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Abstract: The sustainable exploitation of groundwater resources is a multifaceted and complex problem,
which is controlled, among many other factors and processes, by water flow in porous soils and
sediments. Modeling water flow in unsaturated, non-deformable porous media is commonly based
on a partial differential equation, which translates the mass conservation principle into mathematical
terms. Such an equation assumes that the variation of the volumetric water content (θ) in the medium is
balanced by the net flux of water flow, i.e., the divergence of specific discharge, if source/sink terms
are negligible. Specific discharge is in turn related to the matric potential (h), through the non-linear
Darcy–Buckingham law. The resulting equation can be rewritten in different ways, in order to express
it as a partial differential equation where a single physical quantity is considered to be a dependent
variable. Namely, the most common instances are the Fokker–Planck Equation (for θ), and the Richards
Equation (for h). The other two forms can be given for generalized matric flux potential (Φ) and for
hydraulic conductivity (K). The latter two cases are shown to limit the non-linearity to multiplicative
terms for an exponential K-to-h relationship. Different types of boundary conditions are examined for
the four different formalisms. Moreover, remarks given on the physico-mathematical properties of the
relationships between K, h, and θ could be useful for further theoretical and practical studies.

Keywords: water flow; porous soils; porous alluvial sediments

1. Introduction

The most recent report on groundwater from the UNESCO World Water Assessment
Programme [1] recognizes the huge uncertainty about the estimates of the volume of fresh
water on the Earth, but nevertheless considers that the vast majority (possibly up to 99%) of
freshwater is stored in aquifers. Furthermore, the same source of information reports that
groundwater is estimated to provide almost one-half of the volume of water withdrawn
for domestic use by the global population, and about one-fourth of water withdrawn for
irrigation, serving more than one-third of the world’s irrigated land.

These numbers, although affected by large uncertainty, are nevertheless sufficient to
demonstrate the relevance of groundwater to life and the development of the planet Earth
and its population.

These remarks prompted the scientific community to consider the protection and the
proper management of groundwater resources, also within the realm of the Sustainable
Development Goals (SDGs) identified by the UN General Assembly, with the adoption of
Resolution A/RES/70/1 on “Transforming Our World: The 2030 Agenda for Sustainable
Development” in 2015. One of the SDGs (6—Clean water and sanitation) is explicitly devoted
to the availability and sustainable management of freshwater for all the world’s population,
but the other SDGs are strictly related to the availability of good quality water.

For a general review of the discussion of the sustainability of groundwater resources,
the reader is referred to a recent paper by Bierkens and Wada [2] and to the references
therein. In that paper, “physically sustainable groundwater use” is defined as the “pro-
longed (multi-annual) withdrawal of groundwater from an aquifer in quantities not exceed-
ing average annual replenishment, resulting in dynamically stable water tables or hydraulic
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heads”. However, the authors rightly criticize the simplistic statement that the sustainable
average annual withdrawal is equal to the annual aquifer recharge. This approach was
already mentioned as the “safe yield myth” by Bredehoeft [3]. Instead, the interaction
between surface- and ground-water is very important in many cases and a good review on
this topic is given by Paniconi and Putti [4]. Contaminant transport in soil and groundwater
should also be considered, as it can limit the availability of good quality water, especially
for drinkable purposes. In regions characterized by a well-developed and widespread
irrigation network, watering methods and practices interfere in a rather complex way with
groundwater, as shown, e.g., by Vassena et al. [5]. Finally, water, obviously including
groundwater, impacts several ecosystem services [6].

The above remarks show that sustainable management of groundwater resources
is very challenging, as it is a multifaceted issue. However, a crucial point remains the
behavior of water in soils and in shallow alluvial sediments, which can be considered to be
partially saturated porous media. Water flow in variably saturated porous soils and alluvial
sediments affects crop production, recharge of phreatic aquifers, transport of fertilizer
and contaminant transport, and many other processes. Therefore, its study is of utmost
importance in soil physics, hydrology, water resources management, agronomy, and so on.

Within this framework, this paper provides a theoretical view of groundwater flow
in partially saturated porous media. In particular, the basic equation, founded on the
mass conservation principle and the Darcy–Buckingham law, yields a non-linear partial
differential equation, which involves the volumetric water content (θ) and the matric
potential (h). Such an equation can be expressed in several different forms, according to
the physical quantity considered to be the dependent variable, with respect to which the
equation is solved. The fundamental goal of this work is to review four of the different
forms of the flow equations: the Fokker–Planck equation, which is written in terms of θ; the
Richards equation, which is written in terms of h; the equation for the generalized matric
flux potential (Φ); the equation for hydraulic conductivity (K).

This paper is not a comprehensive review of modeling unsaturated flow in soils and
sediments, which can be found elsewhere (e.g., [7–13]). Moreover, this paper does not
consider numerical models (for this aspect, see, e.g., [14,15]).

Instead, this paper is devoted to giving some physical or mathematical insights into
the different formulations of the flow equation for unsaturated porous media, with specific
attention, for each formulation, to the physical assumptions at its basis and to the form
of the boundary conditions, including the conditions at the sharp interface between two
media characterized by different physical properties.

Moreover, physical and mathematical conditions, which should be satisfied by the
phenomenological relations between the physical variables used to determine the state and the
flow of water in porous media, are discussed. In the author’s opinion, these conditions should
be carefully considered by researchers working on different methods (e.g., inverse modeling,
capillary tube, and fractal-based models, etc.) to predict retention curves, conductivity curves,
and other semi-empirical relationships. In fact, they are fundamental for a proper, physically-
based simulation of water flow in variably saturated porous media.

The most innovative content of this work is twofold and it is mainly related to Φ- and
K- based equations. First, Φ is shown to be a specific case within a family of variables, in
particular, it permits slightly simplifying the non-linearity of the flow equations. Second, the
K-based equation is proposed for a general case, whereas its introduction in the literature is
usually limited to the application of an exponential dependence of conductivity and matric
potential on water content.
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2. Equations of Water Flow in Unsaturated Soils and Sediments
2.1. Basic Equations and Notation

The fundamental, basic equation, that describes moisture content distribution and
flow in soils and unsaturated sediments, is derived from the continuity equation for water
phase [16], which, in the absence of source or sink terms, reads

∂θ

∂t
= −divq, (1)

where:

• θ (dimensionless) is the volumetric water content,
• q ([length · time−1]) is the water flow through a unit surface of a porous medium.

The second ingredient for modeling groundwater flow in partially saturated porous
media is the Darcy–Buckingham law, which states the proportionality between water flux
and hydraulic head gradient and reads

q = −KgradH, (2)

where:

• K ([length · time−1]) is the (θ dependent) hydraulic conductivity,
• H = h + z ([length]) is the hydraulic head or soil water potential per unit weight (z

axis is taken positive upwards),
• h < 0 ([length]) is the matric potential, often referred to as suction; recall that for

saturated porous media, it is substituted by the pressure head (p − pa) · (ρwg)−1,
where p is the water pressure, pa is the atmospheric pressure, ρw is the water density
and g is the gravity acceleration.

From Equations (1) and (2), one obtains the following fundamental equation:

∂θ

∂t
= div(KgradH). (3)

It must be stressed that Equation (3) is based on the following assumptions:

1. isothermal conditions;
2. water and, even more acceptable, solid grains are considered to be incompressible,

i.e., their density is assumed to be constant in space and time;
3. the soil or sediment is assumed to be non-deformable;
4. the influence of the air phase on water flow is negligible;
5. hysteresis effects, which would give a non-unique dependence between h and θ, are

disregarded; such an approximation is acceptable either if the medium does not show
any difference in the h-to-θ relationship during the wetting and draining phases or if
only one of the two phases (wetting or draining) is considered;

6. the medium is supposed to be homogeneous, i.e., the functions relating K and h to θ
are the same at every point of the domain;

7. the medium is assumed to be porous.

With respect to the last point, notice that (1) holds also for a fractured medium, which
possibly behaves as anisotropic, so that (2) is often used, but K is a second-order symmetric
tensor. In the case of a fractured medium, the physical meaning of the quantities appearing
in (1)–(3), should be modified and adapted to this kind of medium.

With respect to the point 3 above, recent advances in modeling flow in deformable
media, by taking into account the presence of macropores also, are given by Carrillo 128 and
Bourg [17], who apply a volume-averaging approach to upscale physics from the microscopic
pore-and-grain scale to the Representative Elementary Volume (REV) scale [18]. Moreover,
the study of preferential flow, due to funneling, fingering, and macropores, has been recently
reviewed by Nimmo [19].

The main difficulties in solving (3) are due to its non-linearity.
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Formulations of (3) found in the scientific literature differ mainly for the dependent
variable, which the equation is solved for. In the following subsections, four instances
are considered:

1. the Fokker–Planck equation, obtained when (3) is expressed as an equation for θ;
2. the Richards equation, when (3) is transformed in an equation for h;
3. Φ-based equation, when the matric flux potential, Φ, is introduced and used as a

dependent variable;
4. K-based equation, when the dependent variable is the K function.

Before discussing these equations in detail, some notations and definitions have to
be introduced. Let K = K̂(θ) and h = ĥ(θ) indicate the functional dependence of K and h
on θ, through the functions K̂ and ĥ, respectively. Finally, let the hydraulic diffusivity, D
([length2 · time−1]), be defined as

D = D̂(θ) ≡ K̂(θ)
dĥ
dθ

(θ), (4)

2.2. The Fokker–Planck Equation

If H = ĥ(θ) + z is substituted in (3), then

∂θ

∂t
= div

(
K̂(θ)

dĥ
dθ

(θ)gradθ + K̂(θ)gradz

)
,

i.e.,
∂θ

∂t
= div

(
D̂(θ)gradθ

)
+

dK̂
dθ

(θ)
∂θ

∂z
. (5)

This is a well-known equation of mathematical physics, often referred to as the Fokker–
Planck Equation [20,21]. An interesting and fundamental example of a solution of this
equation was found by [22].

It is apparent that non-linearity involves the right-hand side of (5), where spatial
derivatives are found.

2.3. The Richards Equation

If
dĥ
dθ

(θ) 6= 0, (6)

the functional relationship h = ĥ(θ) can be inverted to find θ = θ̂(h) such that ĥ(θ̂(h)) = h
and θ̂(ĥ(θ)) = θ. K can also be expressed as a function of h in the following way:
K = K̃(h) ≡ K̂(θ̂(h)). Let the moisture capacity function, C ([length−1]), be defined as

C(h) ≡ dθ̂

dh
(h). (7)

Then, (3) can be written in the following form:

C(h)
∂h
∂t

= div
(
K̃(h)gradh

)
+

dK̃
dh

(h)
∂h
∂z

. (8)

The first presentation of this equation goes back to Richards’ work in 1931 [23]. Its
advantages against the Fokker–Planck equation are that h is a continuous function across
boundaries between different soils or sediments, whereas θ is discontinuous at the interface
separating two media characterized by different physical properties (see Section 3.3.4). In
addition, this equation directly controls the variable h and, as a consequence, H, whose
gradient is the “driving force” for water to flow in porous media. Anyway, whereas (5)
is non-linear because of the non-linearity of physical parameters appearing under the
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spatial derivatives, in (8) the coefficient multiplying the temporal derivative of the solution
depends on the solution itself, thus increasing the non-linearity of the problem.

2.4. Generalized Matric Flux Potential Equation

Several analytical solutions can be obtained for the steady-state case when

K̃(h) = K0 exp(αh), (9)

where K0 and α are constants, by introducing the matric flux potential [24–26], Φ
([length2 · time−1]), defined by:

Φ ≡
∫ θ

θ0

D̂(θ′)dθ′ =
∫ h=ĥ(θ)

h0=ĥ(θ0)
K̃(h′)dh′. (10)

This approach has been called “quasilinear approximation” by Pullan [27], who pro-
posed an interesting discussion also about the K-to-h relationship. This quantity has been
used also to determine the onset of limiting hydraulic conditions for root water uptake [28].

Here, it is shown that the definition of Φ given by (10) is the most natural choice
among a family of new variables, which satisfies a condition for simplifying (3).

In particular, let a new variable Θ be searched for, such that θ = ω(Θ) with ω an
invertible and regular, but otherwise arbitrary, function.

From theorems about differentiation of composite functions, one obtains:

∂θ

∂t
=

dω

dΘ
∂Θ
∂t

, gradh =
dĥ
dθ

dω

dΘ
gradΘ, gradK̃ =

dK̃
dh

dĥ
dθ

dω

dΘ
gradΘ

and, if ∆ denotes the Laplacian operator,

∆h = div(gradh) = grad

(
dĥ
dθ

dω

dΘ

)
· gradΘ +

dĥ
dθ

dω

dΘ
∆Θ

=
d2ĥ
dθ2

(
dω

dΘ

)2

|gradΘ|2 + dĥ
dθ

(
d2ω

dΘ2

)
|gradΘ|2 + dĥ

dθ

dω

dΘ
∆Θ.

Then

div
(
K̃gradh

)
+

∂K̃
∂z

= gradK̃ · gradh + K̃∆h +
∂K̃
∂z

=

dK̃
dh

(
dĥ
dθ

dω

dΘ

)2

|gradΘ|2 + K̃

[
d2ĥ
dθ2

(
dω

dΘ

)2
+

dĥ
dθ

(
d2ω

dΘ2

)]
|gradΘ|2

+K̃
dĥ
dθ

dω

dΘ
∆Θ +

dK̃
dh

dĥ
dθ

dω

dΘ
∂Θ
∂z

and finally

dω

dΘ
∂Θ
∂t

=

[
d

dΘ

(
K̃

dĥ
dθ

dω

dΘ

)]
|gradΘ|2 + K̃

dĥ
dθ

dω

dΘ
∆Θ +

dK̃
dh

dĥ
dθ

dω

dΘ
∂Θ
∂z

. (11)

Equation (11) can be simplified, if ω is chosen such that the coefficient of |gradΘ|2
disappears. This means that ω satisfies

d
dΘ

(
K̃

dĥ
dθ

dω

dΘ

)
= 0,

i.e.,

K̃(h̃(ω(Θ)))
dĥ
dθ

(ω(Θ))
dω

dΘ
(Θ) = c,
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with c = constant. From K̃(h̃(ω(Θ))) = K̂(ω(Θ)) and by the definition of hydraulic
diffusivity, one has

D̂(ω(Θ))
dω

dΘ
(Θ) = c,

and, as a consequence,

∫ θ=ω(Θ)

θ0=ω(Θ0)
D̂(θ′)dθ′ =

∫ Θ

Θ0

D̂(ω(Θ′))
dω

dΘ
(Θ′)dΘ′ = c(Θ−Θ0). (12)

The following property can now be stated

∫ h=ĥ(θ)

h0=ĥ(θ0)
K̃(h′)dh′ =

∫ θ

θ0

K̃(ĥ(θ′))
dĥ
dθ

(θ′)dθ′ =
∫ θ

θ0

D̂(θ′)dθ′ = c(Θ−Θ0),

and finally one obtains

Θ = Θ0 +
1
c

∫ θ

θ0

D̂(θ′)dθ′ = Θ0 +
1
c

∫ h

h0

K̃(h′)dh′. (13)

It is trivial to recognize that Θ coincides with the transformation originally proposed
by Kirchhoff i in 1894 [29] and reduces to Φ, as defined by (10), if

c = 1, Θ0 = 0. (14)

Equation (11) can now be simplified and rewritten as follows:

∂Θ
∂t

= D̂(ω(Θ))∆Θ +
dK̃
dh

(ĥ(ω(Θ)))
dĥ
dθ

dω

dΘ
(ω(Θ))

∂Θ
∂z

. (15)

If (9) holds, then
dK̃
dh

= αK̃

and (15) reads
∂Θ
∂t

= K̃
dĥ
dθ

(
∆Θ + α

∂Θ
∂z

)
, (16)

which, under steady-state conditions, reduces to the following simple linear equation:

∆Θ + α
∂Θ
∂z

= 0. (17)

A long list of papers presenting analytical solutions for this linear steady-state equation,
with different geometries of the domain and boundary conditions, could be cited. Among
the others, it is worth recalling some seminal works [24,30,31]. Studies about numerical
solutions go back at least to Davidson [32] and time-dependent solutions were obtained by
Braester and Batu [25,33].

Two final remarks. From the mathematical point of view, among all regular invertible
transformations, ω(Θ), the family of functions implicitly defined by (12) collects all the
transformations that cancel the coefficient of |gradΘ|2 appearing in (11).

On the other hand, water flow in the porous medium can be expressed through a
simple equation, in which Θ appears explicitly:

q = −cgradΘ− Kk, (18)

where k is the upward-directed vertical unit vector. Once again, if (9) holds, then

K = αc(Θ−Θ0) + K̃(h0). (19)



Sustainability 2023, 15, 15723 7 of 16

If (14) is applied and h0 is chosen to be such that K̃(h0) ' 0, then q = −gradΘ− αΘk.

2.5. K-Based Equation

Since hysteresis effects are disregarded and experimental data show that K is strictly
increasing with θ and h, both ĥ and K̃ functions can be inverted, so that one can write
θ = θ̂(h) and h = h̃(K), with ĥ(θ̂(h)) = h and K̃(h̃(K)) = K.

By expressing (3) in terms of the K parameter, one obtains

dθ̂

dh
dh̃
dK

∂K
∂t

= div
[(

K
dh̃
dK

)
gradK

]
+

∂K
∂z

. (20)

If the following notation is introduced

A(K) ≡ dh̃
dK

(K) =
[

dK̃
dh

(h̃(K))
]−1

and B(K) ≡ dθ̂

dh
(h̃(K))

dh̃
dK

(K), (21)

then
B(K)

∂K
∂t

= div(K A(K) gradK) +
∂K
∂z

. (22)

In analogy with Section 2.4, (22) can be simplified when (9) is valid. In fact, from (21)
it follows A(K) = (αK)−1 and Equation (22) reads

B(K)
∂K
∂t

=
1
α

∆K +
∂K
∂z

. (23)

Non-linear terms now appear only in front of the time derivative of the solution, a
remark analogous to that related to (16); this property significantly simplifies the problem,
above all under steady-state conditions. In fact, the steady-state equation is easily seen to
be equivalent to (16), thanks to (19), valid when the exponential K-to-h relation holds.

Notice that a similar approach was applied by Srivastava and Yeh [34], who introduced
an even more simple version of (23) for an exponential dependence of θ on h, and then
followed also by other researchers for theoretical studies or to validate numerical models
(see, e.g., [35–37], among the others).

3. Discussion about Initial and Boundary Conditions and about Phenomenological
Relationships among θ, h and K

Equations (5), (8), (15) and (22) must be supported by phenomenological laws relating
K, h, and θ and must be accompanied by proper initial and boundary conditions. Therefore,
this section is devoted to a discussion of the physical and mathematical properties behind
some of the most common phenomenological laws and behind the different types of
boundary conditions.

3.1. Properties of the Relationship of K and h to θ

The physical, chemical, and biological processes which occur in unsaturated soils and
sediments are quite complex and they obviously have non-trivial impacts on the relationship
among h, θ, and K. Indeed, several simplifications have already been, implicitly or explicitly,
included in the derivation of Equations (5), (8), (15) and (22). Experimental data about the
relationships among h, θ, and K have been reviewed in several textbooks (e.g., [16,38,39]) and
in a large set of papers. Here it is worth mentioning the data set compiled very recently by
Hohenbrink et al. [40], the UNSODA database [41], and the papers by Peters [42], who tested
empirical models, which distinguish between capillary, adsorptive and film components, with
data from ten different soils, and by Luo et al. [43], who showed results for five representative
soils, out of 27 different soils based on a compilation of data from eight papers.

The first part of this sub-section summarizes some of the results presented in papers,
which have not found wide diffusion in the international scientific literature [44–46]. In
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order to do this, it is assumed that the functions ĥ(θ), K̂(θ) are sufficiently regular, so that
they can be differentiated as many times as required.

First of all, θ varies in the interval between θirr, the irreducible water content, and
θsat, the water content at saturation. Both quantities can be defined for a REV of the
porous medium: θirr is the ratio between the volume of water that adheres on the surface
of soil grains inside the REV, so that it can be extracted only if the energy given to the
medium is much higher than that involved in normal, purely mechanical processes, and
the volume of the REV itself; θsat is the ratio between the volume of water at saturation in
the REV and the volume of the REV itself. Notice that if total porosity is denoted by ε, then
0 ≤ θirr ≤ θ ≤ θsat ≤ ε.

The matric potential is a negative quantity, so that

ĥ(θ) ≤ he < 0, θ ∈ [θirr, θsat], (24)

where he is called the air entry value and is a threshold, such that air can enter the porous
medium only when suction is lower than he. The function ĥ(θ) can assume any value
between 0 and he for θ = θsat.

When θ is small, i.e., if θ → θirr, it is necessary to provide a lot of energy to the porous
medium in order to dry it. In fact, the “free” water inside the pores can flow out from
a sample of the porous medium by gravity only, but heating with an oven is necessary
to extract the water involved in capillary processes. In other words, the energy required
to extract small quantities of water from an almost dry porous medium is much greater
than that involved in the mechanical processes occurring in most of the field conditions.
Therefore, this could be expressed in mathematical form as

lim
θ→θirr

ĥ(θ) = −∞. (25)

This means that the function ĥ(θ) shows a vertical asymptote for θirr and, as a consequence,

lim
θ→θirr

dĥ
dθ

(θ) = +∞, lim
θ→θirr

d2ĥ
dθ2 (θ) = −∞. (26)

Both experimental evidence and studies on capillary bundle models show that ĥ is a
monotonously non-decreasing function (see, e.g., [40]), so that

dĥ
dθ

(θ) ≥ 0, θ ∈ [θirr, θsat), (27)

and

lim
θ→θsat

dĥ
dθ

(θ) = +∞, lim
θ→θsat

d2ĥ
dθ2 (θ) = +∞ (28)

i.e., the function ĥ(θ) has a vertical tangent while approaching θsat, a value of θ for which
the function ĥ is not uniquely defined, as mentioned in the remark following (24) above.

Equations (26) and (28) imply that

d2ĥ
dθ2 (θi.p.) = 0, for some θi.p. ∈ (θirr, θsat), (29)

i.e., ĥ(θ) has an inflection point at θ = θi.p..
The first trivial condition for K̂ is that it should be positive for the whole range of

θ values, with the exception of θ = θirr. Moreover, it should tend to Ksat, the value of
hydraulic conductivity for a saturated medium, when θ ' θsat:

K̂(θ) > 0, θ ∈ (θirr, θsat]; K̂(θirr) = 0; K̂(θsat) = Ksat. (30)
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It is experimentally verified that K increases with soil water content [42,43], so that

dK̂
dθ

(θ) > 0, θ ∈ [θirr, θsat]. (31)

Since hydraulic diffusivity is always positive,

D̂(θ) > 0, θ ∈ (θirr, θsat], (32)

Equations (30) and (4) imply

dĥ
dθ

(θ) > 0, θ ∈ (θirr, θsat). (33)

Equation (33) implies condition (6), so that ĥ(θ) is invertible in the interval (θirr, θsat), and
therefore a single-valued function θ̂(h) such that θ̂(ĥ(θ)) = θ and ĥ(θ̂(h)) = h can be found,
as it is required to introduce the Richards and the K-based equations (see Sections 2.3 and 2.5).

Moreover, it is worth recalling that (32) implies that also (13) is invertible and it makes
sense to consider θ = ω(Θ).

Experiments show that D̂ is a monotonically non-decreasing function, so that

dD̂
dθ

(θ) ≥ 0, θ ∈ [θirr, θsat]. (34)

Possible discrepancies from this behavior are disregarded here, but could occur in small
intervals of θ values, where vapor movement could make processes more complex [39].

Equation (28) implies
lim

θ→θsat
D̂(θ) = +∞. (35)

The formula
dD̂
dθ

=
dK̂
dθ

dĥ
dθ

+ K̂(θ)
d2ĥ
dθ2 ≥ 0, θ ∈ [θirr, θsat]

implies
d2ĥ
dθ2 ≥ −K̂−1 dK̂

dθ

dĥ
dθ

, θ ∈ [θirr, θsat].

In particular,

lim
θ→θirr

(
K̂−1 dK̂

dθ

dĥ
dθ

)
= +∞.

The second part of this subsection is devoted to some properties, which are based on
the results of studies [47,48] which show that water infiltration in initially dry soil creates a
wetting front, separating the wet region from the dry region. These properties were used
by other authors to study the propagation of wetting fronts (e.g., [49]). For linear diffusion
equations, it is well known that an infinite velocity of propagation is obtained, which is
not physically acceptable. A modification of the diffusion equation, which accounts for the
possible presence of a front, has been proposed for linear systems [50], but has not yet been
given great attention in the scientific literature.

Gilding [47,48] showed that two conditions are sufficient to create a wetting front in
non-linear systems:

D̂(θ)

θ − θirr
be integrable for θ ∈ [θirr, θsat]; (36)

K̂(θ) ≤ m(θ − θirr), for some m > 0 and θ ' θirr. (37)

Condition (36) implies
D̂(θirr) = 0, (38)
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whereas (37) implies
K̂(θirr) = 0, (39)

in perfect agreement with (38).
Table 1 provides a complete list of the properties of different functions. These proper-

ties can be used to derive basic properties of the other functions that have been defined in
Section 2: θ̂(h), K̃(h), C(h), A(K), and B(K).

The conditions discussed in this subsection should be verified by any model used to fit
field data, because they are necessary to guarantee that a given model for the relationships
among soil hydraulic properties correctly reproduces the physical behavior of natural sys-
tems. Recall that the functional relationships among soil hydraulic properties proposed in the
scientific literature and/or the phenomenological parameters appearing in the correspond-
ing formulas are usually determined with experimental procedures (field tests; laboratory
experiments on samples) or with inverse modeling [51–53]. With specific reference to field
data inversion, general reviews of the discrete inverse problem (see, e.g., [54], and references
therein) or specific applications to flow and transport in unsaturated media (e.g., [55,56]) can
be found in the scientific literature.

Table 1. Properties of different functions. Notice that in this table f ′ and f ′′ denote, respectively, the
first- and second-order derivatives of a function f , with respect to its argument.

Function Properties

ĥ(θ) ĥ(θ) ≤ he < 0, for θ ∈ [θirr, θsat]; ĥ(θ)→ −∞, as θ → θirr.

ĥ′(θ) ĥ′(θ) > 0, for θ ∈ [θirr, θsat]; ĥ′(θ)→ +∞, as θ → θirr; ĥ′(θ)→ −∞, as θ → θsat.

ĥ′′(θ) ĥ′′(θ)→ −∞, as θ → θirr; ĥ′′(θ)→ +∞, as θ → θsat; ĥ′′(θi.p.) = 0, for some
θi.p. ∈ (θirr, θsat).

K̂(θ) K̂(θ) > 0, for θ ∈ (θirr, θsat]; K̂(θirr) = 0; K̂(θsat) = Ksat; K̂(θ) ≤ m(θ − θirr) for some
m > 0 and θ ' θirr.

K̂′(θ) K̂′(θ) > 0, for θ ∈ [θirr, θsat].

D̂(θ) D̂(θ) > 0, for θ ∈ (θirr, θsat]; (θ − θirr)
−1D̂(θ) be integrable for θ ∈ [θirr, θsat].

D̂′(θ) D̂′(θ) ≥ 0, for θ ∈ (θirr, θsat]; D̂(θirr) = 0; D̂(θ)→ +∞, as θ → θsat.

3.2. Critical Analysis of the Most Common Phenomenological Laws

Starting from the relationship between suction and volumetric water content, namely,
the h-θ relationship, one of the oldest fitting expressions is that proposed by Brooks and
Corey in 1964 [57]:

ĥ(θ) = heS−1/λ, (40)

where
S(θ) =

θ − θirr

θsat − θirr
(41)

is the saturation function and λ is a parameter often called the pore-size distribution index.
The limitations of (40) are due to the fact that it does not obey (28), so it can give

problems close to saturation, where S = 1. Moreover, it is basically a power function, which
does not show any inflection point, contrary to what is expected from (29).

The most common fitting relationship is that proposed by van Genuchten in 1980 [58]:

ĥ(θ) = h0

(
S−1/m − 1

)−1/n
, (42)

where h0 < 0 and m and n are two positive quantities.
If n < 1, (42) violates (28).
Moving to the K̂ function, i.e., to the K-to-θ relationship, the classical approach by

Kozeny in 1927 and revised by Carman in 1937 [59,60] yields

K̂(θ) = KsatSα, (43)
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where α is a fitting parameter. If α > 1, the conditions introduced in Section 3.1 are satisfied.
This is in agreement with the typical values obtained from fitting experimental data.

Burdine’s and Mualem’s approaches [61,62] are often coupled with the van Genuchten
h-θ relationship (42).

Leij et al. [63] provided a long list of closed-form expressions that could be considered
and analyzed under the framework described in this work.

3.3. Initial and Boundary Conditions

Initial conditions necessary to solve evolution equations should describe the state of the
system at the starting time, conventionally chosen as t = 0, of the modeled time interval.

In the case of partially saturated porous media, under the conditions mentioned in
Section 3.1, initial conditions can be expressed by fixing the values of θ, h, Φ, or K at time
t = 0, at any point of the domain under study.

The discussion is more complex for boundary conditions and requires further remarks.
From the physical point of view, three cases can be considered.

3.3.1. Prescribed Value of Water Content at Saturation

In groundwater hydrology and soil physics, one can prescribe the water content at the
border of the domain if the evolution of the physical system does not affect the state of the
external water bodies, with which the system under study is in contact. The assignment of
this boundary condition basically requires perfect hydraulic contact between the porous
medium and the external water bodies. In principle, this condition can be prescribed at
the water table, where θ = θsat or, equivalently, S = 1. Notice, however, that two requisites
should be met for rigorous use of this kind of boundary condition:

1. the position of the water table should be independent of the water flow in the vadose
zone, i.e., the unsaturated portion of the subsurface;

2. the capillary fringe should have a negligible thickness, otherwise, more complex
approaches are necessary for a rigorous treatment [16].

For this case, the boundary condition can be written as θ = θsat for the Fokker–Planck
equation, h = he for the Richards equation, Φ =

∫ he
h0

K̃(h′)dh′ for the Φ-based equation,
and K = Ksat for the K-based equation. From the mathematical point of view, these are
Dirichlet boundary conditions for all the four types of equations considered in this work.

3.3.2. Prescribed Value of q · n
Here n denotes the inward-pointing unit vector perpendicular to the border of the

domain. In this case, one assumes that the value of the incoming flux per unit surface can
be prescribed. The most common situations, where this condition can be applied, are the
contact with impermeable materials and at the ground surface. For the latter instance, the
downward water flux (or upward moisture flux in case of prevailing evapotranspiration)
can be evaluated by assessing the energy and mass balance at the ground, possibly with
Soil-Vegetation-Atmosphere-Transfer (SVAT) models (see [64–67], for examples showing
the use of different methods, some of which are physically-based, and of meteorological
data). Thus, it is possible to estimate q · n at the ground surface. This condition, when
coupled with the Darcy–Buckingham law, means that one prescribes the value of

q · n = −K̂(θ)grad(ĥ(θ) + z) · n = −D̂(θ)gradθ · n− K̂(θ)k · n (44)

for the Fokker-Planck Equation (5),

q · n = −K̃(h)grad(h + z) · n (45)

for the Richards Equation (8),

q · n = −
[
gradΘ + K̂(ω(Θ))k

]
· n (46)
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for the Θ-based Equation (15), as obtained from (18) and (14),

q · n = −K[A(K)gradK + k] · n (47)

for the K-based Equation (22). These equations cannot be assimilated in a straightforward
way to Neumann or Robin boundary conditions. They involve both the normal component
of the derivative of the solution, but with non-linear coefficients for (44), (45), and (47), and
the solution itself, through non-linear dependencies for (44)–(46).

3.3.3. Interaction between Groundwater and Surface Water

The third kind of boundary condition, that is considered in this work, corresponds to
the contact of soils or sediments with water bodies, but with the fundamental difference,
with respect to the case of Section 3.3.1, that the hydraulic contact is not perfect. Therefore,
the water saturation, and the other quantities for which the equations are solved for, do
not perfectly and instantaneously follow the saturation of the water body with which they
are in contact. The most common example, for which this boundary condition can be used,
is when soil or sediments are in contact with a river, but the water exchange is controlled
by low-permeability sediments on the stream-bed. If Hwb is the hydraulic level of the
external water body, which is assumed to be independent of the level inside the soils and
sediments, and if Kwb ([time−1]) is the conductance of the poorly permeable sediments,
which connects the water body with the vadose zone, then q · n = Kwb(Hwb − H). As a
consequence, these boundary conditions transform into

Kwb(Hwb − ĥ(θ)− z) = −D̂(θ)gradθ · n− K̂(θ)k · n (48)

for the Fokker Planck Equation (5),

Kwb(Hwb − h− z) = −K̃(h)grad(h + z) · n (49)

for the Richards Equation (8),

Kwb(Hwb − h̃(ω(Θ))− z) = −
[
gradΘ + K̂(ω(Θ))k

]
· n (50)

for the Θ-based Equation (15), as obtained from (18) and (14),

Kwb(Hwb − h̃(K)− z) = −K[A(K)gradK + k] · n (51)

for the K-based Equation (22). From the mathematical point of view, these equations appear
in the form of non-linear Robin boundary conditions.

3.3.4. Conditions at the Interface between Media with Different Physical Properties

In the presence of a sharp interface between two media with different physical prop-
erties, i.e., for which the relationship between soil hydraulic quantities is different, two
basic physical conditions can be introduced: continuity of h and continuity of the normal
component of q across the interface.

These conditions are quite complex, once again, due to non-linearity, with the ex-
ception of the continuity of h for the Richards equation, which is directly related to the
dependent variable.

4. Conclusions

The comparison among the four Equations (5), (8), (15) and (22) shows several inter-
esting properties which are briefly summarized here.

Notwithstanding the fact that the Fokker–Planck and Richards equations are perhaps
the most natural formulations of (3), they are affected by strong non-linearity.
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The Richards equation is possibly the best choice for problems involving heteroge-
neous porous media, e.g., for layered media (see Section 3.3.4), or simultaneous saturated-
unsaturated flow.

The generalized matric flux potential equation is a simplified version of (3) and
generalizes the matric flux equation introduced by other Authors. In particular, matrix flux
potential is the most natural choice among the transformations which allow canceling one
of the terms of the spatial derivatives out of the fundamental equation. In particular, when
(13) holds, then one obtains the simple form of the Θ-based equation, given by (15), where
non-linear terms appear only as multiplicative factors of the laplacian and of the vertical
derivative of Θ.

When an exponential K-to-h relation is valid, both Θ-based and K-based equations
present non-linear coefficients only as multiplicative terms in front of time or spatial
derivatives, thus giving linear steady-state equations for which several analytical solutions
are available. Unfortunately, this dependence usually does not fit the trend of K over the
whole range of h values, but it can be applied only for problems that consider a small range
of h and θ values.

The non-linearity of the equations makes it quite complex the definition of boundary
conditions. Dirichlet boundary conditions can be prescribed if the water table is indepen-
dent of the flow in the vadose zone and if the capillary fringe can be neglected; if this is
the situation, a saturation condition can be imposed at the water table. Non-linear Robin
conditions correspond to the cases when water flux through the border of the study domain
can be prescribed or when the interaction between the porous medium and superficial
water bodies is examined.

Finally, it is important to recall that some remarks introduced in the previous sections
could be relevant both in theoretical and practical studies. For instance, they can drive the
research on the mathematical properties of the inverse problem for unsaturated flow in
porous media, or on innovative methods for the determination of retention curves (see,
e.g., [68–72], for fractal-based models) but they can also have an impact on the dynamics of
porous media [73] and on the modeling of solute transport (see, e.g., [74,75]).
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