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A B S T R A C T

Microclimate mapping and monitoring are of fundamental importance to manage natural resources and
optimize agricultural procedures. Precision agriculture is based on the management of spatial–temporal
microclimatic variation in fields monitored by IoT systems. Networks of microclimate sensors provide point-
based measurements that can be used as input data for physical and artificial intelligence (AI) models to study
variations of microclimatic conditions over several spatial and temporal scales. We propose and experimentally
validate a computational framework based on AI algorithms to optimize and validate the placement of sensors
networks according to local temperature variations within a study area located in the Lombardian foothills,
Italy. The strategy involves a clustering procedure to extract spatial locations with a similar thermal behavior.
An experimental validation has been then performed by deploying sensors in the optimized clusters to record
temperature data. These data have been processed by a Nhits neural network trained to predict future
temperature scenarios, to verify that predictions made inside each cluster are consistent and representative
of a real temperature pattern. Our results indicate that the clustering optimization framework successfully
identifies real temperature patterns within the study area.
1. Introduction

Precision agriculture is the ensamble of strategic approaches that
integrate temporal, spatial, and individual data to enhance decision-
making procedures in agricultural production. To effectively fulfill
these objectives, the main processes impacting agricultural production
must be understood and accurately monitored. Among these processes,
microclimate stands out as a significant factor influencing agricultural
outputs (Tanny, 2013; Schultze et al., 2021). Indeed, by accurately
characterizing microclimate fluctuations (Comba et al., 2019), farm-
ers can prevent the development of crop diseases and pests (Pangga
et al., 2011), optimize irrigation strategies (Bwambale et al., 2022) and
windbreaks placement procedures (Iwasaki et al., 2019).

Since microclimate is a complex, non-linear phenomenon (Chen
et al., 1999) with meter scale fluctuations (Zellweger et al., 2019),
monitoring systems able to collect data with high spatial and tem-
poral resolutions must be employed. These systems can be identified
by internet-of-things (IoT) technologies, which are recording systems

∗ Corresponding author at: Department of Environmental Science and Policy, University of Milan, via Celoria 10, 20133 Milano, Italy.
E-mail address: marco.zanchi@unimi.it (M. Zanchi).

able to collect and transmit data in real time (Farooq et al., 2020).
By obtaining spatially and temporally precise measurements, farmers
and agricultural researchers can gather data at specific points within
the agricultural field (Anastasi et al., 2009). These data can be then
exploited for predicting future scenarios with artificial intelligence and
machine learning techniques (Kamilaris and Prenafeta-Boldú, 2018;
Escamilla-García et al., 2020).

This approach offers reliable real-time predictions. However, it only
provides information in locations where IoT technologies are deployed.
Therefore, it is pivotal to ensure that the collected data accurately cap-
ture the full range of microclimate variations across the area of interest.
Single climatic stations can be used to gather microclimate measure-
ments over plains, where microclimatic variations do not diverge from
macroclimatic ones (Oliver et al., 2018; Cicioğlu and Çalhan, 2021).
Conversely, networks of multiple sensors should monitor microclimate
over fields with complex topography (Sakthipriya, 2014; Khattab et al.,
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2016; Akhter and Sofi, 2022), where non-trivial and non-uniform mi-
croclimate variations emerge (Sai et al., 2016). Deploying a network
of multiple sensors presents two conflicting challenges: increasing the
number of sensors improves microclimate monitoring accuracy but it
also raises costs for network establishment and maintenance. Therefore,
opting for a uniformly distributed network of sensors, which may
overlook microclimate variations, can result in significant expenses,
particularly in large areas (Sai et al., 2016). The sensors should be
instead strategically positioned according to the microclimate spatial
variations. This approach enables the reconstruction of the entire spec-
trum of microclimate variations, ensuring an accurate monitoring at
lower costs.

In the current state of the art, different strategies have been based
on computational and mathematical methods to optimize sensors net-
works in open fields according to microclimate variations. Sai et al.
(2016) have developed an algorithm named Optimized Algorithm of
Sensor Node Deployment for Agricultural (OASNDFA), based on an
optimized theory for the least required sensor nodes to monitor en-
vironmental variables of interest. The authors have validated their
method in an orange orchard in China, identifying 5 sensors location
with specific microclimatic variations. They have confirmed that the
application of their method could enhance agricultural production in
the field. Visalini et al. (2019) propose the Sensor Placement Algo-
rithm with Range Constraints (SPARC), which optimally places sensors
considering their range and according to microclimate. Based on con-
vex relaxation techniques for NP-hard problems, the authors identify
optimal locations that both maximize the accuracy of microclimate
variations reconstruction and adhere to specific range constraints. The
reconstruction of microclimate variations is achieved through the inter-
polation of sensor measurements and remote sensing data. The authors
have tested their methods to reconstruct humidity variations reducing
the number of needed sensors by 15%. Jia et al. (2021) have used the
theory of compressed sensing (Eldar and Kutyniok, 2012) to optimize
sensors placement according to soil moisture variations. The authors
have initially proposed a grid of 64 sensors. The configuration has
been optimized by selecting the minimum number of sensors which
accurately reconstruct the soil moisture variations of the original grid.
The authors optimized the sensor layout by reducing the number of
sensors by one third while maintaining high accuracy in humidity
reconstruction. The aforementioned mathematical methods and algo-
rithms provide an accurate microclimate monitoring even in locations
without sensors by reconstructing microclimate variations from the op-
timized sensor measurements. An alternative approach can be provided
by machine learning clustering algorithms (Rodriguez et al., 2019).

Assuming that the microclimate variations are initially known
across the entire agricultural field, machine learning clustering al-
gorithms can automatically identify and group spatial locations with
similar microclimate properties. As a result, it is possible to accurately
describe microclimate variations within a cluster using measurements
collected from a single sensor. Uyeh et al. (2022) have proposed this
approach within the domain of indoor controlled agriculture. The
authors have optimized a sensors layout within a protected cultiva-
tion system by employing a machine learning clustering algorithm,
specifically the K-Means algorithm. This algorithm has been applied
to temperature and humidity maps which represent the microclimatic
variations across the entire protected cultivation area. The temperature
and humidity maps have been generated from the interpolation of
sensor measurements uniformly positioned across the cultivation area.
The direct application of this method in an open field is challenging.
Indeed, Uyeh et al. (2022) have generated temperature and humidity
maps through interpolation techniques, which may be suitable for an
indoor controlled environment operating at quasi-equilibrium. In con-
trast, open fields experience dynamic conditions far from equilibrium.
Therefore, the application of interpolation techniques may overlook
crucial microclimatic variations. Nonetheless, it is possible to recon-

struct these complex microclimatic variations using algorithms which

2 
merge physical principles to data-driven methods (Kearney and Porter,
2017; Maclean et al., 2019). The optimized sensors layout should be
then experimentally validated to assess if it accurately represents the
real microclimate variation experienced by the area of interest. Sai et al.
(2016), Visalini et al. (2019), Jia et al. (2021) and Uyeh et al. (2022)
have performed experimental validations proving the robustness of
their computational methods. However, predicting future microclimatic
conditions using data from IoT sensors is a central focus in current
deep learning applications for precision agriculture (Kamilaris and
Prenafeta-Boldú, 2018). Therefore, it is crucial to verify that predictions
made by optimized sensors also accurately represent real microclimate
variations.

According to our knowledge, three distinct gaps occur in the current
state of knowledge of sensors optimization for microclimate evaluation
and monitoring of open agricultural fields:

• No research has been published yet on the optimization of sensors
placement based on continuous microclimatic variations derived
from physical laws.

• There has been no application of machine learning clustering
methods, based on continuous microclimatic variations, to op-
timize the placement of sensor networks in open agricultural
fields.

• No optimization method has been validated using predictions of
future conditions made with deep learning models.

The present paper aims at filling these gaps by: (1) modeling with a
physical model temperature variations at 2 m resolution in an open
field with a complex terrain morphology; (2) proposing a computa-
tional framework based on a machine learning clustering algorithm
to optimize a sensors layout according to the modeled temperature
variations; (3) performing an innovative experimental validation, based
on the Nhits deep learning algorithm (Neural Hierarchical Interpolation
for Time Series Forecasting (Challu et al., 2023)) to predict the evolu-
tion of temperature and to verify that the optimized sensors layout is
consistent with the future forecasting.

2. Materials and methods

2.1. Workflow design

In this paper we illustrate and experimentally validate a com-
putational framework based on machine learning. This framework
optimizes the deployment of a network of sensors according to the local
temperature variations. The research has been conducted in a study
area located in the Lombardian foothills in the province of Bergamo,
Italy. The workflow design is proposed in Fig. 1.

2.1.1. Temperature variations
The temperature variations within the study area have been sim-

ulated at 2-m resolution, with a hourly frequency from November
12th, 2022, to June 22nd, 2023, exploiting a computational framework
presented in the methods section. This procedure simulates continuous
temperature variations at high resolution over the whole study area.

2.1.2. Sensors layout optimization
The simulated temperature variations have been processed by a

machine learning clustering algorithm which groups spatial locations
exhibiting similar thermal patterns. A clustering optimization proce-
dure has been performed to optimally identify these regions. This
procedure identifies the best clustering algorithm and the optimal
number of clusters in which the study area should be divided. Once
the optimal algorithm and number of clusters have been identified, the
study area has been partitioned according to the relevant microclimate
variations. A sensor can be then strategically placed within each op-

timal cluster providing representative temperature recordings for the
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Fig. 1. Workflow design The figure describes the workflow design applied in this research. The pipeline is divided in three consecutive sections: the simulation of temperature
variations from physical principles, the sensors layout optimization procedure and the experimental validation.
whole cluster. This sensor is defined as cluster center. This procedure
leads to an optimized sensors layout designed according to the temper-
ature variations of the study area. The workflow is summarized in the
second step of Fig. 1.

2.1.3. Experimental validation
Since the temperature variations have been theoretically derived, an

experimental validation procedure has been performed. This validation
tests if the optimized clusters accurately represent and predict the
real temperature variations. Four clusters have been selected for this
validation and temperature data have been collected from different
locations within them. The collected temperature data have been ex-
ploited to perform two different kind of validation. The first approach
verifies that the optimized clusters and sensors are representative of
the real temperature variations. This has been achieved by comparing
the dispersion of temperature within the cluster with the overall tem-
perature spread experienced by the study area. It has also been tested
that the temperature pattern measured by the cluster center is more
representative for the cluster points with respect to the points outside
the cluster. The second approach demonstrates that future temperature
predictions, made within the cluster by a deep learning algorithm,
are consistent with respect to the ones made by the cluster center. In
particular, a Nhits neural network has been trained to predict future
temperature scenarios. The workflow is summarized in the third step
of Fig. 1, for one of the four validation clusters.

2.2. Study area and monitoring sensors

The research has been conducted in the study area represented in
Fig. 2B, located in province of Bergamo, Italy, in the Lombardy foothills
(the location of the study area is shown in Fig. 2A). The study area is
surrounded by woods and behind it there is a mountain of 700 m high.
In the past, the study area has been used for vineyard crops, while it
3 
is currently exploited as mown meadows. The study area mainly faces
east.

According to the Köppen and Geiger classification (Beck et al.,
2018), the study area climate is humid subtropical (Cfa), with cold
winters and warm and wet summers. Despite this, the Lombardy region
shows significant climate differences with respect to the Köppen model
due to proximity to large water basins and metropolitan areas, and local
variability in elevation. Lombardy average annual rainfall is around
853 mm, with two minima in winter and summer and two maxima
during the spring and autumn seasons. The annual average temperature
is around 13.1 ◦C (55.5 ◦F).

20 sensors, based on MEMS technology, with hygrometers and ther-
mometers, have been used to record temperature and relative humidity
within the study area. The temperature measurement range provided
by these devices spans from −20 to 60 ◦C, accurate to ±0.5 ◦C. While,
for the relative humidity recordings, the sensors provide measurements
within a 0 to 99% range, with an accuracy of ±5% RH. The devices
transmit data exploiting Bluetooth Low Energy (BLE) connectivity,
ensuring a smooth and efficient data collection process. Each sensor has
been protected by a wood structure to cover it from the direct contact
of rainfall. The locations of the 20 sensors have been indicated by red
points in Fig. 2B.

The 20 sensors have collected data from July 23rd, 2023, to August
15th, 2023. Prior to utilizing the sensors in an outdoor environment,
a calibration procedure has been conducted in controlled settings to
minimize potential systematic calibration discrepancies, spanning from
July 13th, 2023, to July 20th, 2023. Initially, a mean temperature and
relative humidity profile have been determined by combining data from
all sensors. Subsequently, the instantaneous deviation from this profile
has been computed and averaged for each sensor. These values have
been then designated as calibration parameters, to be subsequently
subtracted from the field sensor measurements. Through the implemen-
tation of this calibration process, all systematic calibration errors have
been rectified, improving the accuracy and reliability of temperature
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Fig. 2. Study area (A) The figure describes where the study area (red point) is located in Lombardy, Italy (Mi = Milan, Bg = Bergamo). The location of Lombardy is highlighted in
the Italy representation on the left by the red square. The Lombardy figure has been taken and modified from Zanchi et al. (2022). (B) The figure displays the study area, which
is located in the province of Bergamo in the Lombardian foothills, Italy (the center of the study area is located at 45◦23′31′′N 9◦41′48′′E). The image has been obtained from
Google Earth Pro. The red points indicate the locations of the 20 sensors used in the experimental validation procedure. (C) The figure depicts the local temperature variation
across the entire study area at June 19, 2023, at 4 p.m, predicted by a feed forward neural network. (D) The figure describes the local temperature variations across the vegetation
free region of the study area at June 19th, 2023, at 4 p.m.
Table 1
Sensors data. The table describes the sensors data.

Sensors number Recording period Usage

25 November 12th, 2022,
to June 22nd, 2023

Temperature reconstruction
and Nhits transfer learning

20 July 23rd, 2023, to
August 15th

Experimental validation
procedures

and relative humidity measurements. In addition, the data collected by
25 sensors, presented in Zanchi et al. (2023), have been involved in
the present research. The data have been exploited for the generation
of the temperature maps at 2 m resolution and during the Nhits transfer
learning procedure. These 25 sensors have collected temperature data
from November 12th, 2022, to June 22nd, 2023. The two groups of
sensors data have been described in Table 1.

2.3. Temperature variations of the study area

The temperature variations within the study area have been mod-
eled at a resolution of 2 m, exploiting the computational framework
described in Zanchi et al. (2023). It is summarized as follows. Initially,
a microclimate model integrates climate data with the terrain mor-
phology of the study area to determine 2-m-scale values of physical
variables associated with the local temperature. Afterwards, a feed
forward neural network has been trained, validated and tested using
as input these downscaled variables to predict the local temperature at
specific locations within the study area, where 25 sensors of the same
type mentioned earlier have been uniformly deployed from November
12th, 2022, to June 22nd, 2023. The feed-forward neural network has
4 
been then utilized to perform a transfer learning procedure, predicting
the local temperature across each location within the study area. This
process generated a map, with a resolution of 2 m, illustrating the com-
plete temperature variations across the entire study area. An example of
a temperature map is represented in Fig. 2C for the June 19th, 2023 at
4 p.m. A total of 4488 temperature maps have been generated, covering
the period from November 12th, 2022, to June 22nd, 2023, at hourly
frequency, with some pauses in between due to sensors maintenance.
A temperature map can be considered as a two-dimensional grid with a
resolution of 2 m, where each grid location contains the corresponding
temperature value.

Considering that the purpose of this research is to establish an
optimized network of sensors for monitoring temperature fluctuations,
it is reasonable that the sensors are not placed under the vegetation.
To address this issue, a handcrafted vegetation map has been utilized,
which specifically accounts for the non-vegetation-covered terrain. An
illustration of a temperature map, where the vegetation is excluded, is
depicted in Fig. 2D.

2.4. Machine learning clustering for sensors layout optimization

A clustering procedure has been applied on the temperature maps
data in order to find the regions of the study area containing spatial
locations which exhibit similar thermal patterns. The input dataset for
the clustering procedure has been structured in the following way: the
4488 temperature maps have been aligned in the temporal domain, thus
generating a time series reflecting the hourly temperature fluctuations
on each grid location, spanning from November 12th, 2022, to June
22nd, 2023. A principal component analysis has been then performed
on these time series, resulting in a vector of 50 principal components
for each grid location within the study area. This number of principal
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components accounts for the 90% of the overall variance. These prin-
cipal components vectors can be then processed by a machine learning
clustering algorithm to group together the grid locations exhibiting
similar temperature variations. At this point two questions arise: which
is the best clustering algorithm to apply? How many clusters should the
study area be divided into?

A clustering optimization procedure has been performed to address
these questions. The procedure has been divided in two steps: the
choice of the optimal clustering algorithm and the search for the
optimal number of clusters in which the study area should be divided
into. We have conducted a comparison among three different clustering
methods, the K-means algorithm, the agglomerative ward method,
and the agglomerative complete method. For the determination of the
optimal number of clusters, a systematic search has been conducted,
evaluating the outcomes of each clustering algorithm for a number of
clusters ranging from 2 to 25.

In the clustering optimization procedure, the outcome generated
by each clustering algorithm, tested with different number of clusters,
have been evaluated using two metrics: the cluster mean absolute error
concerning the cluster center, and the silhouette score. The optimal al-
gorithm which divides the study area in the optimal number of clusters
is the one which minimizes the cluster mean absolute error concern-
ing the cluster center and maximizes the silhouette score. Therefore,
the clustering optimization procedure concerns the optimization of
two-objectives.

The clustering procedures have been performed through the scikit
Python library.

2.4.1. K-means clustering algorithm
The K-means algorithm has been exploited to find clusters of spatial

points which have similar trends in their temperature variation. The K-
means algorithm is an unsupervised clustering technique that aims at
partitioning 𝑁 observations, 𝑋, represented by vectors of numbers (in
the present case by the PCA vector of the temperature time series) into
K clusters, 𝐶, containing the observations with a similar mean (Harti-
gan and Wong, 1979). The clustering procedure follows an optimization
strategy defined as:
𝑁
∑

𝑖=0
𝑚𝑖𝑛
𝜇𝑗∈𝐶

(‖𝑥𝑖 − 𝜇𝑗‖) (1)

where 𝜇𝑗 are the mean of the observations 𝑋 in a cluster 𝐶. The
lgorithm requires as input the number of clusters K. This procedure
as been reproduced for a number of clusters spanning from 2 to 25.

.4.2. Agglomerative clustering
Agglomerative clustering is a hierarchical clustering algorithm

hich creates clusters by a bottom up procedure. At the start, each ob-
ervation is placed in its own cluster and then clusters are successively
erged together according to the minimization of a certain metric (the

wo clusters that minimize the metric are merged in a new cluster). The
hoice of the metric defines the kind of agglomerative clustering. In the
resent research the ward and the complete agglomerative clustering
ethods have been exploited.

The ward agglomerative clustering minimizes the sum of squared
ifferences within all clusters (Ward, 1963). Given a cluster 𝐴 and a

cluster 𝐵 the ward metric is defined as:

𝑑𝑤𝑎𝑟𝑑 =
∑

𝑥∈𝐴∪𝐵
‖𝑥 − 𝜇𝐴∪𝐵‖

2 −
∑

𝑥∈𝐴
‖𝑥 − 𝜇𝐴‖

2 −
∑

𝑥∈𝐵
‖𝑥 − 𝜇𝐵‖

2 (2)

The complete linkage minimizes the maximum distance between
observations of pairs of clusters. Given a cluster 𝐴 and a cluster 𝐵 the
complete metric is defined as:

𝑑 = max |𝑎 − 𝑏| (3)
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎∈𝐴,𝑏∈𝐵 o
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2.4.3. Clustering optimization metrics
Two metrics have been defined to determine the most suitable

clustering method and the appropriate number of clusters. The first
metric involves the mean absolute error with respect to the cluster
center. The second metric employed is the silhouette score. The first
metric is defined as follows. Given a partition of the grid locations of
the study area in 𝐶 clusters, for each cluster 𝐶𝑖 a location 𝑗 is chosen
s candidate for being the center of the cluster and the mean absolute
alue between its feature vector 𝛷𝑗 and the rest of the locations 𝑘
eature vector 𝛷𝑘 is computed. The location 𝑗𝑐 which obtains the

minimum of the mean absolute error is considered the cluster center.
The error is computed and averaged for each cluster 𝐶𝑖 :

𝑀𝐴𝐸𝑐𝑒𝑛𝑡𝑒𝑟 =

∑𝐶
𝑖=1 min𝑗∈𝐶𝑖

⟨

|𝛷𝑘 −𝛷𝑗 |
⟩

𝑘≠𝑗,𝑘∈𝐶

𝐶
(4)

where the symbol ⟨⋅⟩𝑘 means an average over the index 𝑘.
The silhouette score (Rousseeuw, 1987) measures how much an

bject is similar to its own cluster compared to the other clusters.
he silhouette score ranges from 1 to −1. Positive values towards 1
ean that the object is very similar to the other cluster members,
hile negative values towards −1 mean that it is poorly matched. The

ilhouette score 𝑠𝑖 for an object 𝑖 belonging to the cluster 𝐼 is defined
s:

𝑖 =
𝑏𝑖 − 𝑎𝑖

max(𝑎𝑖, 𝑏𝑖)
(5)

where

𝑎𝑖 = ⟨𝑑(𝑖, 𝑗)⟩𝑗∈𝐼,𝑗≠𝑖 (6)

𝑖 = min
𝐽≠𝐼

⟨𝑑(𝑖, 𝑗)⟩𝑗∈𝐽 (7)

nd 𝑑(𝑖, 𝑗) is the euclidean distance

(𝑖, 𝑗) = ‖𝑖 − 𝑗‖2 (8)

n the present paper the silhouette score for evaluating the optimal
umber of clusters and clustering methods is computed averaging the
ilhouette score over all the grid locations of the study area:

= ⟨𝑠𝑖⟩𝑠𝑡𝑢𝑑𝑦𝑎𝑟𝑒𝑎 (9)

.5. Experimental validation procedure

An experimental validation has been performed to assess whether
he optimized sensors layout accurately represents the actual and future
icroclimate conditions of the study area. This validation is motivated

y the fact that the clusters have been generated from theoretical
odeled temperature maps.

Four clusters have been selected for the experimental validation
rocedure. A central point has been defined within each cluster and a
ensor has been placed at this point. The temperature pattern recorded
y this sensor should represent the characteristic temperature pat-
ern described by the whole cluster. In addition, four other sensors
ave been positioned at different locations for each validation cluster.
herefore, for each validation cluster a total of 5 sensors have been
ositioned (for a total of 20 sensors). These sensors have collected
emperature data from July 23rd, 2023, to August 15th, 2023. The data
ave been then analyzed to address two different validation tasks. The
irst task aims at verifying that the optimized clusters represent a char-
cteristic temperature pattern of the study area and that the optimized
ensors record representative temperature variations of their clusters.
he second task validates that future temperature predictions made by
Nhits neural network, using as input the optimized sensors data, are

epresentative for the future temperature variations experienced in the
ptimized clusters.
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2.5.1. Validation of real temperature representation
At first, for each sensor 𝑖, the hourly temperature time series has

been normalized by the average hourly time series over all the 20
sensors, 𝑆, (5 sensors for each cluster) in order to remove scale effects:

𝑇 𝑖
𝑛𝑜𝑟𝑚 =

𝑇 𝑖 −
⟨

𝑇 𝑗⟩
𝑗∈𝑆

⟨𝑇 𝑗
⟩𝑗∈𝑆

(10)

The normalized temperature time series have been analyzed with
two distinct approaches. The first approach compares the dispersion of
temperature readings within the cluster with the overall temperature
spread recorded by all 20 sensors deployed across the study area. This
approach involves calculating the standard deviation of the mean for
each hour across the cluster temperature time series and subsequently
comparing it with the standard deviation calculated across all the
measurements from the 20 sensors. The two curves have been then
compared with a Mann–Whitney U statistical test (Mann and Whitney,
1947) to test if the cluster spread curves is statistically lower than the
spread curve obtained with the data gathered outside the cluster.

The second approach computes, for each cluster, the distribution
of absolute differences among the temperature readings of the cluster
central sensor and the other sensors within the same cluster. This is
then compared with the distribution of absolute differences between
the temperature readings of the cluster central sensor and the sensors
that are not located in the cluster. The comparison has been performed
through a Mann–Whitney U statistical test, to test if the distribution of
the absolute differences of the temperature measured inside the cluster
is statistically less than the one measured outside the cluster.

A removal strategy has been implemented for each cluster to address
potential dependencies on individual sensor behaviors in the validation
results. This strategy ensures the robustness of validation results against
individual behaviors within clusters. The removal procedure is based on
a validation process with respect to the cluster center while excluding
one cluster sensor at a time (this is repeated for each sensor in the
cluster). The Mann–Whitney U statistical test results are specifically
used as a measure to evaluate the impact of individual sensor behaviors.

2.5.2. Validation of future conditions forecasting
Since the optimized sensors should be exploited for monitoring

microclimate conditions and predicting future scenarios, it is important
that the future temperature predictions made by different locations
inside a cluster are consistent with the predictions made at the cluster
center. A validation strategy for future conditions forecasting has been
performed on the microclimate data measured by the 20 sensors from
July 23rd, 2023, to August 15th, 2023. A Nhits has been trained to
forecast the temperature evolution in the next 24 h given temperature
and humidity data from the past 72 h. The details regarding the Nhits
architecture and training are described in the next section. For each of
the four validation clusters, the distribution of the absolute differences
between the temperature values predicted from the data measured
by the cluster center sensor and the temperature prediction obtained
from the data measured by the sensors located inside the cluster has
been computed. This distribution has been then compared to the one
obtained computing the absolute differences between the temperature
values predicted from the data measured by the cluster center sensor
and the temperature prediction obtained from the data measured by the
sensors located outside the cluster. Since the Nhits produces probabilis-
tic temperature predictions, the median of the predicted temperature
quantile distribution has been used to compute the absolute differences.
The comparison of the two distribution has been performed through
a Mann–Whitney U statistical test to test if the distribution of the
absolute differences of the temperature measured inside the cluster is

statistically less than the one measure outside the cluster. N

6 
2.5.3. Nhits
Nhits (Neural Hierarchical Interpolation for Time Series Forecast-

ing (Challu et al., 2023)) is a neural network specialized in time series
long-horizon forecasting by learning how to apply a multi-rate sampling
of the input signal and a multi-scale synthesis of the forecast. The input
signal is decomposed into its fundamental frequency modes which are
then combined to generate long-horizon prediction results. This hier-
archical approach to forecasting significantly reduces computational
requirements and enhances forecasting accuracy. The Nhits architec-
ture is organized into S stacks, each specializing in learning a distinct
characteristic of the data. Each stack comprises a set of B blocks. Within
each block, there is a multilayer perceptron that generates forecast
outputs based on its features and a backcast used to eliminate the
component related to its features from the input signal, which is then
utilized for the subsequent block. This approach has surpassed various
modern transformer-based architectures on different baseline datasets.
For additional technical and numerical details, please refer to Challu
et al. (2023).

In the current study, an Nhits architecture has been used for gen-
erating long-horizon probabilistic predictions of temperature. With a
given hourly time series of temperature, the input comprises the tem-
perature data from the past 72 h. The prediction involves forecasting
the quantile distribution of the temperature data for the next 24 h.
In addition to the input temperature data, a time series of relative
humidity has been incorporated to expand the input variance space.
The prediction involves the estimate of a probabilistic value for the
temperature at each hour (for the next 24 h) based on the temperature
quantile distribution learned during the training procedure using a
quantile loss (Wen et al., 2017):

𝑄 =
∑

𝑡

∑

𝑞

24
∑

ℎ=1
𝐿𝑞(𝑦𝑡+ℎ, 𝑦

𝑝
𝑡+ℎ) (11)

where

𝐿𝑞(𝑦, 𝑦𝑝) = 𝑞(𝑦 − 𝑦𝑝)+ + (1 − 𝑞)(𝑦𝑝 − 𝑦)+ (12)

here 𝑡 is the start of the forecasting horizon, 𝑞 is the quantile and ℎ
s the hour in the forecasting horizon. The (𝑥)+ operation for a generic
umber 𝑥 stays for max(0, 𝑥).

The Nhits model has been trained, validated, and tested using
emperature and relative humidity data gathered from an ARPA me-
eorological station situated near the study area, covering the period
rom 2018 to 2022. The training set comprises data from 2018 to 2020,
he validation set consists of data collected in 2021, and the test set
ncompasses data collected throughout 2022.

The optimization process in this study employs the Adam opti-
izer (Kingma and Ba, 2014), an advanced gradient descent opti-
ization algorithm. Adam, short for Adaptive Moment Estimation, is

enowned for its efficacy in optimizing neural networks. With Adam,
he adjustment of the network’s weights occurs iteratively, utilizing
oth the first and second moments of the gradients. This adaptive
pproach enables the dynamic updating of the learning rate for each
eight parameter.

The hyperparameters for Nhits have been chosen following a grid
earch optimization process, leading to the selection of 6 stacks, each
ontaining 2 blocks. Within each block, the multilayer perceptron
omprises 2 layers, each with 128 neurons. The specific configuration
f Nhits hyperparameters represents the set of values that minimized
he loss function on the validation set during the grid search opti-
ization process. The entire set of hyperparameters is shown in the

upplementary materials.
The optimized Nhits has been trained for 1000 epochs on the

raining set, with a patience of 100 epochs on the validation set. Then
he Nhits has been evaluated on the test set. Before delving into the
valuation metric used to assess the prediction capability of the trained

hits, it is beneficial to recap how the neural network formulates
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predictions. With the input consisting of data from the preceding 72 h
of temperature and relative humidity, the Nhits forecasts a temperature
value for each of the subsequent 24 h based on the quantile distribution
learned during the training phase. In this study, a set of 17 quantiles
has been employed, including 8 quantile bands and 0.5 as the central
quantile. The quantiles bands are (0.01, 0.99), (0.05, 0.95), (0.10, 0.90),
0.15, 0.85), (0.20, 0.80), (0.25, 0.75), (0.30, 0.70), (0.40, 0.60). By repeating
he predicting procedure on a fixed input, it is possible to reconstruct an
stimation of the quantile distribution for the temperature for the next
4 h (it is possible to derive the temporal evolution of the quantiles
or the next 24 h). Prediction examples are shown in Fig. 7A,C. The
uality of the probabilistic prediction has been evaluated on the test set
hrough the mean absolute error (MAE) of the mean and the median of
he sampled distribution (with 1000 predicted samples):

𝐴𝐸𝑚𝑒𝑎𝑛(𝑦, 𝑦𝑝) =
∑𝑁

𝑖=1 |
⟨

𝑦𝑝i
⟩

− 𝑦i|
𝑁

(13)

here
⟨

𝑦𝑝i
⟩

is the mean of the sampled prediction distribution (with
000 prediction samples).

𝐴𝐸𝑚𝑒𝑑𝑖𝑎𝑛(𝑦, 𝑦𝑝) =
∑𝑁

𝑖=1 |𝑦̃
𝑝
i − 𝑦i|

𝑁
(14)

here 𝑦̃ is the median of the sampled prediction distribution (with 1000
rediction samples).

A validity measure has been exploited to evaluate the reliability of
he quantile prediction. The validity is defined as follows. For a given
uantile band (𝑎, 𝑏), a prediction sampled from a quantile distribution
hould fall within this band in the (𝑏 − 𝑎)% of cases. By repeating the

temperature prediction for each input 1000 times, an estimate of the
predicted temperature quantile distribution for the next 24 h has been
built. It is then possible to count how many times the real temperature
falls within each quantile band defined by the estimated distribution
over the 24 h. The validity measure for a quantile band (𝑎, 𝑏) can be
efined as the average of this counts over all the predictions:

𝑎𝑙𝑖𝑑𝑖𝑡𝑦(𝑎, 𝑏) =
∑𝑁

𝑖=1
∑24

ℎ=1 𝑣(𝑦i(ℎ), 𝑎, 𝑏)
𝑁

(15)

where 𝑦i(ℎ) is the real temperature scenario 𝑖 at hour ℎ and 𝑣(𝑦i(ℎ), 𝑎,
) is 1 if 𝑦i(ℎ) belongs to the quantile band (𝑎, 𝑏) and 0 in the opposite

case. If the 𝑉 𝑎𝑙𝑖𝑑𝑖𝑡𝑦(𝑎, 𝑏) value is near to (𝑏 − 𝑎)% the probabilistic
predictions works. The validity measure helps assessing whether Nhits
can produce a reliable probabilistic forecast.

After training, validating, and testing the Nhits on the data collected
by the ARPA station near the study area, a transfer learning procedure
has been implemented to transfer the Nhits skills on data measured by
the sensors deployed over the study area. The transfer learning process
involves reusing (without training it again) the Nhits model trained
on the ARPA data for the sensor data from November 12th, 2022 to
August 15th, 2023 (with some pauses in between), assuming that the
temperature patterns observed by the ARPA station are comparable
to those measured by the sensors. The metrics used during the test
have been recalculated for the transfer learning procedure to assess the
quality of transfer learnt predictions on the sensors data. The choice of
using the data from an ARPA station is motivated by the need of a large
amount of data to effectively and properly train, validate and test the
Nhits. The Nhits architecture has been built, trained and tested using
the Darts Python library (Herzen et al., 2022).

3. Results and discussion

This section analyzes and discusses the results of the current re-
search. It begins by outlying the results of the clustering optimization
procedure, followed by an overview of the resulting optimized clusters.
Then, the results obtained during the two phases of the experimental
validation have been described.
 n

7 
3.1. Clustering optimization results

A clustering procedure is applied to the temperature maps to iden-
tify spatial regions within the study area that show similar temperature
variations over time. The clustering optimization procedure compares
three different clustering methods and finds the optimal number of
clusters into which partition the study area. In order to find the optimal
number of clusters and the optimal clustering method, two metrics
have been exploited: the mean absolute error with respect to the
cluster center, defined in Eq. (4), and the silhouette score, defined in
Eq. (9). These two metrics have been computed for different numbers
of clusters and for different clustering methods. The results are shown
in Fig. 3. Fig. 3A compares the results for the mean absolute error with
respect to the cluster center obtained for a number of clusters ranging
from 2 to 25 and for three different clustering algorithms (K-means,
agglomerative ward and agglomerative complete). Fig. 3B shows the
silhouette score computed for a number of clusters ranging from 2
to 25 and for three different clustering algorithms (K-means, agglom-
erative ward and agglomerative complete). The K-means algorithm
shows better performances with a lower 𝑀𝐴𝐸𝑐𝑒𝑛𝑡𝑒𝑟 error and a higher
ilhouette score with respect to the agglomerative clustering methods.
his result is confirmed by the work of Uyeh et al. (2022), where a
-means clustering algorithm has been chosen to cluster temperature
nd humidity time series.

As shown in Fig. 3A, the error with respect to the cluster center
ontinuously decreases until reaching 17 clusters. From 17 clusters
nwards the decline is smoother and not significant. Fig. 3B shows the
ilhouette score remaining relatively steady from 10 clusters onwards.
hese results suggest that there are no significant differences in the
umber of clusters between 17 and 25. Given that more clusters require
eploying additional sensors, which increases network costs, selecting
7 clusters as the optimal number appears to be a reasonable choice.
iven the relatively small study area and the relatively small cost of

emperature sensors, the implementation of a network of 17 sensors
hould not incur significantly higher costs compared to a network of
5 sensors. However, the primary objective of the paper has been to
stablish a general framework applicable to areas of varying dimen-
ions and capable of clustering any physical variables. In scenarios
here the area of interest is large and requires a high number of
onitoring sensors, the reduction achieved through the clustering op-

imization procedure becomes especially crucial for cost-effectiveness.
oreover, in instances where high-cost sensors are necessary, the clus-

ering optimization procedure can significantly mitigate the overall cost
f the sensors network. We have collected the clustering results for all
lternative numbers of clusters in the supplementary materials, pro-
iding a more comprehensive comparison of the clustering outcomes
supplementary Figure 5, 6, 7).

The K-means algorithm has been applied to the temperature maps
ata partitioning the study area in 17 clusters, as represented in Fig. 3C.
collection of the single cluster maps is provided in the supplementary
aterial (from supplementary Figure 1 to 4). Inside each cluster, a

entral point has been identified as the cluster center and a sensor has
een placed there. The optimized layout of 17 sensors is represented
n Fig. 3D. Certain clusters exhibit compactness and accurately capture
haracteristic temperature variations, whereas others are less easily in-
erpretable. Fragmented clusters emerge near to the edges of the study
rea. This phenomenon can be attributed to the increased influence of
egetation in these areas, which complicates temperature modeling and
esults in high temperature variability. Another explanation for these
ess interpretable clusters could be attributed to the challenge that the
lustering procedure encounters in distinguishing discrete differences
mong continuous objects, such as the temperature time series. This
hallenge is particularly evident from the silhouette coefficient values
epicted in Fig. 3B, which are relatively low. Ideally the silhouette
oefficient should approach 1 for a perfect clustering. It is worth

oting that similar magnitude values for silhouette coefficients were



M. Zanchi et al. Computers and Electronics in Agriculture 225 (2024) 109305 
Fig. 3. Clustering procedure (A) The figure describes the 𝑀𝐴𝐸𝑐𝑒𝑛𝑡𝑒𝑟 metric defined in (4), represented on the Y axis, for different number of clusters, described on the X axis,
and for the three different clustering methods (described in the legend: Kmeans stays for the K-means clustering algorithm, Agg. ward stays for the agglomerative ward clustering
algorithm and Agg. complete stays for the agglomerative complete clustering algorithm). (B) The figure describes the silhouette score defined in (9), represented on the Y axis, for
different number of clusters, described on the X axis, and for the three different clustering methods. (C) The figure describes the study area divided in 17 clusters by the K-means
algorithm. (D) The figure describes the optimized sensors layout with the 17 optimized sensors represented by red dots.
also found in Uyeh et al. (2022) for optimal clusters. The introduction
of temperature variations derived from physical principles introduces
additional variability, particularly in areas where multiple environmen-
tal factors contribute to complex temperature patterns. These patterns
can be challenging to group together into spatial clusters, especially
when compared to cases of simple interpolation, which tend to smooth
out sudden variations. Hence, from a cost-optimization perspective,
it is reasonable to adjust the optimized sensors layout by removing
those that are situated in less interpretable locations. Nonetheless, the
primary objective of this paper was to demonstrate that clustering
methods can effectively generate clusters of temperature variations
corresponding to real physical scenarios.

3.2. Analysis of clusters used in experimental validation

Out of the 17 clusters generated by the K-means algorithm, 4
clusters have been selected for the experimental validation due to their
apparent physical and interpretable meaning. They are respectively
identified as cluster 0, cluster 2, cluster 6 and cluster 10. Cluster 0
is depicted in Fig. 4A. It characterizes a large basin with a gradu-
ally declining slope, accompanied by two additional separate, smaller
basins. Cluster 2 is displayed in Fig. 4B, outlining a significant area
parallel to the vegetation in the western part of the study area. This
cluster is expected to include grid locations that are shaded in the
afternoon as the sun descends behind the hill situated at the western
rear of the study area. The cluster also includes other smaller and
not compact regions parallel to the big one. Cluster 6 is illustrated in
Fig. 4C, characterizing regions with decreasing slopes oriented towards
the east. Cluster 10 is shown in Fig. 4D, representing areas shaded by
vegetation in the morning when the sun is positioned in the lower right
corner of the study area. The selection of these clusters is additionally
bolstered by the fact that they consistently emerge when applying the
8 
clustering procedure, even with varying numbers of clusters different
from 17. This consistency indicates that they truly represent robust
representations of temperature patterns delineated by the physical
model.

The clusters can consist of non-continuous structures representing
the same microclimate condition across various regions of the study
area, indicating a form of non-local behavior. This underlines the
necessity of employing sensor optimization strategies for microclimate
assessments. Utilizing a network of sensors uniformly distributed across
the area of interest would introduce redundancies in measurements,
leading to increased costs without necessarily providing additional
valuable information. Therefore, optimizing sensor placement based on
clustering analysis can lead to more efficient and cost-effective data
collection approaches for microclimate evaluations.

For each cluster, a center has been identified and indicated in
Fig. 4 by a red point. This center is the most representative point
of the temperature variations described by the cluster. In practice,
placing a sensor to monitor the microclimate at this point serves as
a proxy for the temperature across all other points within the cluster.
This approach facilitates an accurate reconstruction of the temperature
distribution across the study area. We have introduced 4 other locations
within each cluster, represented in Fig. 4 by the yellow stars. We have
placed a sensor in each of these locations to collect the data used for
the experimental validation. These points have been selected to monitor
specific area of the clusters. Priority has been given to placing sensors
in non-continuous area, as these areas may be influenced by non-local
effects generated by the theoretical modeling, which may not reflect a
real temperature pattern.

3.3. Experimental validation: are optimized clusters representative of real
temperature variations?

An experimental validation of the sensors layout optimization has
been performed to determine if the clusters obtained from theoretical
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Fig. 4. Clusters maps The figures describe the four validation clusters involved in the validation procedures. The red point is the cluster center and the stars represent the other
4 sensors deployed in the cluster.
temperature maps effectively represent the real microclimate condi-
tions of the study area. To summarize, for each validation cluster, five
sensors have been deployed: one at the cluster center and the remaining
four at other cluster locations. Then the sensors have recorded the
temperature from July 23rd, 2023, to August 15th, 2023. This data
have been then analyzed with two different approaches as described
in the Method section. The initial approach aims to assess whether the
temperature spread within the cluster is lower than the overall spread
within the study area. After normalizing the hourly temperature, the
standard deviation has been computed for the cluster time series for
each hour. The same procedure has been applied to the temperature
time series of all the sensors. If the cluster shows a narrower spread
than the overall microclimate conditions, the cluster curve is expected
to lie beneath that of the overall data. In order to assess this in a robust
statistical way a Mann–Whitney U statistical test has been performed
on the two data distribution to assess if the cluster temperature spread
is statistically less than the spread outside the cluster. The two spread
curves have been plotted for each cluster in Fig. 5. As shown in Fig. 5A,
B, the two curves exhibit a comparable spread, indicating that cluster
0 and 2 are not particularly representative of the actual microcli-
mate conditions, as confirmed by the Mann–Whitney U statistical test
(Pvalue higher than 0.05). Instead, Fig. 5C, D illustrate that the cluster
spread curve is lower than the one representing the overall temperature
spread, indicating that clusters 6 and 10 are representative of the actual
microclimate conditions, as also corroborated by the Mann–Whitney U
statistical test (Pvalue less than 0.05).

The second validation approach aims at comparing, for each cluster,
the distribution of absolute differences between the temperature read-
ings of the cluster central sensor and those of the other sensors within
the same cluster with the distribution derived from comparing the cen-
tral measurements with the data measured by sensors located outside
the cluster. Fig. 6 shows the two distributions for each cluster. A Mann–
Whitney U statistical test has been applied to test if the distribution of
the absolute differences of the temperature measured inside the cluster
is statistically less than the one measure outside the cluster. The results
are consistent with the findings of the analysis of the temperature
9 
spread inside and outside the cluster. Fig. 6A and B show that the two
distributions have a similar shape, meaning that the clusters 0 and 2
are not very representative of the actual microclimate conditions. This
is also confirmed by the Mann–Whitney U statistical test which in both
cases shows a Pvalue greater than 0.05 for the null hypothesis that
the distribution of the temperature differences inside the cluster is not
statistically less than the one outside the cluster. Fig. 6D and C compare
the distribution of the cluster temperature difference for clusters 6 and
10 to the one obtained outside the clusters. For both clusters, the first
distribution shows a higher peak for small values of absolute errors,
while the second has larger tails for high values of absolute error. This
behavior is also confirmed in both cases by the Whitney U statistical test
which shows a Pvalue less than 0.05. Therefore, it is possible to reject
the null hypothesis that the distribution of the temperature differences
inside the cluster is not statistically less than the one outside the cluster.

To address potential dependencies of the clustering validation re-
sults on individual sensor behaviors, the removal strategy described
in the Methods section has been performed for each cluster. For each
cluster, a sensor at time is removed and the two validation approaches
are performed. If the results are the same as in the normal case (the
case with all the four sensors), it means that no individual sensors can
influence the clustering validation results. From this analysis, it appears
that the validation results for clusters 2, 6 and 10 are robust towards
single sensor behaviors. One sensor in cluster 0 (the third star from
top to bottom in Fig. 4A) influences the clustering validation results.
Removing this sensor makes the Mann–Whitney U statistical test Pvalue
lower than 0.05 for both validation approaches. This finding may be
explained by the location of that particular sensor, which is positioned
near the vegetation border. This fact may influence the microclimatic
behavior in this particular location so that the theoretical temperature
maps do not describe the real temperature variations properly.

The validation analysis reveals that cluster 0 is not totally repre-
sentative of a characteristic temperature variation, since there is an
area which behaves differently with respect to other cluster points.
Cluster 2 appears to inadequately represent a characteristic temperature
pattern, although it seems to capture a pattern related to the shadow
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Fig. 5. Clustering validation: temperature dispersion. The figures describe the hourly temporal evolution of the normalized temperature standard deviation measured inside the
cluster (in red) and the normalized temperature standard deviation measured by all 20 sensors (in blue). The 𝑋-axis represents the time in hours, while the 𝑌 -axis represents the
normalized temperature standard deviation. The figures A, B, C and D describe respectively the data for the validation clusters 0,2,6 and 10.
Fig. 6. Clustering validation: absolute temperature differences from the cluster center. The figures describe the distributions of the normalized temperature absolute difference
between the cluster center and the cluster elements (in light blue) and the distribution of the normalized temperature absolute difference between the center of cluster and all the
other elements not in cluster (in red). The figures A, B, C and D describe respectively the data for the validation clusters 0,2,6 and 10.
cast by the vegetation. Fig. 3 also shows other structures similar and
parallel to cluster 2. These parallel clusters may represent the leading
edges of shadows cast by vegetation moving from left to right across

the study area, as the afternoon progresses. An explanation for the

10 
failure in the validation procedure of cluster 2, may reside in the error
made by the physical modeling in replicating the perfect timing of
the shadows movements. It is also noteworthy that the validation was

conducted in August, while the temperature maps depict variations
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Table 2
Test results for validity measure.

Quantile bands Validity measure

(0.01, 0.99) 0.975
(0.05, 0.95) 0.905
(0.10, 0.90) 0.802
(0.15, 0.85) 0.704
(0.20, 0.80) 0.603
(0.25, 0.75) 0.500
(0.30, 0.70) 0.400
(0.40, 0.60) 0.198

Validity measure results on the test set for all the quantile bands.

occurring from November to June. During these periods, the solar
elevation angle of the sun varies, leading to different movements in
the progression of shadows. Cluster 6 and cluster 10 are representative
f an actual partition of microclimate on the study area. In these
wo cases the model seems to perform correctly in representing a real
emperature variations showing non local behaviors. Therefore, it has
een experimentally tested that it is possible to deploy a sensor in the
luster center and represent the whole cluster temperature variation
ith measurements gathered by this sensor.

The observation that certain clusters fail to accurately represent real
emperature variations underlines the challenges inherent in model-
ng and clustering microclimate patterns over open fields, particularly
hen compared to the use of interpolation methods or in controlled

ndoor environments. Despite some failures, the validation of clusters 6
nd 10 confirms the existence of non-local microclimate patterns. This
s significant because the application of spatial interpolation methods to
ddress microclimate variations over open fields can result in mislead-
ng representations. Interpolation relies on spatial locality, which may
roduce inconsistent results when dealing with non-local microclimate
tructures.

.4. Experimental validation: future conditions forecasting with Nhits

The measurements obtained from the clusters centers can be used
o train neural networks capable of predicting future scenarios, offering
aluable information for risk management strategies. It is crucial that
uture predictions based on the cluster center data remain consistent
ith the predictions that can potentially be derived from other cluster
oints. Thus, a validation strategies for future conditions has been
erformed as described in the Methods section. A Nhits architecture has
een trained for a probabilistic forecast horizon prediction, employing
he microclimate data for the preceding 72 h as inputs and forecasting
he subsequent 24 h as output. The neural network has been trained,
alidated and tested on the temperature and relative humidity data
ollected from an ARPA meteorological station located nearby to the
tudy area from 2018 to 2022. An example of a prediction performed
y the Nhits is shown in 7A. In order to test the Nhits predictive
apability the median and mean absolute error of the prediction have
een computed for the test set and plotted against the baseline error
which is the error obtained using as prediction the last 24 h from the
nput data) in Fig. 7B. Notice that the distributions for the predictions
ontain lower errors with respect to the baseline as confirmed by the
ann–Whitney U statistical test Pvalue which is less than 0.05. In

ddition, the validity measure has been computed for all the quantile
ands (Table 2). Note that all the validity measures are reasonably
ear to the quantile bands width suggesting that the Nhits is providing
eliable predictions.

A transfer learning procedure has been applied in order to test if the
hits trained on the data collected by the ARPA station located in the
roximity of the study area is capable of making reliable predictions
n data collected by the sensors. An example of a prediction over the
ata collected by sensor 1 is provided in Fig. 7C. The transfer learning
esults of Nhits prediction capability are shown in Fig. 7D where the
11 
Table 3
Transfer learning results for validity measure.

Quantile bands Validity measure

(0.01, 0.99) 0.960
(0.05, 0.95) 0.894
(0.10, 0.90) 0.808
(0.15, 0.85) 0.719
(0.20, 0.80) 0.626
(0.25, 0.75) 0.528
(0.30, 0.70) 0.426
(0.40, 0.60) 0.213

Validity measure results on the transfer learning data for all the quantile bands.

distribution of the median absolute prediction error defined in Eq. (14)
is compared to the baseline error distribution. For the transfer learning
procedure the distribution of the median absolute prediction error
contains lower errors with respect to the baseline as confirmed by the
Mann–Whitney U statistical test Pvalue which is less than 0.05. Also in
this case the median prediction is significantly lower than the baseline
as proved by the statistical test and in 7D.

The validity analysis has been performed in Table 3. Also in this
case, all the validity measures are reasonably near to the quantile bands
width suggesting that the Nhits is providing reliable predictions for the
transfer learning procedure.

As it has been proven that the Nhits architecture can make signif-
icant predictions of future scenarios using microclimate data collected
by sensors in the study area, this neural network can be used to
validate future conditions within the clusters. A procedure similar to
the second validation approach in the previous experimental validation
has been performed. For each cluster, the distribution of the absolute
differences of temperature predictions between the cluster center and
the cluster sensors has been compared to the one between the cluster
center and the sensors located outside the cluster (Fig. 8). The results
are consistent with the previous findings; clusters 0, 6, 10 show higher
peak for small values of absolute errors and lighter tails for large values
of absolute error with respect to the distribution obtained from the
sensors outside the cluster (Fig. 8A, C and D). This is also confirmed
by the Whitney U statistical test which shows a Pvalue less than 0.05
and so it is possible to reject the null hypothesis that the distribution
of the temperature differences inside the cluster is not statistically less
than the one outside the cluster. On the contrary, Fig. 8B shows that the
distributions of the absolute errors for clusters 2 have a similar shape
as confirmed by the Whitney U statistical test which shows a Pvalue
higher than 0.05.

These results support the robustness of clustering in reconstructing
temperature variations with future predictions. However, it is evident
that cluster 0 shows robustness in validating future conditions, in
contrast with the previous results obtained during the experimental
validation. This might be attributed to the presence of a single sensor
that does not fit well within the temperature representation of that
cluster. It is plausible that the Nhits may not accurately capture the real
variations experienced by this sensor, leading to temporal predictions
that are more aligned with those experienced by other sensors. Since
the model has been trained using a single source of data common to
all sensors, it is likely that the predictions obtained tend to converge
towards a similar solution.

4. Conclusions

This paper proposes a computational framework based on machine
learning algorithms to optimize a sensors layout according to tempera-
ture variations, derived from physical principles, within an open field
situated in the Lombardian foothills, Italy. We have experimentally val-
idated that some of the optimized sensors are able to represent the real
temperature variations experienced by the study area. We have shown

that some of the optimized sensors are also able to represent faithfully
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Fig. 7. Nhits results (A) The figure shows an example of the prediction made by the Nhits architecture on the test data from the ARPA station. (B) The figure compares the
distribution of the mean absolute error of the prediction by Nhits on the test set for the median prediction, the mean prediction and the baseline prediction. (C) The figure shows
an example of the prediction made by the Nhits architecture on the validation clustering data measure from a sensor. (D) The figure compares the distribution of the mean absolute
error of the prediction by Nhits on the data measured by the sensors from November 12th, 2022, to June 22nd, 2023, for the median prediction and the baseline prediction.

Fig. 8. Validation of Nhits future forecasts. The figures describe the distributions of the median predicted temperature absolute difference between the cluster center and the
cluster elements (in blue) and the distribution of the median predicted temperature absolute difference between the center of cluster and all the other elements not in cluster (in
red). The figures A, B, C and D describe respectively the data for the validation clusters 0,2,6 and 10.
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future temperature scenarios predicted by the Nhits neural network.
The representation and prediction of real temperature variations, expe-
rienced in an open field which presents complex microclimate pattern,
is a difficult task. Nonetheless, the clustering optimization and vali-
dation frameworks presented in this paper are able to identify and
reconstruct real characteristic temperature patterns.

The main limitations of our approach can be related to the complex
task of precisely representing microclimate variations at high resolu-
tions starting from physical principles. The model used in the present
paper overlooks local effects generated by the vegetation at the field
edges, leading to the identifications of clustering with inconsistent
behaviors. Another limitation can be related to the fact that the Nhits
neural network has been trained on data which represent the microcli-
mate variations of a single location near to the study area. This can
overlook some particular microclimate variations experienced in the
study area, which are not present in the training set. This limitation will
be addressed in future studies by proposing predictive models trained
or fine-tuned for each optimized sensor. These models will forecast
the evolution of microclimate with high precision, optimizing precision
agriculture management strategies.

Despite these limitations, the current framework has tackled the
gaps present in the literature regarding machine learning clustering
of microclimate patterns in an open field and the use of deep neural
network to validate these emergent patterns. The framework presented
here can be applied to any other agricultural field, given the scalability
and generality of the computational methods employed. An important
development should regard the introduction of new microclimate phys-
ical variables in the clustering procedure, providing a more holistic
and precise monitoring of the microclimate conditions in the field of
precision agriculture.
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