
To Be Or Not To Be. . . An Algorithm:
The Notion According to Students and Teachers

Carlo Bellettini∗
carlo.bellettini@unimi.it

Università degli Studi di Milano
Department of Computer Science

Milano, Italy

Violetta Lonati∗
violetta.lonati@unimi.it

Università degli Studi di Milano
Department of Computer Science,
Lab. CINI “Informatica e Scuola”

Milan, Italy

Mattia Monga∗
mattia.monga@unimi.it

Università degli Studi di Milano
Department of Computer Science,
Lab. CINI “Informatica e Scuola”

Milan, Italy

Anna Morpurgo∗
anna.morpurgo@unimi.it

Università degli Studi di Milano
Department of Computer Science,
Lab. CINI “Informatica e Scuola”

Milan, Italy

ABSTRACT
We study how students and teachers conceptualize the notion of ‘al-
gorithm’, a fundamental concept in computer science and computer
science curricula. We analyze the work produced by CS students
and teachers during a workshop conducted repeatedly over several
years in some outreach activities for schools, computing education
courses, and professional development opportunities for teachers.
Participants were divided into groups, given some procedures writ-
ten in natural language, and asked to decide together which of the
procedures might be taken as algorithms. The procedures were
purposely designed to present flaws or features that could activate
discussion. After that, groups were asked to agree upon a definition
of ‘algorithm’ and make its fundamental properties explicit. The
activity triggered reflections around the idea of algorithm and its
interpreter, going beyond stereotyped definitions, and leading par-
ticipants to deepen their comprehension of the notion. We report
on the aspects that were more debated by the groups, and those that
were recurrent in the resulting definitions. We argue that this kind
of activities should be offered more often both to students during
their study career, and to teachers in professional development
opportunities, to prompt them to reflect on computing foundations
also in a non-technical, more holistic way.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion.

∗All the authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0423-9/24/03
https://doi.org/10.1145/3626252.3630950

KEYWORDS
Concept of algorithm, active learning, observational study, com-
puter science education, teacher professional development

ACM Reference Format:
Carlo Bellettini, Violetta Lonati, Mattia Monga, and Anna Morpurgo. 2024.
To Be Or Not To Be. . . An Algorithm: The Notion According to Students and
Teachers. In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE 2024), March 20–23, 2024, Portland, OR, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3626252.3630950

1 INTRODUCTION
The notion of ‘algorithm’ is a crucial one in computer science.
David Harel, in a popular book intended for the general public [20],
called the study of algorithms the “spirit of computing”. In fact, to
compute means to produce a result (some piece of information)
by following a procedure in a way so unambiguous that could, in
principle, be carried out by a machine. Computer science arose
together with the effort of clarifying what it really means to de-
scribe a procedure “unambiguously”, with a fascinating intellectual
journey through the debate on the foundation of mathematics, the
challenge of engineering programmable machines and the physics
of information processing [5, 15]. However, the concept of algo-
rithm often remains in the background of computer science studies.
Even though algorithms are usually included in computer science
degree programs, the courses associated with the term typically
focus on the design and analysis of algorithms, discuss algorithmic
techniques, present classic or application-specific algorithms with
a focus on their correctness and efficiency [10]. A deepest reflection
on the very notion of what an algorithm is (and what it is not) is
usually proposed only in advanced theoretical courses.

As the notion of ‘algorithm’ is so pervasive, one could expect
students to “absorb” it anyway through computer science study.
We argue that this is often not the case and students should be
instead prompted to reflect explicitly about the notion. In particular,
in this paper we describe a classroom activity that has exactly
this goal. The activity was proposed in a three-hour workshop
that was conducted repeatedly over several years in computing

102

https://orcid.org/0000-0001-8526-4790
https://orcid.org/0000-0002-4722-244X
https://orcid.org/0000-0003-4852-0067
https://orcid.org/0000-0003-0081-914X
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3626252.3630950
https://doi.org/10.1145/3626252.3630950
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630950&domain=pdf&date_stamp=2024-03-07

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Carlo Bellettini, Violetta Lonati, Mattia Monga, & Anna Morpurgo

education courses and outreach activities for K-12 schools. We
qualitatively analyzed the work produced by students and teachers
during the workshops, in order to answer the question: how do
students and teachers conceptualize the notion of algorithm? We
found that participants, despite feeling somewhat familiar with
the concept of algorithm, often disagreed on whether to classify
specific procedures as algorithms or not; in particular, the issue of
ambiguity and the elicitation of the interpreter of the algorithm
often emerge as a turning point for a deeper understanding.

By analyzing the discussions, we matured a belief that this kind
of reflection should become commonplace in the study of computer
science, even with non vocational goals, and at early stages. In fact,
its value is not in the technical empowerment it enables, but in the
cultural understanding of what computer science can (or cannot)
do for our society. It is hard to imagine any principled discussion
of ‘artificial intelligence’ (a current hot topic), without a clear and
extensive notion of algorithm. Therefore, more activities on the
notion of algorithm should be offered, both to students during their
study career, and to teachers in professional development opportu-
nities, in order to prompt them to reflect about about computing’s
foundations and impact on our lives.

The paper is organized as follows. In §2 we discuss the related
literature and in §3 we introduce our working definition of algo-
rithm. In §4 we describe the workshop and related materials, and
in §5 we present the method we used to analyze the works of the
workshop’s participants. In §6 we report the findings of our analysis
and discuss them in §7. In §8 we draw our conclusions.

2 RELATEDWORK
In this paper we are interested in the abstract notion of ‘algorithm’,
and in how students conceptualize it. The conceptualization of
fundamental notions in education has been investigated in other
scientific disciplines [31]. Specific examples are the notion of ‘num-
ber’ and the notion of ‘function’ in mathematics [37] or the concept
of ‘force’ in physics [12, 28]. In particular, in [28] spontaneous rep-
resentations of the concept of force produced by teachers were
qualitatively analyzed.

More generally, several authors underline the important role of
the conceptualization of fundamental notions in science and math
education. Carey [9] argues that science education should aim at fa-
cilitating conceptual change, which occurs when learners move from
common-sense, conflicting, and possibly misconceived knowledge
to more scientifically-accepted conceptions. In the context of math
education, Sfard [37] investigates the dual nature of mathemati-
cal conceptions: her theory of reification states that mathematical
notions may be conceived in two fundamentally different, com-
plementary ways: operationally as ‘processes’ and structurally as
‘objects’. The development of concepts corresponds to a transition
from operational to structural conceptions, through the reification
process.

Several studies in computer science education investigate how
children or students conceptualize some specific computer science
concepts. For instance [1] analyzes how students think of data struc-
tures; the conceptions of class and object by novice Java students is
the subject of [14]; [35] and [2, 8] present literature reviews about

the children’s conceptions of computers and of internet, respec-
tively. In particular, many papers deal with the conceptualization
of (at the time) “emerging” themes as: the internet [32], smart-
phones [6], social networks [7], or, very recently, artificial intelli-
gence [39] and machine learning [30]. In these papers, children’s
and students’ conceptions have been categorized with different
methods. For instance [2] distinguishes between (1) intuitive, (2)
elaborate and (3) misconception, whereas [32] use four categories:
(1) simplistic, naive or vague responses, (2) responses that comprise
elements of scientific thought, but are erroneous, (3) responses that
comprise elements of scientific thought, but are incomplete, and (4)
scientifically correct and elaborate responses.

To the best of our knowledge, there are no studies aimed at
investigating how students conceptualize the notion of algorithm.
On the contrary, most of the computer science education papers
devoted to teaching and learning algorithms focus on the learning
of specific topics or concepts that are usually covered by algorithms
and data structures courses, and the related misconceptions [13,
16, 18], or on the development of skills concerning the design and
analysis of algorithms [19, 23].

The notion of algorithm has a rich and complex history that spans
multiple disciplines and time periods [5, 15]. In fact, the mathemat-
ical idea of algorithm and the roots of algorithmic thinking can be
traced back to ancient civilizations [24], where general mechan-
ical procedures were already used for instance to solve practical
problems such as calculating volumes or determining the position
of celestial objects. The term ‘algorithm’ gained new meanings
in the early 20th century, throughout the debate over the notion
of effective computability initiated by Hilbert’s stimulus [21], and
concretized by Church [11], Turing [38] and Post [34]. Despite they
did not use the term ‘algorithm’, or used it with its mathematical
meaning, their contributions in fact gave rise to the modern com-
puter science concept of algorithm, which explicitly refers to the
interpreter of the procedure and highlights the need for a notation
to characterize and express the algorithm itself.

The first use of the term under this computer science meaning
was probably due to Markov in 1954 [27] (as cited in [15]): «‘Algo-
rithm’ is commonly understood to be an exact prescription, defining a
computational process, leading from various initial data to the desired
result.» In the 1950s and 1960s, the term spread with this meaning
in the computing community.

A relevant contribution for our work is by Perrenet et al. [33],
who defined four gradual levels of abstraction to describe how
computer science students think about the concept of algorithm: 1.
execution, 2. program, 3. object, 4. problem. Even though their goal
was measuring the abstraction level of students, the materials they
used are somehow similar to the material used in our workshop.
They built a list of statements about algorithms (e.g., “An algorithm
is a program, written in a programming language”, or “The cor-
rectness of an algorithm generally can be proven by testing the
implementation on cleverly selected test cases”), asked students to
discuss whether they agree or not with the statements, and then
categorized their answers according to the abstraction level shown.
In our workshop, instead of general statements we used a list of
concrete procedures to be discussed in a group, in order to trigger
a reflection on the notion of algorithm itself.

103

To Be Or Not To Be. . . An Algorithm. SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

Given both the problem and the device, an algorithm is the
precise characterization of a method of solving the problem,
presented in a notation interpretable by the device. In particular,
an algorithm is characterized by these properties:

(1) application of the algorithm to a particular input set or
problem description results in a finite sequence of actions;

(2) the sequence of actions has a unique initial action;
(3) each action in the sequence has a unique successor;
(4) the sequence terminates with either a solution to the

problem, or a statement that the problem is unsolvable
for that set of data.

Figure 1: Extract of entry ‘algorithm’ in the ACM Encyclope-
dia of Computer Science [25].

3 OURWORKING DEFINITION OF
ALGORITHM

For the current study we rely on the entry in the ACM Encyclope-
dia of Computer Science for ‘algorithm’ [25], which in particular
includes the extract reported in Fig. 1.

Differently from naive definitions of algorithm like “a step-by-
step procedure for solving a problem or accomplishing some end”1,
the above definition encompasses several important aspects and in
particular it clearly covers two crucial ones. First, the role of the in-
terpreter of the method (“a given device”) is explicitly acknowledged.
The interpreter is a computational agent able to either execute the
algorithm ideally or to execute the program physically [26]. This
implies a consistent operational model of the interpreter, which
assumes a predefined set of specific actions that the interpreter is
able to carry out. The examples in [25] clarify that the “device” may
be a human or a machine. Second, the definition acknowledges
the need for a notation to present the method, which may be the
natural language if the device is a human. In fact, algorithms are
usually distinguished from programs precisely on this basis: the
latter must be written according to the syntax of a formal language,
while the former are typically described more freely, by a mixed
use of natural language and high-level semi-formal languages (i.e.,
in pseudocode) [26].

We notice that the role of notation has to do with the endeavor
of describing and conveying the algorithmic method more than
with the method itself (in a sense, this is the same relationship as
the one between an idea and the way one is able to communicate it
to another person, for example, in written form).

Moreover, the definition starts by explicitly mentioning a given
problem (notably, ‘problem’ instead is not a term deserving an
autonomous entry in [25]), and it distinguishes between the appli-
cation of the method (which produce a sequence of actions) and its
characterization (which has to be precise). The issue of precision is
a fundamental one, and is strongly related to the elicitation of an
interpreter. In a sense, it is indeed the explication of an axiomati-
cally precise interpreter, and its capabilities, that makes it possible
to describe an algorithm precisely. On the other hand, the use of
natural language to express algorithms clearly introduces the risk

1Merriam-Webster online dictionary, https://www.merriam-webster.com/dictionary/
algorithm visited 2023 July 31st .

of ambiguity, which would instead require a formal syntax and
semantics to be properly addressed. Thus, the distinction between
algorithms and programs gets blurred when trying to define them
formally [26]. Not surprisingly, then, [25] states that “any program
that always halts is an algorithm”.

Finally, the definition considers several other aspects including
termination (finite sequence), input/output (solution or unsolvability
statement), determinism (unique initial action, unique successor).
Besides the definition, the entry in [25] also discusses other desir-
able properties of algorithms, like correctness, generality, efficiency,
which however are not included into the definition as required.

As objected by Fant [15], it is worth noting that the above com-
puter science notion of algorithm does not easily apply to many
computer science contexts and tasks. For instance: operating sys-
tems or online servers do not halt, random algorithms are not deter-
ministic (at least not at the level of abstraction of their description),
a logic circuit is not a sequence of operations, operations in concur-
rent programs are carried out simultaneously. As a matter of fact,
many revisions and redefinitions of algorithm have been proposed
in the literature—reviewing them is beyond the scope of this paper,
the interested reader could start for instance from [5, 29, 40]. Yet,
we believe that the concept as defined above is adequate enough
from an educational point of view, and that the related issues should
be well understood by CS students and teachers.

4 DESCRIPTION OF THEWORKSHOP
The purpose of the three-hour workshop is to give participants
an opportunity to think about the concept of ‘algorithm’ in an
operational way. In the first phase of the workshop (around 40
minutes), participants are split into pairs, and each pair is given a
sheet with a list of eight procedures described in natural language.
We will refer to such procedures using the term quasi-algorithms;
two of them are presented as examples in Fig. 2 (the full list of
quasi-algorithms is available at [4]). Pairs are asked to discuss
and decide, for each quasi-algorithm, whether it can actually be
called algorithm or not, justifying their decisions (work in pairs
encourages reflection and brings out discrepancies and doubts).

In the second phase (around 60 minutes), larger groups are
formed by merging pairs; groups are asked to share and compare
the decisions of the original pairs, and to search for a new consensus.
Then, each group is asked to formulate in writing its own definition
of ‘algorithm’ —based on the previous discussion—, specifying what
properties an algorithm must have in order to be defined as such.

Finally, each group reads aloud and presents its definition to
the rest of the class, while the workshop facilitator asks clarifying
questions and highlights the similarities and differences between
the various definitions. The activity concludes with the facilitator
summarizing the main aspects of the concept of ‘algorithm’ and
relating them to the definitions given by groups.

All quasi-algorithms are designed and formulated to foster dis-
cussion and raise doubts, as they all exhibit potential critical issues
that are relevant for the notion of ‘algorithm’. In the quasi-algorithm
“Lasagna” (see Fig. 2), the last step is vague, as it does not say how
long the cooking should take and what the oven temperature should
be. Some other steps (e.g., prepare the meat sauce or béchamel) are
not elementary: you would need further instructions on how to

104

https://www.merriam-webster.com/dictionary/algorithm
https://www.merriam-webster.com/dictionary/algorithm

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Carlo Bellettini, Violetta Lonati, Mattia Monga, & Anna Morpurgo

Lasagna
(1) Prepare the meat sauce
(2) Prepare the béchamel
(3) Boil the pasta
(4) Layer meat sauce, béchamel,

and pasta in a baking dish
(5) Bake in the oven

Mathematical operations
(1) Read 2 numbers x and y
(2) Sum x and the triple of y
(3) Multiply the result by 3
(4) Add 73
(5) Print 100

Figure 2: Two of the eight quasi-algorithms to be discussed
during the workshop.

complete those tasks, unless you assume that the executor already
has specific skills2 (e.g., is a cook with a predefined “library” of
skills). Thus, for this quasi-algorithm (and others), it is not easy to
give an ultimate answer as whether it can be called an algorithm or
not, particularly because it is expressed using the natural language,
which is intrinsically imprecise and ambiguous. The interpretation
of the instructions may vary depending on the agent who executes
them, who is purposely never indicated in the procedure (nor is
there any indication of what their capabilities are).

The quasi-algorithm “Mathematical operation” (see Fig. 2) meets
all the properties in the definition proposed in §3, and it can sensi-
bly be considered an algorithm that solves the problem of printing
‘100’. However, the instructions have no internal “teleological” con-
sistency: the results of the intermediate operations are not used in
the final part of the procedure, and the intermediate operations are
in fact useless w.r.t. the output produced. Furthermore, the proce-
dure always produces the same effect independently of the input
numbers, so the procedure’s aim is not to provide the result of
mathematical operations in spite of what its title suggests. One can
also debate the meaningfulness of the solved problem (i.e., printing
100).

Among the remaining six quasi-algorithms, one is built accord-
ing to the logical programming paradigm, and all the others present
features that could be easily perceived as flaws, e.g., one contains un-
feasible instructions, another presents logical errors w.r.t. the stated
purpose, another is incomplete w.r.t. the possible inputs/initial con-
ditions. Only a few of the quasi-algorithms are general and allow
for a range of different inputs; in the other quasi-algorithms, the
input is fixed, or irrelevant (see “Mathematical operations” which
always prints 100 no matter the input).

5 ANALYSIS OF PARTICIPANTS’ WORKS
The workshop has been offered since 2012 in different contexts:
(1) as a part of a CSE course targeted to graduate CS students in-
terested in education; occasionally the course was attended also
by undergraduate CS students, graduate math students, in-service
teachers (from different school levels, from primary to secondary),
or perspective teachers from pedagogical schools; (2) as an out-
reach activity for high school students [3]; (3) as a professional
development opportunity for in-service teachers. Some workshops
were conducted online due to the pandemic. All participants were

2Notice that our working definition does not require that the actions be “elementary”,
but it does require that the algorithm be written in a “notation interpretable by the
device”, which was exactly the point we wanted to cover by this quasi-algorithm.

informed and agreed that their works would be collected for teach-
ing and research purposes. No further personal information were
collected; in particular we did not collect information about gen-
der. Anecdotally, the participants were in majority males, but with
a significant portion of females (higher than usual CS courses in
our university). Overall, for this study we considered the defini-
tions produced during nine workshops organized since 2017. More
precisely, we qualitatively analyzed the definitions of ‘algorithm’
produced by 27 groups.

As we examined the material already produced over the years
by the workshop participants, (and hence we did not design the
data collection process beforehand), the analyzed works are not ho-
mogeneous. Some groups wrote only their definition of ‘algorithm’,
whereas other explicitly added and defined the fundamental prop-
erties of algorithms. Most definitions were textual, however some
groups proposed diagrams or conceptual maps. The composition
of groups varied as well (teachers only, CSE students only, high
school students only, teachers and CSE students mixed) and also
the size of groups was not fixed (from four to eight participants,
depending on the number of participants in their workshop); the
groups’ works were collected without keeping track of these details.
Nevertheless, we believe that the collected material gives us an
interesting overview of teachers’ and students’ perspective.

We analyzed the definitions of ‘algorithm’ written by the work-
shop participants by using qualitative content analysis (as described
in [36]). Each definition was split into segments, where a segment is
either one single word, or an expression formed by 2–3 words. Each
segment was then assigned a unique code. We followed a deductive

Table 1: Initial set of codes. Top rows are fundamental prop-
erties, bottom ones are optional but desirable.

Code Description

PRECISE The algorithm must be precise (detailed, com-
plete, clear, self-explanatory, univocal)

METHOD The algorithm provides a method, a procedure.
PROB.SOLV. The algorithm solves a problem.
NOTATION The algorithm is expressed in some notation.
INTERPRETER There is an interpreter who/which interprets

and executes the algorithm.
INPUT Algorithms are applied to input data.
SEQUENCE The actions are arranged in an ordered se-

quence.
ACTIONS Algorithms involve actions (steps, moves).
HALT The algorithm must always halt.
DETERMINISM The next action is uniquely determined by the

previous ones, to any given input corresponds
the same output.

OUTPUT The algorithm outputs a solution, an answer.
CORRECT The algorithm provides the expected output for

any input.
GENERAL The algorithm solves the problem for a class of

problems of the same type.
EFFICIENT The algorithm solves the problem efficiently,

e.g., with a careful use of resources.

105

To Be Or Not To Be. . . An Algorithm. SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

approach, defining the initial set of codes based on the literature.
However, we allowed the flexibility to refine or add codes through
the coding process, as emerging from the data (see §6).

In particular, we derived our set of codes from the ACM Ency-
clopedia entry ‘algorithm’ [25], see §3. Such codes are presented
in Table 1: the first group of codes covers fundamental compo-
nents or properties of the notion of algorithm; the second group
covers additional (desirable) properties of algorithms mentioned
in [25]. The coding was conducted in two iterations. In the first
iteration eight definitions were analyzed and discussed together
by three authors, resulting in a revision of the set of codes. Then,
the remaining 19 definitions were coded consensually by two of
the three authors. Codes were assigned considering the context of
the segment, both to single word segments equal to the code, and
to synonyms or terms and expressions that the group of coders
considered equivalent (e.g., the same code was assigned both to the
single-word segment ‘general’ and to the term ‘class’ occurring in
the sentence “it must solve a class of problems”). In some cases, the
intended meaning was debatable, e.g., “it is finite” may refer either
to the description of the“sequence of steps” or to the execution of
those steps (implying halting); in those cases the code was assigned
as uncertain. Finally, we counted the frequency of codes through
the definitions set.

6 FINDINGS
The analysis of definitions resulted in a revision of the initial set of
codes. In particular:

• We articulated code PRECISE into three sub-codes:
– UNAMBIGUOUS: the steps are univocally described, so
that they can be interpreted in a unique way.

– DETAILED: themethod and the steps are defined in details,
nothing is left unexplained.

– FINITE: the description of the method is finite (e.g., “a
finite set of instructions”).

• We added a specification of code CORRECT with a further
sub-code:
– COMPLETE: The algorithm is complete, it covers all cases.

• We added three new codes:
– INSTRUCTIONS: The algorithm is made of instruction-
s/orders/commands. The focus here is on the fact that
the algorithm mandates directions, whereas the code AC-
TIONS focuses on the actions resulting from the applica-
tion of the algorithm.

– BASIC: The instructions are elementary (atomic, simple).
– EXECUTABLE: The instructions are executable, feasible.

Table 2 shows the outcome of the coding process. The green
cells denote the presence (P) of coded segments within a definition,
yellow is used to identify uncertain (U) occurrences (i.e., the coders
were not sure of the meaning to attribute to the segment). In some
definitions we found explicit reference to some dubious property,
i.e., the group explicitly wrote that they were not sure or they did
not agree upon some property or aspect in their definition; we
annotated such doubts (D) in blue. The ‘count’ column reports the
frequency of the green occurrences, the more occurring the darker
the background.

All definitions mention an ordered sequence of steps or instruc-
tions. Most definitions state that algorithms must be unambiguous;
those that are not coded as such mention that the instructions
must be atomic/elementary. Most definitions state that algorithms
solve a problem. Only a few definitions mentions actions (or steps,
or moves); all the remaining ones mention instructions (or orders,
or commands), often with specification like atomic or executable.
Termination is a required property for about half of the groups
and is debated or uncertain in others. Additional properties—like
correctness, generality, and efficiency— are seldom included in the
definition, and when they occur, they are often debated. Very few
definitions explicitly mention an interpreter/executer; only two def-
initions describe the algorithm as a method or a procedure; none
includes any references to notation.

To show what kind of reflections the activity can trigger, we
also report some of the issues raised in the groups in the last two
editions of the workshop, as annotated by one of the authors at
the end of the activities. We do not claim that these issues are
representative of all group discussions, but we believe they suggest
some interesting insights:

• Must an algorithm always halt or can it go on forever? Is a
procedure with a possibly infinite loop an algorithm?

• Must an algorithm solve a problem? And must the problem
be meaningful? Is it ok for an algorithm to have useless
instructions?

• Must it produce a result? For all possible cases? Always a
correct one? Always the same one, given the same set of
inputs?

• Instructions must be precise. But what does it mean to be
precise? The way out found by a group was that it must be
precise enough for the interpreter to precisely know what
to do and obtain the expected result. (However, this was not
included in their definition.)

7 DISCUSSION
Generally, the definitions contain the basic elements covered in the
one given by the Merriam-Webster dictionary (see §3):

• there are steps, instructions, commands, operations (some-
times it is specified that these steps are elementary, simple,
basic, repeatable, executable);

• the algorithm solves a problem or performs a task; in each
case it must have a purpose, it serves something;

• the instructions are arranged in order.
In addition, groups highlight that algorithms must be precise, un-
ambiguous. We interpret this as a result of the lively discussions ini-
tiated by the quasi-algorithms, that were often, purposely, scarcely
detailed or vaguely described. However, very few groups came up
with the idea of making the interpreter explicit to resolve the issue
of the inherent ambiguity of the natural language. Consistently,
none was concerned about the need for a notation to express any
algorithm. This is somehow surprising for CS students, who are
used to code in programming languages or to use other formal nota-
tions, and should be familiar with the notion of ‘interpreter’. Thus,
using the terminology of [32] we would categorize the definitions
of workshop participants as “responses that comprise elements of
scientific thought, but are incomplete”.

106

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Carlo Bellettini, Violetta Lonati, Mattia Monga, & Anna Morpurgo

Table 2: Coding of algorithm definitions given by groups of teachers and students. Green cells (P) denote the presence of coded
segments within a definition, blue (D) means that the group expressed doubts, yellow (U) means that the coders were uncertain
about the coding.

2017 2018 2019 2020 2021 2022 2023
1 2 3 1 2 3 4 5 1 2 3 4 1a 2a 1b 2b 1 2 3 4 1a 2a 3a 1b 1 2 3

UNAMBIGUOUS 26 P
DETAILED 8 U P P U P P P P U P P UPRECISE
FINITE 14 U P P P P U P P P P P P P P P P

METHOD 2 P P
PROB.SOLV. 21 P P P P P P P P P D P P P P P P P D P P P P P
NOTATION 0
INTERPRETER 3 P D P P
INPUT 8 P P P P P P P P
SEQUENCE 27 P
ACTIONS 8 P P P P P P P P U
HALT 14 U P P P P P P U P P P P U P U U D D P P P
DETERMINISM 6 U P P P D P D P U P

Definition

OUTPUT 10 P P P P P P U P P P P

CORRECT 3 P P P
COMPLETE 2 U D U P P

GENERAL 3 P P D D PProperties

EFFICIENT 1 P D U
INSTRUCTIONS 20 P
BASIC 12 P P P P P P P P P P P PEmerging

codes EXECUTABLE 7 P P P P P P P

Another relevant finding is that the participants were often con-
cerned with features of the quasi-algorithms that, as a matter of
fact, do not pertain specifically to the algorithm concept. For in-
stance, they lively debated over the fact that the output computed
by the quasi-algorithm “Mathematical operations” is not consistent
with the purpose declared in its title. We interpret this as if they
embedded the problem specification into the given algorithm, in-
stead of seeing the two as distinct. Thus, they seem to consider the
algorithm’s correctness as a property of the algorithm itself instead
of a property of the relationship between an independent problem
specification and its algorithmic solution [19]. In the same way,
they seem to consider the algorithm’s usefulness as a property of
the algorithm itself instead of a property of the relationship be-
tween the algorithm’s behavior and the user’s requirements [22].
A similar argument holds for efficiency, especially when this shows
up in the form of “unnecessary” operations, inconsistent with a pre-
sumed goal. Using the hierarchy proposed by [33], we would place
the definitions stated by the workshop participants at level 3 (the
algorithm is not connected to any specific programming language),
but the discussions often shift towards the “problem level”.

Finally, it is interesting to note that most definitions mention
instructions and commands, thus exhibiting the (implicit) adoption,
by the workshop participants, of the imperative paradigm; this is
consistent with the fact that the quasi-algorithm written according
to the logical paradigm is seldom accepted by the groups as a true
algorithm. In many contexts (e.g., in primary school education) it
is indeed appropriate to think of algorithms as finite sequences
of instructions. However, and consistently with [10, 17], we argue
that CS teachers’ and students’ conceptualization of algorithms
should not leave out other paradigms such as logic or functional
programming, and more theoretical models of computation such
as the Turing machine, in which algorithms are defined by finite
sets of transition rules.

8 CONCLUSIONS
Despite feeling familiar with the concept, the workshop participants
often found themselves disagreeing with each other on whether

to classify the procedures as algorithms or not; in particular, the
issue of ambiguity and the elicitation of the interpreter of the al-
gorithm emerged as crucial ones. Such lively discussions brought
about reflections around the idea of algorithm and its interpreter,
going beyond stereotyped definitions, and leading participants to
deepen their comprehension. These findings suggest that this kind
of activities should be offered more often both to students during
their study career, and to teachers in professional development
opportunities, in order to prompt them to reflect about computing
foundations also in a non-technical, more holistic way.

Depending on the different background of participants, the work-
shop can provide the stimulus to explore the concept of algorithm
in several directions. Based on the aspects that turn out to be most
debated during the group work, the workshop facilitator can choose
which elements to emphasize in the concluding phase of the work-
shop, when summarizing the main aspects of the concept of ‘algo-
rithm’ and relating them to the definitions given by groups. It is by
no means necessary that all the aspects discussed in this work are
touched upon, let alone explored in depth; however, it is important
for the workshop facilitator to be aware of them in order to be able
to respond appropriately to any doubts, questions, or observations.

The results of this study also provide some insights as to how to
improve the quasi-algorithms to propose in the workshop. In partic-
ular, we noticed that when a quasi-algorithm exhibits more than one
flaw, some aspects can go unnoticed or neglected. For instance the
quasi-algorithms could be simplified so that: the quasi-algorithm
that contains an infinite loop is precisely described (possibily in
pseudocode); the quasi-algorithm that contains useless instruction
nevertheless outputs a result consistent with its title; the quasi-
algorithm that is inconsistent with its title is precise and logical.
It is also worth noticing that our workshop was designed before
the current hype on AI tools for programming: these are likely
to change the general perception of what it means to instruct a
machine and will probably be reflected by any informal notion of
algorithms.

107

To Be Or Not To Be. . . An Algorithm. SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

REFERENCES
[1] Dan Aharoni. 2000. Cogito, Ergo Sum! Cognitive Processes of Students Dealing

with Data Structures. In Proc. of the 31st SIGCSE Technical Symposium (Austin,
Texas, USA) (SIGCSE’00). ACM, New York, NY, USA, 26–30. https://doi.org/10.
1145/330908.331804

[2] Parvaneh Babari, Michael Hielscher, Peter Adriaan Edelsbrunner, Martina Conti,
Beat Döbeli Honegger, and Eva Marinus. 2023. A literature review of children’s
and youth’s conceptions of the internet. International Journal of Child-Computer
Interaction 37 (2023), 18 pages. https://doi.org/10.1016/j.ijcci.2023.100595

[3] Carlo Bellettini, Violetta Lonati, Dario Malchiodi, Mattia Monga, Anna Morpurgo,
Mauro Torelli, and Luisa Zecca. 2014. Extracurricular activities for improving
the perception of Informatics in Secondary schools. In Informatics in Schools.
Teaching and Learning Perspectives (Lecture Notes in Computer Science, Vol. 8730),
Yasemin Gülbahar and Erinç Karataş (Eds.). Springer International Publishing,
Springer, Cham, 161–172. https://doi.org/10.1007/978-3-319-09958-3_15

[4] Carlo Bellettini, Violetta Lonati, Mattia Monga, and Anna Morpurgo. 2023. Repli-
cation Data for: To be or not to be... an algorithm: the notion according to students
and teachers. Università degli Studi di Milano. https://doi.org/10.13130/RD_
UNIMI/JM0R05

[5] Andreas Blass and Yuri Gurevich. 2003. Algorithms: A Quest for Absolute
Definitions. Bulletin of the EATCS 81 (01 2003), 195–225.

[6] Torsten Brinda and Friederike Braun. 2017. Which Computing-Related Concep-
tions Do Learners Have About the Design and Operation of Smartphones? Results
of an Interview Study. In Proc. of the 12th Workshop on Primary and Secondary
Computing Education (Nijmegen, Netherlands) (WiPSCE ’17). ACM, New York,
NY, USA, 73–81. https://doi.org/10.1145/3137065.3137075

[7] Torsten Brinda, Matthias Kramer, and Yannick Beeck. 2018. Middle School
Learners’ Conceptions of Social Networks: Results of an Interview Study. In Proc.
of the 18th Koli Calling International Conference on Computing Education Research
(Koli, Finland) (Koli Calling ’18). ACM, New York, NY, USA, Article 3, 8 pages.
https://doi.org/10.1145/3279720.3279723

[8] Cyril Brom, Tereza Hannemann, Pavel Jezek, Anna Drobná, Kristina Volná, and
Katerina Kacerovská. 2023. Principles of Computers and the Internet - Model
Lessons for Primary School Children: Experience Report. In Proc. of the 2023
Conference on Innovation and Technology in Computer Science Education V. 1
(Turku, Finland) (ITiCSE 2023). ACM, New York, NY, USA, 215–221. https:
//doi.org/10.1145/3587102.3588861

[9] Susan Carey. 2000. Science Education as Conceptual Change. Journal of Applied
Developmental Psychology 21 (02 2000), 13–19. https://doi.org/10.1016/S0193-
3973(99)00046-5

[10] CC2020 Task Force. 2020. Computing Curricula 2020: Paradigms for Global Com-
puting Education. ACM, New York, NY, USA.

[11] Alonzo Church. 1936. An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics 58, 2 (1936), 345–363. http://www.jstor.org/
stable/2371045

[12] Ricardo Coelho. 2010. On the Concept of Force: How Understanding its History
can Improve Physics Teaching. Science and Education 19 (01 2010), 91–113.
https://doi.org/10.1007/s11191-008-9183-1

[13] Holger Danielsiek, Wolfgang Paul, and Jan Vahrenhold. 2012. Detecting and
Understanding Students’ Misconceptions Related to Algorithms and Data Struc-
tures. In Proc. of the 43rd SIGCSE Technical Symposium (Raleigh, North Carolina,
USA) (SIGCSE ’12). ACM, New York, NY, USA, 21–26. https://doi.org/10.1145/
2157136.2157148

[14] Anna Eckerdal and Michael Thuné. 2005. Novice Java Programmers’ Conceptions
of "Object" and "Class", and Variation Theory. In Proc. of the 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (Caparica,
Portugal) (ITiCSE’05). ACM, New York, NY, USA, 89–93. https://doi.org/10.1145/
1067445.1067473

[15] Karl M. Fant. 1993. A Critical Review of the Notion of Algorithm in Computer
Science. In Proc. of the 1993 ACM Conference on Computer Science (Indianapolis,
Indiana, USA) (CSC ’93). ACM, New York, NY, USA, 1–6. https://doi.org/10.1145/
170791.170794

[16] Mohammed F. Farghally, Kyu Han Koh, Jeremy V. Ernst, and Clifford A. Shaffer.
2017. Towards a Concept Inventory for Algorithm Analysis Topics. In Proc. of
the 48th SIGCSE Technical Symposium (Seattle, Washington, USA) (SIGCSE ’17).
ACM, New York, NY, USA, 207–212. https://doi.org/10.1145/3017680.3017756

[17] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to Design Programs: An Introduction to Programming and
Computing. The MIT Press, Boston, MA, USA.

[18] Judith Gal-Ezer and Ela Zur. 2004. The efficiency of algorithms—misconceptions.
Computers & Education 42, 3 (2004), 215–226.

[19] Bruria Haberman, Haim Averbuch, and David Ginat. 2005. Is It Really an Al-
gorithm: The Need for Explicit Discourse. In Proc. of the 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (Caparica,
Portugal) (ITiCSE ’05). ACM, New York, NY, USA, 74–78. https://doi.org/10.1145/
1067445.1067469

[20] David Harel and Yishai A Feldman. 2004. Algorithmics: The spirit of computing.
Pearson Education, Harlow, UK.

[21] David Hilbert and Wilhelm Ackermann. 1928. Grundzüge der Theoretischen Logik.
Julius Springer, Berlin, Germany.

[22] IEEE Computer Society. 2012. IEEE Standard for System and Software Verification
and Validation. Technical Report IEEE Std 1012-2012 (Revision of IEEE Std
1012-2004). IEEE. https://doi.org/10.1109/IEEESTD.2012.6204026

[23] Philipp Kather and Jan Vahrenhold. 2021. Exploring Algorithm Comprehension:
Linking proof and program code.. In Proc. of the 21st Koli Calling International
Conference on Computing Education Research (Joensuu, Finland) (Koli Calling ’21).
ACM, New York, NY, USA, Article 28, 10 pages. https://doi.org/10.1145/3488042.
3488061

[24] Donald E. Knuth. 1972. Ancient Babylonian Algorithms. Commun. ACM 15, 7
(jul 1972), 671–677. https://doi.org/10.1145/361454.361514

[25] Robert R. Korfhage. 2003. Algorithm. John Wiley and Sons Ltd., GBR, 36–38.
[26] Violetta Lonati, Andrej Brodnik, Tim Bell, Andrew Paul Csizmadia, Liesbeth

De Mol, Henry Hickman, Therese Keane, Claudio Mirolo, and Mattia Monga.
2022. What We Talk About When We Talk About Programs. In Proc. of the
2022 Working Group Reports on Innovation and Technology in Computer Science
Education (Dublin, Ireland) (ITiCSE-WGR ’22). ACM, New York, NY, USA, 117–164.
https://doi.org/10.1145/3571785.3574125

[27] Andrei Andreevich Markov. 1954. The theory of algorithms. Trudy Matematich-
eskogo Instituta Imeni VA Steklova 42 (1954), 3–375.

[28] Berta Martini, Marisa Michelini, Alberto Stefanel, and Monica Tombolato. 2021.
Prospective Teachers’ Representations on the Concept of Force. Education Sciences
11, 10 (2021), 614.

[29] Yiannis Moschovakis. 2001. What Is an Algorithm? Springer, Berlin, Germany,
919–936. https://doi.org/10.1007/978-3-642-56478-9_46

[30] Andreas Mühling and Gregor Große-Bölting. 2023. Novices’ conceptions of ma-
chine learning. Computers and Education: Artificial Intelligence 4 (2023), 11 pages.
https://doi.org/10.1016/j.caeai.2023.100142

[31] Roger Osborne and Peter Freyberg. 1985. Learning in Science. The Implications of
Children’s Science. Heinemann Educational Books, Portsmouth, NH, USA.

[32] Marina Papastergiou. 2005. Students’ Mental Models of the Internet and Their
Didactical Exploitation in Informatics Education. Education and Information
Technologies 10 (10 2005), 341–360. https://doi.org/10.1007/s10639-005-3431-7

[33] Jacob Perrenet, Jan Friso Groote, and Eric Kaasenbrood. 2005. Exploring Students’
Understanding of the Concept of Algorithm: Levels of Abstraction. In Proc. of
the 10th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education (Caparica, Portugal) (ITiCSE ’05). ACM, New York, NY, USA,
64–68. https://doi.org/10.1145/1067445.1067467

[34] Emil L. Post. 1936. Finite Combinatory Processes-Formulation 1. The Journal of
Symbolic Logic 1, 3 (1936), 103–105. http://www.jstor.org/stable/2269031

[35] Michael T. Rücker and Niels Pinkwart. 2016. Review and Discussion of Children’s
Conceptions of Computers. Journal of Science Education and Technology 25, 2
(2016), 274–283. http://www.jstor.org/stable/43867796

[36] Margrit Schreier. 2014. Qualitative Content Analysis. SAGE Publications, London,
Chapter 12, 170–183. https://doi.org/10.4135/9781446282243

[37] Anna Sfard. 1991. On the dual nature of mathematical conceptions: Reflections
on processes and objects as different sides of the same coin. Educational Studies
in Mathematics 22, 1 (1991), 1–36. https://doi.org/10.1007/BF00302715

[38] A. M. Turing. 1937. On Computable Numbers, with an Applica-
tion to the Entscheidungsproblem. Proc. of the London Mathematical
Society s2-42, 1 (1937), 230–265. https://doi.org/10.1112/plms/s2-42.1.
230 arXiv:https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-
42.1.230

[39] Jessica Vandenberg and Bradford Mott. 2023. "AI Teaches Itself": Exploring Young
Learners’ Perspectives on Artificial Intelligence for Instrument Development. In
Proc. of the 2023 Conference on Innovation and Technology in Computer Science
Education V. 1 (Turku, Finland) (ITiCSE 2023). ACM, New York, NY, USA, 485–490.
https://doi.org/10.1145/3587102.3588778

[40] Moshe Y. Vardi. 2012. What is an Algorithm? Commun. ACM 55, 3 (mar 2012), 5.
https://doi.org/10.1145/2093548.2093549

108

https://doi.org/10.1145/330908.331804
https://doi.org/10.1145/330908.331804
https://doi.org/10.1016/j.ijcci.2023.100595
https://doi.org/10.1007/978-3-319-09958-3_15
https://doi.org/10.13130/RD_UNIMI/JM0R05
https://doi.org/10.13130/RD_UNIMI/JM0R05
https://doi.org/10.1145/3137065.3137075
https://doi.org/10.1145/3279720.3279723
https://doi.org/10.1145/3587102.3588861
https://doi.org/10.1145/3587102.3588861
https://doi.org/10.1016/S0193-3973(99)00046-5
https://doi.org/10.1016/S0193-3973(99)00046-5
http://www.jstor.org/stable/2371045
http://www.jstor.org/stable/2371045
https://doi.org/10.1007/s11191-008-9183-1
https://doi.org/10.1145/2157136.2157148
https://doi.org/10.1145/2157136.2157148
https://doi.org/10.1145/1067445.1067473
https://doi.org/10.1145/1067445.1067473
https://doi.org/10.1145/170791.170794
https://doi.org/10.1145/170791.170794
https://doi.org/10.1145/3017680.3017756
https://doi.org/10.1145/1067445.1067469
https://doi.org/10.1145/1067445.1067469
https://doi.org/10.1109/IEEESTD.2012.6204026
https://doi.org/10.1145/3488042.3488061
https://doi.org/10.1145/3488042.3488061
https://doi.org/10.1145/361454.361514
https://doi.org/10.1145/3571785.3574125
https://doi.org/10.1007/978-3-642-56478-9_46
https://doi.org/10.1016/j.caeai.2023.100142
https://doi.org/10.1007/s10639-005-3431-7
https://doi.org/10.1145/1067445.1067467
http://www.jstor.org/stable/2269031
http://www.jstor.org/stable/43867796
https://doi.org/10.4135/9781446282243
https://doi.org/10.1007/BF00302715
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230
https://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230
https://doi.org/10.1145/3587102.3588778
https://doi.org/10.1145/2093548.2093549

	Abstract
	1 Introduction
	2 Related work
	3 Our working definition of algorithm
	4 Description of the workshop
	5 Analysis of participants' works
	6 Findings
	7 Discussion
	8 Conclusions
	References

