C def(κ)α for all x ∈ B1 \ {0}, (3.5)

for some constants α ∈ (0, 1] and C > 0 depending only on n, ∥f∥C0,1([0,C0]), ∥κ∥L∞(B1), and C0.

Theorem 3.0.2 is a quantitative version of the classical result by Gidas, Ni & Nirenberg. We
point out that, from another point of view, a different quantitative variant has been obtained by
Rosset [Ros94], who considered space-independent semilinear equations set in small perturbations
of the unit ball. In Corollary 3.0.5 below we also give a result in this direction.

In Theorem 3.0.2, the proximity of the solution u to a radial configuration is measured through
the deficit def(κ). Clearly, if def(κ) = 0 then u is radially symmetric and decreasing, so that
[GNN79, Theorem 1′] is recovered. We point out that, if one is only interested in the statement
concerning the almost radial symmetry of u, then weaker notions of deficit can be considered.
Indeed, as confirmed by a careful analysis of the proof of Theorem 3.0.2, estimate (3.4) continues
to hold if def(κ) is replaced by the zero-th order quantity

sup
r∈(0,1)

osc
∂Br

κ+ sup
e∈∂B1

sup
0≤ρ<r<1

(
κ(re)− κ(ρe)

)
+
.

That is, the presence in def(κ) of a first order quantity such as the gradient of κ is only required to
obtain the almost monotonicity statement (3.5).

We also point out that we required the nonlinearity f to be non-negative for the sole purpose
of recovering exact symmetry when the right-hand side is radially symmetric and decreasing with
respect to the space variable x. It is readily checked that, if f changes sign, our proof can still
be applied in its essence. It yields estimates (3.4)-(3.5) with ∥∇κ∥L∞(B1) in place of def(κ) and
provided assumption (3.3) is replaced by the stronger

1

C0

(
1− |x|

)
≤ u(x) ≤ C0 for all x ∈ B1. (3.6)
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The original proof of Theorem 3.0.1 is done via the method of moving planes, which in turns
heavily relies on the maximum principle. Our proof of Theorem 3.0.2 is based on a quantitative ver-
sion of this method. Hence, in it we replace the maximum principle with quantitative counterparts,
such as the weak Harnack inequality and the ABP estimate.

The deficit of κ appears in estimates (3.4) and (3.5) raised to some unspecified power α. Its value
could be explicitly computed following the proof of Theorem 3.0.2, but it does not feel of particular
significance. We believe it could be an interesting future line of investigation to determine the
sharpest value of α, at least for some specific choice of the nonlinearity f .

In order to obtain quantitative information on the asymmetry of the solution u, we need to
understand its boundedness and positivity in a quantitative way. We do this through the imposition
of assumption (3.3). As a consequence, the constants α and C appearing in estimates (3.4)-(3.5)
depend on the constant C0. Our next result provides conditions on the nonlinearity f which ensure
the possibility of removing assumption (3.3) and thus making estimates (3.4)-(3.5) independent of
the size of u.

Corollary 3.0.3. Let f : [0,+∞) → R be a non-negative locally Lipschitz function satisfying the
following two conditions:

(a) Either f(0) > 0 or f(s) ≤ Asp for all s ∈ [0, s0] and for some A, s0 > 0, p > 1;

(b) Either f(s) ≤ Bsq1 for all s ≥ s1 and for some B1, s1 > 0, q1 ∈ (0, 1), or the limit lim
s→+∞

f(s)

sq2
exists finite and positive for some q2 ∈ (1, 2⋆ − 1).1

Let κ ∈ C1(B1) be a function satisfying κ ≥ κ0 in B1, for some constant κ0 > 0. Then, there exist
two constants C > 0 and α ∈ (0, 1), depending only on n, f , ∥κ∥L∞(B1), and κ0, such that any
solution u ∈ C2(B1) ∩ C0(B1) of (3.2) satisfies (3.4) and (3.5).

Corollary 3.0.3 follows almost immediately from Theorem 3.0.2. To obtain it, we simply verify
that, under conditions (a) and (b), any solution of (3.2) satisfies the bounds (3.3) for some uniform
constant C0.

Condition (a) prescribes the growth of the nonlinearity f near the origin and is therefore the
main tool needed to establish the lower bound on the L∞ norm of u in (3.6). We point out that
(a) allows virtually all possible behaviors for Lipschitz nonlinearities besides linear growth. On the
other hand, condition (b) concerns the behavior of f at infinity and is thus connected with the upper
bound in (3.3). Again, linear growth is excluded—both by the strict sublinearity assumption and
by the Gidas-Spruck type asymptotic superlinearity/subcriticality prescription. We stress that this
exception is to be expected, since for, say, f(s) = λ1s, with λ1 being the first Dirichlet eigenvalue
of B1, no bound like (3.3) can hold with uniform constant C0.

Theorem 3.0.2 is a particular case of a broader result, in which a perturbation of the Laplace
operator is considered alongside a more general space-dependent nonlinearity. We introduce this
framework here below.

Let L be a second order elliptic operator of the type

L[v] := −Tr
(
AD2v

)
+ b · ∇v, (3.7)

1With the understanding that, if n = 2, the exponent q2 can be any number strictly larger than 1.
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where A ∈ C1,θ(B;Matn(R)) and b ∈ C1,θ(B;Rn), for some θ ∈ (0, 1). We assume that A(x) is
symmetric for every x ∈ B and that

∥A∥C1,θ(B1) + ∥b∥C1,θ(B1) ≤ Λ,
n∑

i,j=1

Aij(x)ξiξj ≥
1

Λ
|ξ|2 for all x ∈ B1 and ξ ∈ Rn,

(3.8)

for some constant Λ ≥ 1. Our main goal is to provide a quantitative symmetry result for the
problem 

L[u] = g(·, u) in B1

u > 0 in B1,

u = 0 on ∂B1,

(3.9)

where g ∈ C1,θ(B1 × [0,+∞)) is a non-negative function. In order to do this, we introduce a new
deficit which quantifies how much the differential operator L differs from the Laplacian and how
much h is far from a nonlinearity which assures radial symmetry of the solution. More precisely,
given any real number U ≥ 0 we define

def(L, g, U) := ∥A− In∥C0,1(B1) + ∥b∥C0,1(B1) +G(g, U), (3.10)

where In ∈ Matn(R) is the identity matrix and

G(g, U) := sup
s∈[0,U ]

∥∇T
x g(·, s)∥L∞(B1) + sup

s∈[0,U ]

∥∂+r g(·, s)∥L∞(B1).

Theorem 3.0.4. Given θ ∈ (0, 1), let A ∈ C1,θ(B1;Matn(R)) and b ∈ C1,θ(B1;Rn) be satisfying
(3.8), for some Λ ≥ 1, and let g ∈ C1,θ

loc

(
B1 × [0,+∞)

)
be a non-negative function. Let u ∈

C2(B1) ∩ C0(B1) be a solution of (3.9), with L given by (3.7).
Given any constant C0 ≥ 1, there exist two other constants α ∈ (0, 1) and C > 0, depending

only on n, θ, Λ, C0, and on an upper bound on ∥g∥C1,θ(B1×[0,C0])
, such that if u satisfies (3.3), then

|u(x)− u(y)| ≤ C def(L, g, C0)
α for all x, y ∈ B1 such that |x| = |y| (3.11)

and
∂ru(x) ≤ C def(L, g, C0)

α for all x ∈ B1. (3.12)

We mention that Theorem 3.0.4 can be applied for instance when one considers semilinear
problems in a small normal perturbation of the ball, as done in [Ros94]. Indeed, we have the
following corollary.

Corollary 3.0.5. Given 0 < ϵ ≤ ϵ0 and θ ∈ (0, 1), let Ψϵ : B1 → Rn be an invertible map
of class C3,θ such that ∥Ψϵ − Id ∥C3,θ(B1) + ∥Ψ−1

ϵ − Id ∥C3,θ(Ωϵ) ≤ ϵ, where Ωϵ := Ψϵ(B1). Let
u ∈ C2(Ωϵ) ∩ C0(Ωϵ) be a solution of

−∆u = f(u) in Ωϵ,

u > 0 in Ωϵ,

u = 0 on ∂Ωϵ,

(3.13)
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where f ∈ C1,θ
loc ([0,+∞)) is a nonnegative function, and assume that u satisfies

1

C0
≤ ∥u∥L∞(Ωϵ) ≤ C0, (3.14)

for some constant C0 ≥ 1. Then, there exists a constant C > 0, depending only on n, θ, f , ϵ0, and
C0, such that

|u(x)− u(y)| ≤ C ϵα for all x, y ∈ Ωϵ such that
∣∣Ψ−1

ϵ (x)
∣∣ = ∣∣Ψ−1

ϵ (y)
∣∣.

At the end of Section 3.4 we will exploit Corollary 3.0.5 to show approximate symmetry results
for semilinear problems set in small perturbations of the unit ball, by means of a couple of examples.

This chapter is organized as follows. In Section 3.1 we recall some well-known facts and prove
some preliminary results. Section 3.2 is devoted to the proof of Theorem 3.0.2, while that of
Corollary 3.0.3 occupies the subsequent Section 3.3. The chapter is closed by Section 3.4, which
contains the proofs of Theorem 3.0.4 and Corollary 3.0.5.

3.1 ABP-type estimate and weak Harnack inequality
In this section we collect some known results that will be used later. We begin by recalling the
following version of the ABP estimate, due to Cabré [Cab95].

Lemma 3.1.1 ([Cab95]). Let Ω ⊂ Rn be a bounded domain, c : Ω → R be a measurable function
such that c ≥ 0 a.e. in Ω, and h ∈ Ln(Ω). If v ∈ C0(Ω) ∩ C2(Ω) satisfies

−∆v + cv ≤ h in Ω,

then
sup
Ω
v ≤ sup

∂Ω
v+ + C |Ω| 1

n ∥h+∥Ln(Ω),

for some dimensional constant C ≥ 1.

Next, we have the following weak Harnack inequality. Given δ > 0 and Ω ⊂ Rn, we write Ωδ to
indicate the set of points at distance more than δ from the boundary of Ω, that is

Ωδ :=
{
x ∈ Ω : dist(x, ∂Ω) > δ

}
.

Lemma 3.1.2. Let Ω ⊂ Rn be a bounded convex domain. Denote by riΩ the inradius of Ω—i.e.,
the radius of the largest ball contained in Ω—and assume that

riΩ ≥ c♯ diam(Ω), (3.15)

for some constant c♯ ∈ (0, 1]. Let δ ∈
(
0,

riΩ
3

]
, c ∈ L∞(Ω), and h ∈ Ln(Ω). If v ∈ C2(Ω) is a

non-negative function satisfying
−∆v + cv ≥ h in Ω,

then, it holds

sup
p∈Ωδ

(
−
∫
B δ

2
(p)

vs dx

)1
s

≤ C

(
riΩ
δ

)β (
inf
Ωδ

v + ∥h−∥Ln(Ω)

)
, (3.16)

for some positive constants s, β, and C depending only on n, c♯, and on upper bounds on ∥c+∥L∞(Ω),
diam(Ω).
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The key point here is the polynomial dependence on δ of the constant appearing in (3.16). This
occurs thanks to the controlled convexity of Ω, in the sense of (3.15)—in a general bounded domain
the optimal dependence might instead be exponential. This phenomenon is possibly known to the
expert reader and has been observed in [CMV16] for the full Harnack inequality.

Proof of Lemma 3.1.2. First of all, we observe that v satisfies −∆v+ c+v ≥ −h− in Ω. Hence, the
standard weak Harnack inequality—see, e.g., [GT01, Theorem 9.22]—, yields that, if Br(q) is a ball
such that B2r(q) ⊂ Ω, then

(
−
∫
Br(q)

vs dx

)1
s

≤ C⋆

(
inf

Br(q)
v + r∥h−∥Ln(B2r(q))

)
, (3.17)

for some constants s > 0 and C⋆ ≥ 2 depending only on n and on upper bounds on ∥c+∥L∞(Ω),
diam(Ω).

Let p0 ∈ Ω be a point for which dist(p0, ∂Ω) = riΩ. Since δ < riΩ, we have that p0 ∈ Ωδ. For any
p ∈ Ωδ, we claim that

(
−
∫
B

ri
Ω
2

(p0)

vs dx

)1
s

≤ C♭

(
riΩ
δ

)β
2
(

inf
B δ

2
(p)
v + ∥h−∥Ln(Ω)

)
, (3.18)

(
−
∫
B δ

2
(p)

vs dx

)1
s

≤ C♭

(
riΩ
δ

)β
2
(

inf
B

ri
Ω
2

(p0)
v + ∥h−∥Ln(Ω)

)
, (3.19)

for some constants C♭ ≥ 1 and β > 0 depending only on n, c♯, and on upper bounds on ∥c+∥L∞(Ω),
diam(Ω). It is clear that these estimates immediately lead to (3.16).

We only prove the validity of (3.18), since (3.19) can be established in a completely analogous
fashion. To establish (3.18), we suppose, after a rigid movement, that p0 = 0 and p = ℓen, where
ℓ := |p− p0|. We initially assume that 2ℓ ≥ riΩ. Denote by C and C ′ respectively the convex hulls
of BriΩ

(p0) ∪Bδ(p) and BriΩ/2(p0) ∪Bδ/2(p), i.e.,

C =
⋃

t∈[0,1]

B(1−t)riΩ+tδ(tℓen) and C ′ =
⋃

t∈[0,1]

B (1−t)ri
Ω

+tδ

2

(tℓen).

By the convexity of Ω, we have that C ′ ⊂ C ⊂ Ω. Consider now the recursive sequencetk :=
riΩ
2ℓ

+
2ℓ− riΩ + δ

2ℓ
tk−1 for k ∈ N,

t0 = 0,

as well as the balls
Bk := Brk(pk) and B′

k := B rk
2
(pk),

where rk := (1 − tk)r
i
Ω + tkδ and pk := tkℓen, for all k ∈ N ∪ {0}. It is easy to see that {tk} is a

sequence of non-negative numbers, strictly increasing to riΩ
riΩ−δ

as k → +∞. Clearly, Bk ⊂ C and
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B′
k ⊂ C ′ for every k ∈ N∪{0} such that tk ∈ [0, 1]. Furthermore, one checks that B rk

4

(
pk − tk

4 en
)
⊂

B′
k−1 ∩B′

k for every k ∈ N and thus

|B′
k|

|B′
k−1 ∩B′

k|
≤ 2n for all k ∈ N. (3.20)

Let N ∈ N be the largest integer for which tN ∈ [0, 1). We claim that

N ≤ C log

(
riΩ
δ

)
, (3.21)

for some constant C > 0 depending only on c♯. To obtain (3.21), we observe that tk is explicitly
given by

tk =
riΩ
2ℓ

k−1∑
j=0

(
2ℓ− riΩ + δ

2ℓ

)j

=
riΩ

riΩ − δ

[
1−

(
2ℓ− riΩ + δ

2ℓ

)k]
,

for all k ∈ N ∪ {0}. Hence, the condition tN < 1 is equivalent to the inequality

N <
log
(

riΩ
δ

)
log
(
1 +

riΩ−δ

2ℓ−riΩ+δ

) .
By (3.15) and the fact that δ ≤ riΩ

3 , we see that riΩ−δ

2ℓ−riΩ+δ
≥ c♯

3 , from which (3.21) follows.
We now use the fundamental weak Harnack inequality (3.17) to compare the Ls norms of v over

two consecutive balls in the chain B′
k−1 and B′

k—recall that Bk ⊂ Ω. By also taking into account
(3.20), we compute(

−
∫
B′

k−1

vs dx

)1
s

≤ C⋆

(
inf

B′
k−1

v + rk−1∥h−∥Ln(Bk−1)

)
≤ C⋆

(
inf

B′
k−1∩B′

k

v + riΩ ∥h−∥Ln(Ω)

)

≤ C⋆

{(
−
∫
B′

k−1∩B′
k

vs dx

)1
s

+ riΩ ∥h−∥Ln(Ω)

}

≤ C⋆

{
2n
(
−
∫
B′

k

vs dx

)1
s

+ riΩ ∥h−∥Ln(Ω)

}
,

for every k ∈ {1, . . . , N}. By chaining these estimates, we find that(
−
∫
B

ri
Ω
2

(p0)

vs dx

)1
s

≤ (2nC⋆)
N
max{2riΩ, 1}

{(
−
∫
B′

N

vs dx

)1
s

+ ∥h−∥Ln(Ω)

}
. (3.22)

Arguing as before—using now that
∣∣B′

N ∩Bδ/2(p)
∣∣ ≥ ∣∣Bδ/4

(
p− δ

4en
)∣∣ ≥ 2−n

∣∣Bδ/2(p)
∣∣ and estimate

(3.17) a couple of times—we obtain(
−
∫
B′

N

vs dx

)1
s

≤ 2nC2
⋆ max{2riΩ, 1}

(
inf

B δ
2
(p)
v + ∥h−∥Ln(Ω)

)
. (3.23)
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By combining this with (3.22) and recalling the upper bound (3.21) on N , estimate (3.18) readily
follows, under the assumption that 2ℓ ≥ riΩ.

When 2ℓ < riΩ, the computation is less involved, as the balls BriΩ/2(p0) and Bδ/2(p) have large
intersection—of measure comparable to

∣∣Bδ/2(p)
∣∣. In view of this, (3.18) can be deduced at once

by arguing exactly as for (3.23). The proof is thus complete.

As an immediate consequence of the above lemma, we deduce the following Harnack inequality
in the spherical dome

Σλ := B1 ∩ {xn > λ}, (3.24)

for λ ∈ [0, 1). Given δ > 0, we also consider the set

Σλ,δ :=
{
x ∈ Σλ : dist(x, ∂Σλ) > δ

}
. (3.25)

Corollary 3.1.3. Let 0 ≤ λ ≤ λ0 < 1, δ ∈
(
0, 1−λ0

6

]
, c ∈ L∞(Σλ), and h ∈ Ln(Σλ). Let

v ∈ C2(Σλ) be a non-negative function satisfying

−∆v + cv ≥ h in Σλ.

Then,

sup
p∈Σλ,δ

(
−
∫
B δ

2
(p)

vs dx

)1
s

≤ C

δβ

(
inf
Σλ,δ

v + ∥h−∥Ln(Σλ)

)
,

for some positive constants s, β, and C depending only on n, λ0, and on an upper bound on
∥c+∥L∞(Σλ).

3.2 Proof of the main theorem
Our proof of Theorem 3.0.2 is via the method of moving planes. Before getting into the argument,
we make a few preliminary observations.

Step 1: Preliminary remarks
First of all, as 0 ≤ u ≤ C0, κ is bounded, and f is locally bounded, by standard elliptic estimates
there exists a constant C1 > 0, depending only on n, C0, ∥κ∥L∞(B1), and ∥f∥L∞([0,C0]), for which

∥∇u∥L∞(B1) + [∇u]
C

9
10 (B1)

≤ C1. (3.26)

Next, we claim that

u(x) ≥ 1

C2

(
1− |x|

)
for all x ∈ B1, (3.27)

for some constant C2 ≥ 1 depending only on n, C0, ∥κ∥L∞(B1), and ∥f∥L∞([0,C0]). To see this, we
first remark that, taking advantage of estimates (3.3) and (3.26), one easily obtains the existence
of a point p ∈ B1 and of a constant r ∈

(
0, 18

]
such that

u ≥ 1

2C0
in B2r(p) and dist

(
B2r(p), ∂B1

)
≥ 2r.
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Note that the constant r only depends on n, C0, ∥κ∥L∞(B1), and ∥f∥L∞([0,C0]). We now seek a
lower bound for u over Br. Clearly, we have that

B2r(p) ⊂ B1−2r ⊂ B1−r(x) ⊂ B1 for all x ∈ Br.

As f and k are non-negative, the function u is superharmonic B1. Hence, by the mean value
theorem and the non-negativity of u in B1 we obtain that

u(x) ≥ −
∫
B1−r(x)

u(y) dy ≥ 1

|B1−r|

∫
B2r(p)

u(y) dy ≥ 2n−1rn

C0
=: c♯ for all x ∈ Br. (3.28)

From this and the weak maximum principle we get that u is larger than the unique continuous
functions which is harmonic in B1 \ Br, vanishes on ∂B, and is equal to c♯ on ∂Br. Since this
function is explicit—it is an appropriate affine transformation of the fundamental solution for the
Laplacian in Rn—, we easily deduce that

u(x) ≥ c♭(1− |x|) for all x ∈ B1 \Br,

for some constant c♭ > 0 depending only on n, C0, ∥κ∥L∞(B1), and ∥f∥L∞([0,C0]). Claim (3.27) then
readily follows from this estimate and (3.28).

Finally, we suppose without loss of generality that

def(κ) ≤ γ, (3.29)

for some small γ ∈ (0, 1) to be chosen in dependence of n, ∥f∥C0,1([0,C0]), ∥κ∥L∞(B1), and C0 only.
Indeed, if def(κ) > γ, then

|u(x)− u(y)| ≤ |u(x)|+ |u(y)| ≤ 2C0 ≤ 2C0

γα
def(κ)α for all x, y ∈ B1

and
∂ru(x) ≤ |∇u(x)| ≤ C1 ≤ C1

γα
def(κ)α for all x ∈ B1 \ {0},

for any α ∈ (0, 1]. Hence, claims (3.4) and (3.5) are trivially verified in this case.
Assuming (3.29) to hold true, we proceed with the proof. Clearly, claim (3.4) is equivalent to

showing that, given any unit vector e ∈ ∂B1, it holds

u(x)− u(x(e)) ≤ C def(κ)α for all x ∈ B1 such that x · e > 0, (3.30)

for some constants C ≥ 1 and α ∈ (0, 1) depending only on n, ∥f∥C0,1([0,C0]), ∥κ∥L∞(B1), and C0,
and where we write x(e) := x − 2(x · e)e to indicate the symmetric point of x with respect to the
hyperplane orthogonal to e passing through the origin. Up to a rotation, we may assume that
e = en—note that the rotation of u solves an equation for a possibly different κ which, however,
still satisfies (3.29). Under this assumption, (3.30) becomes

u(x′, xn)− u(x′,−xn) ≤ C def(κ)α for all x ∈ B1 such that xn > 0. (3.31)

We shall establish (3.31) in the next four steps. In a further step we will then tackle the almost
radial monotonicity statement (3.5).
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Step 2: Starting the moving planes procedure.
Let λ ∈ (0, 1). Recalling definition (3.24), we consider the function

wλ(x) := u(xλ)− u(x) for x ∈ Σλ,

where, for x = (x′, xn), we define
xλ := (x′, 2λ− xn).

Notice that wλ is a solution of
−∆wλ + cλwλ = fλ in Σλ, (3.32)

where

cλ(x) :=

−κ(x) f(u(x
λ))− f(u(x))

u(xλ)− u(x)
if u(xλ) ̸= u(x),

0 if u(xλ) = u(x),

(3.33)

and
fλ(x) :=

(
κ(xλ)− κ(x)

)
f(u(xλ)), (3.34)

for all x ∈ Σλ.
In view of equation (3.32), we see that v := −wλ satisfies{

−∆v + (cλ)+v = −fλ + (cλ)−v in Σλ,

v ≤ 0 on ∂Σλ.

Hence, Lemma 3.1.1 gives that

sup
Σλ

v ≤ C3|Σλ|
1
n

(
∥(−fλ)+∥Ln(Σλ) + ∥(cλ)−v+∥Ln(Σλ)

)
, (3.35)

for some dimensional constant C3 ≥ 1. Clearly,

∥(cλ)−v+∥Ln(Σλ) ≤ |Σλ|
1
n ∥cλ∥L∞(Σλ)∥v+∥L∞(Σλ)

≤ |Σλ|
1
n [f ]C0,1([0,C0]) ∥κ∥L∞(B1) sup

Σλ

v+.
(3.36)

On the other hand, considering the auxiliary point x̃λ := |xλ|
|x| x and observing that

x and x̃λ belong to the same ray coming out of the origin (3.37)

and
|x̃λ| = |xλ| < |x|, (3.38)

for every x ∈ Σλ we estimate

−fλ(x) =
((
κ(x)− κ(x̃λ)

)
+
(
κ(x̃λ)− κ(xλ)

))
f(u(xλ))

≤ ∥f∥L∞([0,C0])

(
sup

e∈∂B1

sup
0≤ρ<r<1

(
κ(re)− κ(ρe)

)
+
+ sup

r∈(0,1)

osc
∂Br

κ

)
≤ π∥f∥L∞([0,C0]) def(κ).
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Note that we exploited the non-negativity of f . Consequently,

∥(−fλ)+∥Ln(Σλ) ≤ π|Σλ|
1
n ∥f∥L∞([0,C0]) def(κ) (3.39)

and thus, recalling (3.35) and (3.36),

sup
Σλ

v ≤ C4

2
|Σλ|

2
n

(
def(κ) + sup

Σλ

v+

)
,

with C4 := 8C3

(
1 + ∥κ∥L∞(B)

)
∥f∥C0,1([0,C0]). Now, if supΣλ

v = supΣλ
v+ > 0, then rearranging

terms in the previous inequality we deduce that

sup
Σλ

v ≤ def(κ), (3.40)

provided C4|Σλ|
2
n ≤ 1—which holds true, for instance, if λ ≥ 1−

(
C

n
2
4 |B′|

)−1

. Since (3.40) is also
trivially satisfied when supΣλ

v ≤ 0, recalling the definition of v we conclude that

wλ ≥ −def(κ) in Σλ.

Consider the set

Λ :=
{
λ ∈ (0, 1) : wµ ≥ −def(κ) in Σµ for all µ ∈ [λ, 1)

}
. (3.41)

We just proved that Λ contains the interval [λ0, 1), where

λ0 := max

{
1−

(
C

n
2
4 |B′|

)−1

,
1

2

}
.

Its infimum
λ⋆ := inf Λ (3.42)

is thus a well-defined real number lying in the interval [0, λ0].

Step 3: Reaching an intermediate position.

We first claim that
λ⋆ ≤ 1

4
.

We argue by contradiction, and assume instead that λ⋆ ∈
(
1
4 , λ0

]
. It is immediate to see that

λ⋆ ∈ Λ and therefore that
wλ⋆

≥ −def(κ) in Σλ⋆
.

Let now v := wλ⋆ + def(κ). Clearly, v satisfies{
−∆v + cλ⋆

v = fλ⋆
+ cλ⋆

def(κ) in Σλ⋆
,

v ≥ 0 in Σλ⋆
.

(3.43)
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Therefore, we may apply to it Corollary 3.1.3 and, by taking advantage of estimate (3.39) with
λ = λ⋆, deduce that

sup
p∈Σλ⋆,δ

(
−
∫
B δ

2
(p)

vs dx

)1
s

≤ C5

δβ

(
inf

Σλ⋆,δ

v + def(κ)
)
, (3.44)

for every δ ∈
(
0, 1−λ0

6

]
, for three constants s > 0, β > 0, and C5 ≥ 1 depending only on n,

∥f∥C0,1([0,C0]), ∥κ∥L∞(B1), and with Σλ⋆,δ as in (3.25). Recalling the linear growth estimate (3.27),
the gradient bound in (3.26), and the fact that u vanishes on the boundary of B1, we now observe
that

sup
p∈Σλ⋆,δ

(
−
∫
B δ

2
(p)

vs dx

)1
s

≥
(
−
∫
B δ

2
((1−2δ)en)

vs dx

)1
s

≥ inf
B δ

2
((1−2δ)en)

v

= inf
x∈B δ

2
((1−2δ)en)

(
u(xλ⋆)− u(x)

)
+ def(κ)

≥ 1

C2
min

{
1−

∣∣∣∣2λ⋆ − 1 +
5

2
δ

∣∣∣∣ , 1− ∣∣∣∣2λ⋆ − 1 +
3

2
δ

∣∣∣∣}− 3∥∇u∥L∞(B1)δ

≥ 1− λ0
2C2

− 3C1δ

(3.45)

As a result,

inf
Σλ⋆,δ

wλ⋆ ≥ δβ

C5

(
1− λ0
2C2

− 3C1δ

)
− 2 def(κ). (3.46)

Take now δ := min
{

1−λ0

12C1C2
, (4C4)

−n
2

n+2

}
∈
(
0, 1−λ0

6

]
and assume that

γ ≤ (1− λ0)δ
β

16C2C5
.

By virtue of these choices, we easily deduce that wλ⋆
≥ (1−λ0)δ

β

8C2C5
in Σλ⋆,δ. Consequently,

wλ⋆−ε(x) ≥ wλ⋆(x)− 2∥∇u∥L∞(B1)ε ≥
(1− λ0)δ

β

8C2C5
− 2C1ε ≥ 0 for all x ∈ Σλ⋆,δ,

provided ε > 0 is sufficiently small. Hence, v := −wλ⋆−ε is a solution of{
−∆v + (cλ⋆−ε)+v = −fλ⋆−ε + (cλ⋆−ε)−v in Σ′,

v ≤ 0 on ∂Σ′,

where Σ′ := Σλ⋆−ε \ Σλ⋆,δ. Taking advantage of Lemma 3.1.1, we then get that

sup
Σ′

v ≤ C4

2
|Σ′| 2

n

(
def(κ) + sup

Σ′
v+

)
. (3.47)

Observe that Σ′ ⊂
(
Σλ⋆−ε \ Σλ⋆+δ

)
∪
(
(B1 \B1−δ) ∩ {xn ≥ λ⋆ + δ}

)
and thus that, recalling the

definition of δ,

C4|Σ′| 2
n ≤ C4 (|B′|(δ + ε) + |B1 \B1−δ|)

2
n ≤ 4C4

(
(n+ 2)δ

) 2
n ≤ 1, (3.48)
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provided ε ≤ δ. As a result, we easily infer from inequality (3.47) that

wλ⋆−ε ≥ −def(κ) in Σλ⋆−ε for all ε ∈ [0, ε0],

for some small ε0 > 0, contradicting the fact that λ⋆ is the infimum of Λ.

Step 4: Going almost all the way.

We claim that

λ⋆ ≤
(
3C2C5C

β
6 def(κ)

) 1
1+β

, (3.49)

where C6 := max
{
3C1C2, (4C4)

n
2 (n+ 2)

}
≥ 2. Notice that

(
3C2C5C

β
6 def(κ)

) 1
1+β

<
1

4
,

provided we take

γ ≤ 1

42+βC2C5C
β
6

.

To establish (3.49), we argue once again by contradiction and suppose that

λ⋆ ∈
((

3C2C5C
β
6 def(κ)

) 1
1+β

,
1

4

]
. (3.50)

As before, we have that the function v := wλ⋆ +def(κ) satisfies (3.43) and therefore estimate (3.44)
for every δ ∈

(
0, 18

]
, by Corollary 3.1.3. Computing as for (3.45)-(3.46), we find that

inf
Σλ⋆,δ

wλ⋆ ≥ δβ

C5

(
2λ⋆
C2

− 3C1δ

)
− 2 def(κ).

Taking δ := min
{

λ⋆

C6
, (4C4)

−n
2

n+2

}
∈
(
0, 18

]
, by recalling (3.50) and the definition of C6 we get wλ⋆

≥
λ1+β
⋆

3C2C5C
β
6

in Σλ⋆,δ. As a result, wλ⋆−ε ≥ 0 in Σλ⋆,δ if ε > 0 is small enough and, arguing as before,

sup
Σ′

(−wλ⋆−ε) ≤
C4

2
|Σ′|

2
n

(
def(κ) + sup

Σ′
(−wλ⋆−ε)+

)
, (3.51)

where Σ′ := Σλ⋆−ε \ Σλ∗,δ. Since we still have the bound (3.48) on the measure of Σ′—thanks to
the definitions of δ and C6, and provided we take ε ≤ δ—, it easily follows from inequality (3.51)
that

wλ⋆−ε ≥ −def(κ) in Σλ⋆−ε for all ε ∈ [0, ε0],

for some small ε0 > 0. This contradicts the definition of λ⋆ and thus (3.49) holds true.
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Step 5: Almost radial symmetry in one direction.

Thus far, we have proved that

u(x′, xn)− u(x′, 2λ− xn) ≤ def(κ) for all (x′, xn) ∈ Σλ and λ ∈ [λ1, 1),

with

λ1 :=
(
3C2C5C

β
6 def(κ)

) 1
1+β

. (3.52)

By choosing λ = λ1 and recalling the gradient bound (3.26), we get that

u(x′, xn)− u(x′,−xn) ≤ C7 def(κ)
1

1+β for all (x′, xn) ∈ Σλ1 .

for some constant C7 ≥ 1 depending only on n, C0, ∥κ∥L∞(B1) and ∥f∥C0,1([0,C0]). On top of this,
we also have that, for (x′, xn) ∈ Σ0 \ Σλ1

,

u(x′, xn)− u(x′,−xn) ≤ |u(x′, xn)− u(x′, 0)|+ |u(x′,−xn)− u(x′, 0)|

≤ 2∥∇u∥L∞(B)xn ≤ 2C1λ1 ≤ C7 def(κ)
1

1+β ,

up to possibly taking a larger C7. The last two inequalities yield the validity of (3.31).

Step 6: Almost monotonicity in the radial direction.

Our goal is to show that

∂nu(x) ≤ C def(κ)
1

1+β for all x ∈ B1 such that xn > 0, (3.53)

for some constant C > 0 depending only on n, C0, ∥κ∥L∞(B1), and ∥f∥C0,1([0,C0]). It is clear that,
by specializing this to the points x = (0, xn) with xn ∈ (0, 1) and up to a rotation, this yields (3.5).

Let λ ∈ [λ1, 1) with λ1 defined as in (3.52) and let ε > 0 to be soon chosen small. Setting
v := −wλ it holds

Lλv := −∆v + cλv = −fλ in Nλ,ε,

where cλ and fλ are as in (3.33) and (3.34), while Nλ,ε := Σλ \ Σλ+ε. Note that, by definition
(3.24), if

ε ≥ 1− λ, (3.54)

then Σλ+ε is empty, in which case we simply have Nλ,ε = Σλ. We plane to achieve (3.53) by
constructing a supersolution for the operator Lλ in Nλ,ε. In order to do this, we need appropriate
estimates on the coefficient cλ and the right-hand side −fλ.

Definition (3.33) immediately yields

∥cλ∥L∞(Σλ) ≤ [f ]C0,1([0,C0]) ∥κ∥L∞(B1) =: Z. (3.55)

From this it follows that there exists a constant ε0 > 0, depending only on [f ]C0,1([0,C0]) and
∥κ∥L∞(B1), such that

the weak maximum principle holds for Lλ in Nλ,ε, (3.56)
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for every ε ∈ (0, ε0], thanks to the maximum principle for narrow domains—see, e.g., [BNSV94] or
[GT01, Section 3.3].

The estimate of −fλ from above requires a bit more work. Given x ∈ Σλ, let x̃λ := |xλ|
|x| x and

recall that (3.37) and (3.38) hold true. We also have that

|x| − |x̃λ| ≤ 2(xn − λ) and dist ∂B|xλ|

(
x̃λ, xλ

)
≤ 2π(xn − λ), (3.57)

where dist ∂Br denotes the geodesic distance on the sphere of radius r > 0—we can disregard the
case |xλ| = 0 since, if this occurs, then x̃λ = xλ = 0. The first inequality in (3.57) follows right away
from the definition of x̃λ, while the second can be obtained noticing that dist ∂Br

(p, q) ≤ π
2 |p − q|

for all p, q ∈ ∂Br and computing as follows:

|x̃λ − xλ|2 = 2
(
|xλ|2 − x̃λ · xλ

)
= 2

|xλ|
|x|

(
|x||xλ| − x · xλ

)
≤ 2

|x|2|xλ|2 − (x · xλ)2

|x||xλ|+ x · xλ

= 2

(
|x′|2 + x2n

)(
|x′|2 + (2λ− xn)

2
)
−
(
|x′|2 + xn(2λ− xn)

)2√
|x′|2 + x2n

√
|x′|2 + (2λ− xn)2 + |x′|2 + xn(2λ− xn)

≤ 8
|x′|2 (xn − λ)

2

xn|2λ− xn|+ |x′|2 + xn(2λ− xn)
≤ 8(xn − λ)2.

By virtue of (3.37), (3.38), and (3.57), recalling definition (3.34) we obtain

−fλ(x) =
((
κ(x)− κ(x̃λ)

)
+
(
κ(x̃λ)− κ(xλ)

))
f(u(xλ))

≤ 2π∥f∥L∞([0,C0])

(
∥∂+r κ∥L∞(B1) + ∥∇Tκ∥L∞(B1)

)
(xn − λ)

= 2π∥f∥L∞([0,C0]) def(κ)(xn − λ).

(3.58)

Note that here we also took advantage of the fact that f is non-negative.
Now that we understood the sizes of cλ and −fλ, we are in position to construct an upper

barrier v̄ for the function v in Nλ,ε. For M,µ > 0, let

v̄(x) :=M sin
(
µ (xn − λ)

)
.

Recalling (3.55), for every x ∈ Nλ,ε we have

Lλv̄(x) = (µ2 + cλ) v̄(x) ≥ (µ2 − Z) v̄(x) ≥ v̄(x) ≥ 2Mµ

π
(xn − λ),

if we take µ2 ≥ Z + 1 and µ ε ≤ π/2. Going back to (3.58), this gives that

Lλv̄ ≥ −fλ in Nλ,ε, (3.59)

provided Mµ ≥ π2∥f∥L∞([0,C0]) def(κ).
To deal with the boundary condition, we decompose ∂Nλ,ε as ∂Nλ,ε = D ∪ Tλ ∪ Tλ+ε, where

D := {λ ≤ xn ≤ λ + ε} ∩ ∂B1 is the round part, while Tλ := {xn = λ} ∩ B1 and Tλ+ε := {xn =
λ + ε} ∩ B1 are the flat parts—note that, if (3.54) is satisfied, then Tλ+ε = ∅ and ∂Nλ,ε is only
made up of the round part D and a single flat part Tλ. Observe that{

v = 0 = v̄ on Tλ,
v < 0 < v̄ on D.
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When (3.54) does not hold, recalling definitions (3.41) and (3.42), as well as the fact that λ ≥ λ⋆,
thanks to (3.49) and the way we took λ, we also have

v − v̄ ≤ def(κ)− 2Mµε

π
≤ 0 on Tλ+ε,

provided Mµε ≥ π
2 def(κ). Thus, whether (3.54) is satisfied of not, we get that v ≤ v̄ on ∂Nλ,ε.

Thanks to this, (3.56), and (3.59), by setting

µ :=
√
Z + 1, ε := min

{
ε0
2
,
π

2µ

}
, M :=

π

µ
max

{
π∥f∥L∞([0,C0]),

1

2ε

}
def(κ)

and applying the weak maximum principle we find that

u(x)− u(xλ) = v(x) ≤ v̄(x) ≤ 2C8 def(κ) (xn − λ) for all x ∈ Nλ,ε,

for some constant C8 > 0 depending only on n, ∥f∥C0,1([0,C0]), and ∥κ∥L∞(B1). Letting xn → λ+ in
the above relation, we get that ∂nu(x) ≤ C8 def(κ) for all x ∈ Nλ,ε and λ ∈ [λ1, 1), that is

∂nu(x) ≤ C8 def(κ) for all x ∈ Σλ1
. (3.60)

If instead x ∈ Σ0 \ Σλ1
, taking advantage of (3.26) we get

∂nu(x
′, xn) ≤ ∂nu(x

′, λ1) + (λ1 − xn)
9
10 [∇u]

C
9
10 (B1)

≤ C8 def(κ) + C1λ
9
10
1 ≤ C8 def(κ)

9
10

1
1+β ,

(3.61)

where C8 > 0 only depends on n, ∥f∥C0,1([0,C0]), ∥κ∥L∞(B1), and C0. By putting together (3.60)
and (3.61), we are led to (3.53). The proof of Theorem 3.0.2 is thus complete.

3.3 Proof of the main corollary
In order to establish Corollary 3.0.3, it suffices to show that, under conditions (a) and (b), any
solution u ∈ C2(B1)∩C0(B1) of (3.2) satisfies the bounds (3.3) for some constant C0 ≥ 1 depending
only on n, f , ∥κ∥L∞(B1), and κ0. Indeed, once this is obtained, the result immediately follows from
Theorem 3.0.2.

Step 1: Uniform bound from above
We begin by showing that (a) yields the upper bound in (3.3). Note that this is an immediate
consequence of the classical a priori estimate of Gidas & Spruck [GS81] when f is asymptotically
subcritical and superlinear at infinity.

If, on the other hand, f is strictly sublinear at infinity, then f(s) ≤ C ′(1 + sq1) for all s ≥ 0,
for some constants C ′ > 0 and q1 ∈ (0, 1). The claim now easily follows by testing the equation
against u. Indeed, by doing this we get∫

B1

|∇u|2 dx =

∫
B1

κf(u)u dx ≤ C ′∥κ∥L∞(B1)

(∫
B1

u dx+

∫
B1

uq1+1 dx

)
.

By combining this estimate with the Hölder’s, Young’s, and Poincaré’s inequalities, we easily get
that ∥u∥H1(B1) is bounded by some constant depending only on n, q1, C ′, and ∥κ∥L∞(B)

. By virtue
of this estimate and, again, the sublinearity of f , a uniform L∞(B1) bound on u is obtained for
instance by bootstrapping Calderón-Zygmund estimates.
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Step 2: Uniform bound from below

We now address the validity of the lower bound in (3.3) under assumption (a).
When f(0) > 0, the result follows by comparison with an appropriate multiple of the torsion

function. Indeed, by the continuity of f and the non-negativity of both f and κ, there exists
ϵ ∈ (0, 1] such that κ(x)f(u) ≥ ϵ χ[0,ϵ](u) for every x ∈ B1 and u ≥ 0. Consequently, u is a
supersolution of −∆u = ϵχ[0,ϵ](u) in B1. On the other hand, the function u(x) := ϵ

2n (1 − |x|2) is
a solution of −∆u = ϵ χ[0,ϵ](u) in B1. From the comparison principle—note that the nonlinearity
ϵχ[0,ϵ] is non-increasing in [0,+∞)—we deduce that u ≥ u in B1, which gives the lower bound in
(3.3).

Suppose now that the alternative assumption holds in (a), namely that f(s) ≤ Asp for all
s ∈ [0, s0], for some constants A, s0 > 0 and p > 1. Without loss of generality, we may assume
that s0 ∈ (0, 1) and p ∈ (1, 2⋆ − 1) when n ≥ 3. In order to get the bound from below in (3.3), we
first observe that either ∥u∥L∞(B1) > s0—in which case we are done—or 0 ≤ u(x) ≤ s0 for every
x ∈ B1. Assuming the latter, we test the equation for u against u itself, obtaining∫

B1

|∇u|2 dx =

∫
B1

κf(u)u dx ≤ A∥κ∥L∞(B)

∫
B1

up+1 dx.

By the Poincaré-Sobolev and Hölder inequalities, we deduce from this that

∥u∥2Lp+1(B1)
≤ C♯A∥κ∥L∞(B1)∥u∥

p+1
Lp+1(B1)

,

for some constant C♯ > 0 depending only on n and p. Since p > 1, we can reabsorb to the right
the Lp+1(B1) norm appearing on the left-hand side. By doing this, we get that ∥u∥Lp+1(B1) ≥(
C♯A∥κ∥L∞(B1)

) 1
1−p . Our claim immediately follows from this and the proof is thus complete.

3.4 Proof of the generalized results

This section is devoted to the proof of Theorem 3.0.4 and Corollary 3.0.5. At the end of it, we will
add a couple of examples of application of this last result.

In Theorem 3.0.4 we provide a quantitative symmetry result for problem (3.9), measured in
terms of the deficit defined in (3.10). Its proof is analogous to that of Theorem 3.0.2. For this
reason, in what follows we only highlight the main differences.

Sketch of the proof of Theorem 3.0.4. As we just mentioned, the proof follows the lines of that of
Theorem 3.0.2. Here we only outline the modifications in what corresponds there to Steps 1, 2, and
6—with the understanding that the remaining parts follow by analogous arguments.

Let g⋆ > 0 be such that ∥g∥C1,θ(B1×[0,C0])
≤ g⋆. We begin by observing that, since u satisfies

(3.3), by standard elliptic estimates (see, e.g., [GT01, Theorem 6.19]) there exists a constant C11 >
0, depending only on n, θ, Λ, g⋆, and C0, for which

∥∇u∥L∞(B1) + ∥D2u∥L∞(B1) + ∥D3u∥L∞(B1) ≤ C11. (3.62)

Furthermore, we assume without loss of generality that

def(L, g, C0) ≤ γ
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for some small γ ∈ (0, 1/2] to be chosen in dependence of n, θ, Λ, g⋆, and C0 only.
The main goal of the first step is to show that

u(x) ≥ 1

C12
(1− |x|) for all x ∈ B1, (3.63)

for some constant C12 ≥ 1 depending only on n, θ, Λ, C0, and g∗. Similarly to what we did when
proving (3.27), we start by noticing that, thanks to (3.3) and (3.62), there exists a point p0 ∈ B
and a constant r ∈ (0, 14 ] such that

u ≥ 1

2C0
in Br(p0) and dist(Br(p0), ∂B1) ≥ r. (3.64)

From this we easily get a lower bound on the function u in a ball centered at the origin. To do it,
one can use a version of the weak Harnack inequality of Lemma 3.1.2 for the operator L. Eventually,
we get that u ≥ 1

C♯
in B1/2 for some constant C♯ ≥ 1 depending only on n, θ, Λ, g⋆, and C0. In

order to prove (3.63), it then suffices to build a lower barrier for u inside the annulus B1 \ B1/2.
For instance, the function

φ(x) := δ
(
eM(1−|x|2) − 1

)
,

for some small enough δ ∈ (0, 1) and large enough M ≥ 1, both in dependence of n, θ, Λ, g⋆, and
C0 only, satisfies 

Lφ ≤ 0 in B1 \B1 1
2
,

φ = 0 on ∂B1,

φ ≤ 1
C♯

on ∂B 1
2
.

Claim (3.63) then follows from the maximum principle and estimate (3.64).
We proceed towards the proof of statements (3.11) and (3.12). By rotating the coordinate frame,

they will be established if we prove that

u(x′, xn)− u(x′,−xn) ≤ C def(L, g, C0)
α for all x ∈ B such that xn > 0 (3.65)

and
∂nu(x) ≤ C def(L, g, C0)

α for all x ∈ B1 such that xn > 0, (3.66)

for some constants C ≥ 1 and α ∈ (0, 1) depending only on n, θ, Λ, g⋆, and C0. Note that a
rotation typically leads to an equation for a different operator L̂ and right-hand side ĝ. However,
def(L̂, ĝ, C0) = def(L, g, C0) and the coefficients of L̂ still satisfy assumption (3.8). For this reason,
in what follows we still indicate these two objects by L and g.

To prove (3.65), we use the moving planes method. We do not reproduce here the full argument
displayed in Steps 2-5 of the proof of Theorem 3.0.2, but only outline why the method works in
this setting as well. Let λ ∈ (0, 1) and consider the function wλ(x) = u(xλ) − u(x) for x ∈ Σλ. A
straightforward computation yields that wλ is a solution of

−∆wλ + c̃λwλ = gλ + RA + Rb in Σλ,



3.4. PROOF OF THE GENERALIZED RESULTS 45

where

c̃λ(x) :=

−
g
(
x, u(xλ)

)
− g
(
x, u(x)

)
u(xλ)− u(x)

if u(xλ) ̸= u(x),

0 if u(xλ) = u(x),

gλ(x) := g
(
xλ, u(xλ)

)
− g
(
x, u(xλ)

)
,

RA(x) := Tr
(
(A(xλ)− In)D

2u(xλ)
)
− Tr

(
(A(x)− In)D

2u(x)
)
,

Rb(x) := b(x) · ∇u(x)− b(xλ) · ∇u(xλ),

for x ∈ Σλ. A careful inspection of Steps 2-5 in the proof of Theorem 3.0.2 shows that the argument
goes through almost verbatim provided that the two remainder terms RA and Rb can be controlled
by a multiple of the deficit—one deals with gλ exactly as we did with fλ in (3.39). This is indeed
the case, since, recalling (3.62),

∥RA∥L∞(Σλ) + ∥Rb∥L∞(Σλ) ≤ 2
(
∥A− In∥L∞(B1)∥D

2u∥L∞(B1) + ∥b∥L∞(B1)∥∇u∥L∞(B1)

)
≤ 2C1 def(L, g, C0).

Hence, we conclude that estimate (3.65) holds true.
In order to achieve (3.66), we proceed as in Step 6 of the proof of Theorem 3.0.2. For the

argument to work, we need RA and Rb to be linearly growing away from {xn = λ}. This follows
from the estimates

|Ra(x)| ≤
∣∣Tr
(
(A(xλ)−A(x))D2u(xλ)

)∣∣+ ∣∣Tr
(
(A(x)− In)(D

2u(xλ)−D2u(x))
)∣∣

≤
(
[A]C0,1(B1)∥D

2u∥L∞(B1) + ∥A− In∥L∞(B1)∥D
3u∥L∞(B1)

)
|xλ − x|

≤ 2C1 def(L, g, C0) (xn − λ)

and

|Rb(x)| ≤
∣∣(b(x)− b(xλ)

)
· ∇u(x)

∣∣+ ∣∣b(xλ) · (∇u(x)−∇u(xλ)
)∣∣

≤
(
[b]C0,1(B1)∥∇u∥L∞(B1) + ∥b∥L∞(B1)∥D

2u∥L∞(B1)

)
|xλ − x|

≤ 2C1 def(L, g, C0) (xn − λ),

which hold true for all x ∈ Σλ, thanks to (3.62). Once this is established, one obtains (3.66) by
means of a barrier, precisely as in Step 6 of the proof of Theorem 3.0.2.

As we mentioned at the beginning of the chapter, Theorem 3.0.4 can be used to provide almost
symmetry results for semilinear problems set in a small normal perturbation of the ball. This is
the claim of Corollary 3.0.5, which we establish here.

Proof of Corollary 3.0.5. Let v := u ◦Ψϵ. Writing Φϵ := Ψ−1
ϵ , it is clear that v satisfies

L[v] = f(v) in B1

v > 0 in B1

v = 0 in ∂B1 ,
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where L is of the form (3.7) with

Aij =

n∑
k=1

(
∂kΦ

i
ϵ ◦Ψϵ

) (
∂kΦ

j
ϵ ◦Ψϵ

)
and bi = −∆Φi

ϵ ◦Ψϵ,

for i, j = 1, . . . , n. Clearly, def(L, f, C0) ≤ Cϵ, for some constant C > 0 depending only on n.
Consequently, the assertion of the corollary follows by a direct application of Theorem 3.0.4.

We conclude the section with a couple of examples containing possible applications of Corollary
3.0.5.

Example 3.4.1. Let Ωϵ ⊂ Rn be an ellipsoid with small eccentricity. A simple computation
gives that the solution of the torsional problem—i.e., (3.13) with f ≡ 1—is explicit and its level
sets coincide with dilations of ∂Ωϵ. This last fact is no longer true for a general nonlinearity f .
However, Corollary 3.0.5 can be used to recover an approximate symmetry result. To see it, consider
for simplicity the ellipsoid

Ωϵ =

{
(x′, xn) ∈ Rn

∣∣∣ |x′|2 + |xn|2

a2
< 1

}
,

with a = 1 + ϵ and ϵ ∈ (0, 1). By letting Ψϵ : B1 → Ωϵ be the smooth diffeomorphism given by

Ψϵ(y) = (y′, ayn) for y ∈ B1,

we clearly have that |Ψ−1
ϵ (x)| = r if and only if x ∈ r∂Ωϵ. In view of Corollary 3.0.5, we then

infer that any solution u ∈ C2(Ωϵ) ∩ C0(Ωϵ) of (3.13) fulfilling assumption (3.14) for some C0 ≥ 1
satisfies

|u(p)− u(q)| ≤ Cϵα for every p, q ∈ r∂Ωϵ and r ∈ (0, 1], (3.67)

for some constants C ≥ 1 and α ∈ (0, 1) depending only on n, f , and C0.

Example 3.4.1 can be modified to treat a general smooth perturbation Ωϵ of the unit ball, as
we show here below.

Example 3.4.2. Let Ωϵ ⊂ Rn be a small C3,θ-perturbation of the unit ball, that is

Ωϵ =
{
r
(
1 + ϵφ(x)

)
x
∣∣∣ x ∈ ∂B1, r ∈ [0, 1)

}
,

for some φ ∈ C3,θ(∂B1) with ∥φ∥C3,θ(∂B1) ≤ 1 and ϵ ∈
(
0, 12

]
. As in Example 3.4.1, we shall show

that, if u ∈ C2(Ωϵ) ∩C0(Ωϵ) is a solution of problem (3.13) which satisfies (3.14) for some C0 ≥ 1,
then (3.67) holds true for some constants C ≥ 1 and α ∈ (0, 1) depending only on n, θ, f , and
C0, provided ϵ is sufficiently small. To deduce this from Corollary 3.0.5, we need to construct a
diffeomorphism Ψ̃ϵ mapping spheres centered at the origin onto dilations of ∂Ωϵ. Naturally,

r∂Ωϵ =
{
r
(
1 + ϵφ(x)

)
x
∣∣∣ x ∈ ∂B1

}
for every r ∈ (0, 1].

Hence, we are led to setting Ψ̃ϵ(x) :=
(
1 + ϵφ

(
x/|x|

))
x for x ∈ B1. If ϵ is small, this is a Lipschitz

diffeomorphism of B1 onto Ωϵ, which however fails to be more regular at the origin. In order to
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smooth things out, we consider a monotone non-decreasing function η ∈ C∞([0,+∞)) satisfying
η = 0 in

[
0, 14

]
, η = 1 in

[
1
2 ,+∞

)
, and define Ψϵ : B1 → Ωϵ by

Ψϵ(x) :=
(
1 + ϵ η(|x|)φ

(
x/|x|

))
x for x ∈ B1.

Now, Ψϵ is a C3,θ-diffeomorphism satisfying ∥Ψϵ− Id ∥C3,θ(B1)+∥Ψ−1
ϵ − Id ∥C3,θ(Ωϵ) ≤ Cϵ, for some

dimensional constant C. As Ψϵ agrees with Ψ̃ϵ in B1 \B 1
2
, we immediately infer that (3.67) holds

true for every r ∈
[
1
2 , 1
]
. Let then r ∈

(
0, 12

)
and p, q ∈ r∂Ωϵ. Consider the points p̂ := Ψϵ

(
Ψ̃−1

ϵ (p)
)

and q̂ := Ψϵ

(
Ψ̃−1

ϵ (q)
)
. By construction,

∣∣Ψ−1
ϵ (p̂)

∣∣ = ∣∣Ψ−1
ϵ (q̂)

∣∣ = r. Hence, by Corollary 3.0.5 we
have that |u(p̂)− u(q̂)| ≤ Cϵα. Furthermore, by the regularity of u and the fact that both Ψϵ and
Ψ̃−1

ϵ are ϵ-close to the identity, we get that |u(p)− u(p̂)|+ |u(q)− u(q̂)| ≤ Cϵ. Accordingly, (3.67)
is true for r ∈

(
0, 12

)
as well.
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Chapter 4

The Parallel Surface Fractional
Torsion Problem

This chapter deals with the proof of symmetry and quantitative stability for the so called parallel
surface fractional torsion problem. We start by recalling the Minkowski sum of two sets X,Y ∈ Rn,

X + Y := { x+ y | x ∈ X, y ∈ Y }.

Given G a smooth and bounded open set and BR the ball of radius R > 0 centered at the origin,
we let

Ω := G+BR (4.1)

and consider solutions of {
(−∆)su = 1 in Ω,

u = 0 in Rn \ Ω,
(4.2)

with the overdetermined condition
u = c on ∂G. (4.3)

The overdetermined problem (4.2)-(4.3) was firstly studied in [MS10] for the classical Laplace oper-
ator and it was motivated by the study of invariant isothermic surfaces of a nonlinear nondegenerate
fast diffusion equation. Later, in [CMS15] and [CMS16] symmetry and quantitative approximate
symmetry results were studied for more general operators. See also [Sha12] for related symmetry
results regarding the parallel surface problem.

In what follows we consider the nonlocal counterpart of this setting. Namely, on the one hand,
by Lax-Milgram Theorem, problem (4.2) admits a solution. On the other, it is not clear whether
or not a solution of (4.2) exists that also satisfies (4.3). In this context, our first main result is the
following.

Theorem 4.0.1. Let G be an open bounded set of Rn with ∂G of class C1 and set Ω := G+ BR,
for some R > 0. There exists a solution u ∈ Cs(Ω) of (4.2) satisfying the additional condition (4.3)
if and only if G (and therefore Ω) is a ball.

49
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It is clear that one implication of Theorem 4.0.1 is trivial. Indeed we recall from Chapter 2.2
that for a ball B = Br(x0) of radius r > 0 and center x0 ∈ Rn, the explicit solution ψB of (4.2)
with Ω = B is given by

ψB(x) = γn,s(r
2 − |x− x0|2)s+, (4.4)

where

γn,s :=
4−sΓ(n/2)

Γ(n/2 + s)Γ(1 + s)
. (4.5)

Since ψB is radial, then condition (4.3) is automatically satisfied for any G = Bρ(x0), with ρ < r.
Therefore, in order to prove Theorem 4.0.1 it is enough to show that if u is a solution to (4.2)
satisfying (4.3) then Ω is a ball. In other words, we prove that if a solution of the torsion problem
(4.2) has a level set which is parallel to ∂Ω then the domain is a ball and the solution is radially
symmetric. Here we notice that the regularity assumptions required on ∂G are the minimal ones
in order to be able to start the moving planes procedure.

Once the symmetry result for problem (4.2)-(4.3) is achieved, one can ask for its quantitative
stability counterpart (as done in [CMS16] for the classical Laplacian case). We recall the Lipschitz
seminorm [u]Γ of u on a surface Γ

[u]Γ := sup
x,y∈Γ, x ̸=y

|u(x)− u(y)|
|x− y|

and the parameter

ρ(Ω) := inf{ |t− s| | ∃p ∈ Ω such that Bs(p) ⊂ Ω ⊂ Bt(p) } , (4.6)

which controls how much the set Ω differs from a ball (clearly, ρ(Ω) = 0 if and only if Ω is a ball).
Our main goal is to obtain quantitative bounds on ρ(Ω) in terms of [u]∂G. In particular, our

second main result1 is the following.

Theorem 4.0.2. Let G be an open and bounded set of Rn with ∂G of class C1 and let Ω := G+BR.
Assume that ∂Ω is of class C2. Let u ∈ C2(Ω) ∩ C(Rn) be a solution of (4.2). Then, we have that

ρ(Ω) ≤ C∗ [u]
1

s+2

∂G , (4.7)

where C∗ > 0 is an explicit constant only depending on n, s, R, and the diameter diam(Ω) of Ω.

Hence, Theorem 4.0.2 asserts that the quantity [u]∂G bounds from above a pointwise measure
of closeness of Ω to a ball, namely ρ(Ω). The closer [u]∂G is to zero, the closer the domain Ω is to
a ball (in a pointwise sense). Of course, when [u]∂G = 0, estimate (4.7) reduces to ρ(Ω) = 0, and
therefore (4.6) gives that Ω is a ball: in this sense, Theorem 4.0.2 recovers Theorem 4.0.1.

We notice that the quantitative estimate (4.7) is of Hölder type and may be not optimal since we
do not recover the optimal linear bound at the limit for s→ 1 which was obtained in [CMS16]. The
main reason for the exponent 1

s+2 in (4.7) is due to the technique used to obtain our quantitative

1We observe that there exist sets G which are C∞ but such that Ω := G+BR is not even C1, see e.g. Figure 4.1.
Moreover, we recall that well known properties of the distance function (see e.g. [GT01, Lemma 14.16] or [DZ94,
Theorem 5.7]) guarantee that a certain amount of regularity of Ω suffices for the regularity of its parallel sets
{x ∈ Ω : dist(x, ∂Ω) > R} if R is small enough, but in general Ω can be even C∞ and its parallel sets may fail to
be C1, see e.g. Figure 4.2.

These observations justify the regularity assumptions on G and Ω in Theorem 4.0.2.
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Figure 4.1: An example in which G is C∞ but Ω is not C1.

estimates, which are significantly different from the local case and rely on detecting “useful mass”
of the functions involved in suitable regions of the domain.

We stress that the assumption that the constant C∗ in Theorem 4.0.2 depends on the diameter
of Ω is essential and cannot be removed: an explicit example will be presented in Section 4.6.

We finally notice that we do not have to make any assumption on connectedness on G. This
is a remarkable difference with respect to the classical local case [CMS16]. In this direction it is
not difficult to see that Theorems 4.0.1 and 4.0.2 hold under weaker assumptions, in particular by
assuming that the value c in (4.3) may be different on each connected component of G. In Section
4.7 we give further and more precise details on this result.

This chapter is organized as follows. In Section 4.1 we present a new boundary Harnack result
on a half ball for antisymmetric s-harmonic functions. Section 4.2 is devoted to the proof of the
symmetry result; we make use of weak and strong maximum principles, as well as the boundary
Harnack that we have established in Section 4.1.

In Section 4.3 we present a quantitative version of the fractional Hopf lemma introduced in [FJ15,
Proposition 3.3]. Section 4.4 uses the previous results in order to get a quantitative stability estimate
in one direction. Lastly, in Section 4.5 we complete the proof of Theorem 4.0.2 by passing from the
approximate symmetry in one direction to the desired quantitative symmetry result following an
idea used in [CFMN18].

Section 4.6 presents an example that shows that the dependence of the constant C∗ in Theo-
rem 4.0.2 upon the diameter of the domain cannot be removed. In Section 4.7 we describe some
possible generalization of Theorems 4.0.1 and 4.0.2. A technical observation of geometric type is
placed in Section 4.8.

In terms of applications, in addition to the classical motivations in the study of invariant isother-
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Exp[−1/x]

Figure 4.2: An example in which a parallel set of Ω is not C1 even though Ω is C∞.

mic surfaces [MS10], we mention that the overdetermined problem in (4.2) and (4.3) can be inspired
by questions related to population dynamics and specifically to the determination of optimal rural-
urban fringes: in this context, our results would detect that the fair shape for an urban settlement
is the circular one, as detailed in Section 4.9.

4.1 Boundary Harnack inequality
We present here a new boundary Harnack inequality for antisymmetric s-harmonic functions. From
now on, we will employ the notation H+ := {x1 > 0}, H− := {x1 < 0} and T := {x1 = 0}. We
define Q : Rn → Rn, with y 7→ y′ = (−y1, y2, . . . , yn), the reflection with respect to T . Moreover,
for R > 0 we call B+

R := BR ∩H+ and B−
R := BR ∩H−.

The main result towards the boundary Harnack inequality in our setting is the following:

Lemma 4.1.1. Let u ∈ C2(BR) ∩ C(Rn) with∫
Rn

|u(x)|
1 + |x|n+2s

< +∞ (4.8)

be a solution of 
(−∆)su = 0 in BR,

u(x′) = −u(x) for every x ∈ Rn,

u ≥ 0 in H+.

There exists a constant K > 1 only depending on n and s such that, for every z ∈ B+
R/2 and for

every x ∈ BR/4(z) ∩B+
R we have

1

K

u(z)

z1
≤ u(x)

x1
≤ K

u(z)

z1
. (4.9)

Proof. We recall that the Poisson Kernel for the fractional Laplacian in the ball is given by (see for
example [Buc16])

Pn,s(x, y) := cn,s

(
R2 − |x|2

|y|2 −R2

)s
1

|x− y|n
.
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Hence for every x ∈ BR, we have

u(x)

cn,s
=

∫
Rn\BR(0)

(
R2 − |x|2

|y|2 −R2

)s
1

|x− y|n
u(y) dy

=

∫
H+\B+

R

(
R2 − |x|2

|y|2 −R2

)s
1

|x− y|n
u(y) dy −

∫
H+\B+

R

(
R2 − |x|2

|y|2 −R2

)s
1

|x− y′|n
u(y) dy

=

∫
H+\B+

R

(
R2 − |x|2

|y|2 −R2

)s(
1

|x− y|n
− 1

|x− y′|n

)
u(y) dy =:

∫
H+\B+

R

Tn,s(x, y)

cn,s
u(y)dy.

Our goal is to show that there exists a constant K > 1 depending only on n and s such that

1

K

x1
z1

≤ Tn,s(x, y)

Tn,s(z, y)
≤ K

x1
z1
, (4.10)

for every z ∈ B+
R/2, x ∈ BR/4(z) ∩B+

R and y ∈ H+ \B+
R .

We remark that once (4.10) is established the claim in (4.9) readily follows, since

u(x)

x1
=

∫
H+\B+

R

Tn,s(x, y)

x1
u(y)dy ≤ K

∫
H+\B+

R

Tn,s(z, y)

z1
u(y)dy = K

u(z)

z1
,

which is precisely the second inequality in (4.9). The first inequality in (4.9) can be obtained simi-
larly.

Now we prove (4.10). We notice that

Tn,s(x, y)

Tn,s(z, y)
=

(
R2 − |x|2

|y|2 −R2

)s( |y|2 −R2

R2 − |z|2

)s(
1

|x− y|n
− 1

|x− y′|n

)(
1

|z − y|n
− 1

|z − y′|n

)−1

=

(
R2 − |x|2

R2 − |z|2

)s |z − y|n

|x− y|n
|z − y′|n

|x− y′|n
|x− y′|n − |x− y|n

|z − y′|n − |z − y|n
,

(4.11)

and we estimate the first term as follows(
7

16

)s

≤
(
R2 − (3R/4)2

R2

)s

≤
(
R2 − |x|2

R2 − |z|2

)s

≤
(

R2

R2 − (R/2)2

)s

≤
(
4

3

)s

. (4.12)

Moreover, we observe that

|z − y|
|x− y|

≤ |x− y|
|x− y|

+
|x− z|
|x− y|

≤ 1 +
R/4

R/4
= 2,

|z − y|
|x− y|

≥ |y| − |z|
|y|+ |x|

≥ |y| −R/2

|y|+ 3R/4
≥ 2

7
.

(4.13)

Now, considering the last terms in (4.11), we can write

|z − y′|n

|x− y′|n
|x− y′|n − |x− y|n

|z − y′|n − |z − y|n
=:

1− αn

1− βn
, (4.14)
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where
α =

|x− y|
|x− y′|

and β =
|z − y|
|z − y′|

.

We observe that

0 ≤ α2 =
|x− y|2

|x− y′|2
= 1− 4x1y1

|x− y′|2
≤ 1 and 0 ≤ β2 =

|z − y|2

|z − y′|2
= 1− 4z1y1

|z − y′|2
≤ 1 . (4.15)

Going back to (4.14) we write

1− αn

1− βn
=

(1− α)(1 + α+ · · ·+ αn−1)

(1− β)(1 + β + · · ·+ βn−1)
=

[
1− α2

1− β2

]
(1 + β)(1 + α+ · · ·+ αn−1)

(1 + α)(1 + β + · · ·+ βn−1)
.

From (4.15) we easily get

1

2n
≤ (1 + β)(1 + α+ · · ·+ αn−1)

(1 + α)(1 + β + · · ·+ βn−1)
≤ 2n (4.16)

and, using estimates similar to the ones in (4.13),(
2

7

)2
x1
z1

≤ 1− α2

1− β2
≤ 4

x1
z1
. (4.17)

By plugging (4.16) and (4.17) into equation (4.14) and then combining it with (4.12) and (4.13),
from (4.11) we get (

7

16

)s(
2

7

)n
1

2n

x1
z1

≤ Tn,s(x, y)

Tn,s(z, y)
≤
(
4

3

)s

2n+3 n
x1
z1

which leads to (4.10) if we set K = K(n, s) := (4/3)s(7/2)n+2 2n > 1. This completes the proof.

As a consequence of the previous result, we get the following two propositions which provide
boundary Harnack’s inequalities of independent interest:

Proposition 4.1.2. Let u ∈ C2(BR) ∩ C(Rn) be antisymmetric w.r.t. T , s-harmonic in BR,
nonnegative in H+ and such that (4.8) holds. Then,

sup
B+

R/2

u ≤Mu(x̂),

where x̂ = R
2 e1 and M > 0 is a constant depending on n and s.

Proof. Let x⋆ ∈ B+
R/2 be such that

u(x⋆) = sup
B+

R/2

u.

If u(x⋆) = 0 the result is trivial. Therefore, we can assume u(x⋆) > 0 and (x⋆)1 > 0.

We now point out that any point x ∈ B+
R/2 can be connected to x̂ by a Harnack chain made at

most of 3 balls of radius R/4. Hence, by choosing xa, xb ∈ B+
R/2 such that

dist(x⋆, xa) ≤ R/4, dist(xa, xb) ≤ R/4 and dist(xb, x⋆) ≤ R/4
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we can then apply Lemma 4.1.1 and get

1

K

u(x⋆)

(x⋆)1
≤ u(xa)

(xa)1
≤ K

u(xb)

(xb)1
≤ K2 u(x̂)

(x̂)1

which gives

sup
B+

R/2

u = u(x⋆) ≤ K3 u(x̂)

R/2
(x⋆)1 ≤ K3 u(x̂),

where in the last inequality we have used that (x⋆)1 ≤ R/2.

Proposition 4.1.3. Let u, v ∈ C2(BR) ∩ C(Rn) be antisymmetric w.r.t. T and satisfying (4.8),
and assume that {

(−∆)su = 0 = (−∆)sv in B+
R ,

u, v ≥ 0 in H+.

Then
sup
B+

R/2

u

v
≤ K2 inf

B+
R/2

u

v
,

where K = K(n, s) > 1 is the constant given in (4.9).

Proof. From Lemma 4.1.1 we have that for every z ∈ B+
R/2 and every x ∈ BR/4(z) ∩B+

R

1

K2

u(z)

v(z)
≤ u(x)

v(x)
≤ K2u(z)

v(z)
.

The proof then follows by using the Harnack chain as done in the proof of Proposition 4.1.2.

4.2 The symmetry result
The notation used for the method of moving planes can be found in Chapter 2.2. We recall here
that for a given direction e ∈ Sn−1 and an open bounded set E ⊂ Rn with boundary of class C1

we define Λe := sup{ x · e | x ∈ E } and

λe = inf{ λ ∈ R | Qλ̃(Eλ̃) ⊂ E, for all λ̃ ∈ (λ,Λe) }.

For a given direction e ∈ Sn−1, we will refer to Tλe = T and Eλe = Ê as the critical hyperplane
and the critical cap with respect to e, respectively, and we call λe the critical value in the direction
e. As already done in Chapter 2.2, when there is no chance of ambiguity the dependence on e in the
notation will be dropped. We now recall that for any given direction e at least one of the following
two conditions holds:

Case 1 - The boundary of the cap reflection Q(Ê) becomes internally tangent to the boundary
of E at some point P ̸∈ T ;

Case 2 - the critical hyperplane T becomes orthogonal to the boundary of E at some point
Q ∈ T .
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Throughout this chapter, the method of moving planes will be applied to the set E = G, where
G is the set appearing in (4.1). Hence the minimal regularity assumption that we need on G is that
G is of class C1. We also notice that, in our setting, the critical values λe for G are also critical
values for the set Ω, even if we do not need to assume further regularity on Ω in order to apply the
method of moving planes. This is the reason why in Theorem 4.0.1 we only require that G is of class
C1. We also notice that in Theorem 4.0.2 we assume that Ω is of class C2, but this assumption is
not needed for the application of the method of moving planes but it comes from using other tools
in the proof.

In order to prove symmetry for the problem (4.2) with condition (4.3) we will use a fractional
version of the weak and strong maximum principles and a Hopf-type Lemma for antisymmetric
s-harmonic functions.

For u, v ∈ Hs(Rn), we consider the bilinear form induced by the fractional Laplacian

E(u, v) := cn,s
2

∫
Rn

∫
Rn

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|n+2s

dxdy.

Let

Ds(Ω) := {u : Rn → R measurable : E(u, φ) is finite in Lebesgue sense for every φ ∈ Hs
0(Ω)} ,

where
Hs

0(Ω) := {u ∈ Hs(Rn) : u = 0 on Rn \ Ω}.

See e.g. [DNPV12, Gri11] and the references therein for further information about fractional func-
tional spaces.

Given g ∈ L2(Ω) we say that a function u ∈ Ds(Ω) is a solution of{
(−∆)su = g in Ω,

u = 0 in Rn \ Ω,
(4.18)

if for all φ ∈ Hs
0(Ω) we have

E(u, φ) =
∫
Ω

g(x)φ(x) dx.

It will be useful to introduce the notion of entire antisymmetric supersolution. Let H ⊂ Rn be
a half space and let A be an open set with A ⊂ H. Given g̃ ∈ L2(A) we say that v ∈ Ds(A) is an
entire antisymmetric supersolution2 of (−∆)sv = g̃ in A, if the following conditions hold:

• v is a supersolution of (−∆)sv = g̃ in A, that is, for all φ ∈ Hs
0(A), φ ≥ 0 we have

E(v, φ) ≥
∫
A

g̃(x)φ(x) dx,

• v ≥ 0 in H \A and v is antisymmetric with respect to ∂H.

We are now ready to prove Theorem 4.0.1.
2Since we are going to apply the method of moving planes, the set A will typically be the intersection between

the set Ω and a half space, and the function v will be the difference between the solution u of (4.18) and its reflection
with respect to an hyperplane.
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Proof of Theorem 4.0.1. We apply the method of moving planes to the set G. Let e ∈ Sn−1 be
a fixed direction. Without loss of generality, we can assume that e = e1 and that the critical
hyperplane T goes through the origin (that is, λe = 0). We call H− := {x1 < 0} and consider the
function

v(x) := u(x)− u(Q(x)) for x ∈ Rn,

where Q : Rn → Rn is the reflection with respect to T . We have
(−∆)sv = 0 in Q(Ω̂),

v ≥ 0 in H− \ Q(Ω̂),

v(Q(x)) = −v(x) for every x ∈ Rn.

Thus, v is an entire antisymmetric supersolution on Q(Ω̂). By the weak maximum principle
(see [FJ15, Proposition 3.1]) we know that v ≥ 0 in H−. The strong maximum principle (see [FJ15,
Corollary 3.4]) then implies that either v > 0 in Q(Ω̂) or v ≡ 0 in Rn. We will show that the first
possibility cannot occur.

Assume by contradiction that v > 0 in Q(Ω̂). We need to distinguish between the two possible
critical cases.

Case 1 - since both P and P ′ belong to ∂G and (4.3) holds, we immediately get that

v(P ) = u(P )− u(P ′) = 0,

which is already a contradiction.

Case 2 - in this case the critical hyperplane T = {x1 = 0} is orthogonal to ∂G at some point
Q = (0, Q2, . . . , Qn) and therefore (4.3) ensures that

∂1v(Q) = 0. (4.19)

On the other hand, Lemma 4.1.1 implies the following Hopf-type inequality

∂1v(Q) < 0, (4.20)

which contradicts (4.19) and hence (4.3). Indeed, setting z = (−R/4, Q2, . . . , Qn) and x = xt =
(−t, Q2, . . . , Qn) ∈ BR/4(z), we have that

v(xt)

−t
≥ − 4

RK
v(z), (4.21)

where K > 1 is a constant only depending on n and s. Being z ∈ Q(Ω̂), we have that v(z) > 0,
and by letting t go to 0 (4.20) follows by (4.21).

This implies that G (and hence Ω) is symmetric with respect to the direction e. Since the
direction e is arbitrary, we easily obtain that G (and hence Ω) is a ball.

An alternative approach to the Hopf-type inequality (4.20) has been developed in a very recent
manuscript [DPTV24].
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4.3 A quantitative maximum principle
The following lemma is a quantitative version of [FJ15, Proposition 3.3]. To state it, we adopt the
notion of distance between two sets, say X and Y , defined by

dist(X,Y ) := inf
{
|x− y|, x ∈ X, y ∈ Y

}
.

Lemma 4.3.1. Let B ⊂ H− be a ball of radius R > 0 such that dist(B,H+) > 0. Let v ∈ Cs(B)
be an entire antisymmetric supersolution of{

(−∆)sv = 0 in B,

v ≥ 0 in H−.

Let K ⊂ H− be a bounded set of positive measure such that K ⊂ (H− \ B) and infK v > 0. Then
we have that

v ≥ C
[
dist(K,H+) |K| inf

K
v
]
ψB in B, (4.22)

where ψB is defined in (4.4), with

C :=
2(n+ 2s)C(n, s) dist(B,H+)n+2s+1(

dist(B,H+)n+2s + C(n, s) |B| γn,sR2s
)(
diam(B) + diam(K) + dist(Q(K), B)

)n+2s+2 .

Proof. We define

w(x) := ψB(x)− ψQ(B)(x) + αχK(x)− αχQ(K)(x) for x ∈ Rn

where α > 0 is a parameter to be set later on, ψB is the solution of the fractional torsion problem
in B and χA is the characteristic function of a given set A. A direct computation shows that
w ∈ Ds(B).

The function w is antisymmetric and for any nonnegative test function φ ∈ Hs
0(B) we have

E(w,φ) = E(ψB , φ)− E(ψQ(B), φ) + α E(χK , φ)− α E(χQ(K), φ)

=

∫
B

φ(x)dx+ C(n, s)

∫
B

∫
Q(B)

ψQ(B)(y)φ(x)

|x− y|n+2s
dydx

− α C(n, s)

∫
B

∫
K

φ(x)

|x− y|n+2s
dydx+ α C(n, s)

∫
B

∫
Q(K)

φ(x)

|x− y|n+2s
dydx

≤
∫
B

φ(x)dx

[
κ− α C(n, s)

∫
K

(
1

|x− y|n+2s
− 1

|x− y′|n+2s

)]
,

where

κ = κ(n, s,B) = 1 + C(n, s) |B| sup
B
ψB sup

x∈B,y∈H+

1

|x− y|n+2s
< +∞.

If we set

C1 = C1(n, s,K,B) = C(n, s) |K| inf
x∈B,y∈K

(
1

|x− y|n+2s
− 1

|x− y′|n+2s

)
> 0, (4.23)
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then
E(w,φ) ≤

∫
B

φ(x)(κ− αC1).

By choosing α in such a way that κ− αC1 ≤ 0, we get (−∆)sw ≤ 0 in B.
For concreteness, we can thus choose

α :=
κ

C1

to have the previous argument in place and then set

τ := inf
K

v

α
> 0

and define
ṽ(x) := v(x)− τw(x)

for every x ∈ Rn. Recalling that w is antisymmetric and that w ≡ 0 on H− \ (B ∪K) we have{
(−∆)sṽ ≥ 0 in B
ṽ ≥ 0 in H− \B.

From the weak maximum principle we then get that ṽ ≥ 0 in B and, in particular,

v ≥ τψB in B. (4.24)

For every x ∈ B and every y ∈ K we compute

1

|x− y|n+2s
− 1

|x− y′|n+2s
=
n+ 2s

2

∫ |x−y′|2

|x−y|2
t−

n+2s+2
2 dt

≥ n+ 2s

2

(
|x− y′|2 − |x− y|2

)
|x− y′|−(n+2s+2)

≥ n+ 2s

2
4x1y1|x− y′|−(n+2s+2).

Moreover, for all x ∈ B and y ∈ K,

|x− y′| ≤ diam(B) + diam(K) + dist(Q(K), B)

and consequently

1

|x− y|n+2s
− 1

|x− y′|n+2s
≥ 2(n+ 2s)dist(B,H+) dist(K,H+)(

diam(B) + diam(K) + dist(Q(K), B)
)n+2s+2 .

Hence, by (4.23),

C1 ≥ 2(n+ 2s)C(n, s) |K|dist(B,H+) dist(K,H+)(
diam(B) + diam(K) + dist(Q(K), B)

)n+2s+2
.

As a result,

τ =
C1

κ
inf
K
v ≥ 2(n+ 2s)C(n, s) |K|dist(B,H+) dist(K,H+)

κ
(
diam(B) + diam(K) + dist(Q(K), B)

)n+2s+2 inf
K
v.
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We also observe, owing to (4.4), that

sup
B
ψB(x) = γn,sR

2s

and therefore

κ = 1 + C(n, s) |B| γn,sR2s sup
x∈B,y∈H+

1

|x− y|n+2s

≤ 1 +
C(n, s) |B| γn,sR2s

dist(B,H+)n+2s

=
dist(B,H+)n+2s + C(n, s) |B| γn,sR2s

dist(B,H+)n+2s
.

Accordingly,

τ ≥ 2(n+ 2s)C(n, s) |K|dist(B,H+)n+2s+1 dist(K,H+)(
dist(B,H+)n+2s + C(n, s) |B| γn,sR2s

)(
diam(B) + diam(K) + dist(Q(K), B)

)n+2s+2 inf
K
v.

Thus, the desired conclusion follows from (4.24).

4.4 Approximate symmetry in one direction
As customary, we say that a bounded domain Ω ⊂ Rn satisfies the uniform interior ball condition
if there exists a radius riΩ > 0 such that for every point x0 ∈ ∂Ω we can find a ball Bi ⊂ Ω of radius
riΩ with Bi ∩ Ωc = {x0}.

In the next subsection, we collect some useful technical lemmas which hold true for domains
satisfying such a condition.

4.4.1 Results for domains satisfying the uniform interior ball condition

As noticed in [CPY22, MP23], the following simple explicit bound for the perimeter holds true.

Lemma 4.4.2 (A general simple upper bound for the perimeter, [CPY22, MP23]). Let D ⊂ Rn be
a bounded domain with boundary of class C1,α, with 0 < α ≤ 1. If D satisfies the uniform interior
ball condition with radius riD, the we have that

|∂D| ≤ n|D|
riD

. (4.25)

Proof. By following [MP23], the desired bound can be easily obtained by considering the solution
f ∈ C1,α(D) to

∆f = n in D, f = 0 on ∂D,

and putting together the identity

n|D| =
∫
∂D

∂νf dHn−1, where ∂ν denotes the outer normal derivative,
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with the Hopf-type inequality
∂νf ≥ riD,

which can be found in [MP19, Theorem 3.10].
We mention that a more general version of the bound (4.25) remains true even without assuming

the uniform interior ball condition, at the cost of replacing the radius rD of the ball condition with
a parameter associated to the (weaker) pseudoball condition, which is always verified by C1,α

domains: see [CPY22, Remark 1.1] and the last displayed inequality in the proof of [CPY22,
Corollary 2.1].

The previous result is useful to prove the following.

Lemma 4.4.3. Let Ω ⊂ Rn be a bounded domain with ∂Ω of class C2. For δ > 0, we set

Aδ := {x ∈ Ω | dist(x, ∂Ω) < δ}. (4.26)

Then, we have that

|Aδ| ≤ c δ, with c :=
2n|Ω|
riΩ

, (4.27)

where riΩ is the radius of the uniform interior ball condition of Ω.

We recall that if a domain has boundary of class C2, then it satisfies a uniform interior ball
condition.

Proof of Lemma 4.4.3. We set d∂Ω(x) := dist(x, ∂Ω) for x ∈ Ω. For δ ≥ 0, we define

Vδ := {x ∈ Ω | d∂Ω(x) > δ} and Γδ := {x ∈ Ω | d∂Ω(x) = δ} .

It is well-known that d∂Ω ∈ C2(ArΩ) (see, e.g., [GT01, Lemma 14.16]).
We first prove the claim in the case 0 ≤ δ ≤ riΩ/2. From the coarea formula we obtain

|Aδ| =
∫
Aδ

1 dx =

∫
Aδ

|∇d∂Ω(x)| dx =

∫ δ

0

(∫
Aδ∩d−1

∂Ω(t)

dHn−1

)
dt =

∫ δ

0

|Γt| dt. (4.28)

Since t ≤ δ ≤ riΩ/2, we have that Vt is a bounded domain satisfying the uniform interior touching
ball condition with radius riΩ/2, and with boundary Γt of class C2. Thus, we can apply Lemma
4.4.2 with D := Vt to get that

|Γt| ≤
2n|Vt|
riΩ

≤ 2n|Ω|
riΩ

, (4.29)

where the last inequality follows by the inclusion Vt ⊆ Ω. Combining (4.28) with (4.29) immediately
gives (4.27), for any 0 ≤ δ ≤ riΩ/2.

On the other hand, if δ ≥ riΩ/2, we easily find that

|Aδ| ≤ |Ω| ≤
[
2|Ω|
riΩ

]
δ,

where the first inequality follows by the inclusion

Aδ ⊆ Ω, for any δ ≥ 0.

Thus, (4.27) still holds true.



62 CHAPTER 4. PARALLEL SURFACE FRACTIONAL TORSION

We now detect an optimal growth of the solution to (4.2) from the boundary, by generalizing
[MP20, Lemma 3.1] to the fractional setting.

Lemma 4.4.4. Let u satisfy (4.2) and let γn,s be the constant defined in (4.5). Then,

u(x) ≥ γn,s dist(x, ∂Ω)
2s for every x ∈ Ω. (4.30)

Moreover, if Ω is of class C1 and satisfies the uniform interior sphere condition with radius rΩ,
then it holds that

u(x) ≥ γn,s (r
i
Ω)

s dist(x, ∂Ω)s for every x ∈ Ω. (4.31)

Proof. Let x ∈ Ω and set r := dist(x, ∂Ω). We consider

ψ(y) := γn,s
(
r2 − |y − x|2

)s
+
,

which satisfies the fractional torsion problem in Br(x), namely{
(−∆)sψ = 1 in Br(x),

ψ = 0 on Rn \Br(x).
(4.32)

By the comparison principle (see [FJ15, Remark 3.2]), we have that u ≥ ψ on Br(x). In particular,
at the center x of Br(x), we have that

u(x) ≥ ψ(x) = γn,s dist(x, ∂Ω)
2s,

and (4.30) follows.
Notice that (4.31) follows from (4.30) if dist(x, ∂Ω) ≥ riΩ. Hence, from now on, we can suppose

that

dist(x, ∂Ω) < riΩ.

Let x̄ be the closest point in ∂Ω to x and call B̃ ⊂ Ω the ball of radius riΩ touching ∂Ω at x̄ and
containing x. Up to a translation, we can always suppose that

the center of the ball B̃ is the origin. (4.33)

Now, we let ψ̃ be the solution of (4.32) in B̃, that is ψ̃(y) := γn,s
(
(riΩ)

2 − |y|2
)s
+
. By comparison

([FJ15, Remark 3.2]), we have that u ≥ ψ̃ in B̃, and hence, being x ∈ B̃,

u(x) ≥ γn,s ((r
i
Ω)

2 − |x|2)s+ = γn,s (r
i
Ω + |x|)s(riΩ − |x|)s+ ≥ γn,s (r

i
Ω)

s (riΩ − |x|)s. (4.34)

Moreover, from (4.33),

riΩ − |x| = dist(x, ∂Ω).

This and (4.34) give (4.31), as desired.
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4.4.5 Proof of the main lemma
From now on, we let Ω := G+BR(0), with G ⊆ Rn bounded, with ∂G of class C1 and ∂Ω of class
C2.

Remark 4.4.6 (On the constants in the quantitative estimates). The constants in all of our
quantitative estimates can be explicitly computed and only depend on n, s, R, and diam(Ω). In
some of the intermediate results, the parameter |Ω| may appear. It is clear that such a parameter
can be removed thanks to the bounds

ωn

n
Rn ≤ |Ω| ≤ ωn

n
diam(Ω)n, where

ωn

n
is the volume of the unit ball in Rn, (4.35)

which easily hold true in light of the monotonicity of the volume with respect to inclusion.
We remark that the estimates of the previous subsection also depend on the radius rΩ of the

uniform interior ball condition associated to Ω. Nevertheless, from now on, we have that

riΩ := R, (4.36)

by the definition of Ω := G+BR(0)

We apply the method of moving planes to the set G. Hence, we fix a direction e = e1 and assume
the associated critical hyperplane to be T = {x1 = 0}, with Q : Rn → Rn, x 7→ x′ the reflection
with respect to T . For the proofs of the next two lemmas we will use the following notation: we
set for t ≥ 0

Gt := G+Bt(0), Ĝt := Gt ∩H+, G−
t := Gt ∩H− Ut := Q(Ĝt). (4.37)

Note that Ω = GR.

Let u ∈ C2(Ω) ∩ C(Rn) be a solution of (4.2). For every x ∈ Rn, we set

v(x) := u(x)− u(x′) .

Lemma 4.4.7. Given P ∈ UR with B = BR/8(P ) such that dist(B, ∂UR) ≥ R/8, we have that

|Ω− \ UR| ≤ C̃ v(P )
1

2+s , (4.38)

where C̃ > 0 is an explicit constant depending only on n, s, R, and diam(Ω).

Proof. For δ ≥ 0, we set Kδ := (Ω− \ UR) \ (Eδ ∪ Fδ), where

Eδ := Aδ ∩ (Ω− \ UR) with Aδ as defined in (4.26),

Fδ := {x ∈ Ω− \ UR : dist(x, T ) < δ}.

With our choice of B clearly dist(B,H+) ≥ dist(B, ∂UR) ≥ R/8 and therefore, an application
of Lemma 4.3.1 with B := BR/8(P ) and K := Kδ gives that

v ≥
⋆

C
[
dist(Kδ, H

+) |Kδ| inf
Kδ

v
]
ψB in B, (4.39)
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holds true for a suitable explicit
⋆

C > 0, depending only on n, s, R, and diam(Ω). Here, we used
that in the present situation K ⊂ Ω and B ⊂ UR.

Now looking at Kδ we have Kδ ⊆ (Ω− \ UR) ⊆ H− and so dist(Kδ, B) ≥ R/8. Moreover, since
Kδ ⊆ (G−

R−δ \ UR) we have that v(x) = u(x) > 0 for every x ∈ Kδ; hence, (4.31) and (4.36) give
that

inf
K
v ≥ [γn,sR

s] δs. (4.40)

Also, since Kδ ⊆ (Ω− \ UR) \ Fδ, then

dist(Kδ, H
+) ≥ δ. (4.41)

Clearly,
|Kδ| = |Ω− \ UR| − |Eδ ∪ Fδ| ≥ |Ω− \ UR| − (|Eδ|+ |Fδ|).

Since Eδ ⊆ Aδ, Lemma 4.4.3 gives that

|Eδ| ≤
[
2n|Ω|
R

]
δ,

where we also used (4.36). Also, by definition of Fδ, it is trivial to check that

|Fδ| ≤ diam(Ω)n−1δ.

Putting together the last three displayed formulas we conclude that

|Kδ| ≥ |Ω− \ UR| − c̃ δ, with c̃ :=
2ωndiam(Ω)n

R
+ diam(Ω)n−1. (4.42)

Here, we also used the second inequality in (4.35) to remove the dependence on |Ω| in the constant
c̃.

Putting together (4.39), (4.40), (4.41), (4.42), and that ψB(P ) = γn,s(R/8)
2s (by (4.4) with

x0 := P ), we get that

v(P ) ≥
⋆⋆

C δ1+s
(
|Ω− \ UR| − c̃ δ

)
with

⋆⋆

C :=
⋆

C [γn,sR
s] (R/8)2s γn,s,

that is:
|Ω− \ UR| ≤

v(p)
⋆⋆

C
δ−(1+s) + c̃ δ.

By minimizing in δ the right-hand side of the last inequality, we can conveniently choose

δ :=

[
(1 + s)v(p)

⋆⋆

C c̃

] 1
2+s

and obtain that (4.38) holds true with

C̃ :=

[
(1 + s)c̃1+s

⋆⋆

C

] 1
2+s

.
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The next lemma uses the previous result to get a stability estimate in one specific direction.

Lemma 4.4.8 (Almost symmetry in one direction). We have that

|Ω \ Q(Ω)| ≤ C [u]
1

2+s

∂G , (4.43)

where C > 0 is an explicit constant only depending on n, s, R, and diam(Ω).

Proof. We apply the method of moving planes to G in the direction e1. We need to distinguish
between some cases.
Case 1 - U0 is internally tangent to G at a point P which is not on T . We distinguish two subcases,
according to the distance of P from T .

Case 1a - We assume dist(P, T ) > R/8. Since P ∈ ∂G ∩ ∂U0 we have

v(P ) = u(P )− u(P ′) ≤ [u]∂G diam(Ω).

We then apply Lemma 4.4.7 to obtain that

|Ω− \ UR| ≤ C̃ diam(Ω)
1

2+s [u]
1

2+s

∂G .

Case 1b - P ∈ ∂G ∩ ∂U0 such that dist(P, T ) ≤ R/8.
From the definitions of v and [u]∂G, we have that

v(P )

(−P1)
=

2(u(P )− u(P ′))

dist(P, P ′)
≤ 2[u]∂G, (4.44)

where we adopted the notation P = (P1, P2, . . . , Pn).
As noticed in item (ii) of Lemma 4.8.1, we have that BR(P ) ⊂ UR ∪ [Ω ∩ (H+ ∪ T )].
We set P̂ := (0, P2, . . . , Pn) the projection of P on the hyperplane T . We then set P :=

(−R/4, P2, . . . , Pn) so that −P 1 = dist(P , T ) = R/4. Using Lemma 4.1.1 with BR := BR/2(P̂ ), we
see that

4

R
v(P ) =

v(P )

(−P )1
≤ K

v(P )

(−P1)
. (4.45)

Putting together (4.44) and (4.45) gives that

v(P ) ≤ R

2
K[u]∂G,

and hence an application of Lemma 4.4.7 with P := P leads to

|Ω− \ UR| ≤ C̃

(
R

2
K

) 1
2+s

[u]
1

2+s

∂G .

Case 2 - T is orthogonal to the boundary of G at some point Q.
Again, in light of item (ii) of Lemma 4.8.1, we have that BR(Q) ⊂ UR ∪ [Ω ∩ (H+ ∪ T )].
We choose P := (−R/4, Q2, . . . , Qn) so that −P 1 = dist(P , T ) = R/4.
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Using Lemma 4.1.1 with BR := BR(Q), for every y = (y1, Q2, . . . , Qn) ∈ BR/4(P ) we obtain
that

v(P )

(−P )1
≤ K

v(y)

(−y1)
≤ K [u]∂G,

and hence
v(P ) ≤ R

4
K [u]∂G.

Again, we apply Lemma 4.4.7 with P := P , and we get that

|Ω− \ UR| ≤ C̃

(
R

4
K

) 1
2+s

[u]
1

2+s

∂G .

In all cases, (4.43) holds true with

C := C̃

(
max

{
diam(Ω),

R

2
K

}) 1
2+s

.

This completes the proof.

4.5 The stability result
For the proof of the following lemma we closely follow [CFMN18, Lemma 4.1]. The idea is the
following: for a given direction e ∈ Sn−1 we slice the set Ω in a (finite number of) sections depending
on the critical value λe, using the almost symmetry result in one direction of the previous section
(Lemma 4.5.1). This together with a simple observation on set reflections leads to an estimate on
λe = dist(0, T e).

Lemma 4.5.1. Let ε := min{1/4, 1/n} |Ω|/C with C as in Lemma 4.4.8. Assume that

[u]
1

s+2

∂G ≤ ε (4.46)

and suppose that the critical hyperplanes with respect to the coordinate directions T ej coincide with
{xj = 0} for every j = 1, . . . , n. For a fixed direction e ∈ Sn−1 we have

|λe| ≤ Ĉ [u]
1

s+2

∂G (4.47)

where Ĉ = 4 (n+ 3) diam(Ω)
|Ω| C > 0.

Proof. We set Ω0 := {−x | x ∈ Ω}. Since Ω0 can be obtained via composition of the n reflections
with respect to the hyperplanes T ej for j = {1, . . . , n}, by applying Lemma 4.4.8 n times with
respect to the coordinate directions we obtain

|Ω△Ω0| ≤ nC [u]
1

s+2

∂G , (4.48)

where we define the symmetric difference between two sets A and B as A△B := (A \B)∪ (B \A).
Indeed, we first notice that

|Ω△Ω0| = 2 |Ω \ Ω0|.
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Moreover, we have that

|Ω \ Ω0| ≤ |Ω \Qn(Qn−1(. . . (Q1(Ω)) . . . )| ≤ |Ω \Qn(Ω)|+ |Qn(Ω) \Qn(Qn−1(. . . (Q1(Ω)) . . . )|,

where Qj = Qej the reflection with respect to the critical value in the coordinate direction ej , for
j from 1 to n. Now observing that

|Qn(Ω) \Qn(Qn−1(. . . (Q1(Ω)) . . . )| = |Qn
(
Ω \ (Qn−1(. . . (Q1(Ω)) . . . )

)
|,

using the estimate in Lemma 4.4.8 and iterating the argument we obtain (4.48).

Now, assume λe > 0.
We notice that Λe ≤ diam(Ω). In fact, if Λe > diam(Ω), then x · e ≥ 0 for every x ∈ Ω, and

hence
|Ω∆Ω0| = 2|Ω|.

By using the last identity with (4.48), we would find

2|Ω| ≤ nC [u]
1

s+2

∂G ,

which contradicts (4.46).
Now let Ω′ = Qe(Ω) be the reflection of Ω about the critical hyperplane T e. Using Lemma 4.4.8

in the direction e we get
|Ω△Ω′| ≤ C [u]

1
s+2

∂G . (4.49)

Recalling that Eλ = {x · e > λ} and Ωλ = Ω ∩ Eλ, from (4.49) we get

|Ωλe | ≥
|Ω|
2

− C [u]
1

s+2

∂G . (4.50)

Moreover, if we set E0
λ := {−x | x ∈ Eλ} we also have

|Ω ∩ E0
λe
| = |Ω0 ∩ Eλe

| ≥ |Ωλe
| − |Ω△Ω0| ≥ |Ω|

2
− (n+ 1)C [u]

1
s+2

∂G ,

which together with (4.50) gives

| {x ∈ Ω | − λe ≤ x · e ≤ λe} | ≤ (n+ 2)C [u]
1

s+2

∂G . (4.51)

Since {λe ≤ x · e ≤ 3λe} is mapped into {|x · e| ≤ λe} by the reflection with respect to Te, using
again (4.48) and (4.51) we get

| {x ∈ Ω |λe < x · e < 3λe} | ≤ | {x ∈ Ω′ | |x · e| ≤ λe} | ≤

≤ | {x ∈ Ω | |x · e| ≤ λe} |+ |Ω△Ω′ | ≤ (n+ 3)C [u]
1

s+2

∂G .

Now let mk := | {x ∈ Ω | (2k − 1)λe ≤ x · e ≤ (2k + 1)λe} | with k ≥ 1. By the moving plane
procedure the set Ω ∩ Tµ (seen as a subset in Rn−1) is included in Ω ∩ Tµ′ , for every λe ≤ µ′ ≤ µ.
Therefore, mk is a decreasing sequence and for every k ≥ 1

mk ≤ m1 ≤ (n+ 3)C [u]
1

s+2

∂G .
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Now letting k0 be the smallest natural number such that (2k0 + 1)λe ≥ Λe we get

|Ωλe
| = |Ω ∩ {λe ≤ x · e ≤ Λe}| ≤

k0∑
k=1

mk ≤ 1

2

(
Λe

λe
+ 1

)
(n+ 3)C [u]

1
s+2

∂G

and therefore
|Ωλe

|λe ≤ (n+ 3) diam(Ω)C [u]
1

s+2

∂G .

In light of (4.50) and (4.46), we have that |Ωλe
| ≥ |Ω|/4, and (4.47) follows.

We are now ready to complete the proof of the stability result in Theorem 4.0.2.

Proof of Theorem 4.0.2. Up to a translation we can assume that the critical hyperplanes T ej with
respect to the n coordinate directions intersect at the origin. We choose ε > 0 as in the proof of
Lemma 4.5.1.

Let
ρmin := min

x∈∂Ω
|x|, ρmax := max

x∈∂Ω
|x|

and x, y ∈ ∂Ω such that |x| = ρmin and |y| = ρmax. Notice that, if x = y, then Ω is a ball, and the
theorem trivially holds true. Thus, we assume x ̸= y and consider the unit vector

e =
x− y

|x− y|

and the corresponding critical hyperplane T e. The method of moving planes tells us that

dist(x, Te) ≥ dist(y, Te). (4.52)

Indeed, since x = y − te with t = |x − y|, the critical position can be reached at most when y′

coincides with x, which corresponds to the case in (4.52) where we have equality, while in every
other case a strict inequality holds. Therefore we get

ρmax − ρmin = |y| − |x| ≤ 2 dist(0, Te) = 2|λe|. (4.53)

Clearly, ρ(Ω) ≤ ρmax−ρmin. This, together with (4.53) and Lemma 4.5.1 gives (4.7) with C∗ = 2Ĉ,
if (4.46) holds true. On the other hand, if (4.46) does not hold, that is, if

[u]∂G > ε,

then it is trivial to check that

ρ(Ω) ≤ diam(Ω) ≤
[
diam(Ω)

ε
1

s+2

]
[u]

1
s+2

∂G ,

which is (4.7) with C∗ = diam(Ω)/ε1/(s+2).
That is, (4.7) always holds true with

C∗ = max

{
2Ĉ,

diam(Ω)

ε
1

s+2

}
.

As usual, the dependence on |Ω| appearing in Ĉ and ε can be removed by using (4.35).
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4.6 On the dependence of C∗ in Theorem 4.0.2 on the diam-
eter of Ω

A natural question is whether or not the quantitative stability result in Theorem 4.0.2 holds true
with a constant C∗ which is independent of the diameter of Ω.

We show with an explicit example that this is not possible. The example is interesting in itself
since it shows an “approximate bubbling” for remote balls. More specifically, we take L > 10, to be
taken as large as we wish in what follows and G := B1/4(−Le1)∪B1/4(Le1). We also take R := 3/4
in (4.1). In this way, we have that

Ω = B1(−Le1) ∪B1(Le1),

namely the domain is the union of two balls of unit radius located at mutual large distance.
We take u to be the corresponding torsion function as defined in (4.2). Let also v be the solution

of {
(−∆)sv = 1 in B1(−Le1),
v = 0 in Rn \B1(−Le1),

which we know to be radial.
We define w := u− v and we point out that

(−∆)sw = 0 in B1(−Le1),
w = u in B1(Le1),

w = 0 in Rn \
(
B1(−Le1) ∪B1(Le1)

)
.

From this and the fractional Schauder estimates in [DSV19, Theorem 1.3], used here with k := ℓ :=
0, f := 0 and

γ :=


11

10
if s ̸∈

{
9

20
,
19

20

}
,

13

10
if s ∈

{
9

20
,
19

20

}
,

we conclude that

∥w∥C1(B1/2(−Le1)) ≤ C

∫
Rn\B1/2(−Le1)

|w(y)|
|y|n+2s

dy

≤ C

[
∥w∥L∞(B1(−Le1)\B1/2(−Le1)) +

∫
B1(Le1)

|u(y)|
|y|n+2s

dy

]

≤ C

[
∥w∥L∞(B1(−Le1)\B1/2(−Le1)) +

∥u∥L∞(Rn)

Ln+2s

]
,

(4.54)

with C > 0 depending only on n and s (which we feel free to rename from line to line).
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Also, using the fractional Poisson Kernel P of the ball B1 (see e.g. [Buc16, Theorem 2.10]), we
have that, for all x ∈ B1,

|w(x− Le1)| =

∣∣∣∣∣
∫
Rn\B1

P (x, y)w(y − Le1)dy

∣∣∣∣∣ ≤ C(1− |x|2)s
∫
Rn\B1

|w(y − Le1)|
(|y|2 − 1)s|x− y|n

dy

= C(1− |x|2)s
∫
B1(2Le1)

|u(y − Le1)|
(|y|2 − 1)s|x− y|n

dy ≤
C∥u∥L∞(Rn)

Ln+2s
.

As a result,

∥w∥L∞(B1(−Le1)) ≤
C∥u∥L∞(Rn)

Ln+2s
.

From this and (4.54) we arrive at

∥w∥C1(B1/2(−Le1)) ≤
C∥u∥L∞(Rn)

Ln+2s
. (4.55)

Now we take φ ∈ C∞(Rn, [0, 1]) such that φ = 1 in B2(−Le1) ∪ B2(Le1) and φ = 0 out-
side B3(−Le1) ∪B3(Le1). Thus, if x ∈ B1(−Le1) ∪B1(Le1),∫

Rn

φ(x)− φ(z)

|x− z|n+2s
dz =

∫
Rn

1− φ(z)

|x− z|n+2s
dz ≥

∫
B1((5−L)e1)∪B1((L−5)e1)

1− φ(z)

|x− z|n+2s
dz

=

∫
B1((5−L)e1)∪B1((L−5)e1)

1

|x− z|n+2s
dz ≥ c,

for some c > 0 depending only on n and s.
Accordingly, we can take ψ := Cφ with C large enough such that (−∆)sψ ≥ 1. Thus, by the

maximum principle, we deduce that u ≤ ψ and accordingly ∥u∥L∞(Rn) ≤ C.
Plugging this information into (4.55) we conclude that

∥w∥C1(B1/2(−Le1)) ≤
C

Ln+2s
.

Since w is antisymmetric, this gives that

∥w∥C1(B1/2(−Le1)∪B1/2(Le1)) ≤
C

Ln+2s
.

Consequently, for all x ̸= y ∈ ∂B1/4(−Le1) (as well as for all x ̸= y ∈ ∂B1/4(Le1)),

|w(x)− w(y)|
|x− y|

≤ C

Ln+2s
.

Also, for all x ∈ ∂B1/4(−Le1) and y ∈ ∂B1/4(Le1), we have that |x− y| ≥ 1, therefore

|w(x)− w(y)|
|x− y|

≤ |w(x)|+ |w(y)| ≤ 2∥w∥L∞(B1/2(−Le1)∪B1/2(Le1)) ≤
C

Ln+2s
.

As a result,

[u]∂G ≤ [v]∂B1/4(−Le1)∪∂B1/4(Le1) + [w]∂B1/4(−Le1)∪∂B1/4(Le1)

= 0 + sup
x,y∈∂B1/4(−Le1)∪∂B1/4(Le1), x ̸=y

|w(x)− w(y)|
|x− y|

≤ C

Ln+2s
.
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Hence, if (4.7) holded true with C∗ independent of the diameter of Ω, we would have that

ρ(B1(−Le1) ∪B1(Le1)) ≤
C

L
n+2s
s+2

.

For this reason, there would exist p ∈ B1(−Le1) ∪B1(Le1) and t, s > 0 such that

Bs(p) ⊂ B1(−Le1) ∪B1(Le1) ⊂ Bt(p)

and
|t− s| ≤ C

L
n+2s
s+2

.

But necessarily s ≤ 1 and t ≥ L, from which a contradiction plainly follows when L is sufficiently
large.

4.7 Generalizations of Theorems 4.0.1 and 4.0.2
In this section we briefly describe how Theorems 4.0.1 and 4.0.2 can be slightly generalized in the
case G has multiple connected components.

Let assume that Ω = G+BR, with G an open bounded set with

G = G1 ∪ . . . ∪Gm , (4.56)

where Gi, i = 1, . . . ,m, are the connected components of G and they are such that

(Gi +BR) ∩ (Gj +BR) = ∅ for i ̸= j .

In this setting, the overdetermined condition (4.3) can be replaced by

u = ci on ∂Gi (4.57)

for some constants ci, i = 1, . . . ,m. We have the following generalization of Theorem 4.0.1.

Theorem 4.7.1. Let G be as in (4.56) with ∂G of class C1 and set Ω := G+ BR. There exists a
solution u ∈ Cs(Ω) of (4.2) satisfying (4.57) if and only if G (and therefore Ω) is a ball.

Proof. The proof is completely analogous to the one of Theorem 4.0.1. This is due to the fact that,
when we apply the method of moving planes, by construction we have that the tangency point P of
Case 1 and its reflected P ′ belong to the same connected component of G. It is clear that in Case
2 the same holds.

We now discuss how to modify our argument for generalizing Theorem 4.0.2 in this setting. The
main point is to change the definition of deficit. Indeed, in Theorem 4.0.2 we used the deficit

[u]∂G := sup
x,y∈∂G, x̸=y

|u(x)− u(y)|
|x− y|

.

It is clear that [u]∂G ̸= 0 if ci ̸= cj for some i and j in (4.57) and then [u]∂G cannot be used as a
deficit in this setting. For this reason, we consider the deficit

[u]∗ := sup
i=1,...,m

sup
x,y∈∂Gi

x̸=y

|u(x)− u(y)|
|x− y|

. (4.58)

By using this deficit we can argue as done for Theorem 4.0.2 and obtain the following result.
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Theorem 4.7.2. Let G be as in (4.56) with ∂G of class C1 and let Ω := G+BR. Assume that ∂Ω
is of class C2. Let u ∈ C2(Ω) ∩ C(Rn) be a solution of (4.2). Then, we have that

ρ(Ω) ≤ C∗ [u]
1

s+2
∗ ,

where [u]∗ is given by (4.58) and C∗ > 0 is an explicit constant only depending on n, s, R, and the
diameter diam(Ω) of Ω.

Proof. By using the remark noticed in the proof of Theorem 4.7.1, the proof of the theorem is the
same as the one of Theorem 4.0.2 and for this reason is omitted.

4.8 Geometric remarks

The following technical lemma has been used in the proof of Lemma 4.4.8.

Lemma 4.8.1. The following relations hold true.

(i) For any two open sets A and D in Rn, we have that

A+D = A+D,

where A is the closure of A.

(ii) In the notation introduced in (4.37), for any point x ∈ U0 := Q(G ∩H+), we have that

BR(x) ⊂ UR ∪
[
Ω ∩ (H+ ∪ T )

]
.

Proof. (i) The inclusion ⊂ is obvious. Let us prove ⊃. For any x ∈ A+D, we have that x = a+ d,
with a ∈ A and d ∈ D. Since D is open, there exists rd > 0 such that Brd(d) ⊂ D. Since a ∈ A, we
can find a ∈ A such that |a− a| < rd. Now we notice that

x = a+ d = a+ (a− a+ d).

Since the term in brackets belongs to Brd(d) ⊂ D and a ∈ A, we thus have proved that x ∈ A+D.
(ii) For any x ∈ U0, we have that

BR(x) ⊂ U0 +BR(x)

by definition of +. An application of item (i) with A := U0 and D := BR(x) then gives that

BR(x) ⊂ U0 +BR(x).

The conclusion follows by noting that U0 ⊂ U0 ∪ [G ∩ (H+ ∪ T )].
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4.9 Motivation for the overdetermined problem: fair shape of
an urban settlement

A classical topic in social sciences consists in the definition and understanding of the complex
transition zones (usually called “fringes”) on the periphery of urban areas, see e.g. [Pry68]. The
rural-urban fringe problem aims therefore at detecting the transition in land use and demographic
characteristics lying between the continuously built-up areas of a central city and the rural hinter-
land: this problem is of high social impact, also given the possible incomplete penetration of urban
utility services in fringes.

Though the analysis of fringes is still under an intense debate and several aspects, especially the
ones related to high commercial and financial pressures, are still to be considered controversial, a
very simple model could be to limit our analysis to one of the features usually attributed to fringes,
namely that of low density of occupied dwellings, and relate it to some of the characteristics that are
considered inadequate for the fringe well-being such as “incomplete range and incomplete network
of utility services such as reticulated water, electricity, gas and sewerage mains, fire hydrants”, etc.,
as well as “accessibility of schools” [Pry68].

One can also assume that distance to urbanized areas is a major factor to be accounted for in
the analysis of the above features since “distance operates as a major constraint in shaping and
facilitating urban growth, and the friction of space experienced by the rural-urban fringe is but a
particular example of a principle generally accepted in human ecology and geography: the layout of
a metropolis – the assignment of activities to areas – tends to be determined by a principle which
may be termed the minimizing of the cost of friction” [Hai26, Pry68].

In this spirit, one can consider a model in which the environment is described by a domain Ω
and the density of population (or better to say the density of occupied dwellings) is modeled by a
function u. We assume that the population follows a nonlocal dispersal strategy modeled by the
fractional Laplacian (see e.g. [DGV22]) and that the environment is hostile (no dwelling possible
outside the domain Ω, with population “killed” if exiting the domain, corresponding to u = 0
outside Ω).

In this setting an equilibrium configuration for the population, subject to a growth modeled by
a function f(x, u), is described by the problem{

(−∆)su(x) = f(x, u(x)) for all x ∈ Ω,

u(x) = 0 for all x ∈ Rn \ Ω.
(4.59)

The case in which the birth and death rates of the population are negligible and the population is
subject to a constant immigration factor reduces f to a constant and therefore, up to a normaliza-
tion, the problem in (4.59) boils down to that in (4.2).

One could also assume that there is a small quantity, say c > 0, that describes the density
threshold for an efficient network of utility services to develop: in this simplified model, the fringe
is therefore described by the area in which the values of u belong to the interval [0, c].

Clearly, the areas of major social hardship in this model would correspond to the points x of Ω in
the vicinity of the boundary and with u(x) ∈ [0, c]. Assuming distance to facilities to be the leading
factor towards well-being in this simplified model, the “fairest” configurations for the inhabitant of
the fringe could be that in which the most remote areas are all at the same distance, say R, to the
developed zone: one could therefore (at least for small c and correspondingly small R) adopt the
setting in (4.1).
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In this framework, the above fairest condition would translate into the requirement that the
density threshold {u = c} would coincide with ∂G, leading naturally to the overdetermined condition
in (4.3).

In this spirit (and with a good degree of approximation) the overdetermined problem in (4.2)
and (4.3) would correspond to that of a population in a hostile environment, with negligible birth
and death rate and a constant immigration factor, that adopts a nonlocal dispersal strategy modeled
by (−∆)s, which aims at optimizing the rural-urban fringe in terms of equal maximal density to
the boundary (the results presented here would give that the optimizer is given by a round city).



Chapter 5

The Parallel Surface Fractional
Capacitary Problem

This chapter deals with quantitative symmetry results for overdetermined problems involving the
fractional Laplacian in unbounded exterior sets or bounded annular sets. In a sense, they are the
capacitary counterpart to problem (4.2)-(4.3). The proofs employ very similar techniques to the
ones in Chapter 4 - that is why in this chapter you will find multiple references to the previous one.

The problems we deal with here originate from the study of capacity of a set and relative capacity
which, in the classical setting, are given by

cap(Ω) := inf

{
1

2

∫
Rn

|∇v|2dx : v ∈ C∞
c (Rn), v|Ω ≥ 1

}
,

and
cap(Ω;D) := inf

{
1

2

∫
D

|∇v|2dx : v ∈ C∞
c (Ω), v|D ≥ 1

}
,

respectively; here D and Ω are bounded open sets, with D ⊂ Ω ⊂ Rn, n ≥ 3, and ∇v is the gradient
of the function v.

Instead of the classical notion of capacity, we consider the capacity in a fractional setting. For
a parameter s ∈ (0, 1), the fractional capacity of order s (or s-capacity) of the set Ω is defined as
follows:

caps(Ω) := inf{[v]2s | v ∈ C∞
c (Rn), v|Ω ≥ 1} , (5.1)

where [v]s is the Gagliardo seminorm of v which we recall from Chapter 2 to be defined as

[v]2s :=

∫
R2n

|v(x)− v(y)|2

|x− y|n+2s
dxdy .

Analogously, one can define the relative fractional capacity of order s of the couple of sets (Ω, D)
by

caps(Ω;D) := inf{[v]2s | v ∈ C∞
c (Ω), v|D ≥ 1} . (5.2)

The Euler-Lagrange equations associated to (5.1) and (5.2) are both related to the so-called
fractional Laplacian of order s. It can be proved that caps(Ω) and caps(Ω;D) are uniquely achieved

75



76 CHAPTER 5. PARALLEL SURFACE FRACTIONAL CAPACITY

by two functions uΩ, uΩ,D ∈ Hs(Rn) which satisfy
(−∆)suΩ = 0 in Rn \ Ω,
uΩ = 1 in Ω,

uΩ(x) → 0 as |x| → +∞ ,

(5.3)

and 
(−∆)suΩ,D = 0 in A := Ω \D,
uΩ,D = 1 in D,
uΩ,D = 0 in Rn \ Ω ,

(5.4)

respectively. The function uΩ is sometimes called the s-capacitary potential.
Overdetermined problems for (5.3) and (5.4) have been considered in [SV19] where the overde-

termined condition is given on the normal s-derivative at the boundary, which is assumed to be
constant in the spirit of Serrin’s overdetermined problem. Here we consider a somehow discrete
version of Serrin’s overdetermined condition, and we instead assume that the solution is constant
on a surface parallel to the boundary.1 The first result deals with solutions of problem (5.3) with
the overdetermining assumption that the solution is constant on a surface parallel to ∂Ω.

Theorem 5.0.1. Let Ω be a bounded domain in Rn. Let R > 0 and assume that G := Ω + BR is
such that ∂G of class C1. Then, there exists a solution u ∈ Hs(Rn) ∩ C(Rn) of (5.3) such that

u = c on ∂G (5.5)

for some constant c if and only if G and Ω are concentric balls and u is radially symmetric.

Once symmetry is established, one can investigate the quantitative stability result for Theorem
5.0.1. Again, just like we did for the parallel surface fractional torsion problem, we will give an
estimate on ρ(Ω) in terms of the Lipschitz seminorm of the solution u on the parallel surface ∂G.

Another relevant quantity which we need to quantify the stability results is the radius of the
touching ball condition. More precisely, given a set E we denote the optimal exterior and interior
radii in the touching ball condition by reE and riE , respectively.

The quantitative stability for the problem is given by the following theorem.

Theorem 5.0.2. Let Ω be a bounded domain of Rn with ∂Ω of class C2. Let R > 0 and let
G = Ω+BR be such that ∂G is of class C2. Let u ∈ Cs(Rn) be a solution of (5.3). Then, we have
that

ρ(Ω) ≤ C∗ [u]
1

s+2

∂G , (5.6)

with C∗ = C∗(n, s,R,diam(Ω), |Ω|, reΩ) > 0, where diam(Ω) and |Ω| denote the diameter and the
volume of Ω, respectively, and reΩ is the radius of the exterior touching ball condition at Ω.

In the second part of the chapter we consider an overdetermined problem involving annular sets.
More precisely, let D,Ω ⊂ Rn be bounded open domains such that D ⊂ Ω, set

A := Ω \D , (5.7)

1Regarding problem (5.4), it is more precise to say that the solution is constant on each connected component of
the parallel surface, see Theorem 5.0.3 below.
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and we consider solutions to (5.4). It is clear that, since ∂Ω and ∂D do not touch, we have that

d := dist(D,Rn \ Ω) > 0 .

By choosing a positive parameter R < d/2 we have that the set

ΓA
R := {x ∈ A | dist(x, ∂A) = R} (5.8)

can be written as
ΓA
R = ΓD

R ∪ ΓΩ
R ,

with 2

ΓD
R := {x ∈ A | dist(x, ∂D) = R},
ΓΩ
R := {x ∈ A | dist(x, ∂Ω) = R},

with ΓD
R ∩ ΓΩ

R = ∅. On each of these hypersurfaces we assume that the solution satisfies the
overdetermined condition

u = α on ΓD
R ,

u = β on ΓΩ
R,

(5.9)

where α and β are two positive constants.

We have the following symmetry result.

Theorem 5.0.3. Let A and ΓA
R be given by (5.7) and (5.8), respectively, where R is such that ΓA

R

is of class C1.
Let u ∈ Hs(Rn) ∩ C(Rn) be a solution of (5.4) satisfying the overdetermined conditions (5.9).

Then, D and Ω are concentric balls and u is radially symmetric.

Now we describe the quantitative stability result that we obtain for Theorem 5.0.3. In this case,
we replace the overdetermined condition (5.4) by assuming that the solution has small Lipschitz
seminorm on each connected component of ΓA

R. For this reason we define the following deficit

defA(u) := max{[u]ΓD
R
, [u]ΓΩ

R
},

and we have the following result.

Theorem 5.0.4. Let A and ΓA
R be given by (5.7) and (5.8), respectively, and assume that ∂A and

ΓA
R are of class C2.

Let u ∈ Cs(Rn) be a solution of (5.4). Then

ρ(D) + ρ(Ω) ≤ C∗defA(u)
1

s+2 , (5.10)

with C∗ = C∗(n, s,R,diam(Ω), |Ω|, |D|, reD, riΩ) > 0, where reD and riΩ are the radius of the uniform
exterior touching ball to D and of the interior touching ball to Ω, respectively.

2Notice that ΓA
R = ∂((Ωc +BR) \ (D +BR)).
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We notice that in Theorems 5.0.1-5.0.4 we assumed that Ω and D are connected, bounded open
sets. The connectedness assumption is not necessary and it can be easily removed, and hence our
results can be extended in that setting. However, this has a cost in managing the notation and it
would worsen the presentation and clarity of the results. For this reason, we preferred to assume
that Ω and D are connected.

The first instance in which overdetermined problems in exterior sets have been taken into account
can be traced back to [Rei97]. In the paper, W. Reichel considers a semilinear equation with the
standard Laplacian in a connected open set G ⊂ Rn. By requiring that Rn \ G is also connected
and that f(t) is a locally Lipschitz function, non-increasing for small positive values of t, the author
proves that a solution u ∈ C2(Rn \G) of

−∆u = f(u) in Rn \G,
u = a > 0 on ∂G,
u(x) → 0 as |x| → +∞,

∂νu = b ≤ 0 on ∂G,
0 ≤ u < a in Rn \G,

only exists if G is a ball and u is then radial and radially decreasing about the centre of G. Later in
[AB98], A. Aftalion and J. Busca addressed the same problem using the method of moving planes
instead; with this approach, they managed to remove the hypothesis of f being non-increasing for
small positive values of its argument. B. Sirakov then in [Sir01] removed the assumption u < a and
allowed for possibly multi-connected sets G and for different boundary conditions on the different
components of G, while taking into account a more general differential operator. For the problems
in annuli, we refer to [Ale92], [Phi90], [PP89] and [Rei20].

The chapter is organized as follows. In Section 2 we present some preliminary results, including
a weak maximum principle for s-harmonic functions in an unbounded domain. Section 3 is devoted
to the results for exterior sets and includes the standard machinery for the method of moving planes.
In Section 4 we consider the problems involving annular domains.

5.1 Fractional Maximum Principles

In this section we recall some results which will be useful in the rest of the paper. For the notation
employed for the method of moving planes we refer to Chapter 2.2.

Lemma 5.1.1. Let Ω ⊂ Rn be an open set and let u ∈ Hs(Rn) be a solution of{
(−∆)su ≥ 0 in Ω,

u ≥ 0 in Rn \ Ω .

Let x0 ∈ Ω and r > 0 be such that Br(x0) ⊆ Ω. Let K ⊂ Rn be a compact set such that

|K| > 0 , dist(K,Br(x0)) > 0 , essinfKu > 0 .

Then
u ≥ CH ψBr(x0) in Br(x0) ,
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where
CH := cn,s

|K| essinfKu
(2r + dist(K,Br(x0)) + diam(K))n+2s

, (5.11)

with cn,s and ψBr(x0) given by (2.7) and (2.11), respectively.

Lemma 5.1.1 was already proved in [GS16] and [ROS14]. Here, inspired by [FJ15] and Lemma
4.3.1, we give a proof which allows us to explicitly write the constant CH given by (5.11), and to
show its dependency on the parameters which are relevant in our problem. This will be useful when
we will prove the quantitative results.

Proof of Lemma 5.1.1. We consider the barrier function

w(x) := ψB(x) + δ χK(x) ,

where B = Br(x0), χK is the characteristic function of K ⊂ Rn and δ > 0 is a constant that will
be chosen later.

Let φ ∈ Hs
0(Ω) be a nonnegative test function. We have

E(w,φ) = E(ψB , φ) + δ E(χK , φ) =

∫
B

φ− δ cn,s

∫
K

∫
B

φ(y)

|x− y|n+2s
dy dx ≤

≤ (1− δ C)

∫
B

φ,

which is less or equal than zero if we choose δ ≥ C−1 with

C = cn,s |K| inf
x∈K,y∈B

1

|x− y|n+2s
.

By setting
τ := essinfKu/δ = CessinfKu

and applying the weak maximum principle for s-harmonic functions to

v := u− τ w ,

we get that

u ≥ cn,s
|K| essinfKu

(diam(B) + dist(K,B) + diam(K))n+2s
ψB inB,

which is the desired result.

As already noted in previous chapters, since our approach is based on the method of moving
planes a particular attention must be given to antisymmetric s-harmonic functions. More precisely,
we will have to consider functions which are antisymmetric with respect to a hyperplane which can
be chosen to be {x1 = 0} (up to a translation and rotation).

In order to list these results, we need to introduce some notation: we set H+ := {x1 > 0},
H− := {x1 < 0} and T := {x1 = 0}. Let

Q : Rn → Rn , y 7→ y′ = (−y1, y2, . . . , yn) ,

be the reflection with respect to T and, for a given set E we call E+ := E∩H+ and E− := E∩H−.
The first result is a weak maximum principle for s-harmonic antisymmetric functions, which is

stated in [FJ15, Proposition 3.1] on domains that are bounded, although for homogeneous equations
this condition is not needed. We report this proposition here and we sketch a proof.
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Lemma 5.1.2 (Weak maximum principle for antisymmetric functions). Let Ω ⊂ Rn be a compact
set and let u ∈ Hs(Rn) be an antisymmetric (w.r.t. T = {x1 = 0}) solution of{

(−∆)su = 0 in Ωc,

u ≥ 0 in Ω+.

Then, u ≥ 0 a.e. in H+.

Proof. Since u is s-harmonic in Ωc then for every φ ∈ Hs
0(Ω

c) we have

E(u, φ) = 0.

Let φ = u−χH+ ∈ Hs
0(Ω

c), where χH+ is the characteristic function of H+. Following the same
computations as in [FJ15, Proposition 3.1] we get

0 ≤ E(u, φ) ≤ −E(φ,φ) = −[φ]2s ,

which immediately implies that φ = 0 a.e. and hence u− = 0 a.e. in H+.

An analogous weak maximum principle holds for nonnegative functions in Hs(Rn). More pre-
cisely we have

Lemma 5.1.3 (Weak maximum principle). Let Ω ⊂ Rn be a compact set and let u ∈ Hs(Rn) be a
solution of {

(−∆)su = 0 in Ωc,

u ≥ 0 in Ω.

Then, u ≥ 0 a.e. in Rn.

Proof. The proof is analogous to the one of Lemma 5.1.2, since it is enough to consider φ = u−.

As an immediate consequence we have the following comparison principle for s-capacitary func-
tions.

Corollary 5.1.4. Let E ⊂ F ⊂ Rn be open bounded domains, and let uE and uF be the corre-
sponding capacitary functions, i.e. the solutions to (5.3) for Ω = E and Ω = F , respectively. Then
we have

uE ≤ uF

in Rn.

Proof. Since uE is a s-capacitary function, from [War15, Lemmas 2.6 and 2.7] we have that 0 ≤
uE ≤ 1 in Rn \ E. Then, by applying Lemma 5.1.3 to v := uF − uE we obtain the result.

From Lemma 5.1.2, we can also recover a quantitative version of the Hopf lemma for anti-
symmetric functions as proved in Lemma 4.3.1, which actually requires that v ∈ Cs(Ω), but it is
straightforward to verify that the proof is still valid if one assumes v ∈ Hs(Rn). It is clear that
Lemma 4.3.1 provides a quantitative version of the strong maximum principle for antisymmetric s-
harmonic functions, which still holds when Ω is not bounded, as already noted in [SV19, Proposition
2.1].
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Lemma 5.1.5 (Strong maximum principle for antisymmetric functions). Let Ω be an open set with
Ω ⊂ H− and let v ∈ C(Ω) be antisymmetric and a solution of{

(−∆)sv ≥ 0 in Ω,

v ≥ 0 in H−.

Then, either v > 0 in Ω or v ≡ 0 in Rn.

Proof. From the weak maximum principle in Lemma 5.1.2 we have that v ≥ 0 in Ω. Now assume
there exists x0 ∈ Ω such that v(x0) = 0 and choose a ball B centered in x0 and such that B ⊂ Ω.
Let K ⊂ Ω be a compact set such that dist(B,K) > 0 and |K| > 0. If we furthermore choose B
and K such that infK v > 0, by applying Lemma 4.3.1 we have

v ≥ C
[
dist(K,H+) |K| inf

K
v
]
ψB in B,

and in particular v(x0) > 0, which is a contradiction.

Another tool from Chapter 4 that we will need in our proof is the boundary Harnack inequality
for s-harmonic antisymmetric functions in Lemma 4.1.1 which will be used throughout this chapter.

5.2 Exterior sets
In this section we consider the exterior overdetermined problem and prove Theorem 5.0.1 and
Theorem 5.0.2.

5.2.1 The symmetry result
We start with the symmetry result given in Theorem 5.0.1.

Proof of Theorem 5.0.1. Let e ∈ Sn−1 be a fixed direction. Withouth loss of generality we assume
e = e1. We recall that we are considering a solution u ∈ Cs(Rn) of (5.3) satisfying (5.5) and that
G = Ω+BR, with ∂G of class C1.

We apply the method of moving planes described in Subsection 2.1 by letting E = G. Without
loss of generality, we can assume that λe = 0 (that is, the critical hyperplane T goes through the
origin), and we simplify the notation by setting H− := {x1 < 0}, Ω− := H− ∩ Ω and considering

v(x) := u(x)− u(Q(x)) for x ∈ Rn,

where Q : Rn → Rn, x 7→ x′ is the reflection with respect to T . We have
(−∆)sv = 0 in H− \ Ω−

v ≥ 0 in Ω−

v(Q(x)) = −v(x) for every x ∈ Rn.

By using Lemma 5.1.2 we know that v ≥ 0 in H− and then Lemma 5.1.5 tells us that either
v > 0 in H− \Ω− or v ≡ 0 in Rn. Now we show that if we assume that v > 0 in H− \Ω− then we
obtain a contradiction.
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Case 1 - Let P be a critical point on ∂G. Since both P and its reflection P ′ belong to ∂G and
(5.5) holds, we immediately get

v(P ) = u(P )− u(P ′) = 0,

which is a contradiction.

Case 2 - In this case e1 is tangent to ∂G at a point Q ∈ ∂G, and therefore we have that
∂1v(Q) = 0. On the other hand, since Q is far away from the boundary ∂Ω, we can use Lemma
4.1.1 to show that ∂1v(Q) < 0, which is a contradiction.

Indeed, setting z = (−R/4, Q2, . . . , Qn) and x = xt = (−t, Q2, . . . , Qn) ∈ BR/4(z), with 0 < t <
R/8, we have that

v(xt)

−t
≥ − 4

RK
v(z), (5.12)

where K > 1 is a constant only depending on n and s. Being z ∈ H− \Ω−, we have that v(z) > 0,
and the claim follows from (5.12) by letting t→ 0+.

5.2.2 Almost symmetry in one direction

Now we consider the quantitative stability result and prove Theorem 5.0.2. This will be done in
two subsequent steps: we first prove the quantitative stability estimate in one direction and then, in
the proof of Theorem 5.0.2 we will sketch a general idea of how to use the result in one direction to
obtain the final quantitative estimate; the proof can be found in details in Section 6 of [CDP+23].

We start by proving a preliminary result which gives the behaviour of the solution to (5.3) close
to the boundary.

Lemma 5.2.3. Under the assumptions of Theorem 5.0.2, let u be a solution of (5.3) and let
v := 1− u. For any r ≤ reΩ we have

v(x) ≥ Ccap (dist(x, ∂Ω))s in (Ω +Br) \ Ω, (5.13)

where

Ccap :=
cn,s γn,s ωn

4

rn+s

(2r + r0 diam(Ω))n+2s

and r0 > 0 is a constant depending on n and s.

Proof. Without loss of generality, we can assume that the origin O is contained in Ω and consider
the s-capacitary solution ũ of the ball Bdiam(Ω) centered at the origin and of radius diam(Ω):

(−∆)sũ = 0 in Rn \Bdiam(Ω),

ũ = 1 in Bdiam(Ω),

ũ(x) → 0 as |x| → +∞.

Since 0 ≤ ũ ≤ 1 and ũ is radial, non-increasing and continuous (see for instance [SV19, Theorem
1.10]), there exists a radius R̃ = R̃(diam(Ω)) > 0 such that

ũ < 1/2 in Rn \BR̃.
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Moreover, from Corollary 5.1.4 we have that ũ ≥ u in the whole space. From this we get that

v = 1− u ≥ 1− ũ ≥ 1/2 in Rn \BR̃.

We now choose K = BreΩ
((R̃+ reΩ) e1). For x0 ∈ ∂Ω, we now apply Lemma 5.1.1 to v with

B = BreΩ
(x0) and K and get

v(x) ≥ cn,s γn,s ωn

2

Rn+s

(4R+ dist(K,B))n+2s
(R− |x|)s in B.

We now repeat the same argument on the whole boundary ∂Ω by keeping each time the same
fixed set K. We notice that in every case we have dist(K,B) ≤ 2R̃, and by using the previous
inequality we obtain (5.13), where the constant Ccap > 0 can be written as

Ccap :=
cn,s γn,s ωn

4

Rn+s

(2R+ R̃)n+2s
.

In order to complete the proof, we show how R̃ depends on diam(Ω). We consider the solution uB1

to the capacitary problem (5.3) with Ω = B1, and we set

r0 = inf{ |x| | uB1(x) < 1/2} .

By scaling properties, it is clear that R̃ = r0 diam(Ω). This completes the proof.

With this result at hand, we can prove a quantitative estimate which involves the measure of
Ω− \ Q(Ω̂).

We fix a direction e ∈ Sn−1. Without loss of generality, we can assume that e = e1 and that
the associated critical hyperplane is T = {x1 = 0}, with Q : Rn → Rn, x 7→ x′ the reflection with
respect to T . For the proof of the next lemma we will use the following notation: we set for t ≥ 0

Ωt := Ω +Bt(0), Ω̂t := Ωt ∩H+, Ω−
t := Ωt ∩H− Ut := Q(Ω̂t).

Note that G = ΩR.

Lemma 5.2.4. Given P ∈ UR with B = BR/8(P ) such that dist(B, ∂U0) ≥ R/8, for δ > 0, we
have that

|Ω− \ Q(Ω̂)| ≤ C̃ (δ−(1+s)v(P ) + δ), (5.14)

where C̃ > 0 is a constant depending only on n, s, R, reΩ and diam(Ω).

Proof. We set Kδ := (Ω− \ Q(Ω̂)) \ (Eδ ∪ Fδ), where

Eδ := Q(Aδ) ∩ (Ω− \ Q(Ω̂)) with Aδ := {x ∈ Ωc | dist(x, ∂Ω) < δ},

Fδ := {x ∈ Ω− \ Q(Ω̂) |dist(x, T ) < δ}.

Using Lemma 4.3.1 with B := BR/8(P ) and K := Kδ we obtain

v ≥
⋆

C
[
dist(Kδ, H

+) |Kδ| inf
Kδ

v
]
ψB in B,



84 CHAPTER 5. PARALLEL SURFACE FRACTIONAL CAPACITY

where
⋆

C > 0 is an explicit constant depending on n, s, R and diam(Ω). Here we used that, in the
present situation, we have K ⊂ Ω and that dist(B,U0) ≤ R.

Since Kδ ⊆ (Ω− \ Q(Ω̂)) \ Fδ, then

dist(Kδ, H
+) ≥ δ.

We now point out that in Kδ we have v = u− u′ = 1− u′; we can therefore apply Lemma 5.2.3
and get

v(x) ≥ Ccap(n, s, r
e
Ω) δ

s = Ccap δ
s for every x ∈ Kδ.

Moreover, we have

|Kδ| = |Ω− \ UR| − |Eδ ∪ Fδ| ≥ |Ω− \ UR| − (|Eδ|+ |Fδ|). (5.15)

By definition of Fδ, we have that
|Fδ| ≤ diam(Ω)n−1δ. (5.16)

By using Lemma 5.2 in [CDP+23], since Eδ ⊆ Aδ, we have

|Eδ| ≤
[
2n|Ω|
R

]
δ. (5.17)

Putting together (5.15), (5.16) and (5.17) we get

|Kδ| ≥ |Ω− \ UR| − c̃ δ,

where c̃ is a positive constant depending on n, diam(Ω) and reΩ.

Hence we have proved that

v(P ) ≥
⋆

C Ccap (R/8)
2s γn,sδ

1+s
(
|Ω− \ UR| − c̃ δ

)
,

and, by choosing

C̃ := max

 82s

CcapRs
⋆

C
, c̃

 ,

we get the desired inequality (5.14).

Once Lemma 5.2.4 is proved we can follow the same proof of Lemma 4.4.7 to get the almost
symmetry in one direction and reasoning as in Section 5 of Chapter 4 we obtain the same quantita-
tive stability estimate required for the proof of Theorem 5.0.2. This is the reason why the following
proof is just a quick sum up of the main ideas.

Proof of Theorem 5.0.2. Once we have inequality (5.14), we can argue as in Lemma 4.4.7 to obtain
the estimate for the almost symmetry in one direction, namely

|Ω− \ Q(Ω̂)| ≤ C[u]
1

s+2

∂G , (5.18)

where C := max{1,diam(Ω),K (R/2)} C̃, with C̃ as in (5.14) and K = K(n, s) ≥ 1 is the constant
that appears in the boundary Harnack inequality in Lemma 4.1.1.
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Now, up to a translation we can assume that the critical hyperplanes with respect to the N
coordinate directions T ej coincide with {xj = 0} for each j = 1, . . . , N , that is, they all intersect
at the origin.

The idea is then the following: for a given direction e ∈ Sn−1 we slice Ωλe
in (a finite number

of) sections depending on the critical value λe and consider their measure, namely

mk := | {x ∈ Ω | (2k − 1)λe ≤ x · e ≤ (2k + 1)λe} |, for k ≥ 1.

Since Ω is bounded, mk > 0 only up to an index k0 which behaves like the inverse of λe. The
key observation is that, by reflecting with respect to the origin and using (5.18), one has

m1 = | {x ∈ Ω | − λe ≤ x · e ≤ λe} | ≤ (n+ 3)C [u]
1

s+2

∂G ; (5.19)

moreover, by the moving plane procedure, mk ≤ m1 for every k up to k0 and therefore one can
then write the expression

|Ωλe
| ≤

k0∑
k=1

mk ≤ k0m1 ≤ (n+ 3) diam(Ω)C
1

λe
[u]

1
s+2

∂G . (5.20)

Inequalities (5.20) and some further calculations (we again refer to the proof of Lemma 4.5.1
for details) yield

|λe| ≤ 4 (n+ 3)
diam(Ω)

|Ω|
C[u]

1
s+2

∂G . (5.21)

Now it remains to establish a relationship between |λe| and ρ(Ω). We set ρmin := minz∈∂Ω |z|,
ρmax := maxz∈∂Ω |z| and choose x, y ∈ ∂Ω such that |x| = ρmin and |y| = ρmax. We then consider
the unit vector

e :=
x− y

|x− y|
and the corresponding critical hyperplane T e. By construction, we know that dist(x, T e) ≥
dist(y, T e) and therefore some simple calculations lead to

ρ(Ω) ≤ ρmax − ρmin = |y| − |x| ≤ 2 dist(0, T e) = 2|λe|. (5.22)

Combining (5.21) and (5.22) leads to (5.6). It is worth pointing out that the new constants
appearing in (5.19) and onward only depend on the dimension n, the diameter diam(Ω) and the
volume |Ω|.

5.3 Annular sets
In this section we consider annular domains and prove Theorems 5.0.3 and 5.0.4. The strategy that
we use is still via the method of moving planes and it is similar to the previous one; nevertheless,
the method has to be carefully adapted to this situation. We recall that we are considering solutions
to (5.4), where A = Ω \D, with D ⊂ Ω bounded open domains.

Now for a fixed direction e and a parameter λ ∈ R we let Tλ, Hλ, Qλ be as in the previous
section. We now consider

Σλ := (Ω ∩Hλ) \ Qλ(D)
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which is the cap of the annulus Ω \D. Moreover, for a given set E, we define

dE := inf{λ ∈ R | Tµ ∩ E = ∅}
λE := inf{λ ≤ dE | for every µ > λ, (E ∩Hµ)

µ ⊂ (E ∩Hµ
µ ) and ν(x) · e > 0 ∀x ∈ Tµ ∩ ∂E},

and the critical parameter λ is given by

λ := max{λD, λΩ}.

We mention that both the function u and its reflection u′ are s-harmonic in Σλ, as we are going
to use in in the proof of Theorem 5.0.3. We also notice that, thanks to our choices, λ is the critical
value for A with respect to the direction e, and now the critical position can occur in four possible
cases (namely, Cases 1 and 2 in Subsection 2.1 for both D and Ω).

In order to avoid further technicalities we ask for the domains D and Ω to be regular (namely,
with boundaries ∂G and ∂Ω of class C2); the proof works in the same way if we instead assume
that ∂A is just of class C1, and ΓG

R and ΓΩ
R of class C2.

5.3.1 The symmetry result
With this setting, we are now ready to give a proof of the symmetry result for annular sets.

Proof of Theorem 5.0.3. We fix a direction e = e1 and reach the critical value λ. Without loss of
generality, we assume that T = {e1 = 0} and define the function w(x) := u(x) − u(x′) for every
x ∈ Rn. To simplify the notation we set Q = Qλ. Our aim is to show that w is actually identically
zero in Q(Σλ). This implies that both the function w and the set A itself are symmetric with
respect to direction e; since the direction e can be chosen arbitrarily, the proof is then complete.

Hence we have to show that w ≡ 0 in Q(Σλ). We notice that the function w is antisymmetric
with respect to e = e1 and

(−∆)sw(x) = 0 for x ∈ Q(Σλ),

w(x) = u(x)− u(x′) = 1− u(x′) ≥ 0 for x ∈ D ∩Q(Ω̂),

w(x) = u(x)− u(x′) = u(x) ≥ 0 for x ∈ Ω− \ Q(Ω̂),

w(x) = 0 for x ∈ H− \ Ω−.

In particular, the last three inequalities tell us that w ≥ 0 in H− \ Q(Σλ). The weak maximum
principle for antisymmetric solutions in Lemma 5.1.2 implies that w ≥ 0 in Q(Σλ); then, from the
strong maximum principle in Lemma 5.1.5 we get that either w > 0 in Q(Σλ) or w ≡ 0 in Q(Σλ).

In order to conclude, we notice that in this case we have four possible critical cases, all of which
can be treated as in the proof of Theorem 5.0.1. The conclusion then follows straightforwardly.

5.3.2 Almost symmetry in one direction
In order to prove almost symmetry in one direction for the annular set, we need to make use again
of the quantitative Hopf’s type lemma (Lemma 4.3.1 in this work) and adapt it to the current
problem. The first lemma in this section is about the behaviour of the solution u of (5.4) inside the
annulus A with respect to the distance from the boundary. We start with a simple remark.
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Remark 5.3.3. If u ∈ Cs(Rn) solves (5.4) with ∂A ∈ C1, then we have

0 < u < 1 in A. (5.23)

Indeed, applying the maximum principles for an s-harmonic function in A we get that u has to
be strictly positive in A. By using the same argument for ũ := 1−u we get the latter part of (5.23).

We have the following lemma.

Lemma 5.3.4. Under the assumptions of Theorem (5.0.4), let u be a solution of (5.4); then

min{u, 1− u}(x) ≥ C∗ (dist(x, ∂A))s in A, (5.24)

where

C∗ :=
cn,s γn,s
4n+2s+1

|D| min{riΩ, reD, d/2}s

diam(Ω)n+2s
.

Proof. We first prove (5.24) for the function u. This inequality follows by an application of Lemma
5.1.1 and therefore we fix a compact set K1 ⊂ D such that |K1| = |D|/4. Since K1 is compact and
D is open, then dist(K1, ∂D) > 0.

Let x ∈ A. Assume dist(x, ∂A) = dist(x, ∂Ω) and let x ∈ ∂Ω be such that dist(x, ∂Ω) =
dist(x, x) =: r. We apply Lemma 5.1.1 with K = K1 and B = Br(x) and get

u ≥ cn,s
|K1| infK1

u

(2r + dist(K1, Br(x)) + diam(K1))n+2s
ψBr(x) in Br(x). (5.25)

Since u = 1 in K1 and

2r + dist(K1, Br(x)) + diam(K1) ≤ 4 diam(Ω) ,

by evaluating (5.25) at x we have

u(x) ≥ cn,s γn,s
4n+2s+1

|D|
diam(Ω)n+2s

r2s =
cn,s γn,s
4n+2s+1

|D|
diam(Ω)n+2s

dist(x, ∂Ω)2s. (5.26)

Up until now we didn’t make use of the interior radius of the touching ball condition riΩ > 0. If
dist(x, ∂Ω) ≥ riΩ the equation (5.26) immediately gives (5.24). If instead dist(x, ∂Ω) < riΩ we set
r1 := min{riΩ, d/2}, x̃ ∈ A such that x ∈ ∂Ω ∩ ∂Br1(x̃) and apply Lemma 5.1.1 for K = K1 and
B = Br1(x̃) to get

u(x) ≥ cn,s γn,s
4n+2s+1

|D|
diam(Ω)n+2s

(r1 + |x− x̃|)s (r1 − |x− x̃|)s, (5.27)

which together with the fact that r1 − |x− x̃| = dist(x, ∂Ω) gives (5.24).

Assuming now dist(x, ∂A) = dist(x, ∂D) we can now repeat the same arguments with r2 :=
min{reD, d/2} in place if r1 and we obtain (5.27) with r1 replaced by r2.

The proof of (5.24) for v := 1 − u can be carried out in the same way; we only have to fix a
compact set K2 ⊂ Rn \ Ω such that

dist(K1, Br(x)) + diam(K1) ≤ 2 diam(Ω) ,

and |K2| = |D|/4, and then apply Lemma 5.1.1 with K = K2 as done before.
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We are now ready to state a version of Lemma 5.2.4 for the annulus, under the assumptions
of Theorem 5.0.4. The ball B will be chosen inside of a set where the antisymmetic function
w := u− u′ is s-harmonic (this time, it will be Q(Σλ)); in this case, the compact set K consists of
two components, in such a way that we can take into account the symmetric differences between
the sets Ω and G and their respective reflections via the moving plane method. We define

L := Ω− \ Q(Ω̂)

M := D− \ Q(D̂)

K̃ := L ∪ (M ∩Q(Ω̂)).

We have the following lemma.

Lemma 5.3.5. Given P ∈ Q(Σλ) with B = BR/8(P ) such that dist(B,Q(Σλ)) ≥ R/8 and given
δ > 0, we have that

|K̃| ≤ C̃ (δ−(1+s)v(P ) + δ), (5.28)

where C̃ > 0 is a constant depending only on n, s, R, reD, riΩ, diam(Ω), |D| and |Ω|.

Proof. We set Kδ := K̃ \ (Eδ ∪ Fδ) where

Eδ := [ {x ∈ Ω | dist(x, ∂Ω) < δ} ∩ (Ω− ∪Q(Ω̂)) ] ∪ [G− \ Q(Ĝ+Bδ)) ],

Fδ := {x ∈ Ω | dist(x,H+) < δ}.

We apply Lemma 4.3.1 with B := BR/8(P ) and K := Kδ to get (4.22), i.e.

v ≥
⋆

C
[
dist(Kδ, H

+) |Kδ| inf
Kδ

v
]
ψB in B. (5.29)

By arguing as done for (5.15), (5.16) and (5.17) we get that

|K̃δ| ≥ |Ω− \ Q(Ω̂)|+ |G− \ Q(Ĝ)| − c̃ δ , (5.30)

and plugging (5.30) into (5.29), together with Lemma 5.3.4 and the fact that dist(K̃δ, H
+) ≥ δ we

get (5.28).

The way to use Lemma 5.3.4 to establish almost symmetry in one direction and then prove
Theorem 5.0.4 is again the one sketched in the proof of Theorem 5.0.2. We just need to highlight
some minor differences with the annular case, that we report below.

Proof. The first goal is to obtain the almost symmetry in one direction from (5.28). While in the
proof of Theorem 5.0.2 we need to take into account the two possible critical Cases 1 and 2 for the
moving plane method, with the first one being further divided into cases 1a and 1b, now the critical
position can be reached for both the set D and the set Ω, resulting in a total of six possible critical
cases. Nonetheless, they are tackled in the same exact way; the only thing that we need to point
out is that in each of the critical cases we can write

v(P ) ≤ c⋆ max{[u]ΓR
Ω
, [u]ΓR

G
} = c⋆ defA(u) , (5.31)

where c⋆ := max{1,diam(Ω),K R/2}. From (5.31) we can then recover the inequality

|Ω− \ Q(Ω̂)|+ |G− \ Q(Ĝ)| ≤ C defA(u)
1

s+2 ,
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where C = c⋆C̃. The slicing of the two sets can then be performed in the same way, which leads to
an estimate of type

|λe| ≤ 4 (n+ 3)
diam(Ω)

|Ω|
C defA(u)

1
s+2 , (5.32)

where now again the bound depends on the seminorms on both of the parallel surfaces. We now
only need to make sure that formula (5.22) still applies. Again, for the set Ω we define ρmin :=
minz∈∂Ω |z|, ρmax := maxz∈∂Ω |z|, choose x, y ∈ ∂Ω such that |x| = ρmin and |y| = ρmax and
consider the direction e = y − x up to normalization with its critical hypeplane T e. Since we
are now in the annular case λ

e
= max{λeD, λ

e

Ω} and therefore the moving plane might stop before
reaching the cricial position for the set Ω itself. However we can still write

ρ(Ω) ≤ ρmax − ρmin = |y| − |x| ≤ 2 dist(0, T e) = 2|λe| ≤ 2 |λeΩ|. (5.33)

Combining (5.32) and (5.33) and repeating the same argument for G lead us to (5.10).
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