
4.3. Lineage and mutation hierarchy 


4.3.1. Lineage imputation on AML samples 

As a first approach for classifying cell lineage in our scRNA-seq data after QC, we 
exploited a robust reference dataset of 30,672 BM-MNCs derived from one healthy 
human donor, profiled using CITE-seq and annotated based on both RNA and protein 
data(119) (see Materials and methods section, paragraph 3.4.4). Figure 37 shows the 
multimodal BM reference, which covers the full spectrum of hematopoietic differentiation 
from HSC to terminally differentiated cells.  


Figure 37. UMAP of reference healthy human BM-MNCs.

The weighted nearest neighbor (WNN) graph weights and combines information from RNA and 
protein data.


Briefly, we queried each of the three AML samples against the BM reference, by 
performing anchor-based data integration and lineage labels transferring to annotate 
AML populations (see Materials and methods, paragraph 3.4.4). It’s worth noting that, 
with the illustrated approach, cells are assigned to a certain lineage based on the 
similarity to the corresponding counterpart in healthy hematopoiesis, which might lead to 
misclassification since malignant cells typically show aberrant expression patterns. In 
AMLs, in particular, leukemic blasts are immature cells whose transcriptional patterns 
may span across a wide spectrum of normal hematopoietic cells, including HSCs and 
more differentiated myeloid cells.

Figure 38 shows cells of each query AML mapped onto the coordinates of the BM 
reference in Figure 37. A variable fraction of cells resulted located in the area 
corresponding to HSC and undifferentiated progenitors (~10% for AML4, ~75% for AML5 
and sAML1), while remaining cells were variably distributed across more differentiated 
lineages. This picture corresponds to the immunophenotypic profiles of the three 
samples (see Table 6, chapter 3.1), which showed that blast populations carried rather 



undifferentiated profiles (CD34 and CD117 positivity in all samples, CD38 positivity in 
AML5 and sAML1). However, while the immunophenotypically-assessed blast percentage 
in AML5 and sAML1 was pretty consistent with the fraction of cells mapping to HSC and 
progenitors in scRNA data (70-80% for both), we noticed a discrepancy for AML4 (80% 
by immunophenotype and pathology report, 10% in scRNA data), which might be due to 
hemodilution during BM aspirate.


Figure 38. UMAP of AML samples mapped onto a multimodal healthy BM reference.

Single cells of each AML sample (blue) are projected onto the WNN graph of the BM reference 
(light-blue).




Thus, to investigate the accuracy of our imputation, we assessed the quality of lineage 
assignment for each cell, by measuring lineage label predictions as elaborated by Stuart 
et al. and implemented in the TransferData function of Seurat. Briefly, lineage label 
predictions are computed by multiplying the anchor classification matrix (which contains 
the classification information for each anchor cell in the reference dataset) with the 
transpose of the weights matrix (which defines the strength of association between each 
query cell and each anchor). This returns a prediction score for each lineage for every cell 
in the query dataset, ranging from 0 to 1.

Figure 39 shows the distribution of prediction scores across all cells for the three 
samples, without accounting for specific lineages. The majority of cells in all samples 
were assigned a prediction score of >0.5, with the sAML1 sample showing the highest 
proportion of cells with low prediction score (< 0.35).
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Figure 39. Lineage prediction scores by AML sample.

Distribution of lineage prediction scores for all cells in each AML sample, after mapping to the 
multimodal healthy BM reference.




To investigate whether different lineages had been imputed with different accuracy, for 
each sample we computed the mean prediction score of all cells in each lineage, and 
compared results across samples by visualization in a heatmap (Figure 40). Strikingly, 
most lineages (HSC, LMPP, erythroid progenitors, NK cells, naive and memory B cells) 
had homogeneously high prediction scores across all of the three samples. T cell 
subsets, instead, had homogeneously lower prediction scores, while differentiated 
myeloid lineages showed discordant results across the samples, with the lowest 
prediction scores found in sAML1.


Figure 40. Mean prediction scores by lineage.

The heatmap shows the mean of prediction scores for all cells in each lineage across the three 
AML samples. Lineages with no cells assigned are labelled in grey.




For cells assigned to the T cell compartment, we accepted lineage imputation regardless 
of low prediction scores, because T cells may show heterogeneous functional states and 
overlapping transcriptional features that make difficult to accurately distinguish among 
different subsets. Instead, remaining cells with prediction score < 0.35 were considered 
unclassified cells. Results from this analysis (Figure 41) showed that the majority of cells 
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could be assigned to a specific lineage (100% in AML4, 100% in AML5 and 90% in 
sAML1) and confirmed that approximately 10% of AML4 cells and 50% of AML5 and 
sAML1 cells belonged to HSC and progenitors lineages. A large proportion (~50%) of 
AML4 cells was assigned as erythroid progenitors, while other differentiated myeloid 
lineages were poorly represented. T and B lymphoid subsets made about 30% of AML4 
cells and 20% of AML5 and sAML1. Not all lineages of the BM reference database, 
however, were represented in all samples.


Figure 41. Proportions of hematopoietic lineages across AML samples after mapping 
to a multimodal healthy BM reference.


Aiming to validate our lineage imputation using an orthogonal method and to further 
investigate unclassified cells, we assessed the expression of lineage-specific signatures 
from the BM Human Cell Atlas (HCA) on cells of each imputed lineage (Figures 42-50).
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Figure 42. Mean expression of HSC and undifferentiated progenitors HCA signatures.

Median and distribution of average expression of selected HCA signatures across lineages (rows) 
and samples (columns).


Figure 43. Mean expression of granulocytes-committed HCA signatures.

As in Figure 42.
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Figure 44. Mean expression of dendritic cells-committed HCA signatures.

As in Figure 42.


Figure 45. Mean expression of erythroid cells-committed HCA signatures.

As in Figure 42. 
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Figure 46. Mean expression of megakaryocytes-committed HCA signatures.

As in Figure 42.


Figure 47. Mean expression of stromal cells HCA signatures.

As in Figure 42.
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Figure 48. Mean expression of T and NK cells HCA signatures.

As in Figure 42.


Figure 49. Mean expression of immature B cells HCA signatures.

As in Figure 42.
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Figure 50. Mean expression of mature B cells HCA signatures.

As in Figure 42.


Upon checking BM Human Cell Atlas signatures, we generally found a good 
correspondence between our original imputation and the expression of expected 
signatures. These include both discrete and transitioning states associated to early 
progenitors and committed precursors, providing an opportunity to appreciate the 
heterogeneity of cells classified as HSC or immature progenitors. In particular, in AML5 
and sAML1, cells imputed as HSC, LMPP, progenitors B1 and B2 showed overlapping 
expression of signatures related to HSC, undifferentiated progenitors and immature B 
cells, which suggests that the most undifferentiated cells (i.e., the putative malignant 
pool) aberrantly express immature B cell markers. In the case of AML4, we observed a 
discrepancy between the blast percentage assessed by immunophenotype (~80%) and 
the proportion of cells imputed as HSC and LMPP by scRNA data, which was much 
lower; as the same sample showed a high prevalence of mature erythroid cells, we 
wondered whether the stem/progenitor-like populations might also express signatures of 
more differentiated precursors. However, we did not observe any significant expression 
overlap, indicating HSC/LMPP and mature erythroid cells are two distinct populations in 
this sample. We interpreted the discrepancy between immunophenotype data and 
scRNA as a possible consequence of hemodilution during BM aspirate. Unclassified 
cells, strikingly, mostly expressed features linked to stromal cells. Therefore, we 
discarded unclassified cells from our final single-cell dataset, and maintained the original 
lineage imputation for all remaining cells; the final proportions of each hematopoietic 
lineage across the three AMLs showed little variation as compared to results before 
validation (Figure 51, left panel). Given the heterogeneity of cell lineage representation 
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across samples, for the purpose of downstream analyses we re-grouped cells according 
to broader lineage categories: “HSC and progenitors” (HSPC) (including cells imputed as 
HSC, LMPP, GMP, progenitor B1 and B2); “myeloid” (including red blood cell progenitors, 
megakaryocyte progenitors, dendritic cells, CD14 and CD16 monocytes); “T and NK 
cells” (including CD4 naive cells, CD4 memory cells, CD8 naive cells, CD8 effector cells 
1/2, CD8 memory cells 1/2, T regulatory cells, mucosal associated invariant T cells, T 
cells, NK cells, CD56 bright NK), and “B cells” (including naive B cells, memory B cells, 
and plasmablasts) (Figure 51, right panel). A strikingly high proportion of HSC and 
progenitors could be observed in AML5 and sAML1 (in accordance with morphologically 
assessed BM blast percentage, see Table 6 in chapter 3.1), while AML4 showed more 
differentiated cells of the myeloid lineage (mostly mature erythroid progenitors). T, NK and 
B lymphoid populations were represented in all samples, accounting for the tumor 
immune milieu.


Figure 51. Validated hematopoietic lineages across AML samples.

The barplots show the proportions of validated hematopoietic lineages defined as of the BM 
reference (left) and by aggregated lineage categories (right).


4.3.2 Identification of bona fide malignant cells  

One obvious advantage of coupling transcriptional profiles with mutation analyses at 
single-cell level is the potential to facilitate identification of the malignant compartment of 
tumor samples,, which is preliminary to investigate the interplay between tumor and 
microenvironmental cells. AML malignant cells are intrinsically difficult to distinguish from 
residual hematopoiesis, both phenotypically and genetically. Phenotypically, AML cells 
are considered relatively immature cells. The presence of a HSC-like phenotype, 
however, is per se not sufficient to identify malignant cells due to their wide spectrum of 
HSPC-to-myeloid differentiation and, eventually, expression of aberrant lineage features. 
Genetically, leukemic blasts frequently coexist with apparently normal hematopoietic 

γδ
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cells carrying clonal genetic alterations, as it happens in cases of AML evolving from 
CHIP or MDS. 	 	 	 	 	 	 	 	 	 	
SCM-seq provided us with the opportunity to adress this question by integrating lineage 
information with numbers of gene mutations per cell and specific transcriptional features 
(namely,  LSC features and cell cycle phases). In Figure 52, we highlighted genotyped 
cells from the three samples upon integration in the same UMAP.


Figure 52. Identification of bona fide malignant AML cells.

The UMAP plots show the integration of genotyped cells from the three AML samples, colored by 
number of mutations per cell (top left), aggregated lineage (bottom left), LSC score (top right), and 
cell cycle phase (bottom right).




Mutated cells were represented in all the imputed lineages. Cells with more mutations, 
however, tended to cluster in a specific area of the UMAP (top left panel), suggesting 
commonalities in their transcriptional profiles. Strikingly, the same cells overlapped with 
cells imputed as HSC and progenitors (HSPCs, bottom left panel) and distinctively 
overexpressed a transcriptional signature capturing the core biological properties of 
functionally validated LSC (top right panel). Notably, within the same HSPC cluster, cells 
with less intense expression of the LSC signature were associated to cells in the S or 
G2M phases of cell cycle (bottom right panel). Thus, a large fraction of cells (about 50% 
of all samples) tend to cluster within the same transcriptional space, express HSPC and 
LSC transcriptional features and accumulate higher numbers of mutations, suggesting 
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that cells imputed as HSC and progenitors can be bona fide considered as the malignant 
compartment of the AML ecosystem.


4.3.4 Genetic complexity and hierarchy across cell lineages 

To further investigate the relationships between phenotypic and genetic heterogeneities, 
we analyzed the lineage architecture of genotyped cells grouped by increasing numbers 
of mutations per cell (Figure 53). Strikingly, in each AML sample, all hematopoietic 
lineages were represented in all cell groups, regardless of numbers of mutations. Their 
relative proportion, however, differed across groups, with progressive decrease of lineage 
heterogeneity and increase of HSPCs representation from non-mutated cells to cells with 
the highest numbers of mutations.


Figure 53. Relationship between hematopoietic lineages and numbers of mutations 
per cell.

The barplots show the proportions of hematopoietic lineages for genotyped cells grouped by 
increasing numbers of mutations per cell.




Indeed, as expected, HSPCs showed the highest genetic complexity, i.e. the highest 
proportion of cells bearing 3 or >3 mutations (Figure 54). Strikingly, however, the vast 
majority of cells belonging to differentiated lineages also held at least one mutation 
(>75%), with significant fractions also showing 2, 3 or even >3 mutations (e.g. 6-8% of T 
NK and B cells in sAML1).
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Figure 54. Relationship between number of mutations per cell and hematopoietic 
lineage.

The barplots show the proportions of numbers of mutations per cell for genotyped cells grouped 
by aggregated hematopoietic lineages.




The finding of mutations in non-leukemic lymphoid cells may reflect the presence of 
residual CH, as previously reported(59). Although cells with myeloid differentiated 
features might be residual CH as well, the presence of increasing numbers of mutations 
in this lineage compartment might also indicate an intermediate phase between pre-
leukemic and overt malignancy, especially in the context of SRSF2-mutated AMLs that 
are typically associated to MDS-like features. In either cases, mutations are expected to 
occur more frequently in genes involved in epigenetic and/or splicing regulation, while 
mutations in signaling pathways are typically found in late AML subclones. To investigate 
the frequency and co-occurrences of gene mutations across the various hematopoietic 
lineages, we reconstructed the frequency of somatic variants for genotyped cells of each 
lineage independently (HSPCs, differentiated myeloid cells and the immune 
compartment, i.e., T, NK and mature B cells) and visualized result by heatmaps. Overall, 
as shown in Figure 55, 56 and 57, myeloid and immune cells recapitulated the genetic 
hierarchy observed in HSPCs. Surprisingly, we also found rare immune cells bearing 
mutations usually not associated to CH (e.g., CEBPA in AML4 and FLT3 in sAML1).
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Figure 55. Mutation hierarchies across hematopoietic lineages (sample AML4).

The heatmaps show the presence of a mutation (red bar) for each gene variant (rows) in each 
genotyped cell (columns), for each aggregated lineage. Mutations are ordered by decreasing 
frequency (independently assessed for each lineage).


Figure 56. Mutation hierarchies across hematopoietic lineages (sample AML5).

As in Figure 55.
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Figure 57. Mutation hierarchies across hematopoietic lineages (sample sAML1).

As in Figure 55.


Thus, we investigated whether specific gene mutations were preferentially enriched in 
specific lineage cell compartments. To this end, we compared the proportions of cell 
lineages represented in all cells bearing a given gene mutation, across all gene mutations 
in each AML sample (Figure 58). As a result, we found that some gene mutations were 
more strongly associated to specific lineages than others (AML4, p = 0.00003202 by Chi-
square test; AML5, p = 0.3673 by Fisher’s exact test; sAML1, p = 0.0004998 by Fisher’s 
exact test). Specifically, gene mutations with higher VAF in our experimental data and 
previously reported to occur in CH (e.g., STAG2, SRSF2, DNMT3A) tended to show a 
positive association with lymphoid and differentiated myeloid cells, while gene mutations 
described to occur at later stages in leukemia development (e.g., CEBPA, CSF3R, FLT3) 
were positively associated with HSPCs.
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Figure 58. Associations between gene mutations and hematopoietic lineages.

The circles represent Pearson residuals for significant Chi-square or Fisher’s exact tests, colored 
by positive (blue) or negative (red) associations between a given gene mutation and a given 
lineage. For each association, the size of the circles is proportional to the amount of contribution 
to the difference between expected and observed values.
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4.4. Genetic complexity and phenotypic diversity


4.4.1 Increasing genetic complexity in AML HSPCs is associated to increasing 
transcriptional heterogeneity and functional consequences 

One key question regarding AML intra-tumor genetic and phenotypic heterogeneity is 
whether cells with high mutational burden show distinct functional properties as 
compared to non-mutated cells or cells with few mutations and, if so, whether this is 
independent of mutation combinations. To assess and quantify the diversity of AML 
transcriptional phenotypes based on genetic complexity, we selected genotyped HSPCs 
(i.e., the malignant compartment, to exclude any lineage or differentiation-related bias), 
grouped them by total number of mutations (0, 1, 2, 3 and >3, respectively) and 
computed their PV (i.e., the pseudo-determinant of gene expression covariance, an 
indirect measure of transcriptional identity; see Materials and methods, paragraph 3.4.6). 
In particular, larger PV in one cell group as compared to another shows the independency 
of active transcriptional programs, suggesting activation of additional mechanisms and 
pathways. We repeated PV computation 10 times to increase the robustness of the 
process.


Figure 59. Phenotypic volumes of HSPC by increasing numbers of mutations per cell.

Violin and boxplots represent the range of computed PVs across 10 repetitions. Two-sided Mann 
Whitney U test. ns = non significant, * = p<0.05,  ** = p<0.01, *** = p<0.001.
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Strikingly, we observed a significant stepwise increase in PVs for each increase in 
numbers of mutations per cell (Figure 59), suggesting that higher genetic complexity is 
associated to increased heterogeneity of active transcriptional programs regardless of 
underlying genotype combinations.  

To assess which functional pathways are activated by the highest genetic complexity 
within each lineage, we calculated single-cell average expression levels of selected 
signatures using the AddModuleScore function in Seurat, and correlated each of them 
with the z-score of mutation burden (Figure 60). Higher numbers of mutations in HSPCs 
showed a positive, significant correlation with signatures related to cell cycle control, 
proliferation, response to oxidative stress, RNA splicing regulation, MTORC1 signaling 
and MYC targets, as well as anti-correlation with inflammatory pathways. Interestingly, 
we observed similar patterns when comparing HSPCs and more differentiated myeloid 
progenitors, which is consistent with the hypothesis that the myeloid compartment might 
include not only residual hematopoiesis, but also pre-malignant cells.

To further confirm the association between specific pathways and increasing mutational 
burden, we performed differential expression and pathway enrichment analysis between 
cells with none or 1 mutation vs cells with 3 or >3 mutations, for each sample separately. 
Pathways enriched with genes overexpressed in HSPCs with high mutation burden were  
mainly involved in mitosis, cell cycle G1/S phase transition, DNA repair/metabolism, RNA 
splicing, protein and mitochondrial metabolism, consistently with the above findings. 
Notably, the 8 genes that were shared across the three samples (Figure 61) pointed to 
biological functions such as protein translation regulation (DCTN5, EIF3A and MRPS9), 
post-translational processing and protein metabolism (RBM10 and UBA2), pyrimidine 
metabolism (DUT), mitochondrial integrity and respiratory chain function (CHCHD3), and 
mitosis (NUP37). Intriguingly, marker genes of HSPCs with lower mutation burden in 
AML5 to pathways related to antigen processing and presentation of peptide antigen via 
MHC class II, suggesting that immunomodulatory properties are confined to cells with 
low genetic complexity. This observation, however, was limited to one single AML 
sample.
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Figure 60. Relationship between mutation burden and selected transcriptional 
signatures.

Spearman correlation highlights the associations between increasing numbers of mutations per 
cell and averaged expression of signatures of interest. The color represents the direction of the 
association (blue for positive, red for negative), while the intensity of the color and the size of the 
circles is proportional to correlation coefficients. Only significant associations are given (p < 0.05).


Figure 61. Overlap of genes overexpressed in HSPC with high mutation burden.
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4.4.2 Transcriptional profiles of immune populations are poorly affected by genetic 
complexity 

As both innate and adaptive immunity have been demonstrated to sustain the fitness of 
AML cells, we focused on immune cell subsets (T, NK and mature B cells) to address 
whether underlying genetic complexity affects their functional profiles. We used again PV 
as a measure of transcriptional heterogeneity on cell populations with increasing number 
of mutations, and found that PVs sharply arose in cells with >3 mutations, while cells with 
lower genetic complexity showed substantial stability (Figure 62). In keeping with this, 
correlations within the lymphoid lineages were far less frequent and systematic that those 
scored for HSPC and differentiated myeloid cells (Figure 60 above).


Figure 62. Phenotypic volumes of immune cells by increasing numbers of mutations 
per cell.

As in Figure 59.
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Moreover, we analysed T and NK cells for the expression of genes with well-established 
lineage-specific functions, namely genes associated to interferon stimulation (STAT1, 
CXCL10, IRF1, MX1), cytotoxicity (CTSW, GNLY, CD8A, CD8B, PRF1, GZMA, GZMB, 
GZMH, CD3G, KLRB1, KLRD1, KLRK1, NKG7), T-cell exhaustion (CD244, EOMES, 
LAG3, PTGER4), antigen processing and presentation (TAP1, TAP2, HLA-A, HLA-B, HLA-
C) and immunotherapy targets (PDCD1, BTLA, CTLA4, HAVCR2). Strikingly, we did not 
find any relevant change across cells bearing different numbers of mutations (Figure 63). 
Thus, with the limits of the low prevalence of cells with high numbers of mutations, we 
concluded that the overall impact of genetic complexity on immune functions is poor.


Figure 63. Expression of T/NK-related genes by number of mutations per cell.

The heatmaps show z-scored expressions of selected genes relevant to T/NK functions (rows) for 
each genotyped T/NK cell (columns). The upper bar highlights the number of mutations by which  
cells are grouped.
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4.4.3 Single-cell isoform-level diversity and relationship to genetic complexity 

To further dissect the impact of genetic complexity on phenotypic heterogeneity, we 
focused on the analysis of the mRNA isoform-repertoire at single-cell level. To maximise 
the accuracy of transcript isoforms annotation and link this information to single cells, we 
performed whole-transcriptome ONT sequencing of sample-matched barcoded full-
length cDNA. A summary of sequencing metrics is presented in paragraph 4.1.1 (Table 
11). After CB matching between 10x and ONT datasets, we obtained isoform-per-cell 
matrices spanning quite heterogeneous numbers of isoforms, belonging to 3740, 7009 
and 8710 genes, respectively (Table 17). As we have applied a threshold of 10 counts for 
isoforms inclusion, this estimate of isoform diversity is likely to be conservative. We 
further subsetted the matrices to include only cells with genotype assignment for at least 
one gene. Overall, we could integrate genotype, gene expression and isoform profiles on 
60.5%, 78.8% and 83% of cells in the three AML samples, respectively.


Table 17. Summary of full-length transcriptome characteristics.


As expected, we found a neat linear relationship between the absolute total number of 
expressed genes and isoforms per cell (Figure 64, left panels). To capture cell-level 
isoform abundance and identify cells expressing aberrant numbers of isoforms (i.e., 
numbers of isoforms not expected based on numbers of expressed genes), we 
normalized the total number of isoforms on the total absolute number of expressed 
genes, and ranked cells based on this parameter (Figure 64, right panels). For each 
sample, the majority of cells exhibited mostly subtle, continuous variation in isoform 
abundance.


Sample N cells N reads 
(x 106)

N genes with 
multi-exon 
isoforms

N multi-exon 
isoforms

N cells after 
subsetting

N isoforms 
after 

subsetting

AML4 2112 31.56 3740 7884 1270 6365

AML5 2794 36.65 7009 18211 2083 14686

sAML1 4201 50.69 8710 26857 2876 22154
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Figure 64. Relationship between expressed genes and expressed isoforms per cell.

Total numbers of expressed genes and expressed isoforms per cell (left) and isoform abundance 
per cell (normalized by number of expressed genes) (right).


We then asked whether isoform diversity might correlate with cell lineage and mutation 
burden, which we investigated by plotting genotyped cells based on isoform abundance 
and number of expressed genes (Figure 65). For each of the three AML samples, we 
uncovered a high number of cells with heterogeneous isoform abundance, but relatively 
few expressed genes, and progressively fewer cells with lower isoform abundance, but 
higher numbers of expressed genes. Most of the cells were distributed along a 
continuum between these two states and, notably, cell lineage and mutation burden 
clustered accordingly. In particular, HSPCs with low mutation burden and differentiated 
myeloid and lymphoid cells tended to use higher numbers of isoforms for relatively few 
expressed genes, while HSPCs with high mutation burden expressed more genes with 
limited isoform abundance.  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Figure 65. Single-cell isoform diversity.

Cell-level relationship between isoform abundance and expressed genes by cell lineage (left) and 
mutation burden (right).


This result suggests that increasing mutation burden in AML HSPCs, despite higher 
numbers of expressed genes, is associated to the use of a progressively restricted 
repertoire of isoforms, possibly indicating a functional selection. To further delve into this 
finding and link it to the distinct gene expression profile we observed in cells with high 
mutation burden, we investigated genes expressed in HSPCs based on numbers of cells 
expressing any given gene, and the corresponding numbers of unique isoforms for that 
gene (Figure 66). Most of the genes expressed in HSPCs were scored in a relatively low 
number of cells, including genes overexpressed in HSPCs with high mutation burden (see 
paragraph 4.4.1). Notably and consistently with the profile shown in Figure 65, the 
number of isoforms expressed for these genes was generally low.
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Figure 66. Gene-level isoform diversity in AML HSPCs.

Gene-level relationship between number of cells expressing the gene and number of unique 
isoforms per gene.




Genes expressed in high numbers of cells were often conserved across the three 
samples (88.4%, 54.3% and 49.6% of shared genes by sample) and mainly encoded for 
ribosomial or translation-related proteins when represented by few isoforms, while HLA 
and immune-related genes displayed higher isoform diversity. Instead, the majority of 
genes expressed in lower numbers of cells often showed sample-specific representation, 
although some pathways resulted enriched across all the three samples, i.e. RNA 
splicing, protein metabolism, mitochondrial functions, mitosis, response to unfolded 
protein and endoplasmic reticulum stress. We also evaluated whether certain pathways 
tended to be enriched in genes expressed with higher isoform diversity, and found that 
genes of RNA splicing-related pathways were consistently represented with even more 
than 5 isoforms in all samples (Figure 67). Instead, pathways related to mitosis, 
mitochondrial functions and protein metabolism were more often represented by genes 
expressed with fewer isoforms.
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Figure 67. Isoform diversity-based pathway enrichment.

Top 15 GO terms (biological process category, ranked by FDR) enriched in genes expressed with 
1, 2-5 or >5 isoforms, respectively. The size of the circles corresponds to FDRs.


Finally, we investigated whether the varying patterns of isoform diversity were associated 
to the presence of mutations of SRSF2, a gene that encodes for a spliceosome factor 
and is mutated in all of the three AML samples analyzed. To this end, we compared the 
number of  genes expressed by 1, 2-5 or >5 unique isoforms in cells bearing the mutation 
vs wild-type cells within each lineage, in order to account for possible differentiation-
related differences. Results showed that, in all lineages, SRSF2-mutated cells carried 
significantly higher proportions of genes expressed with more than one isoform as 
compared to wild-type cells (Figure 68). Furthermore, isoforms expressed in mutated 
cells less often matched the corresponding reference transcript at all splice junctions, but 
were more often classified as novel (Figure 69), suggesting that the presence of a SRSF2-
mutation increases the diversity of expression repertoire. However, we could not score 
major differences in terms of predicted coding potential (Figure 70) or non-sense 
mediated decay (Figure 71).   
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Figure 68. Isoform diversity in SRSF2-mutated vs wild-type cells by lineage.

The barplots show the numbers of genes expressed in mutated and wild-type cells in each 
aggregated lineage, categorized by number of expressed isoforms per gene. Two-sided Mann 
Whitney U test. ns = non significant, * = p<0.05,  ** = p<0.01, *** = p<0.001.
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Figure 69. Isoform structural variation in SRSF2-mutated vs wild-type cells by lineage.

The barplots show the numbers of isoforms expressed in mutated and wild-type cells in each 
aggregated lineage, according to legend categories. Two-sided Mann Whitney U test. ns = non 
significant, * = p<0.05,  ** = p<0.01, *** = p<0.001.


 of 28 45



Figure 70. Isoform coding potential in SRSF2-mutated vs wild-type cells by lineage.

As in Figure 69.
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Figure 71. Isoform non-sense mediated decay in SRSF2-mutated vs wild-type cells by 
lineage.

As in Figure 69.
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5. Discussion

Evolutionary dynamics and treatment resistance in AMLs are both heavily impacted by 
intra-tumor heterogeneity, which stems from distinct and interconnected cellular and 
biological levels. Solving the paths linking genetic events and phenotypic diversity might 
be of considerable importance to scan vulnerabilities for the development of meaningful 
therapeutic targets. This task, however, can be efficiently achieved only by applying 
multiomics approaches that integrate different layers of information at single-cell level. 
Ideally, any meaningful approach should be capable to profile high numbers of cells, thus 
allowing to capture both the malignant pool and the less-represented tumor-associated 
immune milieu, thus enabling a broad, ecosystem-wide characterization of different 
cancer traits.	 	 	 	 	 	 	 	 	 	
Currently used droplet-based short-read scRNA-seq protocols achieve high cell 
throughput and are suitable to study heterogeneous cell populations and associated 
functional profiles. Yet, due to 3′ or 5′ end bias and consequent lack of transcript 
coverage of short-read sequencing (100), these protocols preclude reliable evaluation of 
other information, including expressed somatic mutations, whose impact in AML is well 
described, and transcript isoforms features, which might provide further insights into the 
phenotypic heterogeneity of AML. Long-read sequencing generates full-length transcript 
information in single cells and can overcome these limitations(126,152,153).	  
In this work we have developed SCM-seq, a multiomics method that combines the high-
throughput of the short-read Chromium 10x platform, which is exploited for the isolation 
of single cells and mRNA sequencing, with the whole-transcript resolution provided by 
parallel ONT sequencing of full-length cDNA molecules. In particular, we took advantage 
of long-read ONT sequencing to access cell features that could not be reliably scored 
with short reads, namely transcript isoforms (from whole transcriptome sequencing) and 
somatic variants (from target enrichment of known mutated regions).	 	 	
In recent years, a handful of experimental approaches have been devised to couple 
short-read scRNA-seq with long-read sequencing(126,133,154,143,153) but, to our 
knowledge, there is only one published example exploiting a similar approach for the joint 
single-cell analysis of gene mutations, expression and isoforms profiles(143). However, in 
comparison to SCM-seq, this method was severely impaired in the ability to capture 
biological complexity because the integrated analysis was only performed on a 
subsample of the total number of sequenced cells (10-20%). SCM-seq, instead, allowed 
to analyze genotype, gene expression and isoform profiles on 60.5%, 78.8% and 83% of 
cells in three AML samples, respectively. In principle, the SCM-seq platform can also be 
exploited to analyze simultaneously the T- (TCR) and B- (BCR) receptor profiles, thus 
offering a mean to efficiently investigate the connections between genetic profiles, 
immune clonotypes and functional responses within the tumor ecosystem. The sensitivity 
of our multiomics characterization (i.e., number of cells scored by multiple omics) also 
fairly compares to other recently published methods devised to couple transcriptional 
and mutational information(132,133,155–157). 
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We showed correspondence of transcriptional features between the two sequence 
datasets (10x and ONT), which was instrumental to prove the reliability and consistence 
of our integration analysis. With respect to somatic mutation detection, ONT sequencing 
data are known to be less accurate than Illumina, yet our data indicate that an average 
error rate of 5% at the variant position (across all cells) does not preclude mutation 
analysis, although this has to be assessed on a gene-by-gene basis. In fact, SCM-seq is 
inherently limited by the level of expression of the mutated gene, a limit that in our study 
allowed to score around half of the originally targeted mutations. This limit is attenuated 
by the questionable relevance of non-expressed mutations, as confirmed by our 
observation that the non-expressed and thus non-detected mutations involved genes 
that have not been described as AML drivers (i.e., are passenger mutations). Mutations 
transcribed into mRNA are indeed more likely to be translated, thus directly affecting 
cellular phenotypes and, eventually, actionability. For the expressed mutations, we have 
maximized coverage at the variant position by target enrichment, in order to build 
consensus sequences and contrast the possibly low expression patterns of mutated 
genes and the relatively low accuracy of ONT sequencing. Notably, this approach 
"lowered" the overall error rate at the variant position to <5% on average. Differences in 
read depth at the level of single-cells, however, cause a non-homogeneous distribution of 
the error rate, thus limiting the performance of our genotype imputation for rare cells, 
especially non-tumoral cells. As a future improvement, to mitigate the influence of varying  
levels of target gene expression in the detection of mutant alleles, we will perform 
genotype imputation after collapsing cells to single amplicon UMIs. Despite these limits, 
however, for several variants we were able to score both mutant and wild-type cells with 
high confidence, which is the basis for the systematic analyses of genotype-phenotype 
interactions. 	 	 	 	 	 	 	 	 	 	 	
Mutant cells were identified with high sensitivity and good correspondence with WES 
VAFs. Notably, we could score at least two mutations in more than half of mutant cells, a 
result that fairly compares to previous studies(132,133,155–157) and allowed us to 
stratify groups of cells based on their genetic complexity (i.e., numbers and combination 
of co-occurring mutations). AML cells with transcriptional features of HSCs/progenitors 
accumulated higher numbers of mutations and shared transcriptional features of LSCs, 
thus enabling identification of the putative malignant compartment. However, we found 
that mutations were also present in cells with transcriptional features of all lineages, 
including differentiated myeloid cells and lymphocytes. Importantly, the frequency of 
somatic variants in each lineage recapitulated the genetic hierarchy observed in HSCs, 
which supports a model of pre-leukemia clonal evolution in which serial mutations 
accumulate in self-renewing HSCs(31). We also observed that some mutations showed 
stronger association to specific lineages. In fact, gene mutations with higher VAFs and 
previously reported to occur in CH (e.g., STAG2, SRSF2, DNMT3A) tended to associate 
with lymphoid and differentiated-myeloid cells, consistently with earlier expansion in the 
non-leukemic compartment.
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In healthy individuals with CH, somatic mutations are nearly always present in circulating 
innate immune cells and, less frequently and at lower VAFs, in B and T lymphocytes(59). 
It is still unclear whether and how mutations in the immune populations affect their 
cytotoxic vs immunosuppressive profiles, possibly altering surveillance against emerging 
tumor cells and response to immunotherapies. In our study, we did not identify significant 
changes in the expression of genes related to key immune functions in T and NK cells 
with increasing mutation complexity. Possibly, at the time of clinical diagnosis the 
immune microenvironment is irredeemably primed by the immunomodulatory properties 
of overt AML, which makes difficult scoring distinct functional subsets. In future analyses, 
we plan to investigate these aspects by systematic comparisons of the expression 
profiles of T and B lymphocytes from AML and normal BM. Intriguingly, we found rare 
cells in both the T and B immune compartment bearing more than 2-3 mutations and 
selectively associated to higher transcriptional heterogeneity, suggesting more advanced 
clonal stage than CH and distinct functional properties within the immune milieu. 
Reportedly, DNMT3A-mutated AMLs have been shown to originate from lympho-myeloid 
CH in up to 25% of cases(158), and it is possible that this phenomenon might involve 
also other gene mutations. One study showed that pre-leukemic clones (as defined by 
scRNA-seq and clonal tracking) contributed not only to HSC-like cells, but also to 
erythroid and lymphoid lineages(159). To confirm the lymphoid identity of these 
populations and study in deep their functional profiles, we will further validate their 
lineage by analysing TCR or BCR from the available long-read sequence.		 	
With respect to the HSC/progenitor AML population, we have exploited the mutation 
detection sensitivity of SCM-seq to analyze the functional impact of cell-level mutation 
burden, regardless of the presence of specific combinations of mutations. This may 
become a critical trait of AMLs, since it provides a functional measure of the genetic 
heterogeneity that can be used to compare different leukemia samples. In previously 
published studies, the throughput of single-cell approaches for the parallel investigation 
of mutation and gene expression profiles was generally too low to enable such a 
characterization. Our results indicate that increasing mutation burden is systematically 
associated to increasing transcriptional heterogeneity, suggesting activation of 
independent expression programs upon serial acquisition of mutations and the existence 
of functional differences between early (i.e., with less mutations) vs late (i.e., with more 
mutations) cell clones. Further analyses is needed to investigate which gene modules are 
involved and if mutation-specific trait prevail. In the present study, hyper-mutated cells 
showed distinct transcriptional features as compared to low- or non-mutant cells, namely 
upregulation of genes and signatures related to cell-cycle control and proliferation, 
response to oxidative stress, DNA damage and repair, RNA splicing regulation, protein 
metabolism, MTORC1 signaling and MYC targets. Notably, these functional themes have 
been already described in AMLs and associated to adverse features and 
chemoresistance(160,161). We also observed homogeneous anti-correlation with 
inflammatory pathways, which reinforces the possibility that early and late cell clones 
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exhibit distinct functional properties. 	 	 	 	 	 	 	
The identification of gene expression programs is typically instrumental and widely used 
to define phenotypic cell features. However, due to variable regulatory mechanisms 
including AS, gene expression alone is inherently limited in representing the actual 
functional impact of a gene’s product, because transcript isoforms originating from the 
same mRNA may exhibit distinct - or even opposing - effects (162,163). To refine our 
analyses of the phenotypic heterogeneity in AML samples, and gain insights into 
transcriptional adaptation to genetic complexity, we coupled analyses of single-cell 
mutation burden to isoform profiling and diversity. Strikingly, we found that HSC/
progenitor-like AML cells with high mutation burden displayed limited isoform abundance 
in proportion to the high number of expressed genes, indicating a progressively restricted 
repertoire of isoform generation in the presence of increasing mutation burden. 
Importantly, we could link this finding to the distinct gene expression profile we observed 
in cells with high mutation burden, which suggests the HSPC-like AML cells with highest 
genetic complexity undergo functional selection. 	 	 	 	 	 	
Finally, we have preliminarily explored the role of SRSF2 mutations, which were shared 
between the three AML samples included in this work. SRSF2 encodes for a spliceosome 

factor that is mutated in 10%-14% of AML patients and 20%-30% of MDS. The 
presence of mutations in this and other spliceosome factors is associated with adverse 

outcomes, including higher risk of MDS-to-AML progression and relapse after 

treatment(78). Although mutated SRSF2 alone is not sufficient to promote 
leukemogenesis in in vivo model systems(164,165), it is still regarded as an ideal 
therapeutic target, due to its prognostic impact and their putative role in AML 
maintenance (these mutations are acquired early in leukemogenesis and often persists 
after treatment)(91,92). However, splicing is a fundamental biological process that also 
involves normal tissues, and the therapeutic window for splicing modulation may be 
narrow(166). More work is needed to understand the role and mechanisms of splicing 
abnormalities in AMLs, either mutation-dependent or independent. As a preliminary 
analysis, we assessed whether the presence of a mutation in SRSF2 is associated to any 

change in isoforms diversity, and found that SRSF2-mutated AML cells carried 
significantly higher proportions of genes expressed with more than one isoform, as 
compared to SRSF2-wild-type AML cells, with high frequency of novel or alternative 
isoforms in the mutated cells. This is in line with previous studies reporting that splicing 
factor mutations do not cause loss of gene function (which may be lethal), but rather alter 
splicing preferences(164). Notably, we observed the same splicing pattern in all 
hematopoietic lineages. More investigation are needed to assess which specific splicing 
features distinguish mutated vs wild-type cells, as well their targets, in both leukemic and 
immune populations.	 


 of 35 45



In conclusion, we have set up a single-cell multiomics method that allows integration of 
different sources of AML diversity. To show the potential of our approach, we exploited 
SCM-seq to highlight the relationships and relevance of genetic complexity and 
functional traits within the AML ecosystem, which, although preliminary, contributed 
solving the manifold paths of intra-tumor heterogeneity into common vulnerabilities. 
Importantly, in addition to the already mentioned analyses, the SCM-seq platform will 
enable us to pursue further studies. First, we will systematically test groups of cells 
bearing specific gene mutations or combinations with known prognostic value, in order to 
assess their functional impact and expand our view on possibly vulnerable pathways. On 
the same cells, we will exploit the availability of isoform-level characterization to study 
whether isoform diversity activates specific expression programs, along with differential 
transcript usage and associated splicing events. Finally, we will use isoform sequences to 
perform in silico translation and molecular docking simulations on predicted peptides, 
with the aim to screen their binding affinity for candidate drugs and immunotherapeutics. 
Such integrated approach will assist the effort of redirecting the hurdle of intra-tumor 
heterogeneity toward meaningful precision medicine strategies.	 
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