
Università degli Studi di Milano

Dipartimento di Filosofia “Piero Martinetti”
Scuola di Studi Umanistici

Corso di Dottorato di Ricerca in Filosofia e Scienze dell’Uomo

PROBABILISTIC MODEL CHECKING
WITH MARKOV MODELS SEMANTICS

New Developments and Applications

Tesi di Dottorato

Candidato:
Dr. Alberto Termine

Supervisore:
Prof. Giuseppe Primiero

Ciclo di Dottorato XXXV

2

Abstract

Contemporary society is increasingly dependent on the use of autonomous computational
systems. Being sure that these systems behave appropriately and do what they have been
designed for is thus fundamental. Several techniques have been developed to this purpose.
Among them, model checking includes a series of methods that make use of computa-
tional logic and automatic procedures to check whether systems’ behaviour satisfies given
desirable properties.

In recent years, due to the increasing prevalence of stochastic models, conventional
model checking techniques have proven inadequate. The consequence has been the devel-
opment of probabilistic model checking, a new research program aimed at developing proper
tools to check the behaviour of stochastic systems. Among others, the probabilistic model
checking with Markov models semantics and its related languages (i.e., the Probabilistic
Computation Tree Logic (PCTL) and its extensions) has been particularly successful and
is nowadays applied throughout a variety of different systems and domains. Nevertheless,
there remain numerous unexplored developments and applications in this field. In this
doctoral dissertation, we specifically concentrate on three such aspects that hold signifi-
cant relevance to contemporary AI research. To each of these aspect, we will dedicate a
chapter. The dissertation is structured as follows.

In the first chapter, we present the essential foundational information regarding prob-
ability theory and Markov models. Initially, we introduce fundamental terminology and
refresh the reader’s memory on the significant philosophical interpretations of probability,
the Kolmogorov axiomatization, and the associated calculus. Subsequently, we delve into
the application of probability in studying stochastic systems. Our primary emphasis is
on Markov models, including discrete-time Markov chains, Markov reward models, and
Markov decision processes. These models are indeed considered the reference formalism
for representing stochastic systems in the domain of model checking.

In the second chapter, we provide an overview of the state of the art of model check-
ing, with a particular emphasis on both single-agent and multi-agents probabilistic model
checking. In the opening section, we discuss the fundamental ideas of the program verifica-
tion research field, of which model checking represents one of the contemporary evolutions.

We focus in particular on the philosophical debate that emerged in the 1980s between

3

4

advocates and opponents of formal methods in computer science. This debate can be
considered a pivotal milestone in the shift from traditional program verification methods
to modern techniques such as model checking.

In the subsequent sections, we then introduce various formalisms utilized in model
checking for representing computational systems, specifying their attributes, and verifying
their behaviors. For standard (non probabilistic) model checking, these formalisms include
transition systems and their related logical languages (i.e., LTL and CTL), while for prob-
abilistic model checking they include Markov models and the related language PCTL. We
conclude the chapter by examining some recent extensions of probabilistic model checking
suitable for the analysis of epistemic and probabilistic properties of stochastic multi-agent
systems. Notably, the formalisms we consider include the logics CTLK [113], PCTLK
[175], and COGWED [28], where the latter two formalisms will serve as the foundation
for subsequent advancements and applications discussed in the remaining chapters of the
dissertation.

In the third chapter, we explore a potential connection between probabilistic model-
checking and eXplainable AI (XAI), a recently-born field of research aimed at developing
methods and tools to make opaque machine learning systems more humanly understand-
able. The chapter is divided in two main parts. In the first part, we analyse the so-called
opacity problem from a more philosophical point of view, notably focusing on elucidating
its many dimensions and explaining how these are actually addressed within the XAI re-
search program. In the second part, we restrict our focus to a specific XAI framework,
i.e., post-hoc explanation methods based on surrogate models. More specifically, we pro-
pose a logic and related model-checking procedures for specifying and checking relevant
reliability properties of XAI-explanations for opaque ML systems provided via surrogate
models. Among relevant explanations reliability properties, we consider in particular
transparency,accuracy, and trustworthiness. We introduce a language with appropriate
operators to specify such properties with respect to a single or a group of surrogate mod-
els. We propose a semantics for these operators based on a multi-agent Markov structure
and develop related model-checking algorithms based on extending established existing
procedures introduced in Chapter 2. Finally, we conclude with some computational com-
plexity considerations and remarks about further developments of this research.

In the fourth chapter, we present an extension of probabilistic model checking to the
domain of imprecise probabilities. We start with a brief introduction of the latter, focusing
in particular on the reasons motivating its usefulness in the model checking domain. We
argue that imprecise probabilistic models may be of fundamental importance for model
checking applications, particularly since they permit to relax the stationarity assump-
tions associated with the utilization of Markov models. This allows for the analysis of
non-stationary systems (i.e., systems whose stochastic behavior changes over time) and
systems whose behaviour is not fully known. In the first part of the chapter, we introduce

5

imprecise Markov models for both single and multi-agent systems and present feasible
methods to compute relevant inferences over them. In the second part, we present a logic
that enables the specification of properties for systems represented by imprecise Markov
model. The logic is obtained as an extension of the well-known PCTL and it is called
Epistemic-Imprecise Probabilistic Computation Tree Logic (EIPCTL). We provide this
logic with a suitable semantics defined over imprecise Markov models and related model
checking procedures based on feasible inferences discussed in the first part of the chap-
ter. We conclude the chapter by outlining some computational complexity considerations.
Notably, we argue that one of the greatest advantages of working with imprecise proba-
bilities is the possibility to relax stationarity assumptions, which limit the applicability of
model checking, without incurring in an increase of computational complexity. In fact, we
demonstrate that all the relevant tasks involved in model checking, which can be resolved
in standard models by solving linear equation systems, can be resolved in imprecise models
by solving linear programming tasks whose complexity is always polynomial in the models’
number of states.

In the fifth chapter, we present a novel application of Markov model semantics to the
problem of logical omniscience, which has been considered one of the major issues in the
development of an epistemic logic suitable for representing real-world agents since the
1960s. In the first part of the chapter, after a brief introduction to epistemic logic, we
analyze a variety of solutions proposed for the problem of logical omniscience, both inside
and outside the model-theoretic tradition. For each of these solutions, we briefly analyze
the reasons that make them not completely satisfactory. In the second part, we introduce
our new framework for epistemic logic, which is based on understanding real-world agents’
deductive reasoning in terms of a ”state-space exploration task” that can be modeled via
Markov decision processes and reinforcement learning. Within this framework, we provide
a new definition of explicit knowledge according to which an agent knows explicitly a
certain proposition if and only if the agent is able to derive that proposition from the
information it is actually aware of by making the best use of its finite resources. Based
on this definition, we introduce a new logic of knowledge and awareness called ”Markov
Deduction Structures Logic.” By exploiting a combination of probabilistic model checking
and reinforcement learning techniques, we then outline a semantics and relative model
checking framework for this logic. In the third part, we present a dynamic multi-agent
extension of the logic for modeling agents’ actions. These actions may include learning
inferential rules from other agents or exchanging resources and information with them.
Although we do not offer any experimental evaluation of our framework, we advance some
considerations concerning its implementation in the conclusions.

The dissertation builds upon a range of preliminary results previously presented at
multiple international workshops and conferences, and subsequently published in scientific

6

journals and conference proceedings.
The opacity taxonomy included in chapter 3 is largely based on the analogous tax-

onomy developed in [62]. The Ex-PCTL logic presented also in chapter 3 resumes and
extends the ATCTL (Accuracy and Trustworthiness Computation Tree Logic) developed
in [160]. The main results in Chapter 4 have been collected in a journal paper forth-
coming in SN computer science. They unify and extend two previous works on model
checking with imprecise Markov models: [157] and [158]. The former develops a model
checking framework for imprecise Markov reward models, while the latter focuses on model-
checking stochastic multi-agent systems with imprecise probabilities. An early draft of the
framework developed in chapter 5 was presented at the Logic Colloquium 2021, while the
extended version here presented has been recently submitted to IJAR.

Riassunto

La società contemporanea è sempre più dipendente dall’uso di sistemi computazionali au-
tonomi. Essere sicuri che questi sistemi svolgano in modo appropriato la funzione per
cui sono stati progettati risulta pertanto di fondamentale importanza. Il model checking
rientra tra le diverse metodologie che sono state sviluppate a questo scopo. Esso si carat-
terizza come un eterogeneo campo di ricerca che include differenti procedure automatiche
per verificare che i comportamenti dei nostri sistemi computazionali soddisfino determinate
proprietà desiderabili, queste ultime in genere specificate sotto forma di formule logiche
in un dato linguaggio formale.

Negli ultimi anni, le tradizionali tecniche di model-checking stanno diventando via via
sempre piú inadeguate perlopiú a seguito dell’emergere del machine learning e di una
nuova generazione di sistemi di IA stocastici che su di esso sono basati. In risposta a
tale inadeguatezza sono stati inaugurati diversi programmi di ricerca dedicati alla verifica
di sistemi stocastici. Tra quelli di particolare successo troviamo il model checking prob-
abilistico basato su semantiche Markoviane, il quale è oggigiorno applicato ad un’ampia
varietà di domini. Vi sono tuttavia molti sviluppi e applicazioni di quest’ultimo che non
sono stati ancora presi in considerazione. In questa tesi di dottorato, ci concentriamo su
tre di essi che risultano particolarmente rilevanti per gli attuali sviluppi della ricerca in
IA. A ciascuno di essi dedichiamo un capitolo della tesi, secondo la struttura di seguito
delineata.

Il primo capitolo fornisce le necessarie conoscenze di base inerenti la teoria della proba-
bilità e i modelli di Markov. Si suddivide in due parti. La prima introduce la terminologia
di base, passando in rassegna le più rilevanti interpretazioni filosofiche della probabilità
e presentando la ben nota assiomatizzazione di Kolmogoroff. La seconda parte spiega
come applicare la probabilità allo studio dei sistemi stocastici. Si concentra in particolare
sui cosiddetti modelli di Markov (catene di Markov a tempo discreto, catene Markov con
rewards, e processi decisionali di Markov) che rappresentano il formalismo di riferimento
per la modellizzazione dei sistemi stocastici nell’ambito del model checking probabilistico.

Il secondo capitolo fornisce una panoramica dello stato dell’arte nell’ambito del model
checking. La sezione iniziale presenta brevemente l’ambito di ricerca noto come program
verification, di cui il model checking rappresenta una delle piú recenti evoluzioni. Essa si

7

8

concentra in particolare sul dibattito filosofico degli anni ’80 tra sostenitori e critici dell’uso
dei metodi formali nell’informatica, dibattio che riveste un’importanza fondamentale nel
passaggio dalle vecchie alle più recenti ed avanzate tecniche di program verification come
il model checking. Nelle sezioni successive, vengono presenti diversi formalismi utilizzati
nell’ambito del model checking per l’analisi di differenti categorie di sistemi computazionali
e delle loro proprietá. Per il model checking standard (non probabilistico), questi formal-
ismi includono i sistemi di transizione e i relativi linguaggi logici (ad esempio, LTL e CTL),
mentre per il model checking probabilistico essi includono i modelli di Markov e la logica
PCTL. Il capitolo si conclude con l’esame di alcune recenti estensioni del model checking
probabilistico specificatamente concepite per l’analisi di sistemi stocastici multi-agente.
Tra questi si sofferma in particolare sulle logiche CTLK [113], PCTLK [175] e COGWED
[28],le quali rappresentano il punto di partenza per gli sviluppi e le applicazioni che ven-
gono presentati nei restanti tre capitoli della tesi.

Il terzo capitol, esplora la potenziale connessione tra il model-checking probabilistico
e l’eXplainable AI (XAI), un campo di ricerca nato di recente e volto a sviluppare metodi
e strumenti per rendere i sistemi di machine learning più comprensibili agli utenti. Il
capitolo è diviso in due parti principali. La prima parte del capitolo é dedicata all’analisi
filosofica del cosiddetto problema dell’opacità e alla spiegazione di come questo venga af-
frontato nell’ambito dell’Explainable AI. La seconda parte del capitolo si focalizza su una
specifica classe di metodi XAI, ovvero i metodi di post-hoc explanation basati su modelli
surrogati. Nello specifico, il capitolo introduce una logica per la specifica di alcune pro-
prietá desiderabili dei modelli surrogati quali: la trasparenza, l’accuratezza e l’affidabilità.
Viene quindi sviluppata una semantica per questa logica basata su una classe di strutture
multi-agente e sull’estensione delle procedure di model checking introdotte nel Capitolo 2.
Il capitolo si conclude con alcuni esempi di applicazioni del formalismo sviluppato.

Nel quarto capitolo, viene discussa una possibile estensione del model checking prob-
abilistico nell’ambito delle probabilità imprecise. Le prime sezioni del capitolo forniscono
una breve introduzione a questo formalismo e alle ragioni che ne motivano l’utilità nel do-
minio del model checking. Nello specifico, viene sottolineato come le versioni “imprecise”
dei modelli di Markov presentati nel capitolo 2 possano giocare un ruolo fondamentale per
le applicazioni del model checking probabilistico nella misura in cui consentono di rilassare
le ipotesi di stazionarietà richieste dai modelli di Markov. In questo modo essi rendono
possibile tanto l’analisi di sistemi stocastici non-stazionari (ovvero, sistemi il cui com-
portamento stocastico cambia nel tempo), quanto quella di sistemi il cui comportamento
stocastico non puó essere determinato con esattezza. La seconda parte del capitolo intro-
duce una nuova logica per l’analisi di sistemi stocastici multi-agente chiamata Epistemic-
Imprecise Probabilistic Computation Tree Logic. Venogno quindi introdotte una semantica
per questa logica, basata su modelli di Markov imprecisi, e relative procedure di model
checking. Il capitolo si conclude con alcune considerazioni inerenti la complessità com-

9

putazionale dei modelli di Markov imprecisi. Viene sottolienato nello specifico come uno
dei maggiori vantaggi di lavorare con le probabilità imprecise sia la possibilità di allentare
le ipotesi di stazionarietà, che notoriamente limitano l’applicabilità del model checking
probabilistico, senza per questo incorrere in un aumento della complessità computazionale
complessiva degli algoritmi utilizzati.

Il quinto capitolo presenta una nuova applicazione della semantica dei modelli di
Markov al ben noto problema dell’onniscienza logica, considerato sin dagli anni ’60 come
una delle problematiche principali che si frappongono allo sviluppo di una logica epis-
temica adatta alla rappresentazione di agenti reali. Dopo una breve introduzione al for-
malismo della logica epistemica, vengono presentate alcune delle piú note soluzioni al
problema dell’onniscienza logica sviluppate negli anni e discusse brevemente le ragioni
che le rendono non del tutto soddisfacenti. La seconda parte del capitolo introduce un
nuovo framework per la logica epistemica basato sul rappresentare il ragionamento dedut-
tivo come un compito di esplorazione spaziale modellizzabile tramite processi decisionali
di Markov e reinforcement learning. Viene quindi sviluppata una nuova definizione di
conoscenza esplicita secondo cui un agente conosce esplicitamente una certa proposizione
se e solo se esso è in grado di derivare tale proposizione dalle informazioni di cui é at-
tualmente consapevole (aware) ottimizzando al meglio le sue risorse finite. Sulla base di
questa definizione, viene introdotta una nuova logica della conoscenza e della consapev-
olezza chiamata Markov Deduction Structures Logic. La semantica e il relativo framework
di model checking per questa logica vengono sviluppati sfruttando una combinazione di
tecniche prese a prestito dal reinforcement learning. La terza parte del capitolo sviluppa
un’estensione dinamica della logica precedentemente introdotta in grado di modellizzare
diverse tipologie di azioni degli agenti, quali l’azione di apprendere nuove regole d’inferenza
da altri agenti o l’azione di scambiare con essi le proprie risorse e informazioni. Nonostante
non venga fornita alcuna valutazione sperimentale del framework, alcune considerazioni
riguardanti la sua implementazione vengono delineate nelle conclusioni.

La tesi si basa su di una serie di risultati preliminari presentati, e in parte pubblicati, in
alcuni workshop e conferenze internazionali negli ultimi anni. La tassonomia dell’opacità
inclusa nel capitolo 3 è largamente basata sull’analoga tassonomia sviluppata in [62]. La
logica Ex-PCTL, anch’essa presentata nel capitolo 3, riprende ed estende la logica ATCTL
(Accuracy and Trustworthiness Computation Tree Logic) sviluppata in [160]. Il capitolo 4
unifica ed estende due lavori precedenti inerenti il model checking con modelli di Markov
imprecisi, ovvero [157] e [158]. Il primo di questi sviluppa una serie di tecniche di model
checking per la controparte imprecisa delle catene di Markov con reward, mentre il secondo
introduce un framework di model checking per sistemi stocastici multi-agente basato su
una nuova classe di modelli chiamati Imprecise Probabilistic Interpreted Systems. Una
prima bozza del framework sviluppato nel capitolo 5, infine, è stata presentata al Logic
Colloquium 2021.

10

Contents

1 Probability and Markov Models 15
1.1 Basic Terminology . 15
1.2 The Philosophical Meaning of Probability 16

1.2.1 Classical Interpretation. 16
1.2.2 Frequentist Interpretation. 17
1.2.3 Subjective Interpretation. 19

1.3 The Axiomatization of Probability . 20
1.3.1 Kolmogoroff’s Axioms . 21
1.3.2 Operations with Probability . 21

1.4 Stochastic Variables . 22
1.5 Markov Models . 24

1.5.1 Markov Chains . 24
1.5.2 Inferences in Markov Chains . 27
1.5.3 Markov Reward Models . 29
1.5.4 Markov Decision Processes . 35

2 Probabilistic Model Checking: a Primer 41
2.1 Formal Verification . 41

2.1.1 The General Idea of Formal Verification 43
2.1.2 De Millo-Lipton-Perlis Argument 46
2.1.3 Fetzer’s Argument . 48
2.1.4 Formal Verification Today . 50

2.2 On Model Checking . 51
2.3 Transition Systems . 52

2.3.1 Predecessors and Successors . 55
2.3.2 Executions, Paths and Traces . 55
2.3.3 Reachability . 57

2.4 Linear Time Properties . 58
2.4.1 Safety and Liveness Properties . 59

11

12 CONTENTS

2.5 Linear Temporal Logic . 60
2.5.1 LTL Semantics . 61
2.5.2 LTL Model Checking . 62

2.6 Computation Tree Logic . 64
2.6.1 CTL Semantic . 65
2.6.2 CTL Model Checking . 66

2.7 Probabilistic Computation Tree Logic . 68
2.7.1 PCTL Syntax . 69
2.7.2 PCTL Semantics . 70
2.7.3 PCTL Model Checking . 71
2.7.4 Example of a PCTL Application 73

2.8 Multi-Agent Systems . 74
2.9 CTLK . 74

2.9.1 CTLK Semantics . 75
2.9.2 CTLK Model Checking . 77

2.10 PCTLK . 78
2.10.1 PCTLK Semantics . 79
2.10.2 PCTLK Model Checking . 82

2.11 COGWED . 83
2.11.1 COGWED Semantics . 84
2.11.2 COGWED Model Checking . 85

3 Probabilistic Model Checking for Explainable AI 89
3.1 Introduction . 89
3.2 Machine Learning Systems . 91
3.3 The Opacity Problem . 98

3.3.1 Access Opacity . 101
3.3.2 Link Opacity . 104
3.3.3 Semantic Opacity . 109

3.4 Explainable Artificial Intelligence . 111
3.4.1 Reliability Properties of post-hoc Explanations 113

3.5 A Multi-Agent Semantics for Explanation Reliability Properties 116
3.5.1 Ex-PCTL Syntax . 117
3.5.2 Ex-PCTL Semantics . 118
3.5.3 Satisfiability of φ and ψ-formulae 119
3.5.4 Satisfiability of θ-formulae . 120
3.5.5 Satisfiability of α formulae . 121
3.5.6 Satisfiability of ε formulae . 122

3.6 Model-Checking . 125

CONTENTS 13

3.6.1 φ-formulae . 125
3.6.2 θ-formulae . 126
3.6.3 α-formulae . 126
3.6.4 ε-formulae . 128

3.7 Example . 128
3.7.1 Scenario 1 . 128
3.7.2 Scenario 2 . 133

3.8 Conclusions . 135

4 Probabilistic Model Checking with Imprecise Probabilities 137
4.1 Introduction . 137
4.2 Imprecise Markov Models . 138

4.2.1 Imprecise Transition Matrices . 139
4.2.2 Imprecise Markov Chains . 139
4.2.3 Inference in Imprecise Markov Chains 141
4.2.4 Imprecise Markov Reward Models 142
4.2.5 Imprecise Probabilistic Interpreted Systems 146
4.2.6 Imprecise Probabilistic Interpreted Reward Systems 147

4.3 Epistemic Imprecise PRCTL . 147
4.3.1 EIPRCTL Syntax . 148
4.3.2 EIPRCTL Semantics . 149

4.4 Model Checking . 151
4.4.1 Parsing Tree . 151

4.5 A Case Study on Healthcare Budgeting . 156
4.6 Conclusions . 159

5 Markov Models Semantics and Logical Omniscience 161
5.1 Introduction . 161
5.2 Epistemic Logic . 165

5.2.1 Axiomatization . 167
5.3 Solutions to Logical Omniscience . 168

5.3.1 Model-Theoretic Solutions . 168
5.3.2 Syntactic Approaches . 172
5.3.3 Dynamic Approaches . 174
5.3.4 Depth-Bounded Logics . 176

5.4 A New Framework . 181
5.4.1 Reinforcement Learning . 182

5.5 Towards Markov Deduction Structures . 185
5.6 Derivability Checking . 187

14 CONTENTS

5.6.1 Derivability-Checking with Markov Decision Processes 187
5.6.2 Derivability-Checking with Reinforcement Learning 189
5.6.3 Example . 190

5.7 The Logic of Markov Deduction Structures 192
5.7.1 Syntax . 192
5.7.2 Semantics . 192
5.7.3 MDSL and Logical Omniscience . 195

5.8 The Dynamic Logic of Markov Deduction Structures 196
5.8.1 Syntax . 196
5.8.2 Semantics . 197

5.9 Model Checking . 199
5.9.1 MDSL Model Checking . 200
5.9.2 MDSDL Model Checking . 200

5.10 Conclusions and Further Works . 200

6 Conclusions 205

Chapter 1

Probability and Markov Models

Abstract
Probability theory plays a central role in the formal verification of computational systems
that exhibit stochastic behaviors, which are the focus of the present dissertation. This
chapter provides a general introduction to the theory of probability and its applications to
stochastic systems. The chapter is divided into two parts. The first part introduces the
fundamental terminology of probability, explores the major philosophical interpretations of
this concept, and presents its standard axiomatization. The second part focuses on the
application of probability to the specification and analysis of a specific class of stochastic
systems that are of primary importance in the field of formal verification, namely Markov
models.

1.1 Basic Terminology
In technical jargon, phenomena whose outcome cannot be predicted deterministically are
called aleatory experiments. Given an aleatory experiment, the set of all its possible
outcomes is called the sample space. This is usually denoted by Ω, while notation ω ∈ Ω
is used to denote the elements of Ω that correspond to the various possible elementary
outcomes of the experiment. For example, the aleatory experiment “toss of a coin” is
characterized by a sample space Ω := {heads, tails} that includes two possible elementary
outcomes: “heads” and “tails”. In general, there are no constraints on the nature of Ω,
which can consist of either a finite, a countable or a continuous space.

When we reason about an aleatory experiment, we might be interested either in the
probability of an elementary outcome or in that of a more complex one. For example,
we might be interested in the probability that the outcome of a die roll is 1 (elementary
outcome), but also in the probability that the outcome is an odd number (i.e., it is either
1, 3, or 5). In the latter case, the probability we want to calculate is not of a single element
ω ∈ Ω but of a specific subset of the sample space B ⊆ Ω. We call this an event and we call

15

16 CHAPTER 1. PROBABILITY AND MARKOV MODELS

probability of an event B ⊆ Ω the probability that the outcome of the experiment is any
random ω ∈ B. When an event B corresponds to ∅, we refer to it as the impossible event.
In the toss of a coin, the event “the outcome is neither heads nor tails” is an example of
impossible event. Differently, when an event B equals the whole Ω, we refer to it as the
certain event. In the roll of a die, “the outcome is a natural number between one and six”
is an example of certain event. Finally, if two events B and D have empty intersection,
i.e., if B ∩D = ∅, we say that B and D are mutually exclusive (or disjoint) events.

Events form a proper family of sets called the family of events. To avoid well-known
paradoxes that arise when Ω is a non-measurable space, it is common to assume the family
of events to coincide with the σ-algebra of the subsets of Ω, here denoted σ(Ω) [142]. The
latter is defined as the set of all proper subsets of Ω that satisfies the following conditions:

• Ω ∈ σ(Ω),

• If an event is included in Ω, then it is its complement, i.e., B ∈ σ(Ω) =⇒ Bc ∈ σ(Ω),
where Bc denotes the complement of B,

• Given a succession of events {Bn}∞n=1, if these events are all included in σ(Ω), then
it is its union, i.e., (∀n ∈ N)Bn ∈ σ(Ω)→

⋃∞
n=1Bn ∈ σ(Ω).

When Ω = R, the σ-algebra considered is usually the Borel’s σ-algebra, i.e., the small-
est σ-algebra that is generated by open sets of R through the operations of countable union,
countable intersection, and relative complement [142]. In different cases, other σ-algebra
can be considered [68, Ch.1].

1.2 The Philosophical Meaning of Probability
Philosophers have long debated the nature and meaning of probability, providing different
ways of defining and interpreting it. Since the last century, three main interpretations
have emerged in the debate: the classical interpretation, the frequentist interpretation,
and the subjectivist interpretation. Alongside with the latter, other philosophical views of
probability have been proposed, including, for example, Carnap’s logicist interpretation
[25], and Popper’s theory of propensions [130]. In this work, we provide only a brief
overview of the major interpretations. The reader interested in a more in-depth overview
of the various philosophical interpretations of probability can refer to [88, 152].

1.2.1 Classical Interpretation.
The roots of the classical interpretation of probability trace back to the famous 1654
correspondence between Blaise Pascal and Pierre de Fermat on the topic of gambling, which

1.2. THE PHILOSOPHICAL MEANING OF PROBABILITY 17

is also closely related to the first developments of the mathematical theory of probability
[162]. However, the first explicit and clear formulations of this interpretation appear only
later in the works of Jacob Bernoulli [17] and in the Theorie Analytique des Probabilites
of French mathematician Pierre Simon de Laplace [44]. The latter writes:

“The theory of chances consists in reducing all events of the same kind to a certain
number of equally possible cases, that is to say, to cases whose existence we are equally
uncertain of, and in determining the number of cases favourable to the event whose prob-
ability is sought. The ratio of this number to that of all possible cases is the measure of
this probability, which is thus only a fraction whose numerator is the number of favourable
cases, and whose denominator is the number of all possible cases[44, p.4].”

As emerges from Laplace’s words, the probability of an event B to occur in the execution
of an experiment E is here defined as the ratio between the number of outcomes of E
favorable to the occurrence of B and the number of all possible outcomes of E. This
definition works only under the assumption that:

1. the number of possible outcomes of E is always finite;

2. all possible outcomes of E are equally probable.

These assumptions severely limit the applicability of the classical interpretation. Con-
sider for example the tossing of a rigged coin. Our intuition tells us that, since the coin
is rigged, the probability of outcome “heads” is different from that of outcome “tails”. If
we apply the classical interpretation, however, we obtain that both outcomes “heads” and
“tails” have the same probability to occur, which is clearly absurd. How can we define the
probability of an event like “the outcome is heads” in such very common cases? the classic
interpretation does not offer an answer. Furthermore, the classical interpretation requires
that subjects know all the possible cases and are able to describe and enumerate them
[152]. This requirement is also problematic and we can find many cases where it cannot
be satisfied. Ultimately, the classical interpretation has too many limitations and is not
applicable in a systematic way. This is the reason why scholars have been seeking for
alternative and more effective interpretations since the nineteenth century. Among these,
the frequentist and subjectivist interpretations have been, and continue to be, particularly
successful.

1.2.2 Frequentist Interpretation.
The frequentist interpretation relies on the intuition that frequencies and probabilities are
intimately related, so that we can identify the latter with the former. This interpretation

18 CHAPTER 1. PROBABILITY AND MARKOV MODELS

emerged at the end of the XIX century following the first applications of probability cal-
culus to natural science and the development of statistical mechanics [152]. The simplest
version of frequentism is called finite frequentism and was originally proposed by Venn
[170, p.84]. It claims that: “the probability of an event B in a finite series A of subse-
quently executions of an experiment E is the relative frequency of actual occurrences of
B within A”. This interpretation is very closed to the classical one. In fact, it considers
probability as the proportion of favorable outcomes on the number of total outcomes,
where, in this case, the total outcomes are not the possible but the actual ones. Finite fre-
quentism provides an operational definition of probability that may be considered suitable
to statistical practice and is usually appreciated by strong empiricists [88]. Nevertheless,
it runs into several paradoxes. The most famous is the single-case paradox that arises
with scenarios in which an experiment is run only once. Suppose to toss a coin just once
obtain the outcome “heads”. According to finite frequentism, the probability of outcome
“heads” in such a scenario should be equal to 1, while the probability of outcome “tails”
should be 0. Clearly, this is absurd. A straightforward solution to this paradox may
consist of asking the series A to be sufficiently long. Unfortunately, this solution is not
very effective, as it makes the notion of probability vague and not rigorous. After all, it
is not clear what counts as a “sufficiently” long series, as well as it is totally implausible
that an agent is always able to determine when the number of executions of an experi-
ment is sufficiently high to return a realistic probability value. A possible way out from
this paradox, proposed by Reichenbach [137] and Von Mises [172], consists of considering
infinitely long series and defining the probability of B as the limit to which the relative
frequency of occurrences of B tends as the number n of executions of E increases infinitely,
i.e., P (B) := limn→∞

nB

n
, where nB denotes the number of executions with outcome B.

This refined version of frequentism is usually called hypothetical frequentism as the notion
of “infinite series” has no actual meaning (there exist no such infinite series in the actual
world) but represents an hypothetical counterfactual condition, that is, the probability of
B is equal to the relative frequency of B within A under the counterfactual hypothesis that
A is infinitely long [88]. This interpretation overcomes the limits of finite frequentism but
it is not free of issues. First of all, it introduces a counterfactual condition that violates the
verification principle and makes the frequentist interpretation incompatible with radical
forms of empiricism1. In fact, if probability statements describe counterfactual conditions,
then, by definition, there exist no actual scenarios that allow to verify probability state-
ments and, consequently, for the verificationist probability statements are meaningless
and devoid of epistemic content. Moreover, there are issues stemming from the fact that
many events naturally occur only once and are not repeatable. For example, the event:
“election of Sergio Mattarella as president of the Italian republic in 2022”. How can one

1I say “radical” forms because there exist weak forms of empiricism, adopted for example by Carnap
[25] and Reichenbach [138] in their more mature works, which are compatible with this interpretation.

1.2. THE PHILOSOPHICAL MEANING OF PROBABILITY 19

compute the probability of such events? the hypothetical frequentism is unable to provide
an answer. A possible way out could be to argue that such events are not common in
science and, thus, fall outside the specific interest of the frequentist interpretation, which
is to clarify how the notion of probability should be used in scientific practice. However,
experiments characterized by the non-replicability are becoming increasingly frequent also
in scientific research [141] and place a serious limit on the applicability of the frequentist
account. Nonetheless, this interpretation of probability continues to be widely adopted in
statistics and experimental sciences, at least because, on the pragmatic side, it seems to
offer a simple way to estimate the probabilities of events [152]. Before to conclude, we
have to mention a criticism that is sometimes moved against frequentism and concerns
the fact that this interpretation, being strictly connected to the idea of uncertainty as
randomness, seems unable to account for those scenarios in which uncertainty is not due
to randomness but is the by-product of epistemic ignorance. For more details on this and
related critiques, we refer to [49] and [101, p.341-359].

1.2.3 Subjective Interpretation.
Opposed to the frequentist interpretation but equally diffused, especially in the domain
of social sciences, is the subjectivist interpretation. This philosophical view of probability
relies on the intuition that probabilities do not measure “real” properties of events but the
degrees of belief, or confidence, of rational epistemic subjects in the occurrence of events.
This intuition traces back to Augustus De Morgan, who writes: “By degree of probability,
we really mean, or ought to mean, degree of belief.” [46, p.1847]. In the twentieth century,
this intuition was independently developed and made more rigorous by Frank Ramsey and
Bruno De Finetti [43, 67, 134]. Both proposed to analyze probability in terms of betting
behaviours of rational subjects. Let consider a lottery ticket that pays 1 euro2 if the event
B occurs and 0 otherwise, then ask a subject a how much she is willing to pay for the
lottery ticket. If the subject is rational, she will answer an amount of dollars corresponding
to a value p in the norm [0, 1]: p is the degree of belief of a in the occurrence of B, that is,
the probability of B according to a3. The result of De Finetti and Ramsey’s joint analyses
is the so-called De Finetti-Ramsey Theorem4 [152, p.16].

Theorem 1 (Ramsey-De Finetti) Probabilities are degrees of belief on pain of coher-
ence.

2Specifically, De Finetti speaks in terms of units of utility, but for simplicity we adopt here an actual
currency.

3For more details on Ramsey and De Finetti’s works, see [152, p. 14-18].
4The latter is not properly a theorem but rather an explication, that is, a defining sentence that

replaces the ”informal” notion of probability with a concept that can be precisely and explicitly defined
mathematically. For a detailed characterization of the notion of explication, see [107, sec.1.1].

20 CHAPTER 1. PROBABILITY AND MARKOV MODELS

As the reader may note, there is an additional requirement in the Theorem 1, namely
coherence, which ensures that subjects satisfy rationality constraints. In particular, Ram-
sey [134] provides an analysis of rationality constraints in betting contexts formulated in
terms of Dutch books, where “a Dutch book is a combination of bets that would make the
agent lose utility no matter what happens in fact” [152, p.16]. Specifically, a subject is
rational in a betting context if and only if she behaves in order to avoid Dutch books and,
then, sure loss. Interestingly, it is possible to prove5 that a subject in a betting context
behaves to avoid Dutch books if and only if her beliefs conform to Kolomogorov’s axioms
of probability explained below in Section 1.3. This certainly represents a strong point in
favor of subjectivism, which is gaining popularity not only among those who work on theo-
retical and foundational aspects of probability [152], but also in many empirically oriented
parts of science, in particular as a grounding framework for Bayesian reasoning, nowadays
considered the most valid alternative to frequentist statistics [85, 149]. Furthermore, as we
will see in Chapter 2, the subjectivist interpretation is widely adopted also by proponents
of the theory of imprecise probabilities. In particular, the most influential among founda-
tional accounts for imprecise probabilities, namely the Theory of Desirable Gambles [173],
is in fact a subjectivist account developed as a generalization of De Finetti’s analysis of
betting behaviours [174].

1.3 The Axiomatization of Probability

While the philosophical debate raged, the development of the mathematical theory of
probability have been proceeding largely independently on its tracks. The turning point
in the development of a complete and well-defined mathematical treatment of probability
was the axiomatization proposed by the Russian mathematician Kolmogoroff at the begin-
ning of the last century [94]. Following the spirit of Hilbert’s program [178], Kolmogoroff
introduced a set of axioms and basic calculation rules that provide an implicit definition
of probability independent from and compatible with any philosophical interpretation of
the concept. Since the years immediately following the release of Kolmogoroff’s work, his
axiomatization has become very famous and have been widely adopted among mathemati-
cians, ending up with representing nowadays the hearth of the mathematical foundations
of probability. In this section, we report Kolmogoroff’s axiomatization and briefly describe
its meaning.

5For the details of the proof, see [152, p.17-19].

1.3. THE AXIOMATIZATION OF PROBABILITY 21

1.3.1 Kolmogoroff’s Axioms

Given a sample space Ω and the family of events σ(Ω) associated with it, we call probability
measure any function P : σ(Ω) 7→ [0, 1] that assigns to each event B ∈ σ(Ω) a real number
P (B) representing the probability of B. A measure P : σ(Ω) 7→ [0, 1] defined over the
family of events σ(Ω) is a probability measure if and only if, for all B ∈ σ(Ω), it satisfies
the following axioms:

1. 0 ≤ P (B) ≤ 1,

2. P (Ω) = 1,

3. For any numerable sequence of mutually exclusive events B1, B2, . . . : P (
⋃∞

i=1Bi) =∑∞
i=1 P (Bi)

The first axiom establishes that a probability is always a real number in the norm
[0, 1]. The second axioms captures the intuition that, in the execution of an experiment
one of the outcome in the sample space Ω must occur and, consequently, the probability
of Ω (i.e., the probability that at least one ω ∈ Ω occurs) is always equal to 1. The third
axiom capture the intuition that the probability of an event Bi, in a collection of mutually
exclusive events B1, B2, . . . , to occur is equal to the probability that either B1 occurs, or
B2 occurs, et cetera. Actually, this is usually considered the least intuitive among the
axioms, for more details on this point, see [152].

1.3.2 Operations with Probability

Starting from Kolmogorof’s axioms, it is possible to derive some basic calculation rules
that allow to perform inferences with probabilities. These rules, reported in Definition
1 allow for performing operations with probabilities and, together with axioms, form the
so-called probability calculus.

Definition 1 (Rules of the probability calculus) Let {Ei} denote a total (finite or
countable) partition of Ω and let B denote any possible event in σ(Ω). The following
propositions express the rules of the probability calculus:

22 CHAPTER 1. PROBABILITY AND MARKOV MODELS

P (B) = 1− P (Bc) rule of complementarity ;

A ⊆ B → P (A) ≤ P (B) rule of implication ;

P (A ∪B) = P (A) + P (B)− P (A ∩B) rule of general addittivity ;

P (B) =
∑

i P (B | Ei) · P (Ei) rule of total probability ;

(∀Eh ∈ {Ei}) P (Eh | B) = P (B|Eh)·P (Eh)∑
i[P (B|Ei)·P (Ei)]

Bayes′ rule .

1.4 Stochastic Variables
In general, studying complex aleatory phenomena based only on the sample space and
the family of events is rather unfeasible. For example, consider the experiment “rolling of
a fair dice” and imagine that you are interested in the event “the sum of the outcomes
of the two dices is less than 20”. In this scenario, the sample space Ω is given by all
10-tuples of possible outcomes of the two dice, i.e., Ω := {〈1, 1, 6, 2, 4, 3, 5, 6, 2, 2〉, . . . } and
the event “the sum of the outcomes of the two dice is less than 20” is the proper subset
of Ω that includes all the 10-tuples 〈x1, . . . , xn〉 (with xi outcome of the i-th dice) such
that

∑n
i=1 xi ≤ 20. To deal with queries like “what is the probability that the sum of the

outcomes of the two dice is less than 20?” is clearly impossible in this description format.
Hence, we need a smarter way of representing and reasoning with probability. This can
be obtained by defining a function X : Ω → R that associates each 10-tuple 〈x1, . . . , xn〉
(i.e., each ω ∈ Ω) with a real number r ∈ R that is the sum of all n elements of the tuple,
i.e., X(ω) :=

∑n
i=1 xi for all ω ∈ Ω. The obtained format is easier to handle. For example,

the query “what is the probability that the sum of the outcomes of the two dice is less
than 20?” now can be written simply as “what is the probability that X(ω) ≤ 20?”. The
function X is an example of what in statistics is usually called a stochastic variable.

Definition 2 (Stochastic variable) Given a probability space (Ω, σ(Ω), P), we call stochas-
tic variable X a correspondence between the elements ω ∈ Ω and elements of a measurable
space T such that, for all t ∈ T:

{ω | X(ω) ≤ t} ∈ σ(Ω)

That is, a stochastic variable is a correspondence between the sample space and the
elements t of a measurable space T such that, for all t ∈ T, the subset of Ω including all

1.4. STOCHASTIC VARIABLES 23

outcomes ω : X(ω) ≤ t is a proper event6. This condition is fundamental as X represents
the object to which we apply probability measures (our queries have the form “what is
P (X = x)?”) and, by definition, probability measures can be applied only to elements of
a measurable space.

Stochastic variables can be either categorical or continuous. In general, a stochastic
variable X : Ω 7→ T is called categorical if and only if T is a countable space; otherwise,
X is called continuous. In this work, we almost always consider only categorical stochas-
tic variables. Only these, indeed, are relevant to model discrete-time stochastic agents
representing the target of our analyses in the next chapters.

Definition 3 (Probability distribution) Given a stochastic variable X, a probability
distribution over X, denoted by P (X), is a function that assigns to each possible value
x of X a number in the norm [0, 1] such that, for all possible x, P (X = x) denotes the
probability that X takes value x.

If X is categorical, then P (X) is a (finite or infinitely countable) set that we can
represent as discrete points on the space P (X) × T. Differently, if X is continuous, then
P (X) is an infinite set, that is, a seamless curve on the space P (X)× T.

Probability distributions can be either simple, joint, or conditional. A probability dis-
tribution P (X) that concerns only one stochastic variable X is called simple. Given a
collection of stochastic variables X,Y, Z, S . . . , a joint probability distribution, denoted
by P (X,Y, Z, . . .), is a probability distribution that assigns to each tuple 〈x, y, z, . . . 〉 the
probability that events X = x, Y = y, Z = z, . . . jointly occur. On the other hand, a con-
ditional probability distribution, denoted by P (X | Y, Z . . .), is a probability distribution
that assigns to each tuple 〈x, y, z, . . . 〉 the probability that event X = x occurs given that
Y = y, Z = z, . . . occur.

Definition 4 (Probability density) We call probability density of a stochastic variable
X a function pX that assigns to each proper interval A := {xi : a ≤ xi ≤ b} with a, b ∈ T,
a value pX(A) ∈ [0, 1] representing the probability that X assumes one of the value in the
interval A.

Specifically, the computation of the probability density pX varies depending on whether
X is a categorical or a continuous variable. If X is a categorical variable, then pX is
computed as:

pX(A) :=
∑
xi∈A

P (X = xi)

6Usually the measurable space T equivales the set of Real numbers. However, this is not always the
case. For example, when we use stochastic variables to describe stochastic models, the adopted measurable
space is generally the finite set of all possible states of the model.

24 CHAPTER 1. PROBABILITY AND MARKOV MODELS

Differently, if X is continuous variable, then pX is computed as:

pX(A) :=

∫ b

a

P (X)

where a and b denote the extremes of the interval A.

1.5 Markov Models
After introducing the fundamentals of probabilities, we discuss now probabilistic mod-
els for describing the evolution over time of stochastic agents, i.e., agents that exhibit
quantifiable uncertain behaviors. We focus in particular on Markov models, a specific ty-
pology of probabilistic models playing a central role in the domain of model checking and
formal verification. Notable examples of Markov models include discrete and continuous-
time Markov chains, Markov reward models, Markov decision processes, hidden Markov
models et cetera [105]. For the purposes of the present work, we limit the discussion to
discrete-time Markov chains (Section 1.5.1), Markov reward models (Section 1.5.3) and
Markov decision processes (Section 1.5.4).

1.5.1 Markov Chains
Let S be a finite non-empty set of possible states. We are interested in modelling stochastic
agents that, at each discrete-time t ∈ N, shift from a state s ∈ S to another ,not necessarily
different, state s′ ∈ S. We assume the stochastic behaviour of an agent to be time-
homogeneous, that is, the probability of a transition from s to s′ is independent of the
time t at which it occurs, and memory-less, that is, the probability of each transition is
independent of the previously occurred transitions. Under these conditions, the behaviour
of the agent can be described in terms of a stochastic process called discrete-time Markov
chain (DTMC) and defined as follows:

Definition 5 (Discrete-time Markov chain) A discrete-time Markov chain MDTMC is
a tuple:

MDTMC := 〈S, T, ι〉

where:

• S is a finite non-empty set of states,

• T : S × S → [0, 1] is a transition matrix that assigns a probability value T (s, s′) to
each possible transition s, s′ ∈ S × S,

1.5. MARKOV MODELS 25

• ι : S → [0, 1] is an initial probability distribution that assigns an initial probability
value to each s ∈ S

Given a DTMC MDTMC, we call path a function π : N 7→ S whose values are the
states reached by MDTMC at the various time-steps t. Accordingly, each path π describes
a possible temporal evolution of the process and corresponds to an infinite countable
sequence of states. In what follows, notation π(t) is used to refer to the state of the path
π at time t, while Paths(s) denotes the set of all paths π originating in a given state s ∈ S
(i.e., such that π(0) = s). The set of all possible paths π of a given DTMC MDTMC is
denoted by ΠMDTMC and represents the set of all possible outcomes of the process MDTMC.

To relate paths with probabilities, we endow ΠMDTMC with a σ-algebra and augment it
to a probability space as follows. Given a path π of MDTMC, let a finite prefix π̂ of π be any
sequence (π(0), . . . , π(t)) originating in π(0) and including a finite number of subsequent
states of π. The set of all finite prefixes of a given path π is denoted by pref(π), while
the set of all finite prefixes π̂ originating in a given state s ∈ S is denoted by Pathsfin(s)
(see, [10, sec. 10.1]).

Definition 6 (Cylinder set) The cylinder set Cyl(π̂) induced by a finite prefix π̂ is
defined as:

Cyl(π̂) := {π ∈ ΠMDTMC | π̂ ∈ pref(π)} .

That is, Cyl(π̂) is the set of all paths whose common prefix is π̂ [10, def. 10.9].

Definition 7 (σ-algebra of a Markov chain) The σ-algebra associated with a DTMC
MDTMC, denoted σMDTMC, is the smallest σ-algebra that contains all cylinder sets Cyl(π̂),
where π̂ ranges over all finite prefixes of MDTMC.

From basic concepts of probability (see, [10, sec. 10.1]) and definition 7, it follows
that there exists a unique probability measure PMDTMC on the σ-algebra σMDTMC such that:

PMDTMC(Cyl(π̂(0), . . . , π̂(t))) = ι(π̂(0)) · PMDTMC(π̂(0), . . . , π̂(t)) , (1.1)

where:

PMDTMC(π̂(0), . . . , π̂(t)) :=
t−1∏
τ=0

T (π̂(τ), π̂(τ + 1)) , (1.2)

while for finite prefixes composed by just one state (i.e., π̂ = {s}), Ps(π̂) = 1 by definition
[10, sec.10.1].

Also of interest are the probabilities of a path π, respectively a finite prefix π̂, condi-
tional on a given initial state s ∈ S, which are henceforth denoted by PMDTMC

s (π), respec-
tively PMDTMC

s (π̂) .

26 CHAPTER 1. PROBABILITY AND MARKOV MODELS

Over the probability space 〈ΠMDTMC , σMDTMC , PMDTMC〉, we define a family of categorical
stochastic variables {St}t∈N ranging over S that describe the temporal behaviour of the
Markov chain. The above mentioned memory-less condition corresponds to the Markov
property, stating that: PMDTMC(St+1 | St, . . . , S0) = P (St+1 | St). Time-homogeneity, on
the other hand, corresponds to assume PMDTMC(St+1 | St) to be the same for all t.

To conclude, let us consider the usual definition of (discrete-time) stochastic process .

Definition 8 (Stochastic process) Given a finite non-empty set of states S, a discrete-
time stochastic process over S, here denoted M , is a family of categorical stochastic
variables {St}t∈N ranging over S and defined over a probability space 〈Π, σ(π), PM〉 such
that:

• Π is the set of all paths generated by states in S;

• σ(Π) is the cylinder σ-algebra of Π;

• PM is a probability measure over σ(Π).

From Definition 8, it follows that each stochastic process M is uniquely identified by
(i.e., it is in one-to-one correspondence with) a probability measure PM . Accordingly, a
DTMC with state-space S, initial distribution ι and transition matrix T can be alterna-
tively regarded as the (discrete-time) stochastic process over S uniquely identified by the
probability measure PM generated by ι and T as by Equations (1.1) and (1.2).

Example 1 (Describing communication protocols with Markov chains) Consider
a simple communication system operating with a single channel7. The channel is error-
prone, meaning that messages can be lost. The are four possible states of the system: (1)
start, (2) try, (3) delivered, and (4) lost. In state start, the system input the message
and switches to state try. In state try the system tries to send the message. If the mes-
sage is sent successfully, the system switches to the state delivered and then re-starts the
cycle. Otherwise, it switches to state lost and then goes back to state try. At each further
attempt, the probability to lose the message is 0.9.

We can model the behaviour of this system using a simple Markov chain MDTMC :=
〈S, T 〉 such that: S := {start, try, lost, delivered} and T is specified as follows:

0 1 0 0
0 0 0.1 0.9
0 1 0 0
1 0 0 0

1.5. MARKOV MODELS 27

start

delivered try lost

1

0.9

1

0.1

1

Figure 1.1: Transitions in a four-state DTMC.

Alternatively, we can visualize M using a directed graph whose edges are annotated
by probabilities, as in the figure here below.

Through M we can ask interesting queries that arise with the stochastic behaviour of
the system, such as: (i) What is the probability to lose the message at time-step 3?, (ii)
what is the probability to lose the message whithin 10 time-steps?, or (iii) what is the
probability to lose the message eventually in the future? The next section illustrates some
strategies to answer these and similar queries computing relevant inferences in Markov
chains.

1.5.2 Inferences in Markov Chains
In this paragraph, we recall two probabilistic inferences that are of central interest in this
work, i.e., marginal and hitting probability.

Definition 9 (Marginal probability) Given an event B ⊆ S and an initial state s ∈ S,
the marginal probability of B with respect to time t conditional on S0 = s is defined as
follows:

PMDTMC
s (St ∈ B) :=

∑
π̂:={π̂(0),...,π̂(t)} s.t. π̂∈Pathsfin(s)∧ π̂(t)∈B

PMDTMC(π̂) . (1.3)

The next inference we recall is hitting probability (also called reachability probability, see
[10]). Given an event B, the latter is informally defined as the probability of eventually
reaching B starting from some initial state s ∈ S, ι(s) > 0. More rigorously, hB can
be defined as the probability that the distribution PM assigns to the event “the process
eventually reaches B” (in model checking literature, this is usually denoted by ♦B). The
latter corresponds to a measurable set of paths given by the union of all cylinders Cyl(π̂)
spanned by finite prefixes π̂ originating in s and such that ∃ t ∈ N : π(t) ∈ B ∧ ∀τ <
t π(τ) 6∈ B. Since these sets are pairwise disjoint, we can rigorously define hB as follows
[10, sec.10.1.1.].

7This example is borrowed from [10, p.739]

28 CHAPTER 1. PROBABILITY AND MARKOV MODELS

Definition 10 (Hitting probability) Given a DTMC MDTMC, a set of states B ⊆ S,
and an initial state s ∈ S,

hB(s) :=
∑

π̂∈Pathsfin(s): ∃ t∈N s.t. π̂(t)∈B ∧∀ τ<t, π̂(τ)6∈B

PMDTMC
s (Cyl(π̂))

Following [163] and [97], we define a procedure to compute marginal and hitting prob-
abilities based on a transition operator T̂ defined as follows.

Definition 11 (Transition operator) For any real function f of S, T̂ f is defined as a
function S → R such that:

∀s ∈ S , (T̂ f)(s) :=
∑
s′∈S

T (s, s′) · f(s′) . (1.4)

In practice, the transition operator returns the conditional expectation of f , i.e.,
T̂ f(s) = E[f(St+1) | St = s] [97]. After t time steps, the transition operator is obtained
as follows:

∀s ∈ S , (T̂ tf)(s) :=

{
(T̂ f)(s) if t = 1

(T̂ (T̂ t−1f))(s) if t > 1 ,
(1.5)

and the respective conditional expectation writes as E[f(St) | S0 = s] = (T̂ tf)(s). Since
the marginal probability is the expectation of the indicator function IB(s) that returns
one if s ∈ B and zero otherwise, we can compute it as:

Ps(St ∈ B) = T̂ tIB(s) . (1.6)

The hitting probability hB is obtained instead by computing the minimal non-negative
solution8 of the following system of linear equations [97, Corollary 19]:

hB = IB + IBc · T̂ hB , (1.7)

where Bc is the complement of B, and sums and products are intended as element-wise
operations on arrays. Standard methods solve Equation (1.7) in polynomial time with
respect to |S| [10, p.749]. Here we consider an alternative procedure that is easier to be
extended to the imprecise-probabilistic framework (see, Section 4.2). Let htB(s) be the
probability of hitting B from s ∈ S within a finite number of time-steps t. For t = 0, we
trivially have htB(s) = IB(s). For t > 0, if s 6∈ B, the hitting probability at t is obtained
by applying the transition operator to ht−1

B , while if s ∈ B it is simply set to one. Thus:

htB = IB + IBc · T̂ ht−1
B . (1.8)

8By minimal non-negative solution we mean a solution such that: (i) for each s ∈ S, hB(s) ≥ 0, (ii)
given any other non-negative solution h′B(s), then hB(s) ≤ h′B(s) for each s ∈ S.

1.5. MARKOV MODELS 29

The hitting probability hB can thus be computed as the fixed point of the iterative schema
in Equation (1.8), as reported in [97, Lemma 14].

Notice that the time-complexity of computing hB through the schema in Equation (1.8)
results polynomial in |S| · t∗, where t∗ denotes the number of iterations necessary to reach
the fixed point. Indeed, each subsequent iteration of the schema requires to solve a linear
equation system for each s ∈ S and, thus, its time-complexity results polynomial in |S|. As
t∗ subsequent iterations are required to reach the fixed point, the overall time-complexity
results polynomial in |S| · t∗.

1.5.3 Markov Reward Models
Among the various extensions of Markov chains, let us first consider Markov reward models
(MRMs) [10]. A MRM is a pair 〈M, rew〉 composed of a Markov chain M with state space
S and a reward function rew : S 7→ N such that rew(s) represents the reward earned
visiting s, for each state s ∈ S. Given an event B ⊆ S and a path π ∈ ΠMDTMC , we are
interested in the cumulative reward earned along π until visiting an s ∈ B for the first
time. The latter is defined as follows.

Definition 12 (Cumulative reward) Given an event B ⊆ S and a path π ∈ ΠMDTMC,

RewB(π) :=

{ ∑t
τ=0 rew(π(τ)) if ∃t : π(t) ∈ B ∧ ∀τ < t, π(τ) 6∈ B∑∞
τ=0 rew(π(τ)) otherwise . (1.9)

Given the above definition, the expected cumulative reward earned until reaching B
starting from s ∈ S, denoted ExpRewB(s), is now defined as the expectation9 of the
function RewB conditional on initial state s ∈ S, i.e., ExpRewB(s) := E[RewB | S0 = s]
[10, Def. 10.71]. Let us now discuss more in detail how to compute this value. First of
all, we need to recall the following result from [10, Sec. 10.5.1]. Given an event B ⊆ S,
let SB

=1 indicates the set of all states s ∈ S from which it is possible to reach an s′ ∈ B
almost surely, i.e.:

SB
=1 := {s ∈ S | hB(s) = 1} .

If s 6∈ SB
=1, then ExpRewB(s) may not converge to a finite value. Following [10, sec.

10.5.1], we thus assume for convenience that, by default, ExpRewB(s) =∞ for all s 6∈ SB
=1.

For all s ∈ SB
=1, the following result holds [10, sec. 10.5.1].

9Notice that RewB is not a real-valued function, hence its expected value may be not defined for some
arguments.

30 CHAPTER 1. PROBABILITY AND MARKOV MODELS

Proposition 2 The values xs = E[RewB | S0 = s] for each s ∈ SB
=1 provide the unique

solution of the following equations system:

xs =

{
rew(s) if s ∈ B,
rew(s) +

∑
s′∈SB

=1
T (s, s′)xs′ otherwise. (1.10)

There exist several methods to solve the linear system in Eq. (1.10) (see, [10, Sec.10.5.1]).
Here, we adopt a recursive schema similar to that one involved above for hitting proba-
bility, which is obtained as follows.

For every s ∈ SB
=1, let ExpRew0

B(s) := rew(s), and, for every t ∈ N, t 6= 0, let
ExpRewt

B(s) be defined as:

ExpRewt
B(s) :=

{
rew(s) if s ∈ B ,
rew(s) +

∑
s′∈S T (s, s

′)ExpRewt−1
B (s′) otherwise. (1.11)

Notice that the functions ExpRewt
B are well-defined since if s ∈ SB

=1, then s′ ∈ SB
=1 for

every s′ such that T (s, s′) > 0. Each function ExpRewt
B can be given a clear interpretation

as the expected cumulative reward earned until reaching B from s within a maximum
number of time-steps t, as the following result shows.
Theorem 3 For every t ∈ N, it holds that

(∀s ∈ SB
=1) ExpRew

t
B(s) = E[Rewt

B | S0 = s], (1.12)

where for every π ∈ ΠMDTMC, Rew0
B(π) := rew(π(0)), and for every t ∈ N, t 6= 0,

Rewt
B(π) :=

{
RewB(π) if ∃t∗ ≤ t : (∀τ < t∗) π(τ) /∈ B, π(t∗) ∈ B,∑t

τ=0 rew(π(τ)) otherwise. (1.13)

Proof 1 The statement is proven by induction. First, we prove the induction base:

(∀s ∈ SB
=1) E[Rew

0
B | S0 = s] = rew(s) =: ExpRew0

B(s). (1.14)

Next, note that for every t ∈ N, t 6= 0, the value of Rewt
B on any π is completely determined

by the values π(0), ..., π(t) ∈ S. Thus, we can alternatively interpret Rewt
B as a function

on St+1. Moreover, for any t ∈ N, t 6= 0 and s0, ..., st ∈ St+1, we observe that:

Rewt
B([si]

t
i=0) = rew(s0) + IBc(s0)Rew

t−1
B ([si]

t
i=1) , (1.15)

with Rew0
B(s0) = rew(s0). Exploiting this observation, we can proceed with the induction

step. Assuming that the statement is true for t− 1, with t ∈ N, t 6= 0, we prove that it is
also true for t. First, for every s ∈ SB

=1, we have that

E[Rewt
B([Si]

t
i=0) | S0 = s] =

= E[rew(s) + IBc(s)Rewt−1
B ([Si]

t
i=1) | S0 = s] =

= rew(s) + IBc(s)E[Rewt−1
B ([Si]

t
i=1) | S0 = s] =

= rew(s) + IBc(s)E[E[Rewt−1
B ([Si]

t
i=1) | [Si]

1
i=0] | S0 = s],

1.5. MARKOV MODELS 31

where in the last step we use the law of iterated expectations (or [97, Proposition 39] and
[97, Proposition 4]). Clearly, E[Rewt−1

B ([Si]
t
i=1) | [Si]

1
i=0] does not depend on the initial

state S0, hence

E[Rewt−1
B ([Si]

t
i=1) | [Si]

1
i=0] =

= E[Rewt−1
B ([Si]

t
i=1) | S1] =

= E[Rewt−1
B ([Si]

t−1
i=0) | S0].

Now, E[Rewt−1
B ([Si]

t−1
i=0) | S0 = s] = ExpRewt−1

B (s) for every s ∈ SB
=1 by the inductive

hypothesis. Hence, plugging this back into the expression we obtained for E[Rewt
B([Si]

t
i=0) |

S0 = s], we have

E[Rewt
B([Si]

t
i=0) | S0 = s] =

= rew(s) + IBc(s)E[ExpRewt−1
B (S1) | S0 = s] =

= rew(s) + IBc(s)[T̂ExpRewt−1
B](s) =: ExpRewt

B(s),

for all s ∈ SB
=1, by using the fact that a transition matrix for an homogeneous Markov

chain encodes 1 time step expectation [97, Section 2.1].

Thanks to Theorem 3, we can now demonstrate the following main result proving that
the recursive scheme above introduced converges to what we expect.

Theorem 4 E[RewB | S0] restricted to SB
=1 is a fixed point of the iterative scheme (1.11).

Proof 2 First, notice that limt→+∞Rewt
B = RewB. Hence, for every s ∈ SB

=1:

lim
t→+∞

E[Rewt
B | S0 = s] = E[RewB | S0 = s]

by the monotone convergence theorem since 0 ≤ Rew0
B ≤ Rew1

B ≤ ... ≤ RewB (for [97,
Proposition 7] and [97, Proposition 4]). From Theorem 3, it follows that ExpRewt

B are
also non decreasing and non negative. Hence, by using as well the continuity of T̂ with
respect to non decreasing and non negative sequences, we find that

E[RewB | S0] |SB
=1
=

= lim
t→+∞

E[Rewt
B | S0] |SB

=1
= lim

t→+∞
ExpRewt

B =

= lim
t→+∞

(rewSB
=1

+ IBcT̂ExpRewt−1
B) =

= rewSB
=1

+ IBcT̂E[RewB | S0] |SB
=1
,

where the third and fifth step follow from Theorem 3, while the fourth step follows from
the definition of ExpRewt

B.

32 CHAPTER 1. PROBABILITY AND MARKOV MODELS

As for hitting probability, we can thus compute ExpRewB by iterating the schema in
Equation (4.5) over increasing values of t until convergence.

The last MRM inference we consider is the reward-bounded hitting probability hrB(s),
i.e., the probability of reaching B from s before earning a cumulative reward equals to r.

As for standard hitting probability, we proceed by defining the event “the process
reaches B before earning a cumulative reward equals to r” (usually denoted by ♦≤rB) as
a measurable set of paths. Notably, this event corresponds to the union of all cylinder
sets Cyl(π̂) spanned by finite prefixed π̂ originating in s and such that ∃t ∈ N : π̂(t) ∈
B ∧ ∀τ < t, π̂(τ) 6∈ B ∧ rew(π̂(0), . . . , π̂(τ)) ≤ r. Since these are pairwise disjoint sets,
the reward-bounded hitting probability of B can be defined as follows [10, Sec. 10.5.1]:

Definition 13 (Reward-bounded hitting probability) For all s ∈ S:

hrB(s) :=
∑

π̂ ∈ Pathsfin(s) : ∃t ∈ N s.t.
π̂(t) ∈ B ∧ ∀τ < t π̂(τ) 6∈ B ∧

rew(π̂(0), . . . , π̂(t)) ≤ r

PMDTMC
s (Cyl(π̂))

In order to introduce a method to compute hrB(s), let us first recall the following result
from [10, Sec. 10.5.1]. Let hρB denote the vector of reward-bounded hitting probability for
a reward threshold ρ = 0, . . . , r. Let SB

>0 be the set of all states s ∈ S such that hB(s) > 0,
i.e., the set of all states s ∈ S such that there exists at least one path π originating in s
and reaching B for some t.

Proposition 5 For each s ∈ S, the value of hρB(s) is given by the following system of
equations:

hρB(s) =

1 if s ∈ B and rew(s) ≤ ρ
0 if rew(s) > ρ or s 6∈ SB

>0∑
s′∈S T (s, s

′)h
ρ−rew(s)
B (s′) otherwise .

(1.16)

Trivially, hρB = 1 whenever s is already in B and its state-reward does not overcome
the desired threshold ρ. Differently, if s ∈ B but rew(s) > ρ, then we have that the
cumulative reward earned by the agent already overcomes the specified threshold and,
thus, hρB(s) = 0. The same also holds when s 6∈ SB

>0 as, in this case, we already know
that hB is equal to zero and consequently also hρB = 0. In all the remaining cases, hρB(s)
is computed by iteration over the possible successors of s. That is, we take the sum over
all s′ ∈ S of the probability of reaching s′ from s multiplied the probability of reaching
B from s′ before earning a cumulative reward equal to ρ− rew(s). Remember that every
time the agent transits from a state s to one of its successors s′ ∈ S, it earns the reward

1.5. MARKOV MODELS 33

of s. Consequently, the threshold ρ has to be reduced of a value rew(s) at each further
iteration from a state s to its successors s′.

Notice that the system in the above proposition is in fact a linear system with variables
(s, ρ) ranging in S × {0, 1, . . . , ρ}. As in the case of standard hitting (see, Eq. (1.16)), we
can solve the system by standard methods [10, Sec. 10.5.1]. Here, we follow a different
strategy based on a recursive schema that iterates both over times and rewards. Let ht,ρB (s)
denote the probability of hitting B from s before earning cumulative reward ρ and within
time-step t. For each t ∈ N, the values of ht,ρB computed for ρ = 0, . . . , r are collected in
S × r matrix that we denote by ht,ρ0:r

B .
For t = 0, we generate ht=0,ρ0:r

B by computing the vectors ht=0,ρ
B for ρ = 0, . . . , r and for

each s ∈ S as follows:

ht=0,ρ
B (s) =

{
1 if s ∈ B and rew(s) ≤ ρ
0 otherwise . (1.17)

Consider that when t = 0 no transition occurs. Hence, we clearly have that, for each
s ∈ A, ht=0,ρ

B (s) is equals to one if s belongs to the hitting event B and its reward rew(s)
does not exceed the specified threshold ρ, otherwise ht=0,ρ

B (s) is zero.
For t > 0, ht,ρ0:r

B is generated by computing the various vectors ht,ρB for ρ = 0, 1, . . . , r
via the following recursive schema applied to each s ∈ S:

ht,ρB (s) =

1 if s ∈ B and rew(s) ≤ ρ
0 if hB(s) = 0 or rew(s) > ρ∑

s′∈S T (s, s
′)h

t−1,ρ−rew(s)
B (s′) otherwise .

(1.18)

The first two cases follow from considerations analogous to those leading to Eq. (1.17).
In the third case, we obtain the value of ht,ρB (s) from h

t−1,ρ−rew(s)
B via one-step application

of the transition operator. As the reward is cumulative, the threshold ρ is decreased by
the reward of the current state. The values of ht−1,ρ−rew(s)

B are provided by the matrix
ht−1,ρ0:r
B that we generate at time-step t − 1. Specifically, ht−1,ρ−rew(s)

B (s′) corresponds to
the cell identified by the |s′|-row and the |ρ− rew(s)|-column of the matrix ht−1,ρ0:r

B . For
all s ∈ S, the procedure converges to a finite value, as proved by the following theorem.

Theorem 6 Let 〈M, rew〉 be a MRM, B ⊆ [S], and ρ ∈ N. There is a t∗ ∈ N such that
for all τ ≥ 0:

ht∗+τ,ρ0:r
B = ht∗,ρ0:r

B . (1.19)

Proof 3 It is actually enough to verify that, given a MRM (M, rew) and B ⊆ [S], for all
s ∈ S and all r ∈ N, it holds that:

∃t∗ ∈ N : ∀τ ≥ 0 , ht
∗+τ,r
B (s) = ht

∗,r
B (s) . (1.20)

34 CHAPTER 1. PROBABILITY AND MARKOV MODELS

Let s ∈ S, B ⊆ S and r ∈ N. We show that, for all t ∈ N, the time-bounded
hitting probability ht,rB (s) is equivalent to the time-bounded hitting probability htB∗(s) of an
alternative event B∗ computed on the alternative MRM (M∗, rew∗), with M∗ := 〈S∗, T ∗〉.
Such structure is construct as follows. Let r∗ := r + sups′∈S rew(s

′).We first inductively
define S∗. Set X0 := {(s, rew(s))}, and for every n > 0,

Xn+1 := Xn ∪ {(s′′, k) ∈ S × N | ∃(s′,m) ∈ Xn s.t.m ≤ r and k = rew(s′) +m}.

The idea is that each set Xn+1 \Xn contains pairs (s′, k) where s′ is the last node belonging
to a path of length n− 1 starting in s and whose cumulated reward is k ≤ r∗.
Notice that the sequence (X` : ` ∈ N) is increasing monotone. Moreover for every n,
Xn ⊆ {(s′′, k) ∈ S × N | k ≤ r∗}, where the latter is a finite set. Hence, there is ` such
that X` = X`+1, and define S∗ := X` ∪ {⊥}, where ⊥ is some new “sink” state. For the
remaining functions, we define, for (s′′,m), (s′, k) 6= ⊥, rew∗((s′, k)) := rew(s′) and

T ∗((s′, k), (s′′,m)) :=

{
T (s′, s′′) if m = rew(s′′) + k,

0 else;

whereas we set rew∗(⊥) := 0,

T ∗(⊥, ◦) :=

{
1 if ◦ = ⊥,
0 else;

and T ∗((s′, k),⊥) := 1−
∑

(s′′,m)6=⊥ T
∗((s′, k), (s′′,m)). Thus, (M∗, rew∗) is essentially the

tree unravelling around s of (M, rew) up to a cumulation of rewards bounded by r∗. That is,
every finite path π̂ in M starting in s such that rew(π̂) ≤ r corresponds to a finite path π̂∗ in
M∗ starting in (s, rew(s)) with Ps(π̂) = P(s,rew(s))(π̂∗) and rew(π̂) = rew∗(π̂∗). Viceversa,
every finite path π̂∗ in M∗ starting in (s, rew(s)) such that rew∗(π̂∗) ≤ r corresponds to
a finite path π̂ in M starting in s with Ps(π̂) = P(s,rew(s))(π̂∗) and rew(π̂) = rew∗(π̂∗).
Given this observation, let B∗ := {(s′′, k) ∈ S∗ | s′′ ∈ B, k ≤ r}. We first notice that for
every t ∈ N:

ht,rB (s) = ht,rB∗((s, rew(s))) = htB∗((s, rew(s))). (1.21)

Claim: Let s′ ∈ S. Assume there is a finite path π̂(0) . . . π̂(`) with π̂(0) = s, π̂(`) = s′,
k := rew(π̂) ≤ r∗, then Equation (1.21) is actually a consequence of the following list of
facts:

1. If hB(s′) = 0 or rew(s′) > r then ht,ρB (s′) = ht,ρB∗((s′, k)) = htB∗((s′, k)) = 0, for every
ρ ≤ r and every t ∈ N,

2. Else, if k > r, then ht,ρB∗((s′, k)) = htB∗((s′, k)) = 0, for every ρ, t ∈ N,

1.5. MARKOV MODELS 35

3. Else for every t ∈ N

h
t,(r+rew(s′)−k)
B (s′) = h

t,(r+rew(s′)−k)
B∗ ((s′, k)) = htB∗((s′, k)). (1.22)

Proof of Claim. The first two items being clear (e.g. the second is simply due to
the fact that (s′, k) /∈ B∗ and hB∗((s′, k)) = 0), we verify the last one. First notice
that k = rew(π̂) ≤ r. This means that s′ ∈ B if and only if (s′, k) ∈ B∗. We now
reason by induction on t. For t = 0, we have that all terms are either equals to 1 or
0. However, given that k ≤ r and thence rew(s′) = rew∗((s′, k)) ≤ r + rew(s′) − k, the
identities hold. We now verify the induction step, and therefore suppose that for t ∈ N,
h
t,r+rew(s′′)−m
B (s′′) = h

t,(r+rew(s′′)−m)
B∗ ((s′′,m)) = htB∗((s′′,m)), for every (s′′,m) ∈ S∗ such

that hB(s′′) 6= 0, rew(s′′) > r and m ≤ r. Let θ := r + rew(s′) − k. Hence rew(s′) ≤ θ.
Also, remember that by hypothesis hB(s′) > 0, meaning that

ht+1,θ
B (s′) =

{
1 if s′ ∈ B∑

s′′∈S T (s
′, s′′)h

t,θ−rew(s′)
B (s′′) otherwise .

If s′ ∈ B, reasoning as before, Equation (1.21) holds. We thus consider the case when
s′ /∈ B, and terms ht,θ−rew(s′)

B (s′′). Let (s′′,m) ∈ S∗, with m − rew(s′′) = k, meaning
that ht,θ−rew(s′)

B (s′′) = ht,r−k
B (s′′) = h

t,r+rew(s′′)−m
B (s′′). Notice that by definition T (s′, s′′) =

T ∗((s′, k), (s′′,m)). Therefore, if we prove that ht,r+rew(s′′)−m
B (s′′) = h

t,(r+rew(s′′)−m)
B∗ ((s′′,m)) =

htB∗((s′′,m)) we are done. Now, let ε := r−k ≥ 0, as k ≤ r. Therefore, r+rew(s′′)−m =
r − k = ε. We reason by cases. If hB(s′′) = 0 or rew(s′′) > r ≥ ε, then ht,εB (s′′) =
ht,εB∗((s′′,m)) = htB∗((s′′,m)) = 0. Else, assume m = rew(s′′) + k > r. This means
rew(s′′) > r − k = ε, and therefore ht,εB = (s′′) = ht,εB∗((s′′,m)) = htB∗((s′′,m)) = 0. Else,
m = rew(s′′) + k ≤ r, and conclude by induction hypothesis.
We finally end the main proof by applying Equation (1.21) to the fact that, by the con-
vergence of standard hitting probability, there is t∗ ∈ N such that, for every τ ≥ 0,
ht

∗+τ
B∗ ((s, rew(s))) = ht

∗
B∗((s, rew(s))).

As for standard hitting, we can therefore compute hrB simply by iterating ht,ρ0:r
B over

increasing values of t until convergence.

1.5.4 Markov Decision Processes
Markov decision processes (MDP) are an extension of Markov chains that allow for rep-
resenting both probabilistic and non-deterministic behaviours [10]. The non-deterministic
behaviours concern the actions that agents can choose, while the probabilistic behaviours
concern the different possible outcomes that follow from the chosen action. To be clearer,

36 CHAPTER 1. PROBABILITY AND MARKOV MODELS

consider a simple experiment involving an agent who is asked to choose between rolling
a die or tossing a coin10. This experiment has eight possible outcomes, the six faces of
the die plus the two sides of the coin. The final outcome depends on both the probability
distributions governing the stochastic behaviour of the die, respectively, the coin, and the
non-deterministic choice of the agent. If the agent chooses to roll the die, then the proba-
bility of each face to be the final outcome is one sixth. Contrarily, if the agent chooses to
toss the coin, then the probability of each side of the coin to be the final outcome is one
half. This is an example of a kind of scenarios that can be modelled via MDPs.

Definition 14 (Markov decision process) A MDP MMDP is a tuple 〈S,Act, T, ι, R〉
where:

• S is a finite non-empty set of states;

• Act is a finite non-empty set of actions;

• T : S × Act × S → [0, 1] is a transition matrix that assigns to each tuple 〈s, a, s′〉
the probability of the agent to transit from s to s′ given that it performs action a;

• ι : S → [0, 1] is an initial probability distribution over states;

• R : S ×Act× S → R is a reward function that assigns to each tuple 〈s, a, s′〉 a real
number representing the reward earned by the agent in selecting action a when in
state s and thus transits to state s′.

A MDP works as follows. At each discrete-time t ∈ N, the agent chooses non-
deterministically an action a ∈ Act and then shifts from its actual state s ∈ S to one
of the possible successors s′ ∈ S of s that are allowed by a, i.e., such that T (s, a, s′) > 0.
Once selected an action and completed a transition, the agent gets the reward associated
with the transition. The reward is cumulative, that is, the reward an agent gets after t
time-steps iterations is the sum of all the rewards it earned from the initial state until the
actual one.

Paths and Probability Measures

Differently from Markov chains and Markov reward models, a path π in an MDP MMDP is
defined as a function N→ S ×Act that assigns to each time t ∈ N a pair 〈s, a〉 ∈ S ×Act
whose elements represent, respectively, the state of the agent at time t and the action
selected by the agent in that state. Accordingly, each path is in one to one correspondence
with an infinite countable sequence s, a, s′, a′, . . . of alternating states and actions. As for

10Assuming that both are fair.

1.5. MARKOV MODELS 37

Markov chains, we write π(t) to denote the state of path π at time t, while we use απ(t) to
denote the action selected by the agent when in π(t). Finally, notation Paths(s) is used to
denote the set of all paths π originating in a given state and ΠMMDP is used to denote the
set of all paths of a given MDP MMDP. Analogously to Markov chains, we endow the set
ΠMMDP with a σ-algebra corresponding to the smallest σ-algebra generated by all cylinder
sets Cyl(π̂) of MMDP. The pair 〈ΠMMDP , σ(ΠMMDP)〉 is thus augemented to a probability
space by including a probability measure probability measure PMDP such that:

(∀s ∈ S) PMMDP := ι(s) · PMMDP(Cyl(π̂(0), . . . , π̂(t)) , (1.23)

where

PMMDP(Cyl(π̂(0), . . . , π̂(t)) :=
t∏

τ=0

T (π̂(τ), απ̂(τ), π̂(τ + 1)) , (1.24)

and for finite prefixes including only one state, PMMDP(Cyl(π̂)) := 1.

Policies

A notion of fundamental relevance for MDPs is that of policy, sometimes also referred to
as scheduler or strategy [154]. A policy θ : S × Act → [0, 1] is a probability distribution
that assigns to each pair 〈s, a〉 the probability of an agent to select action a in state s. A
policy is called deterministic when it assigns only zero and one values. A deterministic
policy, therefore, can be also regarded as a function θ : S → Act that assigns to each
state s ∈ S an action a ∈ Act that the agent selects in s. In this work, we focus only on
deterministic policies 11. Unless otherwise specified, we will always use the generic term
“policy” to refer to non-deterministic policies.

The application of a policy θ to a MDP MMDP resolves all the non-deterministic choices
about actions and induces a unique probability distribution T θ over the transitions. This
distribution is fully specified by a transition matrix T θ : S × S → [0, 1] whose values
T θ(s, s′) for each 〈s, s′〉 ∈ S ×S correspond to T (s, θ(s), s′), with θ(s) denoting the action
that θ deterministically assigns to s. In practice, the application of a policy θ reduces an
MDP MMDP to a Markov chain with transition matrix T θ.

The expected discounted cumulative reward relative to a policy θ and an initial state
s ∈ S12, denoted by V θ(s), is the expectation, conditional on s and computed with respect
to the distribution T θ, of the discounted sum of the rewards that an agent gets by applying

11For the reader interested in non-deterministic policies, we refer to [155].
12In reinforcement learning literature, this is typically called Value Function[154].

38 CHAPTER 1. PROBABILITY AND MARKOV MODELS

θ, i.e.:

V θ(s) := Eθ[
∞∑
t=0

γtR(st, θ(st), st+1) | S0 = s] , (1.25)

where γ ∈ [0, 1] is a discounting factor that ensures the convergence of the sum. For
MDPs with finite states and actions [155], the value of V θ(s) can obtained by solving the
following equation for all s ∈ S:

V θ(s) =
∑
s′∈S

T θ(s, s′)[R(s, θ(s), s′) + γV θ(s′)]. (1.26)

In general, MDPs are associated with an optimization task that consists of learning
the policy that maximizes the V θ(s) for all s ∈ S. Such a policy is usually called the
optimal policy and denoted by θ∗. More specifically, θ is an optimal policy if and only if,
for all θ′ ∈MMDP and s ∈ S, V θ(s) ≥ V θ′(s).

For fully-specified MDPs with finite states and actions, the task of learning an opti-
mal policy V θ can be solved via dynamic programming based on two algorithms, called,
respectively, Policy Evaluation and Policy Iteration. The Policy Evaluation algorithm is
used to compute iteratively the value of V θ(s) for all s ∈ S as follows:

Algorithm 1: Policy Evaluation
Data: MDP = (S,Act, T, ι, R), discounting factor γ, policy θ
Result: State-value function V θ

1 Initialize V θ to 0 for all states
2 while V θ not converged do
3 foreach s ∈ S do
4 V θ(s)←

∑
s′∈S T

θ(s, s′)[R(s, θ(s), s′) + γV θ(s′)];
5 end
6 end

The policy iteration algorithm, on the other hand, computes the optimal policy θ by
solving iterated optimization tasks.

1.5. MARKOV MODELS 39

Algorithm 2: Policy Iteration
Data: MDP = (S,Act, T, ι, R), discounting factor γ
Result: Optimal policy θ

1 Initialize policy θ arbitrarily and set V θ to 0 for all states;
2 while θ not converged do
3 V θ ← PolicyEvaluation((S,Act, T, ι, R), γ, θ);
4 foreach s ∈ S do
5 θ(s)← arg maxa∈Act

∑
s′∈S T (s, a, s

′)[R(s, a, s′) + γV θ(s′)];
6 end
7 end

In practice, the algorithm works as follows. It starts form an arbitrary policy θ and
computes V θ through the policy evaluation algorithm reported above. Then, it computes
an “improved” policy θ′ by solving, for each s ∈ S, the following optimization task:
arg maxa∈Act

∑
s′∈S T (s, a, s

′)[R(s, a, s′) + γV θ(s′)]. The procedure is repeated until the
policy converges, i.e., it does not change from one step to the next one.

Policies with Goal States

In many applications, we are interested in learning a policy θ that allows an agent to reach
a given event B ⊆ S of interest. For example, consider a scenario like the one depicted
in Figure 1.2. There is a robot that moves within a grid of |8× 8| cells and whose goal is

−2 −4 −1 −1 0 −2 −3
−2 −4 −3 0 −6 0 −6 −2
−3 −2 −6 −4 −2 0 0 −2
−4 −5 −2 −9 −4 −9 −6
−2 −4 0 −2 −8 −1 −4 0
−6 −4 −9 −1 −5 −9 −2 −4
−6 −4 −9 −2 −4 −2 −6 −1

−4 −6 −2 −6 −9 −4 −1

Figure 1.2: Robot explorative task

to reach a cell where the food is located (in this case, 〈7, 1〉 and 〈8, 3〉). Actions consist
of possible moves (e.g., “turn left”, “turn right”, “go straight” etc.) and negative rewards
(here reported in the cells) represent the cost of taking an action and reaching a certain
cell. We are interested in finding the sequence of actions (i.e., the policy) that allows the

40 CHAPTER 1. PROBABILITY AND MARKOV MODELS

robot to reach the food while minimizing the expected cumulative cost (i.e., maximizing
the expected negative reward). This optimization task is similar to the one presented in
the previous section but with an additional requirement: we want the agent to stop when it
reaches a goal state (e.g., the cell with food). To manage with this additional requirement,
we proceed as follows. Let MMDP be an MDP with transition matrix T and let B ∈ S be
the goal event. As a first step, we apply a transformation δ : T → T mapping the original
transition matrix T to a transition matrix T where all s ∈ B are made absorbing13. This
trick ensures us that the agent remains in the goal state after reaching it. By replacing T
with T in Equation (1.25), we obtain the expected cumulative reward of eventually reaching
an s′ ∈ B by following policy θ, which we denote by V θ

B. Our optimization task becomes
then to find a policy θ that maximizes V θ

B. This optimization task can be solved simply
by replacing the matrix T with T in the Algorithms 1 and 2.

Notice that an alternative strategy to make goal states absorbing consists of acting on
the reward function R : S ×Act×S and setting R(s, a, s′) = −∞ for all s ∈ B and s′ 6= s.
In such a way, all transitions outgoing from every s ∈ B are practically blocked ensuring
us that the agent will remain in a goal state after reaching it. This second strategy is
particularly useful whenever a full specification of the transition matrix T is not available,
as in the case of model-free reinforcement learning that we will discuss in Chapter 5.

13Remember that a state s ∈ S is said “absrobing” if and only if T (s, s′) = 0 for all s′ 6= s and
T (s, s′) = 1 for all s′ = s.

Chapter 2

Probabilistic Model Checking: a
Primer

Abstract
This chapter provides a general overview of the research field of model checking, with a spe-
cific focus on probabilistic model checking for both single-agent and multi-agent systems.
The chapter begins with an introduction to the philosophical debate that accompanied the
birth and development of the formal verification research program in the 70s and 80s. It
then presents the most relevant languages and techniques adopted in contemporary model
checking, including the logics LTL, CTL, and PCTL, along with their related semantics
and model-checking algorithms. Special attention is given to probabilistic model check-
ing for both single-agent and multi-agent systems. In particular, the chapter focuses on
two recently-developed frameworks for model-checking stochastic multi-agent systems (i.e.,
PCTLK and COGWED), which serve as the foundation for further developments and ap-
plications presented in the remaining chapters of the thesis.

2.1 Formal Verification
Program correctness is the problem of determining whether computer programs behave
as they are intended to do [52]. Since the early days of computer science this has been
one of central problems of the discipline, as well as of its philosophical reflections. In the
XIX century, at the time of Charles Babbage and Ada Lovelace, programming was mostly
conceived as a sort of mechanical activity consisting of translating high-level formulae into
commands executable by a physical machine. With the development of the first generation
of modern electronic calculators in the 1950s, scholars realized that programming was a
much more difficult endeavor than expected and how high the risk of dangerous failures
and unexpected behaviors in computational machines was. Some events made also clear
to the public and governments the potentially disastrous scale of the consequences of

41

42 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

software malfunctions. On October 5, 1960, for example, an undetected software error
in the United States ballistic-missile early-warning system risked bringing the world into
the midst of a nuclear catastrophe. The system wrongly indicated a massive launch of
Soviet missiles against the United States; it was only a matter of luck that the error
was discovered preventing the US government to launch missiles against the Soviet Union
starting a nuclear war. Less dangerous but of big media impact was the 1962 software bug
that led to the self-destruction of the Mariner 1 spacecraft. These and similar events caused
an increasing skepticism towards software engineering and demolished the reputation of
programming as a job [156]. In academia, many scholars got convinced that the continuing
failures in software development were largely due to the lack of solid theoretical foundations
and the poor methodological standards of software engineering. Indeed, “programming
in those days was much more a craft than a science with a sound body of theoretical
foundations” [156, p. 61]. In this climate of general uncertainty and frustration, a
group of academic-oriented computer scientists started to dedicate their efforts to make
programming a well-founded mathematical discipline. The group was strongly inspired
by the view of programming as a mathematical activity, a view that is rooted on the
deep connection between the notions of proof and mechanical computation whose origin
dates back to the early twentieth-century debate on the foundations of mathematics1. The
fathers of modern mathematical logic were fascinated by the idea of expressing deductive
mathematical reasoning in terms of a few simple axioms and mechanically applicable rules
of inference. To this aim, they introduced the notion of formal system that would had
later played a central role in the mathematical foundations of modern computer science
[131]. A formal system is usually defined in terms of a tuple of a formal language, a finite
set of axioms (premises accepted as true) and a finite non-empty set of rules. Proofs of a
statement can be obtained within a formal system by deriving it “mechanically” from the
axioms through finite iterations of the rules.

A strict analogy holds between the notion of proof in a formal system and that of
program: both consist of finite iterations of a fixed set of rules, the former leading from a
set of premises (axioms) to a desired conclusion, the latter leading from a given input to
a desired output. In more formal terms, this intuitive analogy is better described in terms
of the well-known Curry-Howard-De Bruijn correspondence establishing the existence of
an isomorphism between programs and proofs in a formal systems2 (see, [28, ch.7]). In
the sixties, this result represented the starting point of the of formal verification research

1For an in-depth overview of the debate on the foundations of mathematics and its connections with
computer science see, [28, Part I].

2Notice that this isomorphism holds only under the interpretation of programs as abstract machines,
i.e., as exact mathematical objects. Under the interpretation of programs as physical processes occurring
in a machine, the notion of isomorphism can no longer be applied. As a mathematical notion, indeed,
the latter can be applied only between two mathematical entities and not between a mathematical and a
physical entity. In the latter case, the above correspondence can be considered as nothing more than an

2.1. FORMAL VERIFICATION 43

program, whose central ideas will be briefly summarized in the next paragraphs.

2.1.1 The General Idea of Formal Verification
In order to understand the general idea beyond formal verification, let us introduce a bit
more structured formulation of the program verification problem (from [28, def. 83]).

Definition 15 (Program verification problem) Given any program P , is it possible
to prove whether P when executed on the appropriate input I ∈ I returns the intended
output O ∈ O, or in other words whether P satisfies its intended function f : I → O?

The problem is addressed in formal verification as follows. First, one constructs a
mathematical model MP of the program P by means of a suitable formalism. Second, one
provides a formal specification SP of the intended behaviour (or part of it) of P in terms
of a formula in a suitable formal language L. Third, one verifies that MP satisfies the
specification SP, i.e., that MP’s behavior conform to its intended function expressed by
SP. The program P is then considered to be correct if and only if MP always satisfies SP,
i.e., if there are no cases where the behaviour of MP violates the requirement expressed by
SP. The kind of formalism used to model the program and specify its intended behaviour
varies depending on the specific formal verification paradigm adopted.

One of the earliest logical formalisms specifically developed to reason about program
correctness was surely Hoare’s logic (also known as Floyd-Hoare’s logic) [83], proposed
by the British computer scientists and father of formal verification sir Charles Anthony
Richard Hoare in 19693. The basic element of Hoare’s logic is the Hoare triple, which spec-
ifies how the execution of a given program-routine C modifies the state of a computation.

Definition 16 (Hoare triple) An Hoare triple is defined as a tuple:

Q{C}R

where:

• Q is a set of preconditions that specifies the initial states (input) of the program;

• C is a command that specifies the execution of a given program-routine;

• R is a set of postconditions that specifies the intended final states (output) of the
program;

intuitive analogy.
3For a contextualized overview of Hoare’s formalism, see [28, Ch. 7]

44 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

Preconditions and postconditions are formulated by means of assertions, expressions
of the form Q[x := t] where Q is a predicate and x := t denotes the substitution of a
free-variable x in the formula with a value t. In addition to assertions, Hoare’s system
of logic includes a set of axioms describing arithmetic definitions and operations, and
four inference rules to specify commands of a program4. A proof of formal correctness in
Hoare’s logic is constructed by assuming a given set of preconditions and showing that
the post-conditions obtained by applications of the commands specifying the program are
as intended. Program correctness is then reinterpreted with respect to a pair of pre- and
postconditions as follows (see, [28, def. 84].

Definition 17 (Hoare correctness) A program is correct with respect to a pre- and
postconditions specification if and only if its execution on a machine whose initial state
satisfies the preconditions will result in a final state that satisfies the postconditions.

Notice that this notion of correctness is partial because it holds only under the con-
dition that the program terminates. Indeed, a proof of total correctness requires also a
proof of termination, which however cannot be formulated in Hoare’s logic and must be
derived separately. This limitation was overcome in the 1970s with the development of
the predicate transformer semantics by the Dutch computer scientist Edsger Dijkstra [51,
ch.3], which allows for the formulation of proofs that guarantee both termination and
correctness with respect to the specification.

In the years following the publication of Hoare’s seminal paper, a variety of different
formalisms was introduced to reason about program correctness, all based on the idea of
constructing formal derivations emulating the program and verifying that such derivations
effectively lead from given inputs to intended outputs. Notable examples include the oper-
ational semantics, first developed as a semantic for the imperative programming language
Algol 68 [111] and then imported in the field of formal verification by Dana Scott [146], the
denotational semantics developed by Scott and Strachey in the early seventies [147], and
the Axiomatic semantics, which essentially combines and extends the approaches proposed
by Floyd [69] and Hoare [83] (see, [20]).

Early formal verification approaches such as the ones mentioned above were strongly
inspired by a philosophical view of programming as an exact science grounded on deductive
reasoning and mathematical methods, a view that the philosopher and computer scientist
Matti Tedre has recently called strong formal verificationsm (henceforth, the strong view)
[156, ch. 4]. The latter is made explicit in the four theses on the fundamental nature of
computer science formulated by Sir C.A.R. Hoare [84]:

1. Computers are mathematical machines;
4Notice that several new rules have been introduced in the system after Hoare’s seminal paper to

specify commands and constructs for increasingly complex programs.

2.1. FORMAL VERIFICATION 45

2. Computer programs are mathematical expressions;

3. A programming language is a mathematical theory;

4. Programming is a mathematical activity.

During the last decades of the XX century, the strong view gained lots of popularity
among academics and resulted in an attitude of extreme confidence and excessive opti-
mism towards the formal verification program. Proponents of this position believed in
the intellectual superiority of formal methods over empirical methods of testing based on
simulations. This perception of the intellectual superiority of mathematical proofs led
them to become quite excessively optimistic about the potentiality of the instruments
they proposed. Indeed, many of them were strongly convinced that formal methods could
guarantee the reliability of computational systems without any doubt. The feeling was
that “formal methods has progressed to the point where the serious programmer should
be expected to prove his programs in the same sense that a mathematician is expected to
prove his theorems” [156, p. 66] For example, in his 1969 seminal paper, Hoare writes
that “when all the parts of a computer system have been proven correct, their behavior
can be predicted with confidence limited only by the reliability of the electronics” [83]. In
a nutshell, if a program is formally proved to be correct, then nothing can go wrong; this
was the motto.

Between the 1960s and 1970s, the strong view led to a deep intellectual rift between
theoretical computer scientists, mostly based in university departments, and software en-
gineering practitioners, mostly working in the industry. The latter, indeed, looked at the
formal verification research program with little interest, considering its results and meth-
ods far away from the real practice and incapable of providing answers to their needs.
On the practical side, indeed, the computer science agenda was going to look “more and
more like engineering agenda then like mathematical agenda” [156, p. 68]. Since the
early 1970s, claims against the strong view began to emerge among scholars even within
the same community of supporters of formal verification. In 1970, Cristopher Strachey,
one of the inventors of denotational semantics, argued that formal verification has little
adherence with the real practice of programming and “can’t demonstrate to the software
engineering people on a sufficiently large scale that what it is doing is of interest or im-
portance to them”5. Formal verification proofs appeared long and complex even for very
simple programs, as well as obscure and harder to understand than the programs them-
selves. Furthermore, by the end of the 1970s, the majority of formal verification methods
had been applied only to small-scale examples and several scalability issues emerged as
they were confronted with the increasing complexity of real software systems.

5Stracey’s claim is reported in [135, p. 9]. The quotation here reported is borrowed from [156, p. 65].

46 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

A heated philosophical debate finally emerged in the 80s between supporters and de-
tractors of formal methods. In particular, a series of critical objections were raised against
some of the fundamental epistemological and methodological assumptions of the formal
verification research program, leading to the shipwreck of the strong view. The next two
paragraphs summarize the arguably most influential among the arguments advanced in
the 80s against formal verification, known by the names of their proponents, respectively,
as De Millo-Lipton-Perlis argument and Fetzer’s argument.

2.1.2 De Millo-Lipton-Perlis Argument
The first of the argument we analyse was formulated by anti-formalist computer scientists
Richard De Millo, Richard Lipton and Alan Perlis [45]. Published on the Communications
of the ACM at the end of the 70s, the argument was able to reach a very wide audience
starting the philosophical debate on formal verification of the following years. In a nutshell,
the argument criticizes the thesis that formal verification can aid establishing confidence
in the correctness of programs. It is grounded on two main assumptions

1. The construction and acceptance of a proof in the mathematical community is fun-
damentally a social process;

2. Mathematical proofs and proofs of program correctness are two very distinct animals.

In support of (1), De Millo and collegues emphasize how proofs in mathematics are not
“beautiful abstract objects with an independent existence” [45, p.273] but rather mes-
sages aimed at convincing the mathematical community of the truth of a given proposition.
When got convinced to have found a potential proof for a given theorem, a mathemati-
cian writes a sketch of it and presents it to their colleagues. If the latter find the sketch
interesting and convincing, then the mathematician writes a polished version of the proof
and makes it accessible to a wider audience (e.g., through publication in Journals). A lot
of mathematicians survey the proof and check it for errors, if the majority of them get
convinced of its relevance and correctness, then the proof becomes an established result of
mathematics. This does not mean that the proof is correct without any doubt; the history
of mathematics is full of proofs that stood for centuries and were eventually discovered to
be wrong. According the the authors, this even means that it is likely to be correct and
the statement it proves is likely to be true. Furthermore, even after their acceptance in
the mathematical community, proofs do not remain stable but are constantly modified,
polished, improved, translated in new formalisms etcetera6. In this regard, proofs that we
can found in mathematical practice are very far from the formal proofs of logicians. They

6In this regard, De Millo and collegues cite the example of Euler’s formula reported by Imre Lakatos
in his “Proofs and Refutations” [102].

2.1. FORMAL VERIFICATION 47

are full of “intuitive” non-mechanical passages and make an extensive use of analogical
and other non-deductive forms of reasoning. Good mathematical proofs must be able to
convince mathematical audience of the truth of the statement they want to prove and to
do so they must be simple and easy to survey. On the contrary, formal proofs are usually
complex and tedious, requiring thousands of passages also for very trivial theorems. The
practical ineffectiveness of formal proofs in mathematics, argue De Millo and colleagues,
is evident since Russell and Whitehead’s Principia Mathematica, which represented the
crowing and at the same time the deathblow of the formalist approach in mathematics
[45, p. 272]. The formal derivations included in the Principia, although not going beyond
the theorems of elementary arithmetic, required the two English mathematicians an enor-
mous intellectual effort and resulted in three gigantic volumes whose publication, however,
aroused very little interest in the mathematical community, with the exception of a few
specialists interested in the formal reconstruction of mathematical reasoning. If Russell
and Whitehead’s method were adopted widely in the mathematical community, De Millo
and collegues note, very little progress could have been done in the history of mathematics
and we “would still be counting on our fingers” [45, p.272]. A very similar critique can
be advanced for proofs of formal correctness. These, the authors underline, do not look
like messages aimed at convincing the audience of the truth of a statement, they are not
constructed to be read and understood, they “cannot be internalized, transformed, gener-
alized, used, connected to other disciplines, and eventually incorporated into a community
consciousness” [45, p. 275]. In other words, mathematical proofs and proofs of program
correctness are two very distinct animals. For this reason, the authors maintain, the social
mechanism that establishes confidence in mathematical proofs does not apply for proofs
of program correctness and, thus, the analogy with mathematical practice underlying the
formal verification program is doomed to fail.

There is a possible objection to this argument that De Millo and colleagues consider.
This is based on what they call the scaling up argument, which roughly goes as follows
[45, p.277]:

• Assumption 1: verifications of small algorithms and model programs are compara-
ble to mathematical proofs: being surveyable, understandable and shareable among
specialists, they are subjected to the same social mechanism mathematical proofs
are subjected to;

• Assumption 2: Complex software systems are made up of nothing more than
simple algorithms and model programs;

• Conclusion: Hence, the admittely unreadable verification of a complex software
system can be obtained as the sum of the (readable and shareable) verifications of
small systems constituting it.

48 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

The authors, while agree with (1), strongly reject (2) arguing that no-continuty holds
between small toy-example programs and complex software systems used in the real-world:
“no programmer would agree that large production systems are composed of nothing
more than small algorithms and programs. Patches, ad-hoc constructions, bandaids and
tourniquets, [...] it has been estimated that more than half the code in any real production
system consists of informal structures that are by definition inverifiable” [45, p. 277].

In the conclusion of their article, De Millo and collegues dismiss the idea that real-
world complex software systems can be provably correct without any doubt: the best we
can ask of software systems is to be reliable, i.e., to work sufficiently well.

2.1.3 Fetzer’s Argument
Nine years after the publication of the De Millo and colleagues’ article, a different ar-
gument against the strong view was proposed by philosopher of science James H. Fetzer
[66]. Fetzer’s analysis moves from distinguishing four different senses in which the term
“program” is used in the computer science domain:

1. Programs as algorithms;

2. Programs as encoding of algorithms;

3. Programs as encoding of algorithms that can be compiled;

4. Programs as encoding of algorithms that can be compiled and executed by a machine;

In the former two senses, the term “programs” refers to abstract-mathematical objects
that have no causal power and do not perform any physical work. In the latter two senses,
the term refers to concrete-physical objects that have causal power on the world and do
physical work (e.g., changes the voltage in a circuit). This distinction, Fetzer argues, has
crucial methodological implications insofar as while “results in logic and mathematics fall
within the domain of deductive methodology and require demonstration, lawful and causal
claims fall within the domain of empirical inquiry and require inductive warrants” [66, p.
1050]. In this regard, one can identify two different senses of the term “verification”.
One sense characterizes pure mathematics and logic in which “theorems are subjected to
verification by deriving them [through step-by-step iterated applications of rules] from
no-premises at all (within systems of natural deduction) or from primitive axioms (within
axiomatic formal systems)” [66, p. 1050]. The other sense characterizes experimental
science in which a conclusion can be derived from given premises without absolute certainty
but only with a certain degree of probability. Fetzer calls the former absolute verifiability
while use the term relative verifiability for the latter. The differences between the two are
enormous. Indeed, while statement “that are verified in the absolute sense cannot be false

2.1. FORMAL VERIFICATION 49

[...] conclusions that are verified in the relative sense can still be false [...] and run the
risk of observational and experimental verification” [66, p. 1051] According to Fetzer, the
fallacy of the strong view lies in its claim to apply the notion of absolute verifiability to
physical objects (i.e., programs in their meanings 3 and 4) which are by their very nature
subject only to relative verifiability. Formal verification methods work perfectly as far as
they are applied to study relevant properties of abstract programs (meanings 1 and 2) but
cannot apply to properties of their implementations (meanings 3 and 4). In this regard,
notice that Fetzer’s argument does not attack formal verification per-se but rather the
strong view and its claim that computer science reduces to mathematics.

Before concluding, there are some considerations regarding Fetzer’s argument worth
discussing. Indeed, one might be tempted to argue that, by limiting the applicability
of formal verification methods to abstract programs only, Fetzer’s argument renders this
research program practically useless. As Fetzer himself claims, abstract programs are
nothing more than models or blueprints with very few things in common with their imple-
mentations: an abstract program “could no more be similar to an [implemented] program
than a mathematical model of a rainstorm could be similar to a storm [...] and cause
things to get wet” [66]. Hence, what kind of benefit can we get from studying an abstract
algorithm? after all, what is of interest for us are the behaviors of the implemented pro-
grams, not of their blueprints: we want to prevent a missile warning system from signaling
the presence of a nuclear warhead when it does not exist; we want a spam filter not to
trash important emails, et cetera. If Fetzer is right, formal methods are not useful for
these tasks and so what is the point of continuing to study and develop them?

There is a fundamental mistake in this reasoning that relies on a confusion, which
also Fetzer commits, between models (or blueprints) and specifications. The difference be-
tween these two notions has been recently clarified in [164] by appealing to the distinction
between description and prescription: models describe how a computational system is con-
structed while specifications prescribe how to construct it in order to satisfy its intended
function7. The difference emerges clearly in the case of mismatch: if a mismatch occurs
between a model and its target-system, is the model that has to be refined; on the contrary,
if a mismatch occurs between a specification and its target-system, is the system that has
to be refined. Since specifications have normative jurisdiction over their target-systems,
it becomes of fundamental relevance to understand and verify their properties.

For executable programs that governs our IT systems, the specification is provided by
abstract programs. The latter have normative jurisdiction on the former in the sense that
executable programs are constructed according to what specified by abstract programs,
which in turn are constructed according to what specified by the intended function ex-
pressing the desired I/O behaviour of the system. To verify that an IT system behaves as

7On this distinction, see also [6, sec. 2.2].

50 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

intended, two different verification tasks are required:

1. to test that the executable program actually governing the behaviour of the system
correctly implements the abstract program;

2. to verify that the abstract program effectively realizes the intended function.

Both levels are fundamental in the building process of an IT system and while for (1)
Fetzer’s argument holds (as executable and abstract programs have two very distinct
natures), for (2) it does not hold as abstract programs and functions are entities of the
very same nature, i.e., mathematical entities.

Verifying that an abstract program is conformed with the intended function is ex-
actly what formal verification can and should aim to do. Of course, this is not sufficient
to ensure that the real-world system based on that program behaves correctly (this is,
in a nutshell, what Fetzer’s argument proves) but is nevertheless necessary. Indeed, to
assume the abstract level to be irrelevant for determining the behaviour of a program
can erroneously lead one to think that failures and unintended behaviors depend univo-
cally on malfunctions of the physical mechanism (i.e., the physical machine) executing
the program. Literature, however, is full of examples of so-called errors of design, i.e.,
miscomputations that ultimately depends on the way the structure and functioning of the
system are specified at the abstract level, see [71, 131].

To conclude, the lesson we can draw from Fetzer’s analysis is that a proper study of
computational systems require to distinguish among different levels of abstraction in the
description of a computational system, each one requiring appropriate dedicate method-
ologies to be analysed and understood. We will return on this point more in detail in
Chapter 3.

2.1.4 Formal Verification Today
Throughout the 1980s, the debate between supporters and detractors of formal methods
was very heated, sometimes leading to the rise of extreme and highly polarized positions8.
At first, the arguments of the anti-formalists severely undermined the credibility of the
formal verification programme, which saw its popularity starting to decline and fund-
ings being cut. The crisis was resolved starting from the end of the 80s with an in-depth
rethinking of the methodologies and objectives of formal verification. The legacy of the de-
bate is an increasing awareness that a complementary approach to the problem of program
correctness is necessary: an approach getting together formal and experimental methods

8For a general overview of this debate, see [156, Ch. 4]. For a review of more contemporary arguments
in favour and against formal methods, see [6].)

2.2. ON MODEL CHECKING 51

and considering both the abstract and implementation aspects that fundamentally charac-
terize the nature of computational systems. Almost all scholars nowadays agree that the
view of computer science as a purely mathematical discipline was reductive. Instead, com-
puter science is a complex field with multiple methodological and epistemological “souls”
(or “foundations”, if you prefer): one close to mathematics, one close to engineering, and
one close to experimental sciences9. The debate did not lead to the end of the formal
verification program, which is nowadays more flourishing and expanding than ever, but
it did imply an in-depth rethinking of both its conceptual and its methodological basis.
The strong view has been abandoned in favor of weaker positions, roughly centered on the
idea of formal verification as a means to increase the reliability of computational systems
by discovering errors of design and by checking their safety and fairness. A variety of new
techniques have been proposed to close the “dual” abstract and physical nature of com-
putational systems. A notable example are Separation logics and their relative semantics,
which allow for reasoning about how computational systems allocate and use their finite
resources (notably, in terms of memory) [122, 90, 139]. Another example is represented
by the development of Model Checking techniques based on temporal modal logics and
the related Kripke-like possible world semantics [167]. This represents the main object of
analysis of the present work of thesis and deserve an in-depth introduction, which will be
carry out in the remaining sections of this chapter.

2.2 On Model Checking
Since the 1990s, the field of formal verification has been receiving a renewed boost thanks
to the rise of Model Checking, a research program whose aim consists of developing fully-
automatized procedures to check the correctness and reliability of computational systems.
Typically, a model-checking procedure requires two inputs:

• a model of the target-system, generally in the form of a state-transition system
whose states represent possible configurations of the target-system and transitions
model its evolution across time;

• a specification of the desirable properties of the target-system in some formal lan-
guage, usually some kind of computationally-grounded temporal logic.

Model checking procedures then operate by performing an exhaustive exploration of the
system’s state space and checking for each state whether it satisfies the specified desirable
properties. In such a way, it is possible to identify anomalies, bugs and faults of the system

9An in-depth philosophical analysis of the three foundations of computer science and their mutual
epistemological, methodological, and historical relationships has been recently proposed in [131].

52 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

before its implementation in real-life scenarios. Compared to more traditional formal
verification techniques, model checking has proved to be more effective in facilitating the
early detection of defects and reducing the verification time [10, p.7] for many different
classes of computational systems. For this reason, it nowadays represents one of the
most popular and expanding sectors of applied logic having successful applications in
different fields, including: software verification [16], communication protocols [15], and
even computational biology [22, 14].

The following sections provides an introduction to model checking, starting from its
basic frameworks and then focusing on recent probabilistic and multi-agent developments.
Section 2.3 provides an overview of transition systems, the mathematical structures typi-
cally used in model checking to specify the behaviour of computational systems. Section
2.5 introduces the fundamentals of model checking based on Linear Temporal Logic (LTL)
and the related transition-systems semantics. Section 2.6 discusses the most known evolu-
tion of LTL, namely the Computation Tree Logic (CTL), and the related model-checking
algorithms. Section 2.7 is dedicated to probabilistic model checking, the specific sub-branch
of model checking focusing on the analysis of systems exhibiting stochastic behaviours. No-
tably, it introduces Probabilistic Computation Tree Logic (PCTL), the reference formalism
to model-check stochastic systems against probabilistic properties whose semantics and
related model-checking procedures are based on the Markov models formalism introduced
in Chapter 1. To conclude, Section 2.8 outlines recent developments and applications
of model checking to multi-agent systems, focusing in particular on epistemic extensions
of CTL based on so-called Interpreted Systems. The first extension considered is CTLK
[113], a logic originally conceived to specify both temporal and epistemic properties of
multi-agent systems. The second one is PCTLK [175], a probabilistic-epistemic extension
of CTL semantically based on Probabilistic Interpreted Systems [167]. The third extension
we consider is the COGWED logic [28], a formalism also based on probabilistic interpreted
systems and whose language is obtained by extending CTLK with a weighted-doxastic op-
erator to specify agents’ degrees of beliefs. These two multi-agent formalisms will represent
the starting point for the subsequent developments and applications of probabilistic model
checking and Markov models semantics presented in the rest of the dissertation.

2.3 Transition Systems

A fundamental requirement for model checking is a formalism to model the behavior of
computational systems under analysis. The reference formalism used for this purpose is
typically that of transition systems (TS). In very general terms, we can define a TS as a
directed graph whose nodes represent possible states of a target-system and edges model
possible transitions, i.e., state changes [10, p.19]. Each state describes the information

2.3. TRANSITION SYSTEMS 53

relative to the system at a specific time of its evolution. For example, in a TS modelling
a traffic light the possible states are: red, yellow, and green. Transitions, on the other
hand, specify possible evolutions of the system across time. Intuitively, if the TS admits
only one possible temporal evolution, then we call it deterministic. Otherwise, we call it
non-deterministic.

Definition 18 (Transition system (TS)) A TS is a tuple 〈S, Act,→, I, AP, L) where:

• S is a finite non-empty set of states (called state space)

• Act is a set of actions

• →⊆ S × Act× S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions in a given language L

• L : S → 2AP is a labelling function

Notice that, for convenience, s →a s′ is generally used as a short notation for the
transition (s, a, s′) ∈ →. Given two states s, s′ and an action a, if s→a s′, then s′ is called
an a-successor of a. The tuple includes all the elements necessary to specify the behaviour
of the TS across time. Let t be a variable ranging over N and whose values denote specific
time-steps in the evolution of the system. At t = 0, the TS is in a given initial state s ∈ I.
It then evolves across time by performing specific actions a ∈ Act that allow it to pass
from a state s to its a-successor s′ according to what specified by the transition relation
→. If more than one possible transition exists for some s ∈ S, then the TS chooses the
transition non-deterministically. The evolution of the TS continues until a terminal state
is reached, where the latter is defined as a state s ∈ S such that, for each s′ ∈ S : s 6= s′,
no transitions s→ s′ are allowed.

The labelling function l assigns to each state s ∈ S a set of atomic propositions
l(s) ⊆ AP representing the elementary properties that the TS satisfies in that state.
Thereby, it induces a satisfiability relation |= for atomic formulae p ∈ AP such that, given
a TS and a state s ∈ S:

TS, s |= p iff p ∈ l(s) (2.1)

The introduction of this satisfiability relations lays the foundations for using TS as
semantic models for propositional logic languages suitable to specify desirable properties
of TSs. Let us further clarify this point with the following simple example.

54 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

Example 2 (Beverage vending machine) We present an example of a simple TS to
model the behaviour of a beverage vending machine. The example is borrowed from [10,
p.21].

pay

beer select soda

Figure 2.1: TS model of a beverage vending machine.

The TS has state space S := {pay, select, soda, beer}, there is only one possible initial
state, i.e., I := {pay}, and the set of actions is:

Act := {insert_coin, choose_soda, choose_beer, get_soda, get_beer}

The TS’s behaviour is deterministic in all states s ∈ S except that for select, in which
two transitions are possible (i.e., select → soda and select → beer) depending on which
action the user selects among choose_soda and choose_beer.

The choice of the atomic propositions AP generally depends on the desirable properties
one is interested to verify. For example, let suppose to be interested in checking whether
the TS satisfies the following property when initialized in state pay:

P := ``the vending machine delivers a drink only after providing a coin′′

In this case, a two-elements set of atomic propositions AP := {paid, drink} is sufficient
to describe the scenario at stake. The labelling function l we will use, therefore, will take
the following form:

l(pay) = ∅, l(soda) = l(beer) = {paid, drink}, l(select) = {paid}
To check that TS satisfies the above property, we have to verify that s |= paid holds

for all the states s ∈ S reached by TS starting from the initial state pay before reaching an
s′ ∈ such that s′ |= drink. At this point, the problem is to obtain a feasible procedure that
explores the TS and verifies that it satisfies the mentioned condition. Before to obtain
such a procedure, we need to define a way to specify complex desirable properties, such as
the one mentioned in this example, in a compact form. As we will explain in the following
sections, this is usually obtained by means of specific computationally-grounded formal
languages derived from modal (propositional) temporal logic.

2.3. TRANSITION SYSTEMS 55

2.3.1 Predecessors and Successors
Consider a TS := 〈S, Act,→, I, AP, l〉, a state s ∈ S and an action a ∈ Act. We say that
a state s′ ∈ S is a direct a-successor of s if and only if TS can reach s′ from s in one
time-step by performing action a. Consequently, the set of all the direct a-successors of s,
denoted by Post(s, a), will be given by:

Post(s, a) := {s′ ∈ S | s→a s′}

Hence, the set of all the direct successors, i.e, the successors with respect to all the
possible actions a ∈ Act, of state s ∈ S, denoted by Post(s), will be given by:

Post(s) :=
⋃

a∈Act

Post(s, a)

Similarly, if s′ →a s holds, then we say that s′ is a direct a-predecessor of s. The set
of all the a-predecessors of s, denoted by Pre(s, a) is then given by:

Pre(s, a) := {s′ ∈ S | s′ →a s}

and, thus, the set of all the direct predecessors of s, denoted by Pre(s), will be given
by:

Pre(s) :=
⋃

a∈Act

Pre(s, a)

Notice that if Pre(s) = ∅, then s is an initial state. On the other hand, if Post(s) = ∅,
then s is a terminal state.

2.3.2 Executions, Paths and Traces
In the previous paragraph, we mentioned that a TS can have different evolutions over
time. However, we did not provide this term with a precise mathematical meaning. Tech-
nically speaking, we can represent the possible evolutions of a TS across time in terms of
executions.

Definition 19 (Execution fragment) Given a TS := 〈S, Act, I,→, AP, l〉, we call ex-
ecution fragment of TS, denoted by δ̂, a either finite or infinite alternating sequence of
states and actions:

δ̂ := s, a, s′, a′, s′′, . . .

56 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

An execution fragment is called maximal if and only if either it is infinite or it is a
finite execution fragment that ends in a terminal state. An execution fragment, instead,
is called initial if an only if it originates from an initial state.

Definition 20 (Execution) An execution, denoted by δ, is an initial and maximal exe-
cution fragment.

Intuitively, executions are full specifications of the possible evolutions across time of
TS that provide details on both the states visited by the system and the actions performed.
In some cases, such full specifications are difficult to achieve as the actions may strictly
depend on the users’ intentions and not on the system’s internal structure (see the example
above 2). For this reason, it is common in model-checking to abstract away from the details
about actions and consider TS without specifications for them:

Definition 21 (Transition systems (without actions)) A TS (without actions), de-
noted by MTS is a tuple TS := 〈S,→, I, AP, l〉, where all elements are defined as in
Definition 18.

We use notation MTS to denote TSs without actions and distinguish them from stan-
dard TSs above denoted by TS. In the case of TSs without actions, the notion of execution
is replaced by those of path and trace.

Definition 22 (Path fragment (TS)) Given a MTS : 〈S, I,→, AP, l〉, we call path
fragment of MTS a either finite or infinite sequence of states

s0, s1, s2, . . .

induced by the temporal evolution of MTS and such that si ∈ Post(si−1) for each i > 0.

A path-fragment is maximal if and only if it is either infinite or ends in a terminal
state, while it is initial if it starts in an initial state s ∈ I.

Definition 23 (Path (TS)) A path is a both maximal and initial path fragment

The notion of path introduced in Definition 23 is the analogous for TSs of the homony-
mous notion introduced for Markov chains in Chapter 1. For this reason, we denote it
using the same notation π.

Similarly, we use notation π̂ to denote a finite prefix of a path π, here defined as a
finite path-fragment s0, . . . , st such that s0 ∈ I an st is a non-terminal state.

In some cases, the states s ∈ S of a TS are not directly observable but only are their
atomic properties AP . In such cases, instead of considering paths π := π(0), π(1), . . . , we
consider their traces, i.e., the words composed by the finite or infinite concatenation of
their labels.

2.3. TRANSITION SYSTEMS 57

Definition 24 (Word) Given a MTS := 〈S, I,→, AP, l〉, a word σ over the finite alphabet
2AP is an infinite concatenation of symbols A0, A1, . . . such that Aτ ∈ 2AP for each τ ∈ N.
Analogously, a finite word σ̂ is a finite concatenation of symbols A0, A1, . . . , At such that
Aτ ∈ 2AP for each τ ≤ t : t ∈ N.

Definition 25 (Trace) Given a MTS := 〈S, I,→, AP, l〉 and a path π := π(0), π(1), . . . ,
the trace induced by π, denoted by trace(π), is the (finite or infinite) word σ := A0, A1, . . .
defined over 2AP such that A0 = l(π(0)), A1 = l(π(1)), . . .

With a slight abuse of terminology, given a state s ∈ I, we call trace of s each trace
generated by a path π that originates in s. We denote by Trace(s) the set of all the
possible traces of s, i.e., the traces generated by all the paths π originating in s. Similarly,
we denoted by Trace(MTS) the set of traces of all the possible initial states s ∈ I, i.e.:

Traces(MTS) :=
⋃
s∈I

Traces(s)

2.3.3 Reachability
Two fundamental notions in model checking that we will make extensive use of in this
work are those of reachability and almost-sure reachability of an event B ⊆ S.

Intuitively, we say that an event B is reachable by MTS if and only if MTS can reach
at least one s′ ∈ B eventually in the future starting from some initial state s ∈ I. With a
slightly abuse of notation, we write MTS |= ♦B to denote that an event B is reachable by
a given TS MTS. In formal terms, reachability is defined as follows:

Definition 26 (Reachability (paths)) Given a transition system MTS and an event
B ⊆ S, the condition MTS |= ♦B holds if and only if there exists at least one path π in
MTS such that π(t) ∈ B for some t ∈ N.

That is, an event B is reachable by a TS MTS if and only if there exists at least one
possible temporal evolution of MTS leading to an s′ ∈ B. An equivalent formulation of
the notion of reachability can be obtained also by referring to traces instead of paths:

Definition 27 (Reachability (traces)) Given a TS MTS and an event B ⊆ S, the con-
dition MTS |= ♦B holds if and only if there exists at least one trace σ := A0, . . . , At, · · · ∈
Traces(TS) such that At = l(s′) for some t ∈ N and s′ ∈ B.

Alongside the notion of reachability, we find the cognate notion of almost-sure reach-
ability, which we denote by MTS |= �B and define as follows:

58 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

Definition 28 (Almost-sure reachability) Given a TS MTS and an event B ⊆ S, the
condition MTS |= �B (B is almost-surely reachable by MTS) holds if and only if, for all
paths π in MTS, there exists a t ∈ N such that π(t) ∈ B.

That is, an event B is almost-surely reachable by a TS MTS if and only if all the
temporal evolutions (paths) of MTS eventually lead to a state s′ ∈ B. Similarly to reach-
ability, an alternative definition for almost-sure reachability can be provided in terms of
traces.

2.4 Linear Time Properties
A fundamental class of desirable properties that we are usually interested to analyse is
that of linear-time properties (LTP), which we can roughly define as properties that specify
what traces a TS should exhibit [10, p. 97]. This section provides a basic definition of
LTPs as requirements on traces of a TS, while the reference formal language to specify
LTPs, i.e., the so-called Linear Temporal Logic (LTL), will be introduced in the next
section.

Consider a finite set of atomic propositions AP and its power-set 2AP , we denote by
(2AP)ω the set of all words definable over 2AP . With this notation, we can introduce a
first definition of LTP as follows:

Definition 29 (Linear time property) A Linear Time Property over 2AP is a proper
subset of (2AP)ω

That is, a LTP is a language (i.e., a structured collection) of infinite words defined in
the alphabet 2AP [10, p. 98]

Definition 30 (Satisfaction relation for LTP) Let P be an LTP defined over 2AP .
Given a TS MTS and a state s ∈ S, the following conditions hold:

MTS |= P iff Traces(MTS) ⊆ P

MTS, s |= P iff Traces(s) ⊆ P

That is, a TS MTS satisfies a LTP P if and only if all the traces that it can generate are
included in P . In other words, LTPs impose constrains on the desirable linear behaviours
of a transition system.

2.4. LINEAR TIME PROPERTIES 59

Example 3 Let us go back to the example of the beverage vending machine reported
above (2). Consider again the desirable property:

P := ``the vending machine delivers a drink only after providing a coin′′

We can express this property as an LTP P that constrains the possible behaviours of
our TS. In particular, P will be the set of all words of the form:

∅ paid paid . . . drink . . .

that is, all the words beginning with ∅, including a finite repetition of the proposition
“paid” and then an instance of the proposition “drink”. To check whether our TS satisfies
P , hence, we have first to determine Traces(MTS) and thus check whether Traces(MTS) ⊆
P .

2.4.1 Safety and Liveness Properties
Among the various kinds of LTPs, particularly relevant to verify the reliability of computa-
tional systems are safety and liveness properties. In very general terms, a safety property
Psafe is a LTP stating that “a bad event never happens”, while a liveness property Plive is
a LTP stating that “a good event will surely happen”.

Consider the system reported in Example 3. An instance of safety property that can
be formulated for this system is: “the machine never delivers a drink before the user has
paid”, where the bad event is “the machine delivers a drink before the user has paid”.
Differently, an instance of liveness property is: “the machine always delivers a drink after
the user has paid”, where the good event is “the machine delivers a drink after the user
has paid”.

Let B denote a “bad event”, we can define the notion of bad prefix as follows.

Definition 31 (Bad prefix) We call bad prefix relative to a bad event B ⊆ S a finite
word σ̂ := A0, A1, . . . , At such that Aτ = l(s′) for some s′ ∈ B and τ ≤ t : t ∈ N

In practice, a bad prefix is the finite trace generated by a path reaching the “bad”
event B within a finite time-horizon t ∈ N.

A safety property with respect to a given bad event B is the maximal set of words
(i.e., the maximal LTP) that do not include any bad prefix relative to B. Formally, we
can define a safety property as follows [10, def. 3.22].

60 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

Definition 32 (Safety property) A safety property Psafe defined over a finite alphabet
2AP is a LTP such that: for all infinite words σ ∈ (2AP)ω \Psafe there exists a finite prefix
σ̂ of σ such that

Psafe ∩ {σ′ ∈ (2AP)ω | σ̂ is a finite prefix of σ′} 6= ∅ .

A liveness properties typically requires that a good event will happen infinitely often.
Differently from safety properties, thus, liveness properties do not constrain the finite
behaviours of a TS but impose specific conditions on the infinite behaviours. This intuition
is captured by the following definition [10, def. 3.33].

Definition 33 (Liveness property) A LTP Plive defined over a finite alphabet 2AP is
a liveness property if and only if, for all finite words σ̂ ∈ (2AP)∗, there exist an infinite
word σ := A0, A1, . . . such that σ̂ is a finite prefix of σ and σ ∈ Plive.

2.5 Linear Temporal Logic

The reference language to specify LTPs is the Linear Temporal Logic (LTL), originally
proposed in [129]. In this section, we first introduce the syntax and semantics of LTL and
then present specific procedures to model-check transition systems against LTL formulae
based on so-called Non-deterministic Büchi Automata (NBA).

Definition 34 (LTL Syntax)

φ := > | p | ¬φ | φ1 ∧ φ2 | ©φ | φ1

⋃
φ2

The language includes the standard notation > for propositional tautologies, the meta-
variable p denoting atomic propositions, standard Boolean connectives for negation and
conjunction, and two temporal modalities whose informal reading is the following:

• ©φ: “φ holds in the next time-step”

• φ1

⋃
φ2: “φ1 holds in the next time-steps until φ2 holds”

The introduction of the two new modal operators ©, informally called next, and
⋃

,
informally called until, is motivated by the necessity of modelling LTPs in a compact form.

2.5. LINEAR TEMPORAL LOGIC 61

2.5.1 LTL Semantics
In general, the first step to introduce a semantics for LTL based on TSs consists of defining
specific satisfiability conditions for LTL formulae relative to words:

Definition 35 (Satisfiability of LTL formulae (over words)) Given a word σ :=
A0, A1, . . . defined over 2AP . The following conditions hold:

σ |= > ∀σ ∈ (2AP)ω

σ |= p iff p ∈ A0

σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

σ |= ¬φ iff σ 6|= φ

σ |=©φ iff σ[1, 2 . . .] |= φ

σ |= φ1

⋃
φ2 iff ∃j ≥ 0 s.t. σ[j, . . .] |= φ2 and ∀ 0 ≤ i < j σ[i, . . .] |= φ1

where σ[1, . . .] is the suffix of σ starting in A1, i.e., σ[1, . . .] = A1, A2, . . . , and σ[j, . . .]
and σ[i, . . .] are the suffixes of σ starting in Aj, respectively, Ai.

The subsequent step consists of introducing the set Words(φ), defined as the set of all
words in (2AP)ω that satisfy φ:

Words(φ) := {σ ∈ (2AP)ω | σ |= φ}

Notice that the set Words(φ) is a LTP. Specifically, it is possible to prove that
Words(φ) is the one and only LTP induced by the given LTL formula φ (see, [10, p.
232-233]). Therefore, we can apply to Words(φ) the satisfiability condition for LTPs as
in Definition 30:

MTS |= Words(φ) iff Traces(MTS) ⊆ Words(φ)

MTS, s |= Words(φ) iff Traces(s) ⊆ Words(φ)

from which we can finally derive the specific satisfiability conditions for LTL formulae,
as follows:

Definition 36 (Satisfiability of LTL formulae (over TS and states))

MTS |= φ iff Traces(MTS) ⊆ Words(φ)

MTS, s |= φ iff Traces(s) ⊆ Words(φ)

62 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

2.5.2 LTL Model Checking
The model-checking problem for LTL consists of defining an automatic procedure that,
given a transition system MTS and a LTL formula φ, checks whether MTS |= φ. As
a preliminary remark, notice that transition systems modelling real-life computational
systems are usually very big and their size makes “manual” executions of model-checking
tasks practically unfeasible. Automatic procedures are then fundamental. This section
briefly presents the automatic procedures specific for LTL formulae. The latter are based
on a particular class of abstract state machines called Non-deterministic Büchi Automata
(NBA).

Definition 37 (NBA) A NBA, denoted Aut, is a tuple 〈Q,Σ, δ, Q0,F〉 where:

• Q is a finite non-empty set of states

• Σ is an alphabet

• Q0 ⊆ Q is the set of initial states

• δ : Q× Σ→ 2Q is a transition relation

• F ⊆ Q is a set of accept, or final, states called the acceptance set

Given a word σ := A0, A1, . . . defined in the alphabet Σ, we call run of σ, denoted by
run(σ), the path π = q0, q1, . . . such that trace(π) = σ. A run is accepting if and only
if qi ∈ F for infinitely many indices i ∈ N. The accepted language of Aut, denoted by
L(Aut) is the set of all the words σ defined in the alphabet Σ whose run is accepting.

NBAs and LTL formulae are connected via the following theorem [10, Theorem 5.41]:

Theorem 7 (NBA for LTL formulae) For any LTL formula φ defined over 2AP , there
exists a NBA Autφ such that Words(φ) = L(Autφ) and Autφ can be constructed in time
and space 2O(|φ|), where | φ | denotes the lenght of the formula φ.

This theorem guarantees that to build a NBA whose accepted language is Words(φ)
is always possible. A detailed proof of the theorem and an explanation of the procedure
to generate a NBA for a given LTL formula is available in [10, p.280-281].

Consider now the following observations:

MTS |= φ iff Trace(MTS) ⊆ Words(φ)

iff Trace(MTS) ∩Words(¬(φ)) = ∅
iff Trace(MTS) ∩ L(Aut¬(φ)) = ∅

2.5. LINEAR TEMPORAL LOGIC 63

where Aut¬(φ) is a NBA that accepts the LTP ¬(φ), meaning that there exists a word
σ |= ¬(φ) whose run run(σ) in Aut¬(φ) is accepting. These observations prove that the
model-checking task for an LTL formula φ effectively reduces to the task of checking
whether the intersection set Trace(MTS) ∩ L¬(φ)(Aut)¬(φ) is empty. In this regard, [10,
p.198] proves the following propositions10:

Proposition 8 (Product automaton law) Trace(MTS) ∩ L¬(φ)(Aut¬(φ)) = ∅ if and
only if ∃ run(σ) ∈MTS ⊗Aut¬(φ) such that σ |= ¬φ

where, MTS ⊗Aut¬(φ) is the product automaton of the transition system MTS and the
NBA Aut¬(φ) as by Definition 38.

Definition 38 (Product automaton) Let MTS be a TS without terminal state and
Aut := 〈Q, δ, Q0, F, 2

AP 〉 be a NBA. The product automaton of MTS and Aut is defined
as the tuple MTS ⊗Aut := 〈S × Q, Act,→

′
, I

′
, AP

′
, l

′〉 where:

• S × Q is a set of states obtained as the Cartesian product of the state spaces of,
respectively, TS and Aut

• →′ is a transition relation defined by the rule 〈s, q〉 →′ 〈s′, q′〉 iff s→a s′ ∧ q →l(s) q′

• I
′
:= {〈s0, q0〉 | s0 ∈ I ∧ ∃q0 ∈ Q0 s.t. q0 →l(s0) q}

• AP
′
= Q

• l
′
: S ×Q → 2Q is a labelling function such that l′(〈s, q〉) = {q}

In conclusion, the observations 2.2, jointly with propositions 7 and 8, prove that the
model-checking task for a given LTL formula φ effectively reduces to the task of checking
whether there exists a run run(σ) in the product automaton TS ⊗ Aut¬(φ) such that
σ |= ¬(φ). Interestingly, the latter is a task that can be executed in time polynomial in
| S × Q | [10] and hence easily implementable into an automatic procedure. This is the
key property to define the main algorithm for checking whether a TS satisfies a given LTL
formula φ, which is reported in Figure 3.

The algorithm works as follows. After taking in input a TS MTS and an LTL formula
φ, it proceeds by building a NBA Aut¬φ accepting formula ¬φ, and deriving the product
automaton MTS × Aut¬φ. Hence, it checks whether there exists a run in the product

10Notice that, in the proof provided by [10, p.198], the condition “there exists a run run(σ) in TS ⊗
Aut¬(φ)σ |= such that σ |= ¬φ” is expressed in terms of the satisfiability of a safety property. Here, we
omit reference to safety properties as an in-depth discussion of them will arguably require too much space
and goes beyond the purposes of the present work. The interested reader can refer to [10, ch. 3-4].

64 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

Algorithm 3: LTL Model Checking
Input: MTS and φ
Output: “yes” if MTS |= φ; “no” plus a counter-example if MTS 6|= φ

1 Construct an NBA Aut¬φ such that L(Aut¬φ) = Words(¬φ)
2 Construct the product automaton MTS ⊗A
3 if ∃ run(σ) ∈MTS ⊗A such that σ |= ¬φ then
4 return “no” and a finite prefix of run(σ) showing that σ |= ¬φ
5 end
6 if 6 ∃ run(σ) ∈ TS ⊗A such that σ |= ¬φ then
7 return “yes”
8 end

automaton that accepts ¬φ. If this is the case, then the algorithms returns “no” and
provides a finite fragment of the run as a counterexample. Otherwise, the algorithm
returns “yes”. It is possible to prove that the overall complexity of the algorithm is
O(| S | ·2|φ|), where | S | denotes the cardinality of the transition system’s state space
and | φ | denotes the lenght of the LTL formula φ (see [10, p. 282]).

2.6 Computation Tree Logic
The LTL has been conceived specifically to model linear time properties and implicitly
assumes a universal quantification over paths, that is, it assumes that a LTL formula
φ holds in a state s ∈ S if and only if it holds for all the paths originating in s [10,
p.309]. This assumption follows from the LTL semantics introduced in Section 2.5.1 and
turns to be very problematic if we generalize to desirable properties that are not LTPs. For
instance, consider the property: “for every executions, it is possible that the system returns
to an initial state” [10, p.309]. This property cannot be specified in LTL language11.

To overcome these issues, a new logic was introduced in the 80s, the so-called Compu-
tation Tree Logic (CTL) [30]. Differently from LTL, CTL is based on a branching notion
of time, i.e., on the assumption that, for each state s ∈ S and time t ∈ N, there are
many possible successors state s′ ∈ S that a transition system can reach at time t + 1.
This assumption entails that computations do not generate paths but trees, hence the
name computation tree logic. In this section, we will present the CTL syntax (see, 39), its

11One might be tempted to specify this condition as MTS , start |= �♦({start}), with start denoting
the initial state and {start} being an atomic proposition uniquely denoting the initial state. However, this
requirement is too strong as it corresponds to say that “for every execution, the system always returns to
the initial state”, which is clearly different from what our desirable property states.

2.6. COMPUTATION TREE LOGIC 65

semantics (Section 2.6.1), and the related model-checking procedures (Section 2.6.2).

Definition 39 (CTL Syntax)

φ := > | p | ¬φ | φ1 ∧ φ2 | ∃ψ | ∀ψ
ψ :=©φ | φ1

⋃
φ2

The CTL language includes two distinct kind of formulae: state formulae φ, which
represent properties of states, and path formulae ψ, which represent properties of paths12.
φ formulae include the standard notation > for tautologies, Boolean negation and con-
junction, and two operators to express existential and universal quantification over paths,
whose informal reading is:

• ∃ψ: “there exists an outgoing path that satisfies ψ”

• ∀ψ: “All outgoing paths satisfy ψ”

On the other hand, ψ formulae include the already known modal operators for next
and until. In this case, however, the meaning of the formula is related to path so that:

• ©φ: “in the next state of the paths φ holds”;

• φ1

⋃
φ2: “φ1 holds along the path until φ2 holds”.

Notice that ψ formulae are bounded by quantifiers so to allow the CTL language
to express quantification over paths. For example, a formula like ∀ © (p) holding in a
given state s ∈ S expresses the complex property that “for all the paths π outgoing
from s, the successor of s satisfies the atomic property p”. Furthermore, indefinitely long
nested formulae can be built by iteratively nesting φ and ψ formulae. In such a way, the
CTL language can express a wide range of highly-complex properties that characterize
contemporary computational systems.

2.6.1 CTL Semantic
The CTL semantics is based on the notion of computation tree. Given a TS MTS, the
computation tree of MTS is a directed acyclic graph13 whose vertices correspond to states
s ∈ S and arrows correspond to possible transitions s → s′ ∈ S × S. The computation

12Where each path π represents one of the possible realizations of a given computation of the TS.
13A directed graph is a pair 〈V,→〉, where V is a set of vertices and → is a set of arrows connecting

vertices. A directed acyclic graph is a graph that does not include cycles, i.e., paths that start and end
in the same vertex v ∈ V .

66 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

tree represents all the possible evolutions across time of the MTS
14. Each single path in

the tree (i.e., sequence of states s0, s1, . . . originating in a given initial state) represents
a possible evolution of the system. Quantification over paths is then possible by looking
at the paths outgoing from a given initial state and checking whether all (∀), or at least
one (∃) path, satisfy a certain path property ψ. For simplicity, in what follows we use
notation MTS directly to denote the computation tree generated by a given transition
system instead of the transition system properly.

For what concerns satisfiability conditions: in the case of φ formulae these are expressed
with regard to (the computation tree of) a transition system MTS and a state s ∈ S, while,
in the case of ψ they are expressed with regard to MTS and a path π.

Definition 40 (Satisfiability of CTL formulae) Given a transition system MTS and
a state s ∈ S, respectively, a path π, the following conditions hold:

MTS, s |= >, ∀s ∈ S ,
MTS, s |= p iff p ∈ l(s) ,
MTS, s |= ¬φ iff MTS, s 6|= φ ,

MTS, s |= φ1 ∧ φ2 iff MTS, s |= φ1 and MTS, s |= φ2 ,

MTS, π |=©φ iff MTS, π(1) |= φ ,

MTS, π |= φ1

⋃
φ2 iff ∃τ ≥ 0 : π(τ) |= φ2 and ∀τ ′ : 0 ≤ τ ′ < τ, π(τ ′) |= φ1 .

2.6.2 CTL Model Checking
Given a finite15 transition system MTS, an initial state s ∈ S and a CTL formula φ, the
model-checking problem consists of defining a procedure to check whether MTS, s |= φ.
The model-checking for CTL does not typically involve traces but work directly on set of
states. Specifically, it is based on a set of procedures that iteratively enumerate the set
Sat(φ) := {s ∈ S |MTS, s |= φ}, i.e., the set of all states s′ ∈ S that satify a given formula
φ, and hence checks whether s ∈ Sat(φ).

The standard model-checking algorithm for CTL and its extension is called parsing
tree. This algorithm does not involve traces but work directly on set of states. More
specifically, it exploits the parse-tree of Λ, which is the tree generated by decomposing Λ
in its various sub-formula (see, Figure 2.2) [10, p. 336]. The algorithm works as follows:

1. It generates the parse tree of φ, recursively decomposing φ in its sub-formulae λ until
only atoms remain;

14Notice that, if the TS admits more than one possible state, the computation tree is, in fact, a forest.
15The reason why we restrict our focus on just finite TSs are explained below.

2.6. COMPUTATION TREE LOGIC 67

2. It traverses the parse tree of φ visiting all the sub-formulae λ, starting from the
leaves and working backwards to the roots,

3. At each sub-formula λ, it calculates Sat(λ) (i.e., the set of states that satisfy λ) by
checking whether s |= λ for all s ∈ S,

4. It calculates Sat(φ) by composition of the various Sat(λ),

5. It finally checks whether s ∈ Sat(φ).

∀[p
⋃
(q ∨ r)] ∨ ∃© p

∀[p
⋃
(q ∨ r)] ∃© p

p q ∨ r p

q r

Figure 2.2: Parse-tree of a formula

The algorithm includes a specific sub-routine to compute Sat(λ) for each specific kind
of sub-formula λ of φ. For λ := > | φ1 ∧ φ2 | ¬φ, the algorithm computes Sat(λ) by an
iterative application of the recursive schema in Equation (4.4.1):

Sat(>) := S
Sat(p) := {s ∈ S : p ∈ l(s)}
Sat(φ1 ∧ φ2) := Sat(φ1) ∩ Sat(φ2)
Sat(¬φ) := S \ Sat(φ)

(2.2)

For λ := ∃ψ, the procedure varies depending on the nature of the nested formula ψ:

• When ψ := ©φ, the algorithm computes Sat(λ) simply as {s ∈ S | Post(s) ∩
Sat(φ) 6= ∅}.That is, Sat(©φ) is determined as the set of all states that have at
least one direct successors16 satisfying φ.

• When ψ := φ1

⋃
φ2, the algorithm follows the subroutine described in Figure 4. It

generates the computation tree of MTS and computes Satt(∃φ1

⋃
φ2)

17 for increasing
16Remeber that a direct successor of s in a given TS is a state s′ ∈ S such that s→ s′ holds.
17This is defined as the set of all states from which the TS can reach an s′ ∈ Sat(φ1) in at most t steps

via a φ1-path fragment, that is, a path fragment whose states all satisfy φ1.

68 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

Algorithm 4: Sat(∃φ1

⋃
φ2)

Input: A finite TS, a CTL formula ∃φ1

⋃
φ2, Sat(φ) and Sat(φ2)

Output: Sat(∃φ1

⋃
φ2)

1 Satt=0(∃φ1

⋃
φ2)← {Sat(φ2)};

2 foreach t ≥ 0 do
3 if ∀s ∈ S : Post(s) ∩ Satt(∃φ1

⋃
φ2) = ∅ then

4 Satt(∃φ1

⋃
φ2) = Sat(∃φ1

⋃
φ2)

5 end
6 if ∃s ∈ S : Post(s) ∩ Sat(∃φ1

⋃
φ2) 6= ∅ then

7 foreach s ∈ S : Post(s) ∩ Sat(∃φ1

⋃
φ2) 6= ∅ do

8 if s ∈ Sat(φ1) then
9 Satt+1(∃φ1

⋃
φ2)← Satt(∃φ1

⋃
φ2) ∪ {s}

10 end
11 end
12 end
13 end
14 return Sat(∃φ1

⋃
φ2)

values of t18. For t = 0, Satt(∃φ1

⋃
φ2) = Sat(φ2). For each t ≥ 0:

Satt+1(λ) = Satt(λ) ∪ {s ∈ Sat(φ1) | Post(s) ∩ Satt(λ) 6= ∅}

The procedure terminates when Post(s) = ∅, i.e., when the TS reaches a final state.
As we assume TS to be finite, this always happens within a finite time-horizon.

Finally, for λ := ∀ψ, the algorithm simply convert the universal into an existential
quantification following the equivalence rules: ∀ψ ⇐⇒ ¬∃¬ψ, then it computes the
respective subroutine.

2.7 Probabilistic Computation Tree Logic
Classical model-checking techniques consider “absolute” requirements, such as “the system
never loses the message”. For many contemporary systems, which are inherently stochas-
tic, these requirements are too strong. For those systems, desirable properties typically
have a probabilistic form, such as “the probability that the system loses the message

18Notice that each layer of the computation tree describes a specific time-step t, starting from the root,
which describes t = 0, until the leaves, which describe the termination time-step.

2.7. PROBABILISTIC COMPUTATION TREE LOGIC 69

is lower than 0.1”. Studying stochastic systems and their probabilistic properties is the
aim of probabilistic model-checking, a relatively new branch of model-checking that has
experienced growing development in the last years. Its starting point can be considered
the development of the Probabilistic Computation Tree Logic (PCTL) by Hansson and
Jonsson in 1994 [78]. The latter is an extension of CTL suitable to model probabilistic
properties of stochastic systems and whose semantics is based on Markov chains described
in Chapter 1. This section is dedicated to present PCTL and the related model-checking
procedures. Specifically, section 2.7.1 introduces PCTL syntax, Section 2.7.2 presents its
semantics, and Section 2.7.3 its dedicated to model-checking algorithms. Finally, Section
2.7.4 provides a small demonstrative example of a model-checking task based on PCTL.

2.7.1 PCTL Syntax

The PCTL syntax is recursively defined as follows:

φ :=> | p | ¬φ | φ1 ∧ φ2 | P∇bψ , (2.3)

ψ :=© φ | φ1

⋃
φ2 | φ1

≤t⋃
φ2 . (2.4)

The language includes both states-formulae (φ) and path-formulae (ψ). φ-formulae include
the standard notation > for tautologies, atomic formulae p, standard Boolean connectives
for negation and disjunction, and a probabilistic modal operator P∇b nesting ψ-formulae
and whose informal reading is the following:

• P∇bψ: “the probability to reach a path that satisfies ψ is less/equal/greater than b”.

Notice that ∇ is a short notation for <,≤,=,≥, >, while b denotes a real value in the
norm [0, 1]. The weighted-probabilistic modality replaces CTL quantifiers and specifies
probabilities over paths satisfying ψ. This operator allows PCTL to be much more ex-
pressive than CTL. For example, we can use PCTL to specify desirable properties such as:
“the probability that the system loses the message is lower than 0.2” or “the probability
that the system correctly predicts x is greater than 0.9” and so on.

Another peculiarity of PCTL language is the introduction of the new path-operator
φ1

⋃≤t φ2. This operator models so-called time-bounded reachability and its informal read-
ing is the following:

• φ1

⋃≤t φ2 means: “φ1 along the path until time-step t, then φ2 holds”

70 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

2.7.2 PCTL Semantics
The standard semantics for PCTL use Markov chains introduced in Chapter 1 to represent
stochastic state-transition systems. There exist a strict connection between Markov chains
and transition systems, which is made explicit by the following representability theorem.

Theorem 9 (Representability) Each transition system (without actions) MTS := 〈S,→
, I, AP, l〉 can be represented by a labelled discrete-time Markov chain MDTMC.

Proof 4 For the proof, it is sufficient to observe that all the elements of MTS can be
represented via elements of MDTMC. First, MTS and MDTMC are defined over the same
state space S and share both the set of atomic propositions AP and the labelling function
l. For the other elements, the following conditions hold:

• Given a pair of states (s, s′) ∈ S ×S, s→ s′ holds if and only if T (s, s′) > 0, i.e., a
transition is possible if and only if its probability is strictly greater than 0

• For each s ∈ S, s ∈ I if and only if ι(s) > 0, i.e., a state counts as initial if and
only if its initial probability is strictly greater than 0

Furthermore, we say that a state s ∈ S in a Markov chain MDTMC is absorbing if and
only if T (s, s′) = 0 for all s′ 6= s. It is easy to note that absorbing states are the equivalent
of terminal states in a transition system. Indeed, if T (s, s′) = 0 for all s′ 6= s, then no
transitions from s to any s′ 6= s are allowed and, thus, s is a terminal state. Conversely,
if no transitions from s to any s′ 6= s are allowed, then T (s, s′) = 0 for all s′ 6= s and,
thus, s is an absorbing state.

This connection allows for defining a semantics for PCTL by introducing specific sati-
sability conditions for PCTL formulae with Markov chains used as models.

Definition 41 (Satisfiability of φ formulae) Given a labelled DTMC MDTMC and a
state s ∈ S, the following conditions hold:

MDTMC, s |= >, ∀s ∈ S
MDTMC, s |= p iff p ∈ li(s)
MDTMC, s |= φ1 ∧ φ2 iff MDTMC, s |= φ1 ∧ M, s |= φ2

MDTMC, s |= ¬φ iff MDTMC , s 6|= φ
MDTMC, s |= P∇bψ iff P (s |= ψ)∇b ,

where P (s |= ψ) denotes the probability that a path π |= ψ belongs to the set of paths
originating in s conditional to S0 = s. The specific methods to compute this probability
vary depending on the formula ψ nested under the probabilistic operator, which will be
later presented in Section 2.7.3

2.7. PROBABILISTIC COMPUTATION TREE LOGIC 71

Definition 42 (Satisfiability of ψ formulae)

MDTMC, π |=©φ iff MDTMC, π(1) |= φ

MDTMC, π |= φ1

⋃≤t φ2 iff ∃τ ≤ t :MDTMC, π(τ) |= φ2 ∧ ∀τ ′ : 0 ≤ τ ′ < τ, MDTMC, π(τ
′) |= φ1

MDTMC, π |= φ1

⋃
φ2 iff ∃τ ≥ 0 : MDTMC, π(τ) |= φ2 ∧ ∀τ ′ : 0 ≤ τ ′ < τ, MDTMC, π(τ

′) |= φ1

A final remark concerns the PCTL expressiveness compared to CTL:

Theorem 10 (PCTL Expressiveness) PCTL is more expressive than CTL and in-
cludes the latter as a special fragment

Theorem 10 can be proved by means of the following simple equivalence rules that
allows to derive CTL quantifiers from the PCTL probabilistic modality:

∀ψ ⇐⇒ P=1ψ

∃ψ ⇐⇒ P>0ψ

Proof 5 To prove the validity of these rules with respect to the PCTL semantics above
introduced we reason as follows. By definition (40), we know that MTS, s |= ∀ψ if and
only if MTS, π |= ψ for all the paths π of MTS such that π(0) = s. The same condition
holds also for the labelled DTMC MDTMC that represents TS, as granted by Theorem (9).
Consequently, MDTMC, s |= ∀ψ if and only if MDTMC, π |= ψ for all the paths π of MDTMC
such that π(0) = s. On the other hand, by Definition 41, we know that M, s |= P=1ψ
if and only if P (s |= ψ) = 1. Since P (s |= ψ) is defined as the probability that a path
π : π(0) = s satisfies ψ, we have that P (s |= ψ) = 1 if and only if M,π |= ψ for all the
paths π in MDTMC such that π(0) = s. Hence:

MTS, s |= ψ iff ∀π.π(0) = s : MTS, π |= ψ ,

iff ∀π.π(0) = s : MDTMC, π |= ψ ,

iff P (s |= ψ) = 1 ,

iff MDTMC, s |= P=1ψ .

An analogous reasoning holds for CTL existential quantified formulae ∃ψ.

2.7.3 PCTL Model Checking
Model-checking procedures for PCTL formulae are based on a slightly modified version of
the parsing-tree algorithm already introduced in Section 2.6.2. Given a labelled DTMC

72 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

MDTMC and PCTL state-formula φ19, the algorithm calculates Sat(λ) for each sub-formula
λ of φ, hence it calculates Sat(φ) by composition. The iterative scheme for computing
Sat(λ) are the same of standard CTL presented in the previous section, while for proba-
bilistic formulae P∇bψ we apply the schema in Equation (4.4.1).

Sat(P∇bψ) := {s ∈ S : P (s |= ψ)∇b} . (2.5)

The specific procedures to compute P (s |= ψ) are based on the feasible inferences on
DTMCs described in Chapter 1, notably marginalization and hitting probability. They
vary depending on ψ:

• When ψ := ©φ, P (s |= ψ) is computed as the marginal probability of the event
Sat(φ) given s ∈ S be the initial state:

P (s |=©φ) :=
∑

s′∈Sat(φ)

T (s, s′) (2.6)

• When ψ := φ1

⋃≤t φ2, P (i, s |= ψ) corresponds to (hi)≤t
Sat(φ2)

(s), which is the time-
bounded hitting probability of the event Sat(φ2) computed through the modified
transition matrix Ti that is obtained from T i by making all the states s′ ∈ S \
{Sati(φ1) \Sati(φ2)} absorbing. Accordingly, the algorithm computes (hi)≤t

Sati(φ2)
by

first generating the modified transition matrix Ti and then solving Equation (2.7).

(hi)≤t
Sati(φ2)

(s) :=
∑

s′∈Sati(φ2)

(Ti)t(s, s′) . (2.7)

• When ψ := φ1

⋃
φ2, P (s |= ψ) corresponds to a particular kind of hitting prob-

ability, that is, the hitting probability of the conditional event Sat(φ2) | Sat(φ1)
hSat(φ2)|Sat(φ1)(s), defined as the probability of reaching a state s′ ∈ Sat(φ2) with the
additional condition that all the states visited before reaching an s′ ∈ Sat(φ2) are
in Sat(φ1). To compute this probability, we introduce a slightly modified version of
the general schema for hitting probability presented in (1.8), where hSat(φ2)|Sat(φ1)(s)
is given by the minimal20 non-negative solutions of the following system of linear
equations:

hSat(φ2)|Sat(φ1)(s) :=

1 if s ∈ Sat(φ2) ,

0 if s 6∈ Sat(φ1) ,∑
s′∈Sat(φ1)

T (s, s′) · hSat(φ2)|Sat(φ1)(s
′) otherwise .

(2.8)

19Notice that, as for CTL, path-formulae ψ are usually not considered in a typical probabilistic model-
checking workflow, see [10].

20Here, minimality is defined as for Equation (1.8).

2.7. PROBABILISTIC COMPUTATION TREE LOGIC 73

Compared to the the system in Equation (1.8), the system in Equation (2.8) includes an
additional constraint that, at each t ∈ N, forces the algorithm to iterate the recursion only
over outgoing paths π such that π(t+1) |= φ1. In such a way, only paths π that satify φ1

in all states prior to the first one satisfying φ2 are considered, as required by the condition
expressed by the formula φ1

⋃
φ2.

Notice that, when φ1 = > the schema in Equation (2.8) collapses on the schema in
Equation (1.8). This is an expected result. In fact, when ψ = >

⋃
φ2, P (s |= >

⋃
φ2) =

hSat(φ2)|S , where the latter is the hitting probability of Sat(φ2) with the additional condi-
tion that all states visited before reaching Sat(φ2) are in S. As S includes all the possible
states, hSat(φ2)|S is in fact equivalent to hSat(φ2).

2.7.4 Example of a PCTL Application
Example 4 (Communication Channel) We now present a simple example of model-
checking based on PCTL. The example is borrowed from [10, p.739] Consider a sim-
ple communication model operating with a single channel. The channel is error-prone,
meaning that messages can be lost. In this particular example, the (four) states of
such model MDTMC are in one-to-one correspondence with the atomic propositions, i.e.,
S = AP := {start, try, lost, delivered}. Transition probabilities are shown in Figure 2.3 as
labelled arrows, impossible transitions correspond to missing edges.

start

delivered try lost

1

0.9

1

0.1

1

Figure 2.3: A Markov-chain model of the communication channel.

MDTMC is compliant if and only if “the probability of a message to be lost within
seven time steps is smaller than or equal to 0.25”. As the starting state for MDTMC is by
construction s = start, this condition is satisfied if and only if:

MDTMC, {start} |= P≤0.25>
≤7⋃

({lost}) , (2.9)

Yet, the task reduces to compute h≤7
{lost}(S|{start}). Its computation can be achieved either

by the recursion in Equation (2.8) leading to the numerical values in Table 2.1. Since the

74 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

corresponding values is h≤7
{lost}(start) = 0.190 ≤ 0.25, the system satisfies the requirement

and can be considered compliant.

s
t start deliv. try lost

0 0.000 0.000 0.000 1.000
1 0.000 0.000 0.100 1.000
2 0.100 0.000 0.100 1.000
3 0.100 0.100 0.100 1.000
4 0.100 0.100 0.190 1.000
5 0.190 0.100 0.190 1.000
6 0.190 0.190 0.190 1.000
7 0.190 0.190 0.271 1.000

Table 2.1

2.8 Multi-Agent Systems
So far, we focused on computational systems composed by one single-agent. In this section,
we consider model checking formalisms suitable for multi agent systems (MAS) developed
in recent years. The most famous example is arguably represented by the formalism of
interpreted systems (IS) [167, Ch. 8] and the related Computation Tree Logic of Knowledge
(CTLK) [113]. This logic extends standard CTL with specific epistemic operators for both
single-agent and group knowledge. Other notable examples include the Computationally
Grounded Weighted Doxastic Logic (COGWED) introduced in [28] and the Probabilistic
Computation Tree Logic of Knowledge (PCTLK) developed in [175]. The former extends
CTLK with a weighted doxastic operator to specify multi-agents’ degrees of belief, while
the latter extends PCTL with single and multi-agent epistemic modalities to specify both
epistemic and probabilistic properties of stochastic multi-agent systems. Both COGWED
and PCTLK base their semantics on Probabilistic Interpreted Systems (PIS), a class of
structures merging interpreted systems with labelled Markov chains described in Section
2.7.2. The rest of this section provides an overview of these tree formalisms.

2.9 CTLK
The language of CTLK is obtained by extending standard CTL (Section 2.6) with specific
operators to model epistemic properties of agents in a multi-agent system.

2.9. CTLK 75

Let A denote a finite non-empty set of agents A. Notation i ∈ A is used to denote
single agents while group of agents are denoted by Γ ⊆ A. The syntax of CTLK is defined
as follows.

Definition 43 (CTLK syntax)

φ := > | p | ¬φ | φ1 ∧ φ2 | ∃ψ | ∀ψ | Kiφ | EΓφ | CΓφ | DΓφ

ψ :=©φ | φ1

⋃
φ2

The language includes both state-formulae φ and path-formulae ψ. The latter are
defined as in standard CTL (see, 39). The former include the meta-variable p for atomic
propositions, Boolean negation and conjunction, the CTL existential and universal path-
quantification, and four epistemic operators nesting φ-formulae and whose informal reading
is the following:

• Kiφ: “agent i knows φ”;

• EΓφ: “everybody in the group of agents Γ knows φ”;

• CΓφ: “ it is common knowledge in the group of agents Γ that φ”;

• DΓφ: “it is distributed knowledge in the group of agents Γ that φ”.

Ki denotes the standard epistemic modality to represent knowledge of an agent i ∈ A,
while EΓ, CΓ, and DΓ denotes specific modalities that represent different typologies of
group knowledge in Γ ⊆ A informally known as, respectively, everybody knows, common
knowledge, and distributed knowledge.

2.9.1 CTLK Semantics
The semantics of CTLK is based on the formalism of interpreted systems, which are
considered the reference frame for representing state-transition multi-agent systems. In
an IS, the possible configurations of each agent i ∈ A are described by a finite non-empty
set of local states S i, whose elements are denoted by si ∈ S i. The possible configurations
of the whole multi-agent system, on the other hand, are described by a finite non-empty
set of global states S. The latter is obtained as the Cartesian product of the respective
sets of local states of all the agents i ∈ A, i.e., S := ×i∈AS i, where each s ∈ S is defined
as a tuple 〈si, sj, . . . , sn〉 of | A | local states si, each one describing the local configuration
of the agent i ∈ A relative to the global configuration s.

Definition 44 (Interpreted systems) An IS MIS is a tuple 〈S,A,→, AP, l〉 where:

76 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

• S is a finite non-empty set of global states;

• A is a finite non-empty set of agents;

• →⊆ S × S is a transition relation such that, for each s, s′ ∈ S × S, the transition
s→ s′ occurs if and only if all agents i ∈ A transits from their respective local state
si ∈ s to their respective local state s′i ∈ s′;

• AP is a set of atomic propositions;

• l : S → 2AP is a labelling function.

For each agent i ∈ A, an epistemic equivalence relation (EER) ∼i⊆ S×S is introduced
such that s ∼i s′ holds if and only if si = s′i. In practice, we say that two global states
s, s′ are epistemically equivalent (or alternatively, epistemically indistinguishable) for an
agent i ∈ A if and only if they are identical as far as the agent knows.

Each EER ∼i induces a partition over S that we denote by Eq∼i . Each element eq∼i

of Eq∼i denote an epistemic equivalence class (EEC), i.e., a set of global states that are
epistemically indistinguishable among each others by the agent i ∈ A. Furthermore, given
a group of agents Γ ⊆ A, specific EERs for the different kinds of group knowledge above
introduced can be defined as follows:

• Everybody Knows: ∼Γ
E:=

⋃
∀i∈Γ ∼i

• Common Knowledge: ∼Γ
C := it(

⋃
∀i∈Γ ∼i), where it denotes the iterative closure

• Distributed Knowledge: ∼Γ
D:=

⋂
∀i∈Γ ∼i.

Each EER induces a respective partition that we denote, respectively, by Eq∼Γ
E , Eq∼Γ

C ,
and Eq∼

Γ
D .

Definition 45 (Satisfiability conditions (IS)) Given an IS MIS and a global state s ∈
S, the following satisfiability conditions hold:

2.9. CTLK 77

MIS, s |= p iff p ∈ l(s) ,
MIS, s |= ¬φ iff MIS, s 6|= φ ,
MIS, s |= φ1 ∧ φ2 iff MIS, s |= φ1 ∧ MIS, s |= φ2 ,
MIS, s |= ∃φ iff ∃π ∈ Paths(s) : MIS, π |= ψ,
MIS, s |= ∀φ iff ∀π ∈ Paths(s) : MIS, π |= ψ,
MIS, π |=©φ iff MIS, π(1) |= φ ,

MIS, π |= φ1

⋃≤t φ2 iff ∃τ ≤ t :
MIS, π(τ) |= φ2 ∧
∀τ ′ : 0 ≤ τ ′ < τ : MIS, π(τ) |= φ1 ,

MIS, π |= φ1

⋃
φ2 iff ∃τ ≥ 0 :

MIS, π(τ) |= φ2 ∧
∀τ ′ : 0 ≤ τ ′ < τ MIS, π(τ

′) |= φ1 ,
MIS, s |= Kiφ iff ∀s′, s ∼i s′ : s′ |= φ ,
MIS, s |= EΓφ iff ∀s′, s ∼Γ

E s
′ : s′ |= φ ,

MIS, s |= CΓφ iff ∀s′, s ∼Γ
C s

′ : s′ |= φ ,
MIS, s |= DΓφ iff ∀s′, s ∼Γ

D s′ : s′ |= φ .

For φ and ψ-formulae, the satisfiability conditions are defined as in standard CTL
(see, Section 2.6.1). For epistemic formulae, the satisfiability conditions are based on
epistemic equivalence relations as in standard epistemic logic of interpreted systems (see,
[167, Ch. 4]). Specifically, an agent i knows a certain proposition φ if and only if φ
is true in all (global) states s′ ∈ S that are epistemically equivalent to the actual state
s ∈ S. The same condition is adopted also for groups of agents, while the criterion to
determine the extension of the respective ECC varies depending on the specific kind of
group knowledge considered. For everybody knows, the EEC is obtained as the union of
all the EECs of the various agents i ∈ Γ. For common knowledge, the iterative closure
of the union is considered, which corresponds to say that φ is common knowledge in Γ if
and only if all i ∈ Γ know φ and know that all the other agents in Γ know φ and so on.
Finally, for distributed knowledge, the EEC is determined by considering the intersection
of the EECs of all i ∈ Γ. Notice that each partition Eq∼

i models the information about
the whole multi-agent system that is available by a single agent i ∈ A. The more this
partition is subtle, the more information the agent possesses. Therefore, by considering
the intersection of the partitions, we in fact merge together the information possessed by
all the various i ∈ Γ and eventually consider a partition that is at least as subtle as the
most subtle among the various partitions of all the agents in Γ.

2.9.2 CTLK Model Checking
The model-checking problem for CTLK consists of defining a procedure that takes in
input an IS MIS, a state s ∈ S, and a CTLK φ and returns either “yes”, if MIS, s |= φ,
or “no” otherwise. Here, we consider a procedure based on extending the parsing-tree

78 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

algorithm introduced in Section 2.6.2 with a specific subroutine to compute Sat(λ) for
λ := Kiφ | EΓφ | CΓφ | DΓφ. The sub-routine is reported in Figure 8.

Algorithm 5: Sat(κφ) CTLK
Input: A IS MIS and a CTLK epistemic formula κφ
Output: Sat(κφ)

1 Sat(κφ)← {}
2 Compute Sat(φ) := {s ∈ S |MIS, s |= φ}
3 foreach eq∼

κ ∈ Eq∼κ do
4 if eq∼κ ⊆ Sat(φ) then
5 Sat(κφ)← {eq∼κ}
6 end
7 end
8 return Sat(κφ)

Let κ be a short notation for Ki | EΓ | CΓ | DΓ, and let ∼κ be a short notation
for ∼i|∼Γ

E|∼Γ
C |∼Γ

D. Given an epistemic equivalence relation ∼κ, we denote by Eq∼
κ the

partition induced on S by ∼κ. Each element of Eq∼κ is an epistemic equivalence class
that we denote by eq∼κ . The algorithm in Figure 8, works as follows.

1. It takes in input an IS MIS and a CTLK formula κφ;

2. It computes Sat(φ) by recursively calling the respective subroutine;

3. For each eq∼κ ∈ Eq∼κ , it checks whether eq∼κ ⊆ Sat(φ). If this is the case, then the
algorithm adds the whole equivalence class eq∼κ to Sat(κφ).

The main advantage of this procedure is that it does not consider single states s ∈ S
but works directly on epistemic equivalence classes. This strategy drastically reduces the
time necessary for the execution of the procedure, which ultimately results polynomial in
| S | ·n, with n denoting the nesting-depth of κφ, i.e., the number of nested instances of
epistemic operators occurring in the formula21. For the details of the proof, see [112, sec.
2.1].

2.10 PCTLK
Another formalism recently proposed to model-check stochastic multi-agent systems against
epistemic and probabilistic properties is the PCTLK introduced in [175]. This logic ex-

21For example, the formula λ := KiCΓp has nesting-depth equals to 2.

2.10. PCTLK 79

tends standard PCTL with epistemic operators for representing both single and group
knowledge in a multi-agent system.

Definition 46 (PCTLK syntax)

φ := p | ¬φ | φ1 ∧ φ2 | κ | P∇bψ | P∇b(κ)

ψ :=©φ | φ1

≤t⋃
φ2 | φ1

⋃
φ2

κ := Kiφ | EΓφ | CΓφ | DΓφ

where ∇ :=<,≤,=,≥, >.

The language includes state-formulae φ, path-formulae ψ, and epistemic formulae κ.
φ-formulae includes atoms p, Boolean connectives for negation and conjunction, and two
probabilistic modalities: P∇bψ, which expresses probabilistic quantification over paths and
has the same informal reading as in standard PCTL (see, Section 2.7), and P∇bκ, which
expresses probabilistic quantification over epistemic formulae and whose informal readings
varies depending on the nested formula κ as follows:

• P∇bK
iφ: “the probability that i knows φ is less/equal/greater than b”;

• P∇bE
Γφ: “the probability that everybody in the group of agents Γ know φ is

less/equal/greater than b”;

• P∇bC
Γφ: “the probability that φ is common knowledge in the group of agents Γ is

less/equal/greater than b”;

• P∇bD
Γφ: “the probability that φ is distributed knowledge in the group of agents Γ

is less/equal/greater than b”.

ψ-formulae are defined as in standard PCTL (see, Section 2.7.1). Finally, κ formulae
include the four epistemic operators for, respectively, single-agent knowledge Ki, every-
body knows EΓ, common knowledge CΓ, and distributed knowledge DΓ whose reading is
defined as in CTLK (see, Section 2.9).

2.10.1 PCTLK Semantics
The semantics of PCTLK is modelled over Probabilistic Interpreted Systems (PIS), a spe-
cific class of structures obtained by merging ISs with labelled discrete-time Markov chains.

Definition 47 (PIS) A PIS MPIS is a tuple:

MPIS := 〈S,A, {T i}i∈A, AP, l(s)〉 ;

80 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

In practice, a PIS is obtained by replacing the transition relation → in an IS (see,
Definition 44) with:

• a family of transition matrices {T i}i∈A, such that, for each i ∈ A, T i provides a
compact description the stochastic behaviour across time of the single agent i ∈ A

• a family of initial probability distributions ιi : S 7→ [0, 1], such that, for each i ∈ A,
ιi identifies the possible initial states of the single agent i.

From the individual transition matrix T i, i ∈ A, a global transition matrix TPIS is
derived that describes the overall stochastic behaviour of the whole multi-agent system.
This is generated by computing, for each s, s′ ∈ S × S, the logarithmic pooling of the
transitions:

TPIS(s, s
′) := η

∏
i∈A

T i(s, s′) , (2.10)

where η is a normalizing factor forcing the transitions to satisfy the condition: (∀s ∈
S)
∑

s′∈S TPIS(s, s
′) = 1.

Analogously, a global initial probability distribution ιPIS : S → [0, 1] is derived by
computing the logarithmic pooling of the initial distribution of the single agents i ∈ A:

ιPIS(s) := η′
∏
i∈A

ιi(s) (2.11)

where η′ also denotes a normalizing factor that forces the global distribution to satisfy the
condition

∑
s∈S ι(s) = 1.

Together, the global transition matrix TPIS and the global initial probability distribu-
tion define a DTMC MMC := 〈S, ιPIS, TPIS, AP, l〉 that specifies the stochastic behaviour
across time of MPIS and that is called the embedded Markov chain of the PIS. As we will
explain below, this DTMC plays a fundamental role in computing model-checking tasks
related to PISs.

Finally, specific epistemic equivalence relations for single-agent knowledge ∼i, every-
body knows ∼Γ

E, common knowledge ∼Γ
C , and distributed knowledge ∼Γ

D are introduced
and defined as in standard ISs (see, Section 2.9.1).

Definition 48 (Satisfiability conditions) Given an PIS MPIS and a global state s ∈ S,
the following conditions hold:

2.10. PCTLK 81

MPIS, s |= p iff p ∈ l(s) ,
MPIS, s |= ¬φ iff MPIS, s 6|= φ ,
MPIS, s |= φ1 ∧ φ2 iff MPIS, s |= φ1 ∧ MIS, s |= φ2 ,
MPIS, π |=©φ iff MPIS, π(1) |= φ ,

MPIS, π |= φ1

⋃≤t φ2 iff ∃τ ≤ t :
MPIS, π(τ) |= φ2 ∧
∀τ ′ : 0 ≤ τ ′ < τ : MPIS, π(τ) |= φ1 ,

MPIS, π |= φ1

⋃
φ2 iff ∃τ ≥ 0 :

MPIS, π(τ) |= φ2 ∧
∀τ ′ : 0 ≤ τ ′ < τ MIS, π(τ

′) |= φ1 ,
MPIS, s |= P∇bψ iff PPIS(s |= ψ)∇b ,
MPIS, s |= P∇bκ iff PPIS(s |= κ)∇b ,
MPIS, s |= Kiφ iff ∀s′, s ∼i s′ : s′ |= φ ,
MPIS, s |= EΓφ iff ∀s′, s ∼Γ

E s
′ : s′ |= φ ,

MPIS, s |= CΓφ iff ∀s′, s ∼Γ
C s

′ : s′ |= φ ,
MPIS, s |= DΓφ iff ∀s′, s ∼Γ

D s′ : s′ |= φ .

The satisfiability conditions for PCTL-like φ and ψ formulae of PCTLK are analogous to
those of standard PCTL (see, Section 2.7.2). The satisfiability conditions for epistemic
formulae are based on epistemic equivalence relations and defined as in CTLK (see, Section
2.9.1). The main novelty is represented by formulae composed by nesting the probabilistic
operator P∇b on epistemic formulae κ. The satisfiability condition for these formulae is
based on the probability PPIS(s |= κ). Let eq∼κ

(s) denote the EEC in the partition Eq∼
κ

that includes the state s ∈ S, then PPIS(s |= κ) is defined as follows.

PPIS(s |= Kiφ) :=
| eq(s)∼i ∩ Sat(φ) |
| eq(s)∼i |

, (2.12)

PPIS(s |= EΓφ) :=
| eq∼Γ

E(s) ∩ Sat(φ) |
| eq∼Γ

E(s) |
, (2.13)

PPIS(s |= CΓφ) :=
| eq∼Γ

C (s) ∩ Sat(φ) |
| eq∼Γ

C (s) |
, (2.14)

PPIS(s |= DΓφ) :=
| eq∼Γ

D(s) ∩ Sat(φ) |
| eq∼Γ

D(s) |
. (2.15)

Following the classical interpretation of probability discussed in Section 1.2, this se-
mantics computes the probability PPIS(s |= κ) as the ratio between: (i) the number of
cases favorable to the event Ki(φ) (respectively, EΓφ, CΓφ, DΓφ), which corresponds to
the size of the set of all states s in the respective EEC that satisfies φ, and (ii) the total
number of possible cases, which corresponds to the size of the respective EEC.

82 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

Algorithm 6: Sat(P∇bκ)

Input: A PIS MPIS and a PCTLK epistemic formula P∇bκφ
Output: Sat(P∇bκφ)

1 Sat(P∇bκφ)← {}
2 Compute Sat(φ) := {s ∈ S |MIS, s |= φ}
3 Compute the partition Eq(∼κ)
4 foreach eq∼

κ ∈ Eq∼κ do
5 if |eq∼κ∩Sat(φ)|

|eq∼κ | ∇b then
6 Sat(P∇bκφ)← {eq∼

κ}
7 end
8 end
9 return Sat(P∇bκφ)

2.10.2 PCTLK Model Checking
The model-checking problem for PCTLK consists of defining a procedure that takes in
input a PIS MPIS, a state s ∈ S, and a PCTLK formula φ and returns either “yes”, if
MPIS, s |= φ, or “no” otherwise. Also in this case, the overall procedure is based on the
parsing-tree algorithm introduced in Section 2.6.2. The specific procedures to compute
Sat(λ) when λ is a PCTL-like formula are analogous to those of standard PCTL presented
in Section 2.7.3. The specific procedures to compute Sat(λ) when λ is an epistemic formula
are analogous to those relative to epistemic formulae of CTLK presented in Section 2.9.2.
The main novelty introduced by [175] consists of a specific sub-routine to compute Sat(λ)
when λ := P∇bκ

22, which is reported in Figure 6.
The algorithm in Figure 6 works as follows. First, it takes in input a PIS MPIS and a

PCTLK formula P∇bκφ, then it proceeds via the following steps:

1. it selects the proper sub-routine depending on the specification of φ and computes
Sat(φ);

2. it calculates the ratio |eq∼κ∩Sat(φ)|
|Eq∼κ | and checks whether it satisfies the specified thresh-

old ∇b;

3. If the ratio satisfies the threshold, then the algorithm adds the whole equivalence
class eq∼κ to Sat(P∇bκφ).

In practice, the only difference between the PCTLK sub-routine in Figure 6 and the
CTLK subroutine reported in Figure 6 lies in the checking step. In the former case, this

22Remember that κ := Ki | EΓ | CΓ | DΓ.

2.11. COGWED 83

consists of checking whether eq∼κ ⊆ Sat(φ), while in the latter case it consists of checking
whether the ratio |eq∼κ∩Sat(φ)|

|Eq∼κ | ∇b satisfies the specified threshold. This slight modification
does not alter the overall time-complexity of the procedure, which remains polynomial in
| S | ·n.

Notice that an alternative procedure for PCTLK model checking is also presented in
[175]. The latter consists of reducing the model-checking tasks for PCTLK to equivalent
procedures computable in PRISM [100]. For more details on this alternative procedure,
we refer to [175, p.287-293].

2.11 COGWED
The other formalism relevant to model-check multi-agent systems against epistemic prop-
erties is the Computationally-grounded Weighted Doxastic (COGWED) logic introduced
in [28] and specifically conceived to specify degrees of belief in a system of agent.

Definition 49 (COGWED syntax)

φ := p | ¬φ | φ1 ∧ φ2 | ∃φ | Kiφ | EΓφ | CΓφ | DΓφ

ψ :=©φ | Gφ | φ1

⋃
φ2

The language of COGWED includes both state-formulae φ and path-formulae ψ. φ-
formulae include atoms p, Boolean connectives for negation and conjunction, existential
and universal path-quantifiers, epistemic operators for single-agent knowledge, everybody
knows, common and distributed knowledge, and a weighted doxastic operator Bi

∇b nesting
φ-formulae and having the following informal reading:

• BΓ
∇bφ: “the degree of belief in φ of the group of agents Γ is ∇b”

ψ-formulae includes the standard next © and until
⋃

operator and the operator Gφ
(called, the globally operator) whose informal reading is the following:

• Gφ means: “φ holds globally along the path”.

Notice that the latter is sometimes included also in the language of standard CTL
and PCTL. However, [10] omits it from both the treatment of CTL and PCTL. Since
[10] represents our reference treatise in writing this thesis, we also decided to omit the
reference to the globally operator in the previous discussion of CTL and PCTL. In [28],
this operator is explicitly mentioned in the syntax of COGWED and, for coherence, we
include it in the language.

84 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

2.11.1 COGWED Semantics
The COGWED logic is provided with two different semantics, one based on interpreted
systems (IS) introduced in Section 2.9.1, and the other based on probabilistic interpreted
systems (PIS) introduced in Section 2.10.1. In what follows, both of them are briefly
presented and discussed.

Interpreted Systems Semantics.

The IS-based semantics of COGWED is obtained by extending the analogous semantics
of CTLK introduced in Section 2.9.1 with two additional satisfiability conditions for the
globally and the weighted-doxastic operators.

Definition 50 (Satisfiability condition (IS)) Given an IS MIS and a global state s ∈
S, the following satisfiability conditions hold:

MIS, π |= Gφ iff ∀t ≥ 0, π(t) |= φ ,

MIS, s |= BΓ
∇bφ iff | Sat(φ) ∩ eq

∼Γ
D(s) |

| eq∼Γ
D(s) |

∇b ,

where Sat(φ) := {s ∈ S |MIS, s |= φ}.

As can be noticed, the degree of belief is here interpreted as a classical probability, i.e., as
a ratio between favorable and possible cases, where, in this case, the “favorable cases” are
the states in eq∼Γ

D(s) that satisfy φ while the “possible cases” are all the states in eq∼Γ
D(s).

This implies some limitations. As we explained in Chapter 1, the classical interpretation
of probability is bound by the assumption that all possible cases are equally probable.
In this specific context, this is equivalent to assuming that the probability of reaching
an s′ ∈ eq∼

Γ
D(s) from the actual state s ∈ S is the same for all s′ ∈ eq∼

Γ
D(s). In many

real-world scenarios, this assumption results quite unrealistic and limits the applicability
of the formalism. For this reason, a different, “more realistic”, semantics is presented in
[28] based the formalism of probabilistic interpreted systems previously introduced.

Probabilistic Interpreted Systems Semantics.

The PIS semantics relies on the notion of steady-state probability for an event B ⊆ S, i.e.,
the probability that the process eventually visit a state in B starting from one if its initial
state. Consider the notion of hitting probability hB of an event B introduced in Chapter 1
for DTMCs. An analogous definition of hitting probability hMPIS

B for a PIS can be defined,
where the latter is simply the hitting probability of B computed computed on the embedded

2.11. COGWED 85

DTMC of the PIS. The steady-state probability distribution of B can thus be obtained
simply by multiplying the initial probability vector ιMPIS for the hitting probability vector
hMPIS
B . That is, the steady-state probability is nothing but the “unconditional” version of

hitting probability.
To introduce the PIS-based COGWED semantics, let now us to consider the events

Sat(φ) ∩ eq∼Γ
D(s) and eq∼

Γ
D(s). Their respective steady-state probabilities are given by

ιMPIShMPIS

Sat(φ)∩eq∼
Γ
D (s)

and ιMPIS(s)hMPIS

eq
∼Γ
D (s)

. The latter corresponds to the probability of even-
tually visiting a state in the equivalence class, while the former corresponds to the proba-
bility of eventually reaching a state in the equivalence class that also satisfies φ. The degree
of belief is thus interpreted as the ratio between these two steady-state probabilities, as
reported in Definition 51.

Definition 51 (Satisfiability conditions (PIS)) Given a PIS MPIS, a state s ∈ S,
and a formula BΓ

∇bφ, the following condition holds:

MPIS, s |= BΓ
∇b iff

ιMPIS(s)hMPIS

Sat(φ)∩eq∼
Γ
D (s)

(s)

ιMPIS(s)hMPIS

eq
∼Γ
D (s)

(s)
∇b .

Differently from the counting-world semantics, this new semantics thus takes the
stochastic law (i.e., the probability distribution) governing the whole multi-agent sys-
tem evolution on the long-term into account. In this regard, hence, it is no longer bound
to the unrealistic assumption that all the states in eq∼

Γ
D(s) are equally probable in terms

of steady-state probability.

2.11.2 COGWED Model Checking

The model-checking problem for COGWED consists of defining a procedure that takes in
input either a ISMIS or a PISMPIS, a state s ∈ S, and a state-formula φ and returns “yes” if
MIS, s |= φ (MPIS, s |= φ) and “no” otherwise. Also in this case, the overall procedure relies
on the parsing-tree introduced in Section 2.6.2. The procedure to compute Sat(λ) when
λ = Kiφ | EΓφ | CΓφ | DΓφ is identical to that introduced in Section 2.9.2 for analogous
CTLK epistemic formulae. Two specific sub-routines are introduced to compute Sat(λ)
when λ is a weighted-belief formula. The former, based on IS-semantics, is reported in
Figure 7. The latter, based on PIS-semantics, is reported in Figure 8.

86 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

Algorithm of IS-Semantics Subroutine.

Algorithm 7: Sat(BΓ
∇bφ)

Input: A PIS MPIS and a COGWED weighted-doxastic formula B∇bφ
Output: Sat(BΓ

∇bφ)
1 Sat(BΓ

∇bφ)← {}
2 Compute Sat(φ) := {s ∈ S |MIS, s |= φ}
3 Compute the partition Eq(∼κ)
4 foreach eq(∼κ) ∈ Eq(∼κ) do
5 if |eq(∼κ)∩Sat(φ)|

|eq(∼κ)| ∇b then
6 Sat(BΓ

∇bφ)← {eq(∼κ)}
7 end
8 end
9 return Sat(BΓ

∇bφ)

The algorithm in Figure 7 works as follows. It takes in input a IS MIS and a formula BΓ
∇bφ,

then it proceeds through the following steps:

1. it computes Sat(φ) by means of the proper procedure;

2. For each eq∼Γ
D(s) ∈ Eq∼Γ

D(s), it computes the ratio |Sat(φ)∩eq∼
Γ
D (s)|

|eq∼
Γ
D (s)|

and checks whether
it satisfies the specified threshold ∇b;

3. If the ratio satisfies the threshold, then the algorithm adds the whole EEC eq∼
Γ
D(s)

to Sat(BΓ
∇bφ).

For what concerns the time-complexity of the procedure, it results to be polynomial
in | S | ·n, with n being the nesting-depth of φ, as clarified in [28, p. 6].

2.11. COGWED 87

Algorithm for PIS-Semantics Subroutine

Algorithm 8: Sat(BΓ
∇bφ)

Input: A PIS MIS and a COGWED weighted-doxastic formula B∇bφ
Output: Sat(BΓ

∇bφ)
1 Sat(BΓ

∇bφ)← {}
2 Compute Sat(φ) := {s ∈ S |MIS, s |= φ}
3 Compute the partition Eq∼

Γ
D(s)

4 foreach eq∼
Γ
D(s) ∈ Eq∼Γ

D(s) do
5 Compute hMPIS

Sat(φ)∩eq∼
Γ
D (s)

(s) through the schema in Equation (1.8)

6 Compute hMPIS

eq
∼Γ
D (s)

(s) through the schema in Equation (1.8)

7 if
ιMPIS (s)h

MPIS

Sat(φ)∩eq
∼Γ
D (s)

(s)

ιMPIS (s)h
MPIS

eq
∼Γ
D (s)

(s)
∇b then

8 Sat(BΓ
∇bφ)← {eq∼

Γ
D(s)}

9 end
10 end
11 return Sat(BΓ

∇bφ)

The algorithm in Figure 8 works as follows. It takes in input a PIS MPIS and a formula
BΓ

∇bφ, then it proceeds through the following steps:

1. it computes Sat(φ) by means of the proper procedure;

2. it computes both hMPIS

Sat(φ)∩eq∼
Γ
D
(s) and hMPIS

eq
∼Γ
D (s)

, by means of the procedure reported
in Equation (1.8);

3. it compute the ratio
ιMPIS (s)h

MPIS

Sat(φ)∩eq
∼Γ
D (s)

(s)

ιMPIS (s)h
MPIS

eq
∼Γ
D (s)

(s)
and checks whether it satisfies the specified

threshold ∇b.

4. If the ratio satisfies the threshold, then the algorithm adds the whole EEC eq(∼Γ
D)

to Sat(BΓ
∇bφ).

For what concerns the time-complexity of the whole procedure, again it results poly-
nomial in | S | ·n as clarified in [28, p. 6].

88 CHAPTER 2. PROBABILISTIC MODEL CHECKING: A PRIMER

Chapter 3

Probabilistic Model Checking for
Explainable AI

Abstract
This chapter explores a potential connection between model checking and the emerging
field of Explainable Artificial Intelligence (XAI). It is divided into two main parts. The
first part analyses the opacity problem in contemporary machine learning (ML) from a
philosophical perspective. It outlines a general ontological account of machine learning
and a taxonomy for the different typologies of opacity that one may encounter in dealing
with ML systems. It then provides a general overview of the XAI research program and
its various methodologies, with a particular emphasis on post-hoc explanation methods
based on surrogate models. The second part of the chapter introduces a model checking
framework to verify the reliability of post-hoc explanations provided via surrogate models
in terms of three fundamental properties: transparency, accuracy, and trustworthiness. The
framework is built upon a multi-agent Markovian semantics that includes different typologies
of stochastic and epistemic agents. This semantics is inspired by recent works in the model
checking of stochastic multi-agent systems, notably [28] and [175]. The chapter is based on
previous results published in [160].

3.1 Introduction

The incredible success of information technology (IT) systems in the last years can be con-
sidered mostly a consequence of the advancements in machine learning (ML) technologies.
ML is a broad field of research that includes a wide variety of tools and methods to make
artificial agents able to extract information, learn knowledge and build models from data
on their own [155].

In general, computational systems based on ML (ML systems) possess an impressive
inferential power that allows them to analyse large amounts of data and identify patterns

89

90 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

that neither the human eye nor traditional statistical methods would likely ever be able to
discover [3]. On the other hand, however, they suffer from the problem of being opaque,
or, as they say, “black boxes”. Loosely speaking, that a ML system is opaque means that
it is difficult for users to know how it works, to interpret its decisions, and to evaluate
its behaviour against scientific and ethical norms [179]. In recent years, opacity, or “the
black box problem”, has caught the attention of many scholars, both from philosophy and
computer science. For their part, philosophers have proposed different conceptual analyses
of the notion of opacity and debated its epistemological and ethical implications for the
human society [23, 179, 79, 118, 56]. Computer scientists and engineers, on the other
hand, have focused on developing methods and tools to counter opacity effects and obtain
explainable AI systems [1, 76]. Their joint efforts have led to the birth of eXplainable
AI (XAI), a new area of research aimed at rendering ML systems less opaque and more
humanly understandable [145].

The present chapter analyses the problem of opacity and explores potential connec-
tions between the research area of XAI and probabilistic model-checking. Section 3.3
outlines an ontology of ML systems based on the multi-layer ontology of computational
artifacts proposed in [131, ch. 11]. Section 3.3 discusses the opacity problem and outlines
a taxonomy of its various forms and dimensions. Section 3.4 gives an overview of the
state of the art in XAI, presenting different methods and approaches to explaining opaque
ML systems. It thus focuses on a particular class of XAI methods, which are post-hoc
explanation methods based on surrogate models [76]. In a nutshell, these methods consist
of training a surrogate transparent model that emulates a target ML system either glob-
ally or locally on a given outcome and serves as a post-hoc explanation of the latter. To
convey effective and reliable explanations, it is generally required that surrogate models
satisfy some fundamental “explainability properties”, which we identify as opacity/trans-
parency, accuracy, and trustworhtiness. Our idea is that such properties can be correctly
formalized and verified at an abstract specification level using probabilistic model check-
ing techniques. The remaining sections of the chapter are dedicated to develop this idea
more in depth. More specifically, Section 3.5 presents a multi-agent Markov models se-
mantics to formalize explainability properties. The general idea beyond this semantics
is that explainability properties are best understood as quantifiable relational properties
that are instantiated between three different types of agents: (i) the opaque target ML
system to be explained, (ii) the surrogate models explaining the target system, and (iii)
the users of the target system to whom explanations are directed. Section 3.5.1 presents
a logic to specify explainability properties called Ex-PCTL. This logic is obtained as an
extension of the well-known PCTL introduced in the previous chapter and includes specific
modal operators to specify explainability properties. Section 3.5.2 develops a semantics
for Ex-PCTL formulae based on the multi-agent environment introduced in Section 3.5.
Section 3.6 develops specific algorithms to model-check surrogate models against explain-

3.2. MACHINE LEARNING SYSTEMS 91

ability properties specified in the Ex-PCTL language. These algorithms extend the CTL
parsing-tree algorithm introduced in Section 2.6.2 with specific sub-routines for Ex-PCTL
formulae inspired by existing techniques for multi-agent extensions of PCTL discussed in
Sections 2.10 and 2.11 of the previous chapter. The chapter ends with Section 3.7 present-
ing an example of applications of the developed formalism to model-check explainability
properties of probabilistic decision-tree classifiers.

3.2 Machine Learning Systems
In this section we provide a general account of the ontology of machine learning systems
generalizing the multi-level ontology of computational artifacts introduced in [71, 131].

The ontology of traditional digital computational systems represents a central topic
of interest in the philosophy of computer science. In literature, two major accounts for it
have been proposed, which we can refer to as the dual and the multi level ontology [6].
The dual ontology understand computational systems as composed by two fundamental
entities, software and hardware, each one possessing its own distinct ontology. The software
corresponds to the abstract sets of operations and rules that enable a system to generate
specific outputs from given inputs, while the hardware pertains to the physical structures
(such as electric circuits and gates) and actions (like circuit closure and voltage inversion)
that effectively carry out the operations described in the software. Although popular,
the dual ontology has faced significant criticism in contemporary literature. For instance,
[71, 131] argue that the dual ontology is too simplistic for being able to account for the
high complexity of computational systems. They therefore propose a refined approach that
understands computational systems as complex artifacts whose structure and functioning
can be described at five different levels of abstraction (LoA) [71, 131]. These levels are
arranged in a hierarchy that ranges from electric circuits, at the bottom level, up to include
the intentions of the system’s designers:

1. Functional Specification Level (FSL). This level provides a general description
of the overall I/O behaviour of the system in terms of a function mapping each
input to its intended output. This function reflects the “intentions” of the system’s
designer and specifies in very general terms what the system is supposed to do.
For example: to calculate fundamental arithmetic operations, to separate annoying
emails from relevant ones, or to predict the probability of a disease based on the
analysis of medical records.

2. Design Specification Level (DSL). This level provides an abstract description of
the system, identifying and explaining the specific functions and operations required
to fulfill the intended function. This abstract description can be formulated by means

92 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

of dedicated specification languages (e.g., ACSL, CASL, Alloy etc.), which cannot
be directly executed but require to be translated into executable algorithms via a
process called refinement [131]. Although all specification languages are conceived
to provide very abstract descriptions, the design format they adopt may vary a
lot depending on the paradigm they refer to. In algebraic approaches, systems are
described using abstract algebraic structures like sets, functions, morphisms etc; in
logic-oriented approaches, specifications are provided via logical axioms describing
the properties and behaviours that the system is supposed to satisfy; finally, in
model-oriented approaches, systems’ structure and functioning are described through
states-based models, such as transition systems or finite-state automata.

3. Algorithm Design Level (ADL). This level translates the specifications formu-
lated at the DSL into executable procedures (algorithms), which consist of sequences
of rules and operations that the system must execute in order to accomplish its spec-
ification and thus fulfill its intended function. At this level, these procedures are not
yet described using executable programming languages but higher-level formalisms,
like the standard pseudo-code, see [106].

4. Algorithm Implementation Level (AIL). This level translates the procedures
specified at the ADL into actual executable programs, i.e. sets of instructions in
some high-level programming language (such as Python or Java). These are then
automatically translated (through compiling and linking) into low-level instructions
in Assembly, a programming language with a one-to-one correspondence with the
machine code controlling the behaviour of the physical components.

5. Algorithm Execution Level (AEL). At this level, corresponding to what is usually
called the hardware, the instructions provided by the machine code are translated
into physical actions performed by electric circuits and gates, hence executed.

Example 5 As an example of “traditional” computational system, let us consider a rudi-
mentary beverage vending machine that offers two options: beer and cola. The machine
operates as follows: when no input is provided by users, the monitor displays the word
“select”. If a user presses the BEER button, the machine dispenses beer and subsequently
reverts to displaying “select”. Finally, if a user presses the COLA button, the machine
dispenses cola and again returns to displaying “select”. At the FSL, the beverage machine
can be described via the following intended function f :

f := { 〈∅, display_select〉 〈BEER, deliver_beer〉 〈COLA, deliver_cola〉 }

3.2. MACHINE LEARNING SYSTEMS 93

The function specifies the intended behaviour of the machine in the form of all the
possible I/O pairs that are admissible1. At the DSL, the machine can be described via
a finite state automaton implementing the function f , as in Figure 3.1a. The automa-
ton encompasses three distinct states (1, 2, 3), each one paired with a specific action
(display_select, deliver_beer, deliver_cola) that the automaton commands to execute
when in that state. Transitions are enabled by the occurrence of specific inputs (no-input,
BEER, COLA). For example, if the automaton is in state 1 and the user presses the but-
ton BEER, then the automaton transits to state 2 and commands to execute the action
deliver_beer. Differently, if the automaton is in state 1 and no actions are executed, then
it remains in state 1 and continues to execute the action display_select. At the ADL, the
automaton is implemented in a step-by-step procedure specified using the pseudo-code, as
in Figure 3.1b. At the AIL, the pseudo-code is implemented in an executable program,
written in some high-level programming language, as in Figure 3.1c. Finally, at the AEL,
the program is compiled in machine language and then executed on electric circuits.

(a) Moore automaton (b) Abstract algorithm (c) Python program

Figure 3.1: The Beverage Machine represented at three different LoAs via: (a) a Moore automaton
(DSL), (b) an abstract algorithm in pseudo-code (ADL), and (c) a Python program (AIL).

The multi-level ontology, although primarily developed for “traditional” computational
systems, can be adapted to some extent to account for the ontology of ML systems. The
latter, however, present some peculiarities that have to be taken into account.

One major difference concerns the specification of the system’s behaviour at the FSL.
In the case of “traditional” computational systems, the intended I/O behaviour is fully
specified by the designer. In the case of ML systems, on the other hand, the designer only
defines constraints on the I/O behavior, while the specific intended function is learned from
a set of data through an optimization process called training. Therefore, the behaviour
of a (trained) ML system is determined not only by its designers’ intentions, but also
by the information included in the training data. This point is crucial, in particular
because information included in datasets might be biased and produce undesired or unfair
behaviours that designers cannot ultimately account for.

1The notation ∅ denotes here that no actions are performed.

94 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

Another related peculiarity of ML systems concerns their architecture, which is much
more complex then that of traditional systems and includes three distinct artifacts inter-
acting with one another to determine the overall behaviour of the system [62]:

• The training sample: the data set used to train the system;

• The training engine: the algorithm that allows the system to learn from data;

• The ML model: the optimized computational model resulting from the process of
training.

In what follows, we discuss their nature in some more detail.

Training Sample

The overall I/O behaviour of a ML system is typically determined by a set of parameters
whose values are learned automatically by the system during the process of training. The
training samples are the collections of data that a ML system uses to fit such parameters.
In this regard, they play a central role in determining the final (i.e., after-training) I/O
behaviour of the system.

In a sense, training samples play for ML systems a similar role to what designers’
intentions do for traditional computational systems: they provide, albeit implicitly and
partially, a specification of their intended behaviour. For this reason we consider them
as component-parts of the of ML systems’ structure. Although maybe not self-evident,
as many might consider a ML system independently from the data on which it has been
trained, however, this view is perfectly in line with what subsumed by recent ontological
accounts, such as the one proposed in [71, 131]. These latter accounts maintain that the
ontology of a computational system has to consider all the elements that determine its
behaviour: point in case, they typically include the designers’ intentions as part of the
system itself. Similarly, we argue here that the training sample determines crucially the
way in which the algorithm behaves after training, and therefore it properly qualifies as
an element of its ontology.

The specific nature of training samples varies a lot depending on the application context
considered and the training procedure adopted. In so-called supervised learning, training
samples usually consist of collections of structured data called examples. An instance of
such structured data would be a pair 〈X,Y 〉 where X ∈ X is a compact mathematical
representation (vector, matrix, tensor etc.) of data features (e.g., genetic sequences of
a genome, or pixels of an image) and Y ∈ Y is the desired outcome that we want the
system to associate with input X. All components of an example belong to a given
domain that is defined by the application task. Consider images classification, where all

3.2. MACHINE LEARNING SYSTEMS 95

Xs will be matrices of pixels and all Y s will be labels for classes of images. Examples are
used by the system during training to induce the intended function f : X → Y defining
the resulting (after training) I/O behaviour. In practice, what the system does is to set
parameters governing its functioning in order to produce an I/O mapping that minimizes
the prediction error over examples2.

In unsupervised learning, training samples consist mostly of unstructured collections
of data-points whose coordinates encode relevant properties of their target. For example,
patients of a medical study can be represented in the training sample through data-points
whose coordinates denote their relevant characteristics, such as age, gender, place of birth
and so on. Geometrical and mathematical properties of data-points are then analysed
during training to find relevant patterns among them. Based on these patterns, the system
induces the intended function f : X → Y defining the resulting I/O behaviour.

In reinforcement learning, the training sample consists of an interactive environment
composed by a state space S and a reward function R. During the training, the system
explores the state space S getting rewards and punishments depending on its moves,
available from a given set Act. Based on the latter, it induces an intended function
f : S → Act, technically called policy, that prescribes how the system moves within the
state-space S.

In all the case above, training samples may consist of either well-determined datasets
sampled from a given population, or ill-defined collections of data from the environment
with which the system interacts. In the latter case, we say that the training occurs in an
open environment. An example is given by AI systems launched on the internet that learn
from the interaction with users. Notice that if a system is trained in an open environment,
then identifying its borders is practically impossible, although at any given moment of use,
the system will have a finite and determinate dataset on which it has been trained. As we
assume the training sample to be structurally part of the ML system, this is tantamount
to say that ML systems trained in open environments have no static well-defined borders.
This claim poses an ontological problem, as it subsumes that the nature of such systems
has a potentially always shifting definition of specification, thereby affecting both the
intended behaviour and the ability to evaluate correctness in it standard sense. We do not
further investigate this aspect here, as it goes beyond the present investigation.

Training Engine

The training engine is the set of procedures that allows a ML system to fit parameters
according to the information included in the training sample. Ontologically, it is a com-
putational artifact whose structure and behavior can be described at the various LoAs of

2A prediction error over a set of examples D ⊆ X ×Y is a pair 〈X,Y 〉 ∈ X ×Y such that ∃ 〈X,Y ′〉 ∈ D
and Y 6= Y ′.

96 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

the hierarchy presented above.
At the FSL, the intended function of the training engine is to solve an optimization

task. In mathematics an optimization task is a problem whose solution requires to find
the maximum, respectively, the minimum of a given target function. In the case of ML
systems, the specific nature of the target function varies depending on the type of training.

In supervised learning, the target function takes the form of a loss function (or error
function) defined over examples of the target sample. Let W be an array of parameters
of a given ML system M and let fM

W : X → Y be a mapping describing the I/O behaviour
of M over the training sample under the assignment of parameters W . A loss function
is a function that takes a pair (Y, fM

W (X)) with Y denoting the intended outcome paired
with X in the training sample and fM

W (X) being the outcome associated to X by M
under the assignment of parameters W , and returns a real number L(Y, fM

W (X)) ∈ R
representing the “predictive error” of the system on input X. The latter is a measure of the
“distance” between the actual outcome fM

W (X) and the desired outcome Y prescribed by
the training sample. The optimization task consists in finding an assignment of parameters
that minimizes L(Y, fM

W (X)) Ŵ = arg minW L(Y, fM
W (X)) for each pair 〈X,Y 〉 in the

training sample. Accordingly, the intended function of the training engine will take the
form: arg minW L(Y, fM

W (X)). In practice, only approximate solutions of the optimization
task can be achieved through a variety of iterative heuristic methods, such as the well-
known stochastic gradient descent (see, [19]), whose choice ultimately depends on both
the specific ML system adopted and the application context considered.

In unsupervised learning, to provide a general description of the target function is
difficult: the latter varies a lot depending on the specific method and task considered. In
general, it corresponds to some similarity or dispersion measure (e.g., Jaccard distance,
variance etc.) that quantifies how much data-points are related to each other based on
their relevant properties. For example, in K-means the common target function to be
minimized is the variance within a given number of clusters, which measures how far data
points in those cluster are spread out from their average value. In anomaly detection,
on the other hand, it often corresponds to the z-score, which measures how much single
data-points are below or above a reference mean value.

In reinforcement learning, the target function is technically called value function V θ

and consists of a mapping that assigns to each s ∈ S a real-value V θ(s) ∈ R denoting
the expected reward earned by the system starting its exploration of the environment
(i.e., the training sample) in s and then following the policy (i.e., the sequence of moves)
θ3. The optimization task consists here in finding the policy f that maximizes V θ in the

3The reader may note here a strict similarity between this framework and the formalism of Markov
decision processes outlined in Chapter 1. This is no coincidence as a reinforcement learning task actually
corresponds to the resolution of a Markov decision process. This topic is addressed more in detail in
chapter 5, where reinforcement learning is applied to the resolution of a well-known problem in epistemic

3.2. MACHINE LEARNING SYSTEMS 97

long run. Accordingly, the intended function of the training engine will take the form:
(∀s ∈ S) arg maxθ V

θ(s). Approximate solutions of the optimization task are achieved in
practice by a variety of techniques (for more details, see [155]).

At the DSL level, a more detailed description of the optimization task is usually pro-
vided, including a specification of the target function to be minimized/maximized and a
specification of the heuristic involved to solve the optimization task. Consider for example
the training engine of a deep neural network. At the FSL, its intended function can be
described simply as that of minimizing a loss function L(Y, fM

W (X)) over examples of the
training sample. At the DSL, the designer is required to specify which loss function they
intend to adopt, for example the Mean Squared Error σ := (Y − fM

W (X))2 or the Mean
Absolute Error m̂ :=| Y − fM

W (X) |, and which procedure they plan to use to approximate
its global minimum, for example Stochastic Gradient Descent (see, [19]).

Once the DSL is specified, the construction of the lower LoAs proceeds as in tradi-
tional computational systems, that is, by defining an executable procedure to solve the
optimization task that takes care of available resources and implementing it in a program
that is eventually executed on a physical machine.

Machine Learning Model

The ML model, also called learned model or, in case of binary predictors, learned classifier,
is the optimized computational model that results from the training process and which is
responsible for the the I/O behaviour of the trained ML system.

Semantically, a ML model is a model of data, i.e., it denotes the statistical regularities
among data in a given domain. Epistemologically, on the other hand, it can be regarded
as a predictive rather than an explanatory model, that is, it is useful in predicting new
instances of a given target phenomenon by induction from instances in the training sample,
while it does not provide explanations as to why the target phenomena occur in a certain
way. From the ontological point of view, the ML model is a computational artifact which,
like the training engine, can be described at the different LoAs of the above hierarchy.

At the FSL, a ML model usually takes the form of a joint probability distribution
P (X1, . . . , Xn, Y) over a set of stochastic variables X1, . . . , Xn representing features and
a variable Y ranging over possible outcomes of the ML system. The complexity of this
distribution is usually defined in terms of:

(i) the number n of stochastic variables it involves, and

(ii) the possibility to decompose it in simpler distributions describing specific statistical
dependencies among single pairs of variable Xi, Xj, i, j ∈ N.

logic, that of logical omniscience.

98 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

Complexity largely depends on the specific kind of ML model considered. Linear and
multiple regression models usually involve a small number of variables and can be easily
decomposed into simpler distributions. Bayesian networks may include a relatively high
number of variables but can be easily decomposed thanks to their mathematical properties,
in particular the Markov property stating that P (Xi|X1, . . . , Xn) = P (Xi|Prei), where Prei
denotes the parents of Xi in the Bayesian network’s graph. Deep learning models, like
transformers or recurrent neural networks, usually involve a very high number of variables
and are difficult, if not impossible, to decompose, and for this reason are usually considered
among the most complex instances of ML models [92].

At the DSL, the ML model consists of a full specification of the two classes of elements
that govern the I/O behaviour of the trained ML system: hyper-parameters and parame-
ters. Hyper-parameters are structural elements of the system’s architecture that constrain
its behaviour. Their specification is provided by the designer on the basis of considerations
regarding the type of task that the ML system is supposed to perform (e.g., classification,
regression) and the specific application domain (e.g., image recognition, natural language
processing etc.). Parameters, on the other hand, are the components that determine the
specific behaviour of the ML system within the constraints given by the hyper-parameters.
Their specification is an automatic task performed by the training engine on the basis of
information included in the training sample.

Hence, the peculiarity of ML models as computational artifacts consists in the fact that
their designing process is a joint human-machine effort: part of it, namely the specification
of the hyper-parameters, is performed by a human designer, whereas the other, i.e., the
specification of the parameters, is automatically executed by the training engine. A direct
consequence of this fact is that, while in the case of traditional models the specification
of their design is fully determined by the designer on the basis of their intended function
(e.g., filtering spam), in case of ML models it is determined by two distinct elements:
(i) their intended function (e.g., classifying images) defined by the designer and reflected
in the choice of the hyper-parameters, and (ii) the information included in the training
sample, which is instead reflected in the setting of the parameters.

As for the training engine, once the DSL is defined, the specification of the lower LoAs
proceeds as in traditional computational systems, thus taking care of “implementative”
issues like tractability and the efficient allocation of computational resources.

3.3 The Opacity Problem
Despite ML systems are nowadays present in many domains of society, there is increasing
concern on their use due to the well-known opacity or black box problem, which roughly
arises from the fact that ML systems’ behaviours and outcomes are generally hard to

3.3. THE OPACITY PROBLEM 99

understand and verify [179]. Opacity is actually perceived as a very serious issue, not
only for its technical relevance but because it undermines users’ right to an explanation,
as recently mentioned in the latest edition of the EU General Data Protection Regulation
[171]. Given its relevance, the opacity problem has become nowadays an hot topic among
different categories of scholars, including philosophers of science and ethical experts (see,
for instance, [23] and [57]). Its perceived relevance resulted in an increasing popularity of
the XAI research program, whose central aim is exactly to define methods for countering
opacity and make ML models’ more humanly understandable [8, 1] Despite the increasing
amount of literature on the opacity problem and the incredible popularity recently reached
by the XAI research program, however, what exactly means that ML systems are opaque,
or “black boxes” is still far from being clear. Instead, the impression is that the term
“opacity” is used vaguely and to refer to a variety of related but different problems.
Sometimes, in fact, opacity is supposed to mean that a model’s complexity prevents human
users from understanding its inner functioning [27] or from grasping the inferences it uses
to generate a given prediction [56]. In other cases, it is emphasised that the models’ design
prevents users from understanding and checking the reliability of the learned patterns [76].
In yet other cases, ML models are considered opaque because they only predict occurrences
of phenomena but do not explain the causes, mechanisms or laws that govern them [114].
This vagueness is often a source of confusion in the debate and feeds the impression that
XAI is more a clump of scattered works than a structured research program with a solid
conceptual and methodological core [99]. In recent years, the need to clarify the concept
of opacity has been highlighted by several AI philosophers, who have proposed different
definitions and conceptual analyzes aimed at making the term opacity less ambiguous.
The first and, arguably, most frequently cited definition is surely that proposed by Paul
Humphreys:

“a process is epistemically opaque relative to a cognitive agent X at time t
just in case X does not know all the epistemically relevant elements of the
process. A process is essentially epistemically opaque to X if and only if it
is impossible, given the nature of X, for X to know all of the epistemically
relevant elements of the process” [86, p. 29].

Humphreys’ definition highlights two fundamental points:

1. Opacity is an epistemic and agent-relative property, that is, it concerns the knowl-
edge that some agent possesses of a given computational system;

2. Opacity is cognitive-dependent, that is, whether and to what extent a given compu-
tational system results opaque to a certain user ultimately depends on the cognitive
abilities of the user.

100 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

These two points are widely shared by many philosophers participating in the debate on
opacity and that take them as starting point of their analyses. For example, Zednick
[179] proposes a “pragmatic” and users-oriented account that identifies opacity with the
lack of the specific kind of knowledge that the stakeholders of a system require to pursue
their aims. A more analytic route is taken by Beisbart [13], who formulates a Carnapian
explication of epistemic opacity based on the claim that a computational system is opaque
to the degree that it is difficult for humans to know and to understand why its outcomes
arise. Paez [123] insists on the connection between opacity and pragmatic understanding4

of AI systems and concludes that the best XAI tools to address opacity are interpretative
and approximation methods. Sullivan [153] introduces the notion of link-uncertainty,
which she defines as a measure of the lack of knowledge necessary to establish to what
extend a model is an actual representation of the target-phenomenon it represents. She
then argues that scientists in fact consider models generated by a ML system more or less
opaque depending on their degree of link-uncertainty with respect to the target-phenomena
they represent.

All thee mentioned analyses highlight some characteristics of the opacity problem. In
our opinion, however, they do not recognize, at least explicitly, one fundamental aspect of
opacity, that is, its plural nature. Looking at the practical contexts in which ML systems
are used, we can note that, in fact, there exist various conceptions of opacity, as well as
reasons why a ML system is considered opaque by its users in a given context. Identify
which are these various conceptions and provide a taxonomy of opacity constitutes a crucial
philosophical work. Nonetheless, at the moment there are very few available attempts
to carry out such a taxonomy. One is that proposed by Burrel [23], who distinguishes
between: (i) opacity as intentional corporate or state secrecy, (ii) opacity as technical
illiteracy, and (iii) opacity as something that arises from the characteristics of machine
learning algorithms and the scale required to apply them usefully’. Another taxonomy
has been recently proposed by Creel [34], who distinguishes among run, structural, and
functional opacity/transparency. The distinction is based on the intuition that different
forms of opacity/transparency occur at different levels of abstraction at which one can
understand and describe the structure and functioning of a ML model5. Finally, the
taxonomy proposed by Boge [21] identifies two forms of opacity: how-opacity and why-
opacity, the former concerning the understanding of a ML system and the latter concerning
the understanding of a target-phenomenon with (the model generated by) a ML system.

In general, these three taxonomies mark some progress in identifying different forms
of opacity. Their analysis, however, remains too broad and needs to be deepened. This
section proposes a more detailed analysis that starts from the identification of three macro-

4Specifically, he adopts the notion of “pragmatic understanding” originally introduced in [47].
5We have already introduced the idea of describing computational systems at different ontological

levels of abstraction in Chapter 2, Section 2.1. On the topic, see also [6, 131].

3.3. THE OPACITY PROBLEM 101

Figure 3.2: Map of the different forms of opacity

dimensions of opacity, called, respectively, access opacity, link opacity and semantic opac-
ity, and then refine further each of them by including specific forms, as depicted in Figure
3.2 (from [62]).

3.3.1 Access Opacity
Access opacity concerns the capability of understanding the structure and functioning of
an ML system. It occurs when human users have limited epistemic access to elements
that are relevant for explaining, predicting, and controlling the behavior of the considered
system.6 Notice that by “having an epistemic access to an element”, we mean the ability
to figure out the location of the element and the functional role it plays in the overall
structure and functioning of the system.

We identify three main factors that may limit epistemic access and thus cause access
opacity.7 The first coincides with the transparency policies adopted by the system’s de-
signers, who might deliberately obscure some relevant details of the system’s structure and
functioning for either commercial, competition, or privacy reasons. The second is related
to the users’s background knowledge and skills. Intuitively, the more a user is familiar
with a given AI system, the more they can understand, predict and control the system’s

6The notion of ‘epistemically relevant element’ is borrowed from [87].
7They are related with the three forms of opacity described by Burrel [23].

102 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

behavior. Finally, the third arises with the complexity of the system’s structure, conceived
as a function of both the system’s size8 and format9 [114]. The intuition is that, as human
users possess limited cognitive resources, their ability to explain, predict and control the
system’s structure and functioning decreases as the complexity of the system increases.

Once clarified these general aspects, we are ready to deepen some details. In the pre-
vious section, we explained that ML systems are complex artifacts composed by three
different components that ultimately influence their behaviour. For each of these compo-
nents, we can identify a specific form of access opacity, which manifests itself whenever
users’ epistemic access to the elements that are relevant to understand the component’s
structure and functioning, and how it influences the overall behaviour of the system, is
limited. In what follows, we provide a more detailed description of each one of these
specific forms of access opacity.

Opacity of the Training Sample

This form of access opacity occurs when users have limited epistemic access to relevant
structural and semantic properties of the data features included in the samples used to
train the system. There are several circumstances where this may happen. A first circum-
stance is when the system’s constructors decide to not adopt data transparency policies,
and therefore do not provide (or partially hide) the training sample, in general because
of ethical or commercial reasons. A second circumstance is when users have difficulties to
interpret the training sample and check the reliability of the data it contains because of
its complexity. This scenario is very common when dealing with big data samples.10 The
large size and the variety of data-formats these contain, in fact, makes it hard to check
their reliability and identify potential sources of mis-training and biases [115]. A third
circumstance occurs when the training process takes place in an open environment, such
as the web or the specific part of the world an autonomous robot or a self-driving car is
interacting with. In general, to determine in retrospect what data influence the training
process in an open environment is practically impossible. The risk that training a system
in an open environment produces undetectable biases in the data model that influence the
system behavior, therefore, is high. Finally, a fourth circumstance is when stakeholders
in charge of surveillance cannot make sense of the data because transformations applied
during the construction of the training samples bring them into an incomprehensible for-
mat. This scenario is very common when dealing with highly-complex architectures, like
deep neural networks (DNN). In several cases, the latter are trained by using low-level
features that lack any “meaning” for the user and whose reliability is therefore difficult to

8I.e., the number of elements it includes.
9I.e., the type of elements it includes and how they are related.

10For an overview of the different meanings of the term big data, see: [93].

3.3. THE OPACITY PROBLEM 103

be analysed and verified [19].

Opacity of the Training Engine

This form of access opacity concerns the capability of users to get epistemic access to
elements relevant to understanding the structure and functioning of the training engine
and how these influence the overall behaviour of the system. Since the latter can be
described at different LoAs, different relevant elements can be identified depending on
the LoA considered. At the FSL, the only relevant element is the specification of the
optimization method adopted (e.g., supervised vs. unsupervised learning, reinforcement
learning etc.). At the DSL, relevant elements include the typology of target function and
the heuristic method selected to minimize/maximize it. At the ASL, they include different
details of the various routines and sub-routines that allow the machine to practically
solve the intended optimization task. These include, for example, procedural techniques
to avoid local minima and ensuring that the training terminates only when the global
minimum is reached. At the AIL, relevant elements include the specific functions of the
program adopted to implement routines and sub-routines, as well as the details concerning
the strategies adopted to allocate resources and ensure the feasibility of the implemented
procedure. Finally, at the AEL, relevant elements include the various mechanical/electrical
components that allow the physical machine to execute the program that implements the
procedure solving the intended optimization task.

The various LoAs provide different fine-grained descriptions of the engine’s structure
and functioning, which may be suitable and relevant for some users and purposes but not
for others. For example, consider a data analyst interested in checking a given ML system’s
training engine to decide whether it can be suitable for a given task of interest (e.g., risk
prediction). Likely, the analyst will be interested only in “high-level” details, such as,
for example, the kind of loss-function involved and the heuristics adopted to minimize
it (DSL), while they will be probably consider irrelevant “low-level” details concerning
implementations and executions. Differently, a computer scientist checking the reliability
of the training engine will probably be interested in a more fine-grained description that
may also include details about the algorithms (ADL), the programs (AIL), and even the
hardware (AEL).

The relevance that a certain LoA of the engine has for a user’s purposes plays a
fundamental role in determining whether and to what extent the training engine will
eventually result opaque to that user. In general, we can say that a training engine E is
access-opaque (to a certain degree) for a given user u if and only if u has limited epistemic
access to the LoAs of E suitable for u’s cognitive skills and relevant to u’s purposes.

104 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

Opacity of the Learned Model

This form of access opacity concerns the capability of users to get epistemic access to
elements relevant to understanding the structure and functioning of the optimized com-
putational model resulting from the process of training. As for the opacity of training
engine, the opacity of the learned model can occur in different forms, and for different
reasons, depending on the LoA considered.

At the FSL, opacity can occur for two maior reasons. First, it can occur because the
users have only a partial knowledge of the joint probability distribution P (X1, . . . , Xn, Y)
that described the intended I/O behaviour of the system, either because this is intention-
ally hidden or difficult to be reconstructed by the user. Second, it can occur because of
the high-complexity of P (X1, . . . , Xn, Y), i.e., the high number of variables X1, . . . , Xn

involved and the difficulty to decompose P (X1, . . . , Xn, Y) into simpler joint distributions
P (Xi, Y) (with 0 ≤ i ≤ n) displaying the dependencies between single features Xi of the
input and the system’s outcomes. At the DSL, opacity is generally due to the complexity
of the model’s design, which depends on the incredibly high number of hyper-parameters,
parameters, and the non-linear relations among them. On one hand, such complexity
makes it difficult for users to get a unitary picture of the model’s design, as it happens
with simple models, while, on the other hand, it prevents users to figure out what relevant
causal role the various elements of the model’s design play in the overall I/O behavior of
the system.

Finally, different forms of access-opacity of the learned model can be identified at lower
LoAs. The latter, however, are not peculiar of ML models and can be identified in all
kinds of computational artifacts. For this reason, we skip their discussion here referring
the interested reader to existing texts on the topic of opacity in computational models,
such as [86, 56, 34, 13].

3.3.2 Link Opacity
Link opacity concerns the use of ML systems to model phenomena in scientific research.
It occurs when the model learned by a given ML system conveys inadequate or insufficient
information about the elements that are relevant for explaining, predicting, and controlling
the target-phenomenon the model aims to represent. We call this form of opacity ‘link
opacity’ to emphasise the fact that it undermines users’ ability to establish a link between
the model and its target-phenomenon. Stated otherwise, it undermines users’ ability
to establish whether a model is an ‘actual’ representation of the target phenomenon or
just a possible one. In this regard, the notion of ‘link-opacity’ resembles that of ‘link-
uncertainty’ introduced by Sullivan, which concerns the extent “to which [a ML] model
fails to be empirically supported and adequately linked to the target phenomena” [153,

3.3. THE OPACITY PROBLEM 105

p. 1].
In general, ML systems are very good at extracting information from large amounts

of data and generating highly accurate predictive models without the necessity of back-
ground knowledge or human intuition. This ability confers them a clear advantage over
more traditional tools in the study of highly complex phenomena (e.g., the fluctuations in
financial markets in economics or gene regulation in biology) that represent the target of
much contemporary science. For this reason, these systems have quickly spread in several
sectors of scientific research, leading to a progressive replacement of the standard scientific
methodology11 with a data-centric approach based on the collection and the AI-supported
analysis of observational data [108].

As we have recently argued in [61, 63], we can distinguish between two different kinds
of data-centric approaches to scientific research: (i) a data-informed approach, which pre-
serves the classical models and ways of scientific explanation despite the intensive use of
ML systems to perform statistical analyses, and (ii) a fully data-driven approach charac-
terized by the replacement of classical “exlanatory” models with the mere predictive ones
generated by ML algorithms. While traditionally scientific models represent causal path-
ways, mechanisms, and laws governing target-phenomena, ML models are nothing more
than phenomenological models, i.e., representations of the statistical dependencies between
observable features of target-phenomena. Hence, although being powerful from a predic-
tive point of view, ML models are often unable to provide sufficient information to explain
why the target phenomena occur and to figure out ways of controlling them [11]. This
point highlights a huge epistemic limitation of the fully data-driven approach. Regardless
of whether one takes a realistic or instrumentalist stance towards scientific knowledge, in
fact, scientific understanding requires more than mere statistical associations. It needs
information about the causes of the phenomena, the mechanisms that produce them, and
the laws that regulate their functioning. The lack of this type of information impedes our
ability to explain, intervene on, and control the target phenomena, and thus to achieve
what De Regt refers to as pragmatic understanding [47]. For this reason, when a ML
system is unable to provide scientists with information that is essential for the pragmatic
understanding of a phenomenon, they tend to consider it as opaque.

Notice that, similar to access opacity, link opacity also occurs in different forms as
the elements that are relevant for explaining, predicting, and controlling a given target
phenomenon vary depending on the nature of the phenomenon under consideration. In
general, we may identify three main forms of link-opacity, each related with one of the
three fundamental notions that were previously mentioned: cause, mechanism and law.
We refer to these forms, respectively, as causal opacity, opacity of the mechanisms and
opacity of the laws.

11By standard scientific methodology we mean the approach based on the formulation and the experi-
mental evaluation of hypotheses explaining the observable facts.

106 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

Causal Opacity

Causal opacity is a direct consequence of the fact that ML systems are unable reconstruct
the causal pathways leading to the occurrence of target-phenomena they analyse. As
argued in [47], the identification of the causal pathways is essential for the understanding
of target-phenomena because it allows scientists:

• to distinguish between the variables necessary and sufficient for the occurrence of
the target phenomenon from those that are merely related to it,

• to predict the effects generated by external interventions and, therefore, to under-
stand how to control the target phenomenon by acting on the variables related to
it,

• to distinguish between genuine statistical correlations,12 grounded on the existence
of actual cause-effect links, and spurious ones, which are the by-product of statistical
paradoxes13.

The ability of computational systems to recognize causal pathways strictly depends on
their ability “to choreograph a parsimonious and modular representation of their environ-
ment, interrogate that representation, distort it by acts of imagination and finally answer
‘What if?’ kind of questions” [126, p.1]. These, in particular, may be either statistical,
interventional, or counterfactual questions. The former concern the statistical regularities
observed in the naked data and have the form “what if I see x?”; for example: “what if
I see salt in the water?”. The second one concern the consequences of intervention and
has the form “what if I do x?”; for example: “what if I add salt to the water?”. Finally,
the latter concern some counterfactual state of affairs and have the form “what if I had
done x?”, for example: “what if I had added salt to the water?”, or the contrastive form
“what if I had done y instead of x?”; for example: “what if I had added sugar instead
of salt?”. Causal information is classifiable in terms of the kind of what-if questions it
can answer. The classification generates a three-layers hierarchy where “questions at the
level i (with i = 1, 2, 3) can be answered if and only if information from level j ≥ i is
available” [126, p.1]. The three layers are respectively the association layer (AL), the
intervention layer (IL) and the counterfactual layer (CL). Information about statistical
regularities is enough for answering questions at the AL and can be inferred directly from
the observational data using conditional expectation. At the IL the information requested
no longer concerns only what we observe but what we can observe if we perform a certain

12We do not mean here that a statistical correlation between a variable x and a phenomenon y is genuine
if and only if x is a (proximal or distal) cause of y. Instead, the correlation between x and y is genuine
even if x is related to y because of a common cause or effect.

13A famous example is the well-known Simpson’s paradox, see [127, 128].

3.3. THE OPACITY PROBLEM 107

action. At the CL, it concerns what we would have observed if a certain condition that
did not occur had occurred. We can infer this information by using particular inference
engines called Structural Causal Models (SCM), which, however, require more than naked
data. In particular, they require some background hypotheses encoded in the form of a
causal graph and a set of structural equations14. Available ML systems usually work at
the AL. They do not possess imagination and thus cannot figure out hypotheses beyond
the observed data. This inability prevents them from learning causal models and is the
reason of their link opacity.

Mechanisms Opacity

In many fields of science, it is common to understand phenomena in terms of mechanisms,
i.e., “entities and activities organized in such a way that they are responsible for the phe-
nomenon.” [89, p. 120]. The reason is that thinking in terms of mechanisms presents
some clear epistemological advantages. It permits to manage with complexity and lead
highly-complex phenomena back to simpler, more fundamental facts [12]. It allows us to
provide an explanation by stating a description, as “[by] providing a description of the
mechanism responsible for a phenomenon, one provides an explanation for why that par-
ticular phenomenon occurs and why it has the proprieties it does” [77, p.217]. Finally,
it supports generalization because mechanisms “work in the same or similar way under
the same or similar conditions” [33, p.19]. Formulating a mechanistic explanation, how-
ever, needs much more than mere observational data. It requires to hypothesize what
simpler, more fundamental entities and activities may produce the target phenomenon by
interacting with one another. The reason is that mechanistic thinking relies on heuris-
tics that are very different from those used to train ML systems. Actually, the nature of
these heuristics is a matter of debate. In [12], Bechtel and Richardson identify two mains
reasoning strategies followed by scientists to identify mechanisms’ structure and function-
ing, which they name decomposition and localization. Roughly, the former consists of
decomposing the overall phenomenon into low-level activities while the latter consists of
localizing these activities in components of the system identified as responsible for pro-
ducing the target phenomenon. A different account of mechanistic reasoning is proposed
in [33]. According to these authors, mechanistic reasoning is a hypothesis-driven practice
that combines scientific exploration, hypotheses-formulation and experimental manipula-
tion. Loosely speaking, the search for mechanisms is an iterative process consisting of the
iterated application of specific reasoning and experimental techniques that allow scientists
to refine a raw hypothesis about the mechanism’s structure and functioning, generally in
the form of a sketch representation full of black boxes, until obtaining a sufficiently clear
and detailed description. Regardless of the details, in both cases, the information neces-

14For more details on this topic we refer to [125, 127, 128, 126].

108 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

sary to understand a mechanism requires hypotheses that cannot be inferred from mere
observational data but need a fundamental contribution of imagination. Since the heuris-
tics implemented in AI systems are unable to formulate this type of hypotheses, these
systems cannot generate mechanistic explanations, and are eventually to be considered
link-opaque.

Laws Opacity

Since its birth, discovering the laws that govern phenomena has represented a fundamental
aim of science. From an epistemological point of view, scientific laws are essential to the
understanding of phenomena. They allow scientists to explain why phenomena occur in a
way rather than another, to predict under what circumstances they occurs, and to figure
out how to act for controlling their occurrence. Philosophers of science have long debated
the nature of laws, taking sides on two opposing positions: the instrumentalist and the
realist.15 A detailed discussion of these specific positions is beyond the scope of this
work. Here we simply note that, in scientific practice, the term ‘scientific law’ may refer
to different things. In some cases, ‘law’ denote sentences that describe mere patterns of
regularities between observable variables. An example is Charles’ law in thermodynamics,
which shows the relationship between the volume and the temperature of a gas. These
kinds of laws do not substantially differ from the functions learned by ML algorithms
and, indeed, a ML system might easily infer Charles’ law by analyzing a sufficiently large
sample of data. In other cases, a law is instead a description of the structural relationships
between observable variables and variables that:

• denote unobservable entities, whose existence scientists theoretically hypothesize but
cannot statistically infer from observational data,

• scientists consider the main causes of the target class of phenomena.

Gauss’s law, which relates the electric charge and the magnitude of the electric field16, is
an example of the latter.

Both types of law coexist in scientific practice, but scientists tend to consider laws of
the second type epistemologically more relevant. Interestingly, the reason is not that they
believe in the actual existence of unobservable entities, but because these laws allows them
to bring the observed phenomena back into a single representation of reality and figure
out how to control their occurrence. The epistemological value of these laws is therefore
independent from the ‘realists vs instrumentalists’ debate and have pragmatical roots.

15On the debate about instrumentalists and realists, see [132].
16The electric field is an unobservable entity theoretically hypothesized to explain remote interaction

among particles.

3.3. THE OPACITY PROBLEM 109

For this reason, a science including only the first type of laws is very difficult, and maybe
impossible, to imagine.

Unfortunately for ML systems, the identification of laws of the second kind is a purely
theoretical work. It relies on the human mind’s ability to go beyond the observable
phenomena and figure out in what the supposed basic structure of reality might consist.
ML systems do not possess this ability, and as a result scientists may regard them as
opaque.

3.3.3 Semantic Opacity
In information theory, it is common to distinguish between a structural and semantic
aspect of information. The former concerns the mathematical and physical properties
of information, whereas the latter concerns its meaning. In the case of ML systems,
the structural aspect coincides with the properties of the model that the system learns
from data, which can be specified at different LoAs as explained in Section 3.3.1. These
properties are relevant for understanding how the learned model works and, therefore,
are connected with the problem of access opacity mentioned above. Stated otherwise,
the opacity of the structural aspects of information is a form of access-opacity and, more
specifically, an occurrence of access-opacity of the learned model.

Differently from structural aspects, semantic aspects coincide with the potential se-
mantic contents of the information stored by the learned model. Although the latter may
be not directly relevant for determining the functioning of the model, their understanding
is fundamental for users to grasp and interpret the information that the system learns
and manipulates. In fact, it happens that if the format used to store and manipulate
information prevents users from giving it a meaningful interpretation, then users deem
the system opaque. This sense of “opacity”, however, cannot be included into any of the
kinds described so far. It represents a new form of opacity that we call semantic opacity.

Semantic opacity can occur in three different circumstances. First, when the learned
model lacks a clear, well-defined semantic interpretation that allows users to make sense
of both the information it stores and the inferences it performs. Second, it may take place
when a semantic for the learned model is available but it is not comprehensible because
of the users’ limited cognitive resources, inadequate background knowledge, or lack of
relevant epistemic skills. Third, it can arise when the semantics of the learned model
provides the stored information with a meaning that is inadequate for the context.

In what follows we distinguish between two forms of semantic opacity. The first one
concerns the content of the information learned by a ML system, whereas the second one
concerns the inferences it uses to manipulate such information. We refer to these two
distinct forms of semantic opacity as, respectively, content opacity and inferential opacity
respectively.

110 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

(a) System A
(b) System B

Figure 3.3: Two expert systems

Content Opacity

This form of opacity occurs when the format used by an ML system to store information
prevents users from grasping its semantic content and using it for their purposes. Notice
that each type of ML system adopts a peculiar format to represent the information learned
from the data. In general, the choice of the format affects the users’ ability to provide the
stored information with an interpretation that allows them to grasp its semantic content.

By way of example, let us compare the two expert systems A and B reported in the
Figures 3.3a and 3.3b.

A is a (very trivial) example of rules-based system that can be generated via inductive
logic-programming and used in the context of medical decision-making to predict whether
a patient will suffer from colour blindness. In ML models such as A, the information
learned from data is stored by means of logical sentences stemming from a given formal
language that are called hypotheses, e.g.:

colour_blind(x)← has_mutation_on_X(x) ∧male(x)

Hypotheses are collected in the knowledge base (KB) and manipulated through iter-
ative applications of the rules included in the inference engine (IE) in order to generate
predictive outcomes. It is easy to see how a standard Tarskian semantics, which maps the
syntactic elements (i.e., predicates, variables, quantifiers, Boolean connectives) to features
relevant to the context (i.e., genetic mutations, sex, disease, patients), may easily provide
the information stored in the KB with a meaningful interpretation that allow users to
grasp its semantic content.

Things are different with a ML model such as B, which stores the information learned
from data by means of the “weights”, i.e., the numerical parameters connecting the various
nodes in the network. Providing these parameters with a clear semantic interpretation is
difficult as they usually have a mere statistical instrumental meaning. That is, their
values have nothing to do with the phenomenon the model represents, they are simply

3.4. EXPLAINABLE ARTIFICIAL INTELLIGENCE 111

those values that allow the network to minimize the prediction error [11].

Inferential Opacity

This form of opacity occurs when the format of the inferences used by a ML system
to manipulate information prevents users from making sense of the reasoning paths it
follows. As for the format used to represent the information learned from the data, each
type of ML system uses a specific kind of inferences to manipulate information. For
instance, a rules-based system such as A in the example above manipulates information
by applying the rules included in the IE to the hypotheses stored in the KB. Conversely,
a DNN such as B manipulates the information using analytical calculations that merge
input data and learned parameters. Unfortunately, it is not always possible to provide
inferences with an interpretation meaningful for the context of use that allows users to
reconstruct the reasoning pathways followed by the system in humanly understandable
terms. In some cases, inferences have a purely instrumental value, i.e., they allow the
system to generate accurate predictive outcomes, but lack of any meaningful semantic
interpretation. In other cases, they may posses a well-defined and meaningful semantics
that, however, is incomprehensible to a stakeholder because of their limited cognitive
resources, their inadequate background knowledge or their lack of fundamental skills. In
all these circumstances, we can say that the inferences performed by the system under
consideration make the latter “semantically” opaque.

3.4 Explainable Artificial Intelligence
Explainable Artificial Intelligence is a recently born and thriving area of research that is
generating increasing interest both within and outside the AI community. Despite this,
it does not appear as a structured research field, with a well-defined methodology, but
more as a miscellany of different methods and techniques, each one with its own strategy
to counter opacity and make ML systems’ behaviours and outcomes more “explainable”
to users [1, 76, 8, 121]. For the purposes of this work, we restrict our focus only to a
specific class of XAI methods, so-called post-hoc explanation methods (PEMs). In very
general terms, a PEM is a procedure that takes an existing target (opaque) ML system
and generates a post-hoc explanation of either its behaviour or some of its outcomes. XAI
literature recognizes the existence of two main classes of PEMs [121]:

Features Selection Methods (FSMs). This class of methods includes algorithms and
procedures to identify the features in the input space of the target system that are chiefly
responsible for a given outcome. In general, these methods are considered particularly

112 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

useful to reduce the complexity of the system’s input space and make easier for humans to
identify the data responsible for selected outcomes. There exists a wide variety of FSMs
adopted in XAI (for a survey, see [76]). The simplest FSMs consist of assigning a numerical
score to features that highlight their relevance for a given prediction. Saliency masks and
heath-maps consist of visual representations highlighting the areas of the input space that
mainly contribute to a given prediction. For this reason, they are particularly suitable for
tasks related to image classifications. Sensitivity analysis seeks to understand the relevance
of specific features by locally perturbing the input space around a feature and observing to
what extent it affects the predictive outcomes. Partial dependence and accumulated local
effects plots show the marginal effect that singular features have on a specific outcome of
the ML system [72]. In general, they are particularly useful for understanding whether
the dependency between the feature and the output is linear, monotonic or more complex.
Functional decomposition, finally, includes a class of methods to deconstruct the usually
high-dimensional functions learned by machine learning algorithms and express them as
a sum of weighted individual features that can be easily visualised by humans [121]

Surrogate Models (SMs). These methods rely on learning post-hoc transparent models
that emulate the I/O behaviour of the target system. Explanations provided by surrogate
models can be of two kinds:

• Global explanations concern the overall strucuture and functioning of a given target-
system. They typically consist of surrogate models that emulate globally the prop-
erties and behaviour of the target-system and are easily understandable by users.

• Local explanations concern a single outcome of the target-system. They typically
consist of surrogate models that emulate the properties and behaviour of the target-
system locally on a defined neighborhood of the concerned I/O pair.

Typically, surrogate models are trained with supervised learning methods applied to a
synthetic training sample including examples of the I/O behaviours of the target system.
That is, given a target-system M whose I/O behaviour is described by the function fM

W :
X → Y , a synthetic training sample is a finite collections of pairs 〈X, fM

W (X)〉, X ∈ X .
For global explanations, this collection includes examples for each input X ∈ X ; for
local explanations, it includes only a local neighbourhood of the outcome of interest.
Different ML architectures have been used as surrogate models in XAI literature: linear
models [140], decision trees [124], formal arguments [169], logic programs learned through
inductive logic programming [37], logical circuits [36], and probabilistic circuits [176].

3.4. EXPLAINABLE ARTIFICIAL INTELLIGENCE 113

3.4.1 Reliability Properties of post-hoc Explanations
In the following sections, we focus specifically on post-hoc explanation methods based
on surrogate models. Our purpose, in particular, is to define a method for verifying
that post-hoc explanations conveyed by surrogate models are effective and reliable. To
this aim, we apply methods and techniques from probabilistic model checking introduced
in the previous chapters. Our starting point consists in identifying (and “informally”
defining) a set of desirable properties that a surrogate model should satisfy in order to
provide effective and reliable explanations. We refer to the latter collectively as explanation
reliability properties.

In general, three explanation reliability properties are usually mentioned in XAI liter-
ature [110, 75, 5, 143, 70, 91]:

• Transparency. This property is usually defined as a measure of “to what extent
the properties and behaviours of a computational system are accessible to its human
users” [76, p.6]. In this regard, transparency can be seen the “dual” of access
opacity we analysed in Section 3.3. Like the latter, transparency is a relational
property that depends on both the structure of a computational system and the
epistemic abilities of its users. It is also a “fuzzy” property insofar systems are
rarely fully opaque/transparent to a users, while they are typically transparent to
some degree, which depends on how much the users is able to get access to the
properties and behaviours of the system itself. In this regard, notice that it is not
reasonable to require a surrogate model to be completely transparent to provide
effective explanations. What is required, more typically, is that the surrogate model
is more transparent than the target ML system it aims to explain. Intuitively, we
can say, the more a surrogate model is transparent to a given user with respect to
the target system it aims to explain, the more effective will be its explanations. This
intuition will be exploited in the next sections to provide a more formal definition
of transparency for surrogate models.

• Accuracy. This property is usually defined as a measure of to what extent a
surrogate model is able to accurately imitate the properties and behaviour of the
opaque target-system [76, p. 7]. In XAI literature, there exist a variety of methods
to measure the accuracy of surrogate models, like the accuracy-score or the F1-score
(see, [110, 75]). All these methods are eventually based on output fidelity, i.e., on a
measure of the differences between the observable outcomes of the surrogate model
and those of the target-system on a fixed observable in a given experimental setting.
Output fidelity is thus an experimental measure, which is obtained by iteratively
running both the target-system and the surrogate model and thus confronting their
outcomes. In this regard, output fidelity is limited both by the fact that it focuses

114 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

on just I/O behaviours and that its reliability strictly depends on the number of
runs executed in the experimental setting. Here we propose a different strategy
to measure accuracy based on a state-by-state full exploration of both the target-
system and the surrogate model and on a subsequent comparison of their properties,
as better detailed in Section 3.5.2.

• Trustworthiness. Differently from accuracy, it not very clear from AI literature
what should mean for a model to be trustworthy. The debate on trustworthy AI is
wide and full of many different definitions for this property. Some of them involve
social and legal dimensions (e.g., [4]), hence locating trustworthiness at least partly
outside the realm of formal properties that can be checked automatically. Others
(e.g., [65]) strictly relates the notion of trustworthiness to that of computational
reliability [56, 57], according to which a computational process is reliable if and
only if it produces correct outputs most of the time. Following this second line of
thought, we introduce here a “minimal”17 notion of trustworhtiness specific for XAI-
explanations of ML systems’ behaviours based on surrogate models. According to
this definition, the explanation of a behaviour b (of an opaque ML target-system
to be explained) provided via a surrogate model is trustworthy if and only if, given
that the target-system exhibits the behaviour b, then the surrogate model is likely
to exhibit the same behaviour. This quite intuitive characterization is thus made
more rigorous via formally defining trustworthiness as the probability that a surrogate
model exhibits behaviour b given that the target-system exhibits b. In what follows,
we will show how this probability can be further characterized and computed via
probabilistic model checking instruments and methods.

The three characterizations of transparency, accuracy, and trustworthiness above in-
troduced are informal. Our next step is to introduce a proper mathematical framework
in which to define them more rigorously. First of all, we note that all three properties are
relational, i.e., they are not satisfied by a system but by a relation between two systems,
or between a system and one or more of its users. In this regard, canonical Markovian
frameworks introduced in Chapter 1 and commonly used in probabilistic model checking
are not very suitable, as they are mostly conceived to manage “intrinsic” rather than rela-
tion properties. More suitable are instead multi-agent frameworks (see, Sections 2.11 and
2.10) that allow to represent and analyse specific relations holding between different kinds
of agents. In our framework, we have to account for three different kinds of agents:

(i) the opaque ML target-system to be explained (henceforth, target-system),
17i.e., a notion that can be enriched and extended in future works to account for the on-going develop-

ments in the debate.

3.4. EXPLAINABLE ARTIFICIAL INTELLIGENCE 115

(ii) the surrogate models explaining it, and

(iii) the users interacting with both the target-system and the surrogate models and to
whom explanations are directed.

We do not consider all the components of these agents, but only those which are relevant
to determine properties of transparency, accuracy and trustworthiness. Both the target-
system and the surrogate models are kinds of ML systems, their general architecture
therefore includes three main components (see, Section 3.2): (i) the training sample, (ii)
the training engine, and (iii) the learned model. Here, we focus only on the learned model,
which is responsible for the I/O behaviour of the trained system. This choice is motivated
by the fact that properties of accuracy and trustworthiness are typically measured on
already trained target-systems and surrogate models; details on the training sample and
the process of training are therefore irrelevant and can be omitted. Furthermore, we
focus specifically on high-level properties of systems, notably related to the functional
and design specification levels, while we do not consider properties characteristic of lower
levels of abstraction. On the one hand, this is a methodological choice related to intrinsic
limitations of the model checking techniques we adopt. As explained more in details in
Chapter 2, standard probabilistic model checking relies on formal-mathematical models of
computational systems that focus on design specifications and abstract away from details
concerning implementations and executions. This makes model checking more adapt to
verify functional and design properties. On the other hand, we choose to focus specifically
on functional and design specification levels because these are the most relevant for the
majority of XAI applications. In this regard, notice that similarities between target-
systems and their surrogate models typically concern only the functional specification
level (i.e., the I/O mappings), while they already differ quite a lot at the level of design.
At the same time, contrary to other XAI techniques like inspection methods (see, [1]),
which are conceived to get insights about the low-level procedures governing opaque ML
systems, post-hoc explanation methods are mostly conceived to work at the FSL, enabling
users to visualize and understand the information included in the (highly-complex) joint
distribution P (X1, . . . , Xn, Y).

In our framework, both the target-system and the surrogate models are modelled by
means of discrete-time Markov chains. This is a quite standard choice motivated by
the fact that both are kinds of stochastic computational systems, which are commonly
represented in probabilistic model checking via finite Markov models like discrete-time
Markov chains. Concerning users, what is relevant of them is their ability “to get epistemic
access” to relevant behaviour of the systems. We can model this ability through epistemic
accessibility relations usually involved in epistemic logic. In our case, such accessibility
relations will be defined over the possible states of the target-system, respectively, the
surrogate models of interest.

116 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

Based on this framework, we introduce specific formalizations of the explanatory relia-
bility properties above mentioned. As in [158], properties of accuracy and trustworthiness
are here defined as two different measures of the “distance” between the formal prop-
erties that the target-system and its surrogate models satisfy locally on a given state.
Transparency is defined as a normalized measure of the number of states that satisfy a
certain property of interest epistemically accessible for a given user (or group of users)
with respect to the total number of states in the system that satisfy that property. We
then include a fourth property of interest that summarizes all the others and that we
call explanatory power. The latter will be defined as a normalized measure of how much
transparency, accuracy and trustworthiness of a given surrogate model contribute to make
the explanation it provides suitable for a given user.

To formulate degrees of transparency, accuracy, trustworthiness, and explanatory power,
we introduce a new language that extends standard PCTL with appropriate operators.
Furthermore, we develop specific algorithms to check whether models formalized in our
framework satisfy explanation reliability properties specified by means of the new logic we
introduce. These algorithms will be obtained as extensions of the standard model-checking
procedures for PCTL introduced in Chapter 2.

3.5 A Multi-Agent Semantics for Explanation Relia-
bility Properties

Let us consider a multi-agent structure including a finite non-empty set A of models and
a finite non-empty set U of users. We denote generic elements of the set of models A
by lower case letters i, j, These can be either learned models generated by a given
target-system (henceforth, target-models), or surrogate-models, i.e., models that are used
to post-hoc explain the behaviour of the target-system to the users. Notice that, the
notation i, j ∈ A does not explicitly distinguish among target and surrogate models. The
reason is that whether a certain model is a target or a surrogate model depends on the
specific context of application. For example, we might use a Bayesian network either as a
surrogate model to explain the behaviour of a deep neural network or as a target model
whose behaviour can be explained using a probabilistic rules-based system. The models
i ∈ A are formally specified via labelled DTMCs, i.e., i := 〈S, T i, AP i, li〉 for each i ∈ A.
For the sake of simplicity, we assume that the state space S is the same for all the i ∈ A,
while the transition matrix T i, the set of labels AP i and the labelling li are local to each
i ∈ A. On the other hand, we denote by u a generic element of the set of users U. The
abilities of users u ∈ U to get epistemic access to the various alternative states of the
models are specified in terms of epistemic accessibility relations ∼u between pairs of states
s, s′ ∈ S × S. We can read informally the notation s ∼u s′ as saying “the state s′ is

3.5. A MULTI-AGENT SEMANTICS FOR EXPLANATION RELIABILITY PROPERTIES117

epistemically accessible from s for agent u”. Furthermore, we associate to each u ∈ U
a vector of weights [x, y, z]u whose elements x, y and z are values in the interval [0, 1]
such that x+ y + z = 1. These weights are used to model the explanatory relevance that
user u attributes to, respectively, transparency, accuracy and trustworhtiness of surrogate
models. Notice that by explanatory relevance we mean a measure of how much relevant
the user u considers each one of those three properties with respect to the others for the
task of explaining the behaviour of opaque models. By convention, we assume that the first
element x ∈ [x, y, z] denotes the explanatory relevance of transparency, the second element
y ∈ [x, y, z] that of accuracy, and the third element z ∈ [x, y, z] that of trustworthiness.
For example, if we associate the user u with the vector [0.2, 0.9, 0.9]u, we specify that,
according to u, accuracy and trustworhtiness are really more relevant for explaining the
behaviour of a target-model than transparency (0.9 vs. 0.2).

3.5.1 Ex-PCTL Syntax
We now introduce the syntax of Explanatory Probabilistic Computation Tree Logic (Ex-
PCTL), which can be used to specify transparency, accuracy, trustworhtiness and ex-
planatory power of surrogate models against behaviours and properties of target models
for specific single or groups of users. Models’ properties and behaviours are specified in
this logic via standard PCTL formulae.

Definition 52 (Ex-PCTL Syntax)

A := {i, j, . . . }
U := {u1, u2, . . . }
∇ :=<, ≤, =, ≥, >

φ := > | p | ¬φ | φ1 ∧ φ2 | P∇bψ

ψ :=©φ | φ1

⋃
φ2 | φ1

≤t⋃
φ2

θ := V i,u
∇hφ | CV

i,u
∇hφ | DV

i,u
∇hφ

α := Ai,j
∇hφ | T

i,j
∇hφ |

ε := Exi,j,u∇h φ | CEx
i,j,Γ
∇h φ | DEx

i,j,Γ
∇h φ

Superscript indices of formulae denote either models i ∈ A, single users u ∈ U, or
groups of users Γ ⊆ U. The notation∇ is a meta-variable for <, ≤, =, ≥ or >. Parameters
b and h denote real numbers ranging in the interval [0, 1] and modeling probabilities.
Formulae φ and ψ include usual PCTL formulae with their standard reading (see, Section
2.7.1) and specifying characteristic properties and behaviours of models i ∈ A.

118 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

The θ-formulae include different operators to specify degrees of transparency of models
for a single user u ∈ U or a group of users Γ ⊆ U. Their informal readings are as follows:

• V i,u
∇hφ: the degree of transparency of model i against property φ according to user u

is less/equal/greater than h;

• CV i,Γ
∇hφ: the common degree of transparency of model i against property φ according

to the group of users Γ ⊆ U is less/equal/greater than h;

• DV i,Γ
∇hφ: the distributed degree of transparency of model i against property φ ac-

cording to the group of users Γ ⊆ U is less/equal/greater than h.

The α-formulae include different operators to specify degree of accuracy and trust-
worhtiness of a surrogate model i ∈ A explaining a property φ of an opaque target-model
j ∈ A. Their informal reading is as follows:

• Ai,j
∇hφ: Surrogate model i explains property φ of model j with a degree of accuracy

less/equal/greater than h;

• T i,j
∇hφ: Surrogate model i explains property φ of model j with a degree of trustwor-

thiness less/equal/greater than h.

Finally, the-ε formulae include different operators to represent degrees of explanatory
power of a surrogate model i ∈ A against property φ of a target-model j ∈ A computed
either for a single user u ∈ U or for a group of users Γ ⊆ U. Their informal reading is as
follows:

• Exi,j,u∇h φ: The degree of explanatory power of surrogate model i against property φ
of target-model j according to user u is less/equal/greater than h;

• CExi,j,Γ∇h φ: The common degree of explanatory power of surrogate model i against
property φ of target-model j according to the group of users Γ is less/equal/greater
than h;

• DExi,j,Γ∇h φ: The distributed degree of explanatory power of surrogate model i against
property φ of target-model j according to the group of users Γ is less/equal/greater
than h.

3.5.2 Ex-PCTL Semantics
The satisfiability conditions for Ex-PCTL formulae are defined on a multi-agent structure
that we call target-surrogate-users systems (TSU, for short) and defined as follows:

3.5. A MULTI-AGENT SEMANTICS FOR EXPLANATION RELIABILITY PROPERTIES119

Definition 53 (Target-surrogate-users system) A TUS is a tuple:

MTUS := 〈S, A, U, {T i}i∈A,
⋃
i∈A

AP i, {li}i∈A, {∼u}u∈U, {[x, y, z]u}u∈U〉

including a finite non-empty set of states S, a finite non-empty set of models A, a finite
non-empty set of users U, a family {T i}i∈A of transition matrices T i : S ×S 7→ [0, 1], one
for each model i ∈ A, a set of labels

⋃
i∈AAP

i obtained as the union set of all the sets
of labels AP i of each model i ∈ A, a family {li}i∈A of labelling functions li : S 7→ 2AP i,
one for each model i ∈ A, a family {∼u}u∈U of epistemic accessibility relations, one for
each user u ∈ U, and a family {[x, y, z]u}u∈U of vectors of weights to model explanatory
relevance of properties, one for each user u ∈ U.

3.5.3 Satisfiability of φ and ψ-formulae

φ-formulae specify states-properties of either target or surrogate models i ∈ A. Their
satisfiability conditions are hence defined with respect to a model i ∈ A and a state s ∈ S.
Instead, ψ-formulae specify paths-properties of models, i.e., properties concerning possible
evolutions across time of a model i ∈ A. Their satisfiability conditions are defined with
respect to a model i ∈ A and a path π ∈ Π. In general, satisfiability conditions for φ- and
ψ-formulae are analogous to those of standard PCTL reported in Section 2.7.2.

Definition 54 (Satisfiability of φ and ψ formulae) Given a model i ∈ A and a state
s ∈ S, respectively, a path π ∈ Π, the following conditions hold:

i, s |= >, ∀s ∈ S
i, s |= p iff p ∈ li(s)
i, s |= φ1 ∧ φ2 iff i, s |=i φ1 and i, s |= φ2

i, s |= ¬φ iff i, s 6|= φ
i, π |=©φ iff i, π(1) |= φ

i, π |= φ1

⋃≤t φ2 iff ∃τ ≤ t : i, π(τ) |= φ2 and ∀τ ′ : 0 ≤ τ ′ < τ, i, π(τ ′) |= φ1

i, π |= φ1

⋃
φ2 iff ∃τ ≥ 0 : i, π(τ) |= φ2 and ∀τ ′ : 0 ≤ τ ′ < τ, i, π(τ ′) |= φ1

i, s |= P∇bψ iff P (i, s |= ψ)∇b ,

where P (i, s |= ψ) denotes the probability that a path π originating in s (i.e., such that
π(0) = s) satisfies ψ according to the transition matrix T i. The methods to compute this
probability are the same used in standard PCTL to compute P (s |= ψ), see Section 2.7.3.

120 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

3.5.4 Satisfiability of θ-formulae
We interpret the degree of transparency of a model i ∈ A against property φ for an user
u ∈ U in function of an initial state s ∈ S, here denoted by V i,u

φ (s), as a measure of the
ability of u to gain epistemic access from s ∈ S to the various states of i satisfying φ:

V u
φ (s) :=

{
|Sati(φ)∩eq∼

u
(s)}|

|Sati(φ)| if Sati(φ) 6= ∅ ,
1 otherwise ,

(3.1)

where Sati(φ) := {s ∈ S : i, s |= φ} and eq∼
u
(s) := {s′ ∈ S : s ∼u s′}.

In other words, the degree of transparency is computed as the ratio between the car-
dinality of the set of states of i that satisfy φ and are epistemically accessible from s ∈ S
and the cardinality of the whole set of states of i that satisfy φ. Clearly, when all the
states that satisfy φ are accessible, we have that V i,u

φ (s) = 1 and the model i is fully
transparent. In all the other cases, the higher the number of states satisfying φ that are
epistemically accessible, the higher the degree of transparency. A particular scenario is
when Sati(φ) = ∅. In this case, the model never satisfies the property of interest and
we assume, by convention, V u

φ (s) = 1. An appropriate satisfiability condition can now be
introduced as follows.

Definition 55 (Satisfiability of transparency formulae) Given a TUSMTUS, a model
i ∈ A, a user u ∈ U and a state s ∈ S the following condition holds:

MTUS, s |= V i,u
∇hφ iff V i,u

φ (s) ∇h (3.2)

For modeling common and distributed degrees of transparency, we introduce specific
epistemic accessibility relations for groups of users Γ ⊆ U, defined as follows:

• ∼Γ
C := it(

⋃
u∈Γ ∼u) where it denotes the iterative closure;

• ∼Γ
D:=

⋂
u∈Γ ∼u.

These definitions are analogous to common and distributed knowledge clauses used in
standard CTLK (see, Section 2.9). C ommon CV Γ,u

φ (s) and distributed DV Γ,u
φ (s) degrees

of transparency for groups of users Γ ⊆ U are accordingly defined as follows:

CV i,Γ
φ (s) :=

{
|Sati(φ)∩eq∼

Γ
C (s)}|

|Sati(φ)| if Sati(φ) 6= ∅ ,
1 otherwise ,

(3.3)

DV i,Γ
φ (s) :=

{
|Sati(φ)∩eq∼

Γ
D (s)}|

|Sati(φ)| if Sati(φ) 6= ∅ ,
1 otherwise .

(3.4)

3.5. A MULTI-AGENT SEMANTICS FOR EXPLANATION RELIABILITY PROPERTIES121

To conclude, let us define the satisfiability conditions for θ-formulae as follows.

Definition 56 (Satisfiability of θ formulae) Given a TUS MTUS, a model i ∈ A, a
group of users Γ ⊆ U and a state s ∈ S, the following conditions hold:

MTUS, s |= CV i,Γ
∇hφ iff CV Γ,i

φ (s) ∇h , (3.5)
MTUS, s |= DV i,Γ

∇hφ iff DV Γ,i
φ (s) ∇h . (3.6)

3.5.5 Satisfiability of α formulae

Accuracy

We interpret the degree of accuracy as a Jaccard index. Given two sets A and B, the
Jaccard index of A and B, denoted by J(A,B), is defined as:

J(A,B) :=
| A ∩B |
| A ∪B |

, (3.7)

when A∪B 6= ∅, and J(A,B) := 1 otherwise. Given a computational model i ∈ A and an
Ex-PCTL formula φ, we define Sati(φ) as the set of states s ∈ S such that i, s |= φ. Given
a state s ∈ S, we denote by Reachi(s) the set of all the states s′ ∈ S that are almost
surely reachable from s for the agent i ∈ A. A state s′ ∈ S is almost surely reachable from
another state s ∈ S according to an agent i ∈ A if and only if

(h)i{s′}(s) = 1 , (3.8)

where (h)i{s′}(s) is the hitting probability of the event {s′} computed through the transition
matrix T i as by Equation (1.8).

Given a property φ and an initial state s ∈ S, we denote by Φi(s) the set of states that
satisfy φ and are almost surely reachable from s by i, i.e.:

Φi(s) := Sati(φ) ∩Reachi(s) . (3.9)

Given two models i, j ∈ A such that i is a surrogate model and j is the opaque target
model to be explained, we define the degree of accuracy of surrogate model i in emulating
property φ of opaque target model j with respect to a given initial state s ∈ S, denoted
by Ai,j

φ (s) as follows:
Ai,j

φ (s) := J(Φi(s),Φj(s)) . (3.10)

The satisfiability conditions of Accuracy formulae is defined as follows:

122 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

Definition 57 (Satisfiability of accuracy formulae) Given a TUS MTUS, a surro-
gate model i ∈ A, a target model j ∈ A, and a state s ∈ S, the following condition
holds:

MTUS, s |= Ai,j
∇hφ iff Ai,j

φ (s) ∇h . (3.11)

Trustworthiness

We define trustworthiness as a probability. In particular, the degree of trustworthiness of
a surrogate model i ∈ A in emulating a property φ of a model j, denoted by T i,j

φ (s), is
defined as the probability that eventually j will reach a state satisfying φ, provided that
the surrogate model j surely reaches such a state, i.e.:

T i,j
φ (s) := P (Φj(s) | Φi(s)) . (3.12)

We compute this probability through the well-known counting-worlds technique (see [28])
under a classical interpretation of probability:

P (Φj(s) | Φi(s)) :=
| Φj(s) ∩ Φi(s) |
| Φi(s) |

, (3.13)

when Φi(s) 6= ∅ and P (Φj(s) | Φi(s)) = 1, by convention, otherwise. Satisfiability of
trustworthiness formulae is accordingly defined as follows.

Definition 58 (Satisfiability of trustworthiness formulae) Given a TUS MTUS, a
surrogate model i ∈ A, a target model j ∈ A, and a state s ∈ S, the following condition
holds:

MTUS, s |= T i,j
∇hφ iff P (ΦM(s) | Φe(s))∇h . (3.14)

3.5.6 Satisfiability of ε formulae
We interpret the degree of explanatory power as a combination of transparency, accuracy
and trustworthiness. To effectively explain a property φ of a model j ∈ A to a user u ∈ U,
a surrogate model i ∈ A has to satisfy some conditions:

1. it has to be more transparent than the target-model j, i.e., V i,u
φ (s) > V j,u

φ (s)

2. it has to be sufficiently accurate in emulating φ;

3. it has to be sufficiently trustworthy in emulating φ.

3.5. A MULTI-AGENT SEMANTICS FOR EXPLANATION RELIABILITY PROPERTIES123

Intuitively, if V i,u
φ (s) ≥ V j,u

φ (s), the explanation provided by i is not effective as the
surrogate model is more (or equally) opaque than the model to be explained. In such
cases, the degree of explanatory power is 0. In all other cases, the greater the difference
between V i,u

φ (s) and V j,u
φ (s), the greater the degree of explanatory power of i, modulo

i emulating j with a sufficient degree of accuracy and trustworthiness. In general, if a
surrogate model i is highly transparent but not sufficiently accurate and trustworthy in
emulating a property of the target model, then it will be not able to effectively explain it.
Instead, the greater the respective degrees of accuracy and trustworthiness of a surrogate
model i in emulating a property of the target model j, the greater the degree of explanatory
power of i. Moreover, explanatory power is also connected with the explanatory relevance
that each user attaches to, respectively, transparency, accuracy and trustworthiness. Some
users, for example, prioritize accuracy over transparency and thus prefer an explanation
based on surrogate models that are highly accurate and scarcely transparent rather than
the opposite. Other users might prioritize transparency over accuracy, or accuracy over
trustworthiness, and so on. In general, the contribution of transparency, accuracy and
trustworthiness in determining the explanatory power of a surrogate model has to be
weighted by the explanatory relevance that each user attaches to each of them. This can be
obtained by weighting the respective degrees of transparency, accuracy and trustworthiness
of a surrogate model with specific values that are provided by the explanatory relevance
vectors [x, y, z]u for a given user u ∈ U. By convention, we assume that x + y + z = 1
for each [x, y, z]u, u ∈ U. Each vector [x, y, z]u is thus analogous to a probability mass
function defined over the space of explanatory relevance weights {x, y, z}.

Formally, we define the degree of explanatory power of a surrogate model i ∈ A against
property φ of a model j ∈ A for user u ∈ U and with respect to initial state s ∈ S, denoted
by Exi,j,uφ (s), as follows.

Definition 59 (Degree of explanatory power for single users)

Exi,j,uφ (s) :=

{
0 iff V i,u

φ (s) ≤ V j,u
φ (s) ,

x(V i,u
φ (s)− V j,u

φ (s)) + y(Ai,j
φ (s)) + z(T i,j

φ (s)) otherwise .
(3.15)

In other words, if the surrogate model is less or equally transparent than the model
to be explained, the degree of explanatory power is 0 by default; otherwise, such degree
is computed as the weighted average among the surrogate model’s degrees of accuracy,
transparency, and the difference between the degrees of transparency of the surrogate
model i and of the target model j, each value weighted for the explanatory relevance
attributed to them by the user u ∈ U.

We can thus introduce the satisfiability condition for single-user explanatory power
formulae as follows.

124 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

Definition 60 (Satisfiability of single-user ε formulae) Given a TUSMTUS, a sur-
rogate model i ∈ A, a target model j ∈ A, a user u ∈ U, and a state s ∈ S, the following
condition holds:

MTUS, s |= Exi,j,u∇h φ iff Exi,j,uφ (s)∇h . (3.16)

This can be extended to groups of users Γ ⊆ A, introducing the derivative notions
of common and distributed degree of explanatory power. Let [x, y, z]Γ denote the vector
of explanatory relevance for the groups of users Γ ⊆ U. The elements of this vector
denote the explanatory relevance that all the users u ∈ Γ jointly attribute to, respectively,
transparency, accuracy, and trustworthiness. These elements result from the application of
a function f(xu1 , . . . , xun , yu1 , . . . , yun , zu1 , . . . , zun) that maps the various elements of the
vectors [x, y, z]u, u ∈ Γ, to the respective elements of the vector [x, y, z]Γ. In general, the
choice of this function depends on the specific context of application. For practical reasons,
here we assume that f corresponds to the normalized average of the respective elements
of [x, y, z]u, u ∈ Γ that we can calculate as follows. First, we create a matrix whose rows
are the various vectors [x, y, z]u, u ∈ Γ. Second, we calculate the non-normalized vector
[X,Y, Z]Γ by summing the three columns of the matrix. Finally, we normalize the vector by
dividing both X, Y , and Z for their sum X+Y +Z, hence obtaining the normalized vector
[x, y, z]Γ. The normalized average seems to capture better than other functions the idea of
a set of weights that provide the explanatory relevance that users u ∈ Γ jointly attribute to
the three properties of transparency, accuracy, and trustworthiness. Nevertheless, both the
semantics and the model-checking procedures proposed in the following are independent
from this choice and compatible with assuming other functions f in place of it. All that
is needed is a feasible method to compute [x, y, z]Γ combining the various [x, y, z]u, u ∈ Γ.

Once the joint explanatory relevance vector is obtained, specific definitions for common
CExΓ,j,uφ (s) and distributed DExΓ,j,uφ (s) degrees of explanatory power can be introduced
by analogy with that for single-user (see Definition 59), as follows:

Definition 61 (Degree of explanatory power for groups of users)

CExi,j,uφ (s) =

{
0 iff CV i,Γ

φ (s) ≤ CV j,Γ
φ (s) ,

xΓ(CV i,Γ
φ (s)− CV j,Γ

φ (s)) + yΓ(CAi,j
φ (s)) + zΓ(CT i,j

φ (s)) else ,
(3.17)

DExi,j,Γφ (s) =

{
0 iff DV i,Γ

φ (s) ≤ DV j,Γ
φ (s) ,

xΓ(DV i,Γ
φ (s)−DV j,Γ

φ (s)) + yΓ(DAi,j
φ (s)) + zΓ(DT i,j

φ (s)) else ,
(3.18)

where xΓ, yΓ, and zΓ denote the respective elements of the vector [x, y, z]Γ. The
satisfiability conditions are accordingly defined as follows.

3.6. MODEL-CHECKING 125

Definition 62 (Satisfiability of group of users ε formulae) Given a TUS MTUS, a
surrogate model i ∈ A, a target model j ∈ A, a group of users Γ ⊆ U, and a state s ∈ S,
the following conditions hold:

MTUS, s |= CExi,j,Γ∇h φ iff CExi,j,Γφ (s)∇h , (3.19)
MTUS, s |= DExi,j,Γ∇h φ iff DExi,j,Γφ (s)∇h . (3.20)

3.6 Model-Checking
In this section we describe feasible procedures to model-check a given MTUS against
properties specified in the Ex-PCTL language. Let Λ := φ | θ | α | ε. Given a TUS
MTUS, a state s ∈ S, and a formula Λ, we want to define a procedure to check whether
MTUS, s |= Λ. As for standard CTL and its extensions, the main procedure relies on
the parsing-tree algorithm introduced in Section 2.6. Here, our task is thus to define a
specific sub-routine to compute Sat(λ) for the different kinds of Ex-PCTL formulae above
introduced (i.e., φ, θ, α, and ε).

3.6.1 φ-formulae
We start by considering the case λ := φ. Remeber that for φ-formulae the satisfiability
conditions are defined with respect to a specific model i ∈ A in the multi-agent system.
Consequently, when we apply the specific procedure to compute Sat(λ) for λ = φ, we
have to specify the model i ∈ A included in the multi-agent system that we want to check
against φ. By convention, we use notation Sati(φ) to highlight that we focus on model
i ∈ A. That said, the procedure to compute Sati(φ) is completely analogous to the one
introduced in Section 2.7.3 for the computation of Sati(φ). That is, Sati(φ) is computed
by an iterative application of the following recursive schema.

Definition 63 (Sati(φ))

Sati(>) := S ,
Sati(p) := {s ∈ S : p ∈ li(s)} ,
Sati(φ1 ∧ φ2) := Sati(φ1) ∩ Sati(φ2) ,
Sati(¬φ) := S \ Sati(φ) ,
Sati(P∇bψ) := {s ∈ S : P (i, s |= ψ)∇b} ,

where the specific procedures to compute P (i, s |= ψ) for the various kinds of ψ-formulae
are completely analogous the ones for the computation of P (s |= ψ) introduced in Section
2.7.3.

126 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

3.6.2 θ-formulae
The specific procedure to compute Sat(θ) relies on the algorithm reported in Figure 9.The
latter works as follows. It takes in input a TUSMTUS and a formula θ. Given an s ∈ S, it
computes {∼u (s)} for each u ∈ Γ by checking for each s′ ∈ S whether s ∼u s′ or not (line
3). It then switches on the appropriate case, selected depending on the specification of θ
(line 10). If θ := V i,u

∇hφ (line 11), then it computes the value of the ratio and check whether
it satisfies the specified threshold∇h; if the value satisfies the threshold, then the algorithm
includes s in Sat(θ). If θ := CV i,Γ

∇hφ (line 16), it first calculates {∼Γ
C := it(

⋃
u∈Γ{∼u

D}, then
it computes the value of the ratio and checks whether it satisfies the specified threshold
∇h; if the value satisfies the specified threshold, then the algorithm includes s in Sat(θ).
Finally, if θ := DV i,Γ

∇hφ (line 22), it first calculates {∼Γ
D} :=

⋂
u∈Γ{∼u (s)} and then

proceeds as in the precedent case. The algorithm iterates the procedure for each s ∈ S
and eventually output Sat(θ).

The overall time complexity of the algorithm is polynomial in |S|. The computation of
line 3 requires for each u ∈ Γ and for each s′ ∈ S to check whether s ∼u s′, its execution,
therefore, requires time linear in | S |. The computations of the various ratios (lines 11,
16, and 22) require to compute few algebraic operations on sets and thus do not increase
the time complexity which remains linear in | S |. Accordingly, the time complexity of
each iterative step is linear in | S |. As the computation of Sat(θ) requires to iterate the
procedure for each s ∈ S, the overall time complexity results to be polynomial in | S |.

3.6.3 α-formulae
The to compute Sat(α) relies on the algorithm reported in Figure 10. The latter works
as follows. It takes in input a TUS MTUS and a formula α (line 10). Given an s ∈ S, it
computes Φj(s) by checking for each s′ ∈ Satj(φ) whether hj{s′}(s) = 1, i.e., whether s′ is
reachable from s according to the target-model j (line 4). Notice that, computing hj{s′}(s)
through Equation (1.8) at line 5 requires an amount of time polynomial in |S| for each
s′ ∈ Satj(φ). Since Satj(s) ⊆ S, the time complexity of the overall procedure described
in line 4 is polynomial in |S|. Then the algorithm computes Φi(s) by checking for each
s′ ∈ Sati(φ) whether hi{s′}(s) again through the procedure described in (1.8) (line 10).
The time complexity of computing hi{s′}(s) for each s′ ∈ Sati(φ) is also polynomial in |S|.
To conclude, the algorithm checks whetherMTUS, s |= α (line 15) by performing a simple
sequence of algebraic operations on sets and thus checking whether the obtained result
respects the threshold ∇h specified in the formula. Since this step consists of performing
a very small number of simple algebraic operations on sets, it does not increase the time
complexity of the procedure, which remains polynomial in |S|. Finally, to obtain Sat(α),
the algorithm iterates the procedure for each s ∈ S. Consequently, the overall time

3.6. MODEL-CHECKING 127

Algorithm 9: Sat(θ)
Input: MTUS, θ
Output: Sat(θ)

1 foreach s ∈ S do
2 Sat(θ)← {};
3 foreach u ∈ Γ do
4 foreach s′ ∈ S do
5 {∼u (s)} ← {} if s ∼u s′ then
6 {∼u (s)← {∼u (s)} ∪ {s′}
7 end
8 end
9 end

10 switch θ do
11 case θ := V i,u

∇hφ do
12 if (Sati(φ)∩{∼u(s)}

Sati(φ)
)∇h then

13 Sat(θ)← Sat(θ) ∪ {s}
14 end
15 end
16 case CV i,Γ

∇hφ do
17 if |Sati(s)∩it(

⋃
u∈Γ{∼u(s)}|

|Sati(s)| ∇h then
18 Sat(θ)← Sat(θ) ∪ {s}
19 end
20 end
21 case DV i,Γ

∇hφ do
22 foreach s ∈ S do
23 if |Sati(s)∩

⋂
u∈Γ{∼u(s)}|

|Sati(s)| ∇h then
24 Sat(θ)← Sat(θ) ∪ {s}
25 end
26 end
27 end
28 end
29 end
30 return Sat(θ)

Figure 3.4

128 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

complexity of the algorithm remains polynomial in |S|.

3.6.4 ε-formulae
The procedure to compute Sat(ε) relies on the algorithm reported in Figure 11. The
latter works as follows. It takes in input a TUS MTUS and a formula α. It computes the
joint vector of relevance [xΓ, yΓ, zΓ] as the element-wise product of the vectors of relevance
[x, y, x]u for each u ∈ Γ. If Γ := {u}, it simply takes [x, y, z]u. Given any s ∈ S, it
switches on the appropriate case depending on the specification of ε. If ε := Exi,j,u∇h φ, it
calculates V i,u

φ (s), V j,u
φ (s), Ai,j

φ (s) and T i,j
φ (s) implementing the appropriate algorithms 9

and 10. Hence, it checks whether V i,u
φ (s) ≤ V j,u

φ (s), i.e., whether the degree of transparency
of the surrogate model is less or equal then that of the target model. If this is the
case, then the algorithm checks whether the threshold h specifying the desired degree of
explanatory power is equal to 0. If h = 0, then the condition expressed in the semantics
by Definition 60 is satisfied and the state s is included in Sat(ε). Otherwise the procedure
terminates. Instead, if V i,u

φ (s) > V j,u
φ (s), then the algorithm computes the value of the

product x(V i,u
φ (s)− V j,u

φ (s)) · y(Ai,j
φ (s)) · z(T i,j

φ (s)), i.e., the product among the respective
degrees of accuracy and trustworthiness of the surrogate and the difference between the
respective degree of transparency of the surrogate and the target model, all weighted with
the respective values of the parameters included in the vector of relevance [x, y, z]u. Finally,
the algorithm checks whether the value of the product satisfies the specified threshold h
and, if this is the case, it includes s in Sat(ε). The algorithm follows an analogous
procedure when ε := CExi,j,Γ∇h φ or ε := DExi,j,Γ∇h φ, with the only relevant difference that it
computes CV i,Γ

φ (s), CV j,Γ
φ (s) (respectively, DV i,Γ

φ (s) and DV jΓ
φ (s)) instead of V i,u

φ (s) and
V j,u
φ (s). Finally, to compute Sat(ε), the algorithm iterates the procedure for each s ∈ S.

The overall time complexity of the algorithm is clearly polynomial in the size of S. In
fact, as proved above, the time complexity of the procedures to compute V i,u

φ (s), V j,u
φ (s),

Ai,j
φ (s) and T i,j

φ (s) (or their respective multi-agent counterparts) are all polynomial in | S |.
The calculations of the various ratios consists of the execution of few algebraic operations
on sets and, thus, do not increase the overall computational complexity, which remains
polynomial in | S |.

3.7 Example

3.7.1 Scenario 1
Let us consider as target-model a probabilistic decision-tree classifier whose task is to pre-
dict whether a given patient might develop schizophrenia based on the following Boolean

3.7. EXAMPLE 129

Algorithm 10: Sat(α)
Input: MTUS, α
Output: Sat(α)

1 Sat(α)← {};
2 foreach s ∈ S do
3 Φj(s)← {};
4 foreach s′ ∈ Sati(φ) do
5 if hj{s′}(s) = 1 then
6 Φj(s)← Φi(s) ∪ {s′}
7 end
8 end
9 Φi(s)← {};

10 foreach s′ ∈ Sati(φ) do
11 if hi{s′}(s) = 1 then
12 Φi(s)← Φi(s) ∪ {s′}
13 end
14 end
15 switch α do
16 case α := Ai,j

∇hφ do
17 if J(Φi(s),Φj(s))∇h then
18 Sat(α)← Sat(α) ∪ {s}
19 end
20 end
21 case α := T i,j

∇hφ do
22 if |Φi(s)∩Φj(s)|

|Φi(s)| ∇h then
23 Sat(α)← Sat(α) ∪ {s}
24 end
25 end
26 end
27 end
28 return Sat(α)

Figure 3.5

130 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

Algorithm 11: Sat(ε)
Input: MTUS , ε
Output: Sat(ε)

1 foreach s ∈ S do
2 Sat(ε)← {}
3 V i,u

φ (s)← |Sati(φ)∩{∼u(s)}|
|Sati(φ)|

4 CV i,u
φ (s)← |Sati(φ)∩{it(

⋃
u∈Γ{∼

u(s)}}|
|Sati(φ)|

5 DV i,u
φ (s)← |Sati(φ)∩{

⋂
u∈Γ{∼

u(s)}}|
|Sati(φ)|

6 switch ε do
7 case ε := Exi,j,u∇h φ do
8 if V i,u

φ (s) ≤ V j,u
φ (s) then

9 if h = 0 then
10 Sat(ε)← {s}
11 end
12 end
13 if V i,u

φ (s) > V j,u
φ (s) then

14 if [x(V i,u
φ (s)− V j,u

φ (s)) · y(Ai,j
φ (s)) · z(T i,j

φ (s))]∇h then
15 Sat(ε)← {s}
16 end
17 end
18 end
19 case ε := CExi,j,u∇h φ do
20 if CV i,Γ

φ (s) ≤ CV j,Γ
φ (s) then

21 if h = 0 then
22 Sat(ε)← {s}
23 end
24 end
25 if CV i,Γ

φ (s) > CV j,Γ
φ (s) then

26 if [xΓ(CV i,Γ
φ (s)− CV j,Γ

φ (s)) · yΓ(CAi,Γ
φ (s)) · zΓ(CT i,Γ

φ (s))]∇h then
27 Sat(ε)← {s}
28 end
29 end
30 end
31 case ε := Exi,j,u∇h φ do
32 if DV i,Γ

φ (s) ≤ DV j,Γ
φ (s) then

33 if h = 0 then
34 Sat(ε)← {s}
35 end
36 end
37 if DV i,Γ

φ (s) > DV j,Γ
φ (s) then

38 if [xΓ(DV i,Γ
φ (s)−DV j,Γ

φ (s)) · yΓ(DAi,Γ
φ (s)) · zΓ(DT i,Γ

φ (s))]∇h then
39 Sat(ε)← {s}
40 end
41 end
42 end
43 end
44 end
45 return Sat(ε)

3.7. EXAMPLE 131

state lj li

0 m m
1 m m
2 g g, d
3 d d
4 m, g, d m, g, d
5 m, g m, g
6 m, d d
7 g, d g, d
8 m, g m, g
9 p p, g
10 p p
11 m, d m, d
12 m, g m, g
13 g, d g, d
14 p p, m
15 p p

Table 3.1: lj

parameters: gender, genetic pre-disposition, and presence of correlated psychiatric disor-
ders. We use labels m for “male”, g for “presence of genetic disposition”, d for “presence
of psychiatric disorders” and p for “being schizophrenic”.

The behaviour of the classifier can be described by a DTMC j defined over S and
provided with: (i) a set of labels AP j := {m, g, d, p}, (ii) a labelling function lj and, (iii)
a transition matrix T j described in Table 3.2. There are sixteen different input/output
states, i.e., S := {s0, s1, . . . , s15} stating the different profiles of the patients predictable
given the analysis of the above parameters. The labelling of states of j according to lj are
reported in the first column of Table 3.1.

We use model j to predict the outcome for a patient whose actual profile is 〈m, g, d,¬p〉,
which corresponds to assuming s4 as initial state (see Table 3.1). We know that for input
〈m, g, d,¬p〉 the probability that the model predicts p, i.e., “schizophrenia”, is equals to
1, which means that formula φ := P=1>

⋃
(p) holds in s4.

We are interested in explaining the behaviour of j locally on input 〈m, g, d,¬p〉. To
this aim, we build a surrogate model j (e.g. a rule-based system)18 able to emulate the
behaviour of the classifier locally on s4. The stochastic behaviour of i is described by

18Remember that a surrogate model is an agent able to (locally) emulate the behaviour of the target-
model and usually considered more transparent than the latter.

132 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

another labelled DTMC defined over the same set of states S and whose characteristic
labelling function li and transition matrix T i are reported, respectively, in the second
column of Table 3.1 and in Table 3.3.

To complete the scenario, we consider a user u1 (e.g., a physician) interacting with both
model j and model i. The epistemic access abilities of u1 are described by the relation
∼u1 . According to the specification of ∼u1 , we have that ∼u1 (s4) = {s0, s1, s2, s3, s4, s6,
s7, s10, s11, s12, s13}.19 The explanatory relevance vector [x, y, z]u1 characteristic of u1,
instead, is specified as [0.1, 0.5, 0.4]u1 .

In the above specified scenario, we are interested in checking whether the explanatory
power of i against property φ := P=1>

⋃
(p) of the target-model j for user u1 locally

computed on input 〈m, g, d,¬p〉 is higher than a given desirable threshold, for instance
≥ 0.4. This corresponds to check whether:

MTUS, s4 |= Exi,j,u≥0.4P=0.1>
⋃

(p) (3.21)

For executing the task, we apply the procedure described in algorithm 11. First,
we calculate Satj(P=1>

⋃
(p)) and Sati(P=1>

⋃
(p)) through the procedure described in

Section 3.6.1, obtaining:

Sati(P=1>
⋃

(p)) = {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15} ,

Satj(P=1>
⋃

(p)) = {s1, s4, s5, s8, s9, s10, s14, s15} ,

Second, we calculate:

∼u1 (s4) ∩ Sati(P=1>
⋃

(p)) = {s0, s1, s2, s3, s4, s6, s7, s10, s11, s12, s13}

∼u1 (s4) ∩ Satj(P=1>
⋃

(p)) = {s1, s4, s10} ,

Third, we calculate:

V i,u1

P=1>
⋃
(p)(s4) =

| Sati(P=1>
⋃
(p)) ∩ {∼u1 (s4)} |

Sati(P=1>
⋃
(p))

=
11

16
= 0.6875

V j,u1

P=1>
⋃
(p)(s4) =

| Satj(P=1>
⋃
(p)) ∩ {∼u1 (s4)} |

Satj(P=1>
⋃
(p))

=
3

8
= 0.375

19Remember that ∼u1 (s4) denotes the set of states that are epistemically accessible from s4 by u1.

3.7. EXAMPLE 133

and, thus:

V i,u1

P=1>
⋃
(p)(s4)− V

j,u1

P=1>
⋃
(p)(s4) = 0.3125 ,

Ai,j
P=1>

⋃
(p)(s4) = 0.4286 ,

T i,j
φ (s4) =

Satj(P=1>
⋃
(p)) ∩ Sati(P=1>

⋃
(p))

Sati(P=1>
⋃
(p))

=
8

16
= 0.5 ,

Finally, given φ = P=1>
⋃
(p), we can calculate:

Exi,j,u1

φ (s4) = 0.1 ∗ (V i,u1

φ) (s4)− V j,u
φ (s4)) + 0.5 ∗ Ai,j

φ (s4) + 0.4 ∗ T i,j
φ (s4) = 0.44555

Hence, as the obtained degree of explanatory power is greater than the specified thresh-
old, we can conclude that the formula specified in (3.21) holds in the model and, thus, that
the explanatory power of i against property P=1>

⋃
(p) of the target-model j is sufficient

for the purposes of the specified user.

3.7.2 Scenario 2
Suppose now that surrogate model i has been conceived to explain j not only to a specific
class of users, but to all the potential different users of j. Let us assume that there exist
three different kinds of users for model j that we denote by u1, u2, and u3. According to
the specifications of ∼u2 and ∼u3 , we have that:

∼u2 (s4) = {s0, s1, s2, s3, s4, s6, s7, s10, s11, s12, s13} ,
∼u3 (s4) = {s4, s6, s7, s10, s11, s12, s13}

Furthermore, we have that:

[x, y, z]u2 = [0.6, 0.1, 0.3] ,

[x, y, z]u3 = [0.6, 0.2, 0.2]

We are interested in checking whether the explanatory power of surrogate model i
satisfies the desirable threshold specified above (i.e., ≥ 0.4) also in case of a group Γ
including all the possible potential users of the target-model j, i.e., in case Γ = {u1, u2, u3}.
We consider two different conditions:

134 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

MTUS, s4 |= CExi,j,Γ≥0.4P=0.1>
⋃

(p) ,

MTUS, s4 |= DExi,j,Γ≥0.4P=0.1>
⋃

(p)

The first condition refers to the common degree of explanatory power in the group
of users Γ while the second refers to the distributed degree of explanatory power. In the
former case, we consider how much the explanation provided by the surrogate model is
effective for users in Γ on the basis of the common knowledge of the target-system that
they possess. In the second case, instead, we consider effectiveness on the basis of the
distributed knowledge 20.

To check whether the conditions expressed above are satisfied we follow the algorithm
reported in (11). First, we calculate:

∼Γ
C (s4) = it(

⋃
u∈Γ

∼u (s4)) = {s0, s1, s2, s3, s4, s6, s7, s10, s11, s12, s13} ,

∼Γ
D (s4) =

⋂
u∈Γ

∼u (s4) = {s4, s6, s7, s10, s11, s12, s13}

Second, we calculate:

∼Γ
C (s4) ∩ Sati(P=1>

⋃
(p)) = {s0, s1, s2, s3, s4, s6, s7, s10, s11, s12, s13} ,

∼Γ
C (s4) ∩ Satj(P=1>

⋃
(p)) = {s1, s4, s10}

and

∼Γ
D (s4) ∩ Sati(P=1>

⋃
(p)) = {s4, s6, s7, s10, s11, s12, s13} ,

∼Γ
D (s4) ∩ Satj(P=1>

⋃
(p)) = {s4, s10}

Third, we calculate:

CV i,Γ
P=1>

⋃
(p) − CV

j,Γ
P=1>

⋃
(p) = 0.3125

DV i,Γ
P=1>

⋃
(p) −DV

j,Γ
P=1>

⋃
(p) = 0.125

20In epistemic logic, common knowledge usually refers to the information shared by all the subjects in
a group, while distributed knowledge refers to the information that can be derived from that possessed by
each single subject in the group.

3.8. CONCLUSIONS 135

Table 3.2: T j

0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0.25 0 0 0.25 0.25 0.25 0 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0 0
0 0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5

Fourth, we calculate the distributed explanatory relevance vector [x, y, z]Γ = [0.38, 0.24, 0.38],
obtained as the normalized average of the explanatory relevance vectors of the single-users
u ∈ Γ.

Finally, given φ = P=1>
⋃
(p), we can calculate:

CExi,j,Γφ (s4) = 0.38 ∗ (CV i,Γ
φ) (s4)− CV j,Γ

φ (s4)) + 0.24 ∗ Ai,j
φ (s4) + 0.38 ∗ T i,j

φ (s4)

= 0.4125

DExi,j,Γφ (s4) = 0.38 ∗ (DV i,Γ
φ (s4)−DV j,Γ

φ (s4)) + 0.24 ∗ Ai,j
φ (s4) + 0.38 ∗ T i,j

φ (s4)

= 0.2025

In the first case, we see that CExi,j,ΓP=1>
⋃
(p)(s4) ≥ 0.4 and, thus, we can conclude that

formula CExi,j,Γ≥0.4P=0.1>
⋃
(p) holds in the specified model and, thus, that the common de-

gree of explanatory power of i against property P=1>
⋃
(p) of the target-model j according

to users in Γ is sufficient. In the second case, instead, we see that DExi,j,ΓP=1>
⋃
(p)(s4) ≤ 0.4.

Consequently, we can conclude that formula DExi,j,Γ≥0.4P=0.1>
⋃
(p) does not hold for state

s4 of the specified model and, thus, that the distributed degree of explanatory power of i
against property P=1>

⋃
(p) of the target-model j according to users in Γ is not sufficient.

3.8 Conclusions
In this chapter, we presented a framework to model and check the explanatory power of
surrogate models used in XAI to post-hoc explain the behaviour of opaque systems. Ex-
planatory power is defined as a function of three more fundamental properties, which are

136 CHAPTER 3. PROBABILISTIC MODEL CHECKING FOR EXPLAINABLE AI

Table 3.3: T i

0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0.5 0 0 0 0 0 0 0 0 0
0 0 0 0.25 0 0 0.25 0.25 0.25 0 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0 0
0 0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0 0 0.25 0.25 0 0 0
0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5

transparency, accuracy, and trustworthiness. We introduced Ex-PCTL, a new language to
specify explanatory power along with its fundamental properties, equipped with a proper
semantics based on a multi-agent structure that includes both models and users. This
semantics treatment follows from the widely shared conviction, among XAI practitioners,
that whether and to what extent a model is opaque and needs an explanation also de-
pends on who are its users. Finally, we present specific algorithms to model-check the
transparency, accuracy, trustworthiness, and explanatory power of surrogate models in
time polynomial in the number of their possible alternative states.

Further possible developments include the extension of the proposed semantics to AI
systems whose behaviour cannot be described through DTMCs but requires, for instance,
continuous-time Markov chains, Markov decision processes or hidden Markov models.

Chapter 4

Probabilistic Model Checking with
Imprecise Probabilities

Abstract
This chapter presents a novel framework for model checking stochastic multi-agent systems
based on the theory of imprecise probabilities and the related imprecise Markov models.
The advantage of the latter is that they allow for modeling non-stationary and not fully
knowledgeable stochastic systems without incurring computational complexity issues, as the
results in the chapter aim to prove. The chapter begins with a detailed state of the art of
imprecise Markov models and the existing methods to compute probabilistic inferences over
them. It then introduces Imprecise Probabilistic Interpreted Systems (IPIS), a new class of
imprecise Markov models to represent stochastic multi-agent systems, and their extension
with rewards (IPIRS). Hence, it develops algorithms to compute probabilistic inferences over
IPISs and IPIRSs in time polynomial to the models’ number of states. Subsequently, the
chapter introduces a new logic and relative model-checking algorithms to verify properties
of non-stationary stochastic multi-agent systems using IPISs and IPIRSs. As the main
result, the chapter proves that shifting from precise to imprecise Markov models does not
affect the computational complexity of the main model checking tasks, which remains time-
polynomial in the target-systems’ number of states. The chapter is built upon preliminary
results published in [157, 158] and [159].

4.1 Introduction
Despite its success, probabilistic model checking suffers from the well-known limitation of
requiring all the transition probabilities to be defined by sharp, “precisely specified”, nu-
merical values. This constraint might be critical in several applications, as it prevents from
modelling both non-stationary systems and systems characterised by a partial uncertainty
on the values of transition probabilities. An appealing way to overcome this limitation is
represented by so-called parametric Markovian models [39], where precise state transition

137

138CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

probabilities are replaced with unknown parameters. This is the solution adopted, for
instance, by [9]. However, complexity issues related with the corresponding model check-
ing procedure, based on fraction-free Gaussian elimination, limit its applicability only to
models of small size.

A less explored alternative is provided by the formalism of imprecise probabilities [173]
and related imprecise Markov models, notably imprecise Markov chains (IMC) and their
extensions [163, 48, 97, 157]. These can be seen as the imprecise counterparts of stan-
dard Markov chains and are obtained by replacing single-valued probability distributions
with so-called credal sets, i.e., sets of probability distributions describing the model and
compatible with given specific constraints [40].

A first attempt to extend probabilistic model checking to the framework of imprecise
probabilities has been proposed in [163]. This paper introduces an imprecise version of
PCTL based on IMCs. It shows that shifting from precise to imprecise Markov chains
does not increase the time complexity of the relevant model checking tasks, which remain
polynomial in the number of states of the models. An extension of the results in [163] is
provided in [157], where both a semantics and the relative model checking procedures for
imprecise Markov reward models are introduced.

In both [163] and [157] only single-agent systems are considered. A first multi-agent
extension is presented in [158]. In this paper, the authors introduce a class of structures to
model epistemic-stochastic multi-agent systems called imprecise probabilistic interpreted
systems, a related language called EIPCTL (Epistemic Imprecise PCTL), and relative
model checking procedure.

The present chapter generalises and extends the framework and the results in [157]
and [158]. In particular, it introduces an imprecise-probabilistic framework to model
and verify multi-agent systems with rewards. The language of EIPCTL is accordingly
extended to specify reward properties and feasible procedures for model checking imprecise
probabilistic interpreted systems with reward. The chapter also extends the preliminary
results outlined in [163] and [158], hence proving that shifting from precise to imprecise
models does not increase the overall time complexity of the relevant model checking tasks,
which remains polynomial in the number of states of the models. The developed framework
is finally tested on a case-study borrowed from the medical domain.

4.2 Imprecise Markov Models
In this section we provide imprecise-probabilistic counterparts for the Markov models
presented in Chapter 1. We also show how the efficient inference algorithms for standard
Markov models described in Chapter 1 can be easily extended to the imprecise probabilities
framework without increased computational costs. These results partially rely on recent

4.2. IMPRECISE MARKOV MODELS 139

works about imprecise Markov models [97, 161].
In introducing imprecise Markov models, we follow the so-called measure-theoretic

interpretation and relies on the formalism of credal sets [116]. The alternative game-
theoretic formalisation [148] is briefly mentioned without going into details insofar the two
formalisms are equivalent for the inference tasks relevant for this work, as proved in [165].

4.2.1 Imprecise Transition Matrices
Given a variable S, a Credal Set (CS) K(S) is a set of probability mass functions over S.
The upper expectation of a real-valued function f of S with respect to CS K(S) is intended
as E[f(S)] := supP (S)∈K(S)

∑
s∈S f(s) ·P (s) (the lower expectation E[f(S)] is analogously

defined). Here we only consider closed and convex CSs induced by a finite number of
linear constraints. These are polytopes in the probability simplex with a finite number of
extreme points collected in a set Ext[K(S)]. For these CSs, upper (lower) expectations
can be equivalently obtained by taking the maximum (minimum) with respect to the
precise expectations computed on the extreme points. Conditional CSs might be defined
analogously [42].

In this framework, an imprecise transition matrix T is defined as a collection of con-
ditional CSs {K(S ′|s)}s∈S , each one representing a separately specified row of the matrix.
This allows for defining precise transition matrices whose rows are obtained by taking a
P (S ′|s) ∈ K(S ′|s) for each s ∈ S. Each one of these matrices represents a stochastic
behaviour compatible with the “imprecise” specification given by T .

4.2.2 Imprecise Markov Chains
As a first example of imprecise Markov model, we consider (discrete-time) imprecise
Markov chains (IMCs). Note that there exist two main ways of formalising IMCs in
the literature. On the one hand, the measure-theoretic characterisation defines an IMC as
a family of (discrete-time) Markov models compatible with beliefs about initial and tran-
sition probabilities. On the other hand, the game-theoretic characterisation is grounded
on the game-theoretic view of probability popularised in [148] that, applied to the theory
of stochastic processes directly leads to imprecise models1. The two characterisations are
different but have been recently proved to coincide for all expectations on the following
domains: (i) monotone pointwise limits of finitary real-valued functions, and (ii) bounded
below Borel-measurable variables [165]. In this work we focus on measure-theoretic IMCs
only. However, all the inferences we consider fall under (i) and thus, for the purposes of
our work, the two characterisations can be considered equivalent.

1See [41, 50] for an in-depth discussion on the relation between measure-theoretic and game-theoretic
IMCs.

140CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

Given a CS K(S0) and an imprecise transition matrix T , both defined over S, the
(discrete-time) IMC M induced by K(S0) and T can be defined as the largest set of
(discrete-time) stochastic processes that are compatible with K(S0) and T .

The term “compatible” here deserves an exact characterisation. In the imprecise prob-
abilities literature, indeed there exist at least two different criteria for establishing com-
patibility, which depends on the imprecise interpretation of the notion of stochastic irrel-
evance, and, consequently, of the Markov property one considers [80]. The two notions
of irrelevance typically involved for IMCs are strong independence and epistemic irrele-
vance. The former is defined via product-independence of the CS extreme points: we say
that K(S) and K(S ′) are strong-independent if and only if, for all P (S) ∈ Ext[K(S)]
and all P (S ′) ∈ Ext[K(S ′)], it holds that P (S, S ′) = P (S) · P (S ′). The latter is de-
fined via conditioning: we say that K(S) is epistemically irrelevant for K(S ′) if and only
if K(S ′ | s) = K(S ′) for each s ∈ S.2 Notice that, unlike strong independence, epis-
temic irrelevance is asymmetric, i.e., the irrelevance of K(S) for K(S ′) does not entail the
irrelevance of K(S ′) for K(S).

Following [96] and [161], and also the early work of [163], in this paper we focus on epis-
temic irrelevance. Notably, by exploiting the results in [116], the imprecise-probabilistic
inferences considered in the rest of this paper can easily proved to be independent of the
specific characterisation we adopt. Epistemic irrelevance leads to an imprecise character-
isation of the Markov property practically corresponding to assume that “whenever the
agent knows the current state, then her beliefs about future states are not altered upon
learning what states were visited in the past” [80, p.265]. A formal definition of IMC can
thus be given as follows:3

Definition 64 (Imprecise Markov chain under epistemic irrelevance) Given K(S0)
and T , an IMC M (under epistemic irrelevance) is defined as the largest set of all, po-
tentially non-Markov, non-homogeneous, stochastic processes for which, for all t ∈ N and
all s0, . . . , st ∈ St, there is some T ∈ T such that P (St+1 = s′ | S0:t = s0:t) = T (s0:t, s

′)
for all s′ ∈ S.

Furthermore, each IMC is uniquely identified by a set of probability measures PM :
σ(Π) → [0, 1] that we denote by KM. Each PM ∈ KM uniquely identifies a (potentially
non-Markov and non-homogeneous) stochastic process compatible with the IMC identified
by KM. The IMC identified by KM is also uniquely identified by KM

s , which is the credal
set including all the conditional probability distribution PM

s obtained by conditioning the
various PM ∈ KM on a given initial state s ∈ S. As detailed in the next section, inferences
in IMCs are consequently intended as the computation of lower and upper expectations
with respect to such credal set.

2For a more detailed characterisation of the difference between these notions, we refer to [119].
3The definition here reported is that introduced in [161]. An analogous definition is given in [97].

4.2. IMPRECISE MARKOV MODELS 141

Before to move on, notice that, as in the precise case, we are interested here in labelled
IMCs, i.e., IMCs augmented with a finite set of atomic propositions AP and a labelling
function l : S → 2AP . In what follows, when using the term IMC, we always refer to their
labelled extensions.

4.2.3 Inference in Imprecise Markov Chains
To compute inferences in IMCs, let us first introduce the analogous of the transition
operator in Equation (1.4). This is obtained by taking the bounds with respect to all the
possible (precise) specifications of transition probabilities consistent with the imprecise
transition matrix of the IMC. For upper bounds, this corresponds to the following non-
linear upper operator:

(T f)(s) := max
T (s,S′)∈T (s,S′)

∑
s′∈S

T (s, s′) · f(s′) , (4.1)

while an analogous definition, with the minimum replacing the maximum, holds for the
lower operator T [161, Eq. 1]. Equation (4.1) can be computed by solving |S| linear
programming tasks whose feasible regions are the conditional CSs in the definition of
T . This is possible, in particular, because we assume (Sec. 4.2.1) that each row of T
is separately specified and consists of a conditional CS K(S ′ | s) described by a finite
number of linear constraints.

An iterated application of the above operators can be used to compute the bounds of
the probability of reaching a given set of states after a number of time steps t, as shown
by the following result.

Theorem 11 Given an event B ⊆ S and a time t ∈ N, let P s(st ∈ B) denote the upper
bound for the probability of reaching B after t time steps when starting from s. It holds
that:

P s(st ∈ B) = T tIB(s) . (4.2)

A similar result allows for obtaining the lower probability by means of the lower op-
erator. For the sake of conciseness, in the rest of the paper, we only report the results for
upper probabilities, expectations and transition operators. The lower bounds can always
be obtained by replacing the upper transition operator with its lower analogous.

For what concerns the upper hitting probability, the latter can be regarded as the
upper bound of the hB defined in Equation (10) with respect to the set KM, as detailed
in the following definition.

142CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

Definition 65 (Upper hitting probability) Given a IMC M, a set of states B ⊆ S,
and an initial state s ∈ S:

hB(s) := max
PM
s ∈KM

∑
π̂ ∈ Pathsfin(s) : ∃ t ∈ N s.t.
π̂(t) ∈ B ∧ ∀ τ < t, π̂(τ) 6∈ B

PM
s (Cyl(π̂))

The latter can be compute as the minimal solution of the following system of equations
[97, Corollary 19]:4

hB = IB + IBcT hB . (4.3)

Differently from the precise case, the system in Equation (4.3) is non-linear and cannot
be solved by the standard methods typically used in the precise case. Nevertheless, as we
show below, it is possible to apply a schema analogous to that in Equation (1.8) and
compute hB by recursion over increasing values of t (see, [97]). Let htB denote the upper
hitting probability of B for a finite number of time-steps t ∈ N conditional on S0 = s. For
t = 0, we trivially have that ht=0

B = IB. For t > 0, we have instead the following recursion:

h
t

B = IB + IBcT ht−1

B . (4.4)

In practice, the procedure consists of t iterated applications of the transition operator
T and, consequently, requires the solution of |S| · t linear programming tasks. The time
complexity of the procedure is therefore polynomial in |S| · t, exactly as in the precise case.

As for standard DTMCs, it is proved that the least fixed point of Equation (4.4) is
the minimal non-negative solution of the schema in Equation (4.3) (see, [97, Prop 16]).
We can thus compute hB simply by iterating the schema in Equation (4.4) over increasing
values of t until converge. The overall time complexity results polynomial in |S|t∗ as in the
precise case. Each iteration step is based on a one-step application of the upper transition
operator T and requires the solution of |S| linear optimisation tasks: its time-complexity
is therefore polynomial in |S|. As t∗ further iterations are necessary to reach convergence,
the overall time-complexity results polynomial in |S|t∗.

4.2.4 Imprecise Markov Reward Models
The imprecise Markov reward models (IMRMs) are the first extension of IMCs we consider.
The latter can be defined as the imprecise counterpart of a MRM and consists of a pair
〈M, rew〉 of a IMC M and a reward function rew : S → R. For IMRMs, we characterise
the expected cumulative reward ExpRewB by its upper and lower bounds, respectively

4See also [161].

4.2. IMPRECISE MARKOV MODELS 143

denoted ExpRewB and ExpRewB. As in the precise case, we restrict the latter to only
s ∈ SB

=1, where SB
=1 is now defined as the set of all s ∈ S such that hB(s) = 1.

Given an event B ⊆ S and a path π ∈ ΠMDTIMC , let us consider the cumulative reward
RewB(π) earned along π until visiting an s ∈ B for the first time, as in Def. 12. The
upper ExpRewB(s) expected cumulative rewards earned until reaching B starting from
s ∈ S can be defined as the upper expectation of RewB conditional on the initial state
s ∈ S, i.e., ExpRewB(s) := E[RewB|s].

Inspired by Theorem 4 valid for the precise case, we introduce an imprecise version of
the recursive scheme presented in Equation (1.10). To this end, let ExpRew0

B(s) := rew(s)
for every s ∈ SB

=1. Instead, for each t ∈ N, t 6= 0, let ExpRewt
B(s) be defined as follows:

ExpRewt
B(s) :=

{
rew(s) if s ∈ B ,
rew(s) + (T ExpRewt−1

B)(s) otherwise, (4.5)

Similarly to the precise case, ExpRewt
B can be given a clear interpretation via the

following theorem.

Theorem 12 For every t ∈ N, it holds that

(∀s ∈ SB
=1) ExpRew

t
B(s) = E[Rewt

B | S0 = s], (4.6)

where for each π ∈ ΠMDTIMC, Rew0
B(π) := rew(π(0)), and for each t ∈ N, t 6= 0,

Rewt
B(π) :=

{
RewB(π) if ∃t∗ ≤ t : (∀τ < t∗) π(τ) /∈ B, π(t∗) ∈ B,∑t

τ=0 rew(π(τ)) otherwise. (4.7)

Proof 6 The proof is analogous to the one of [97, Lemma 9] given for a similar result.
Notice that results and lemmas from [97] that we will use in the following are originally
formulated for game-theoretic IMCs. As from results proved in [165], for the domain
of functions we consider in what follows, the measure-theoretic and the game-theoretic
formulations can be considered equivalent. We give the proof for ExpRewt

B, the one for
ExpRewt

B will follow an analogous reasoning.
The statement is proven by induction and we first prove the induction base. To this

end, note that Rew0
B only depends on the state S0, so, it holds that

(∀s ∈ SB
=1) E[Rew

0
B | S0 = s] = rew(s) =: ExpRew0

B(s). (4.8)

Next, as in the proof of Theorem 3, we interpret Rewt
B as a function on St+1. Moreover,

for any t ∈ N, t 6= 0 and s0, ..., st ∈ St+1 we rewrite Rewt
B([si]

t
i=0) as:

Rewt
B([si]

t
i=0) = rew(s0) + IBc(s0)Rew

t−1
B ([si]

t
i=1), (4.9)

144CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

with Rew0
B(s0) = rew(s0). Exploiting this observation, we can proceed with the induction

step. Assuming that the statement is true for t− 1, with t ∈ N, t 6= 0, we prove that it is
also true for t. First, for every s ∈ SB

=1, we have that

E[Rewt
B([Si]

t
i=0) | S0 = s] =

= E[rew(s) + IBc(s)Rewt−1
B ([Si]

t
i=1) | S0 = s] =

= rew(s) + IBc(s)E[Rewt−1
B ([Si]

t
i=1) | S0 = s] =

= rew(s) + IBc(s)E[E[Rewt−1
B ([Si]

t
i=1) | [Si]

1
i=0] | S0 = s],

where the last step is based on [97, Proposition 38].
Now, E[Rewt−1

B ([Si]
t
i=1) | [Si]

1
i=0] does not depend on the initial state S0, hence

E[Rewt−1
B ([Si]

t
i=1) | [Si]

1
i=0] =

= E[Rewt−1
B ([Si]

t
i=1) | S1] =

= E[Rewt−1
B ([Si]

t−1
i=0) | S0].

Now, E[Rewt−1
B ([Si]

t−1
i=0) | S0 = s] = ExpRewt−1

B (s) for every s ∈ SB
=1 by the inductive

hypothesis. Plugging this back into the expression we obtained for E[Rewt
B([Si]

t
i=0) | S0 =

s], we have

E[Rewt
B([Si]

t
i=0) | S0 = s] =

= rew(s) + IBc(s)E[ExpRewt−1
B (S1) | S0 = s] =

= rew(s) + IBc(s)[T ExpRewt−1
B](s) =: ExpRewt

B(s),

for all s ∈ SB
=1, where the second step uses [97, Equation 6].

By exploiting Theorem 12, we can now demonstrate the following result proving that
the recursive schema above introduced converges to what expected.

Theorem 13 E[RewB | S0] restricted to SB
=1 is a fixed point of the iterative scheme (4.5).

Proof 7 The proof follows the one of [97, Proposition 10] and considerations below. As
we know from the proof of Theorem 4, limt→+∞Rewt

B = RewB. Hence, for every s ∈ SB
=1,

limt→+∞E[Rewt
B | S0 = s] = E[RewB | S0 = s] by [97, Proposition 7], since 0 ≤ Rew0

B ≤
Rew1

B ≤ ... ≤ RewB. From Theorem 12 it also follows that ExpRewt
B are also non

decreasing and non negative. Hence, by using as well the continuity of T with respect to
non decreasing and non negative sequences, see [97, Lemma 1], we find that

E[RewB | S0] |SB
=1
=

= lim
t→+∞

E[Rewt
B | S0] |SB

=1
= lim

t→+∞
ExpRewt

B =

= lim
t→+∞

(rewSB
=1

+ IBcT ExpRewt−1
B) =

= rewSB
=1

+ IBcT E[RewB | S0] |SB
=1
,

4.2. IMPRECISE MARKOV MODELS 145

where in the last step we use again Theorem 12.

To conclude, let us focus on the imprecise counterpart of reward-bounded hitting prob-
ability hrB and its upper bound h

r

B, which we defined as follows.

Definition 66 (Upper hitting probability) Given a IMC M, a set of states B ⊆ S,
a reward-threshold r, and an initial state s ∈ S:

hrB(s) := max
PM
s ∈KM

∑
π̂ ∈ Pathsfin(s) : ∃t ∈ N s.t.
π̂(t) ∈ B ∧ ∀τ < t π̂(τ) 6∈ B ∧

rew(π̂(0), . . . , π̂(t)) ≤ r

PMDTMC
s (Cyl(π̂)) .

Similarly to the precise case (see Prop. 5), the values of hρB(s) for all s ∈ S and
ρ := 0, 1, . . . , r provide a solution to the following system of equations:

h
ρ

B(s) =

1 if s ∈ B and rew(s) ≤ r
0 if rew(s) > ρ or s 6∈ S>0

max
T (s,S′)∈T (s,S′)

∑
s′∈S

T (s, s′)h
ρ−rew(s)

B (s′) otherwise .
(4.10)

To compute hrB we can therefore use a recursive schema analogous to that presented in
Sec. 1.5.3. First, we define a matrix ht,ρ0:r

B whose cells are the values of ht,ρB (s) computed
for each s ∈ S and for ρ = 0, . . . , r.

For t = 0, we generate ht,ρ0:r
B by computing the vectors ht=0,ρ

B for ρ = 0, . . . , r as in
Equation (1.17).

For increasing values of t, ht,ρ0:r
B is generated by computing the vectors ht,ρB for ρ =

0, . . . , r as follows:

h
t,ρ

B (s) =

1 if s ∈ B and rew(s) ≤ ρ
0 if rew(s) > ρ or s 6∈ S>0

max
T (s,S′)∈T (s,S′)

∑
s′∈S

T (s, s′)h
t−1,ρ−rew(s)
B (s′) otherwise .

(4.11)

As in the precise case, the values of ht−1,ρ−rew(s)
B (s′) for all s′ ∈ S are provided by the

matrix ht−1,ρ0:r that we generate at time-step t − 1. The recursion is based on iterated
applications of the upper transition operator T , each one based on solving |S| linear
programming tasks.

146CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

To compute hrB(s) for all s ∈ S, we proceed as in the precise case, that is, we iterate
ht,ρ0:r
B over increasing values of t until convergence. Hence, for each s ∈ S, hrB(s) is given

by the s-cell of the r-vector of the matrix ht∗,ρ0:r
B , where t∗ is the convergence time-step.

The convergence of the procedure is granted by the following theorem:

Theorem 14 Let (M, rew) be a IMRM, B ⊆ [S], and ρ ∈ N, there is a t∗ ∈ N such that
for all τ ≥ 0:

ht∗+τ,ρ0:r
B = ht∗,ρ0:r

B . (4.12)

Proof 8 The proof is completely analogous to that of Theorem 6.

The overall time complexity of the procedure is polynomial in |S|t∗ for a reasoning
analogous to that stated for Equation (4.4).

4.2.5 Imprecise Probabilistic Interpreted Systems
The second IMC extension we consider are imprecise probabilistic interpreted systems
(IPISs) [158]. The latter are defined as multi-agent systems composed by agents whose
stochastic behaviour is described in terms of IMCs. An IPIS under this interpretation
is constructed as follows. For each agent a ∈ A, let {Ka(S ′ | s)}s∈S denote a family
of CSs including, for each s ∈ S, all the transition probability mass functions P a(S ′ |
s) that are compatible with some agent’s probabilistic beliefs. To obtain an IPIS, we
replace all the transition matrices T a, a ∈ A in a standard PIS with corresponding (row-
stochastic) imprecise transition matrices T a := {Ka(S ′ | s)}s∈S , whose rows correspond to
the transition CSs Ka(S ′ | s) for all s ∈ S. The overall stochastic behaviour of the entire
multi-agent system is then described by a global imprecise transition matrix TIPIS which
can be obtained following different approaches. The most conservative approach consists
of defining TIPIS as a collection of | S | conditional CSs KIPIS(S

′ | s), each one being defined
as
⋃

a∈AK
a(S ′ | s). While natural, this approach always implies an increase of the degree

of imprecision, defined in terms of the size of the credal sets.
Another approach to obtain TIPIS consists of computing, for each transition s, s′ ∈

S × S, the credal version of the logarithmic pooling of the family of conditional CSs
{Ka(S ′ | s) : a ∈ A}. In general, this is defined as the element-wise application of
the standard logarithmic pooling to the elements of the credal sets. This element-wise
approach, however, might comport exponential complexity with respect to the number of
agents in the model. A similar problem also occurs when considering alternative strategies,
such as the one proposed in [7] within the framework of general credal networks. An
efficient way to overcome the problem we adopt here consists in considering an outer

4.3. EPISTEMIC IMPRECISE PRCTL 147

approximation of the lower and upper bounds of the credal logarithmic pooling achieved
as follows:

T IPIS(s, s
′) :=

∏
a∈A T

a
(s, s′)∏

a∈A T
a
(s, s′) +

∑
s′′ 6=s′

∏
a∈A T

a(s, s′′)
. (4.13)

The lower bound is analogously computed. The obtained global matrix TIPIS consists of an
imprecise transition matrix TIPIS whose entries are intervals (m,n) ⊆ [0, 1] whose extremes
are given by the lower T IPIS(s, s

′) and the upper T IPIS(s, s
′) bounds of the transition

probabilities. As in the precise case, the global matrix describes the embedded IMC of the
IPIS that is used to compute probabilistic inferences arising with the overall stochastic
behaviour of the multi-agent system.

4.2.6 Imprecise Probabilistic Interpreted Reward Systems

The last class of IMC-based structures we consider are imprecise probabilistic interpreted
reward systems (IPIRSs). The latter are defined as pairs 〈MIPIS, rew〉 of a IPISMIPIS and
a reward function rew : S 7→ N. As for IPISs, the global transition matrix TIPIRS of an
IPIRS is obtained by combining the credal transition matrices T a of the various agents
i ∈ A.

Notice that all the various imprecise Markov models above introduced can be seen as
components of an IPIRS. Specifically, an IPIRS (MIPIS, rew) includes an IPISMIPIS that
is composed by several IMCsM, one for each agent of the system. On the other hand, an
IPIRS (MIPIS, rew) includes several IMRMs, one for each agent in the system, composed
by an IMC M and the reward function rew. This work focuses on only IPIRS and their
properties. Nevertheless, the various results obtained for IPIRSs can be easily transferred
to IMCs, IMRMs, and IPISs.

4.3 Epistemic Imprecise PRCTL

This section presents Epistemic Imprecise Probabilistic Reward Computation Tree Logic
(EIPRCTL), an epistemic and imprecise-probabilistic extension of the PCTL introduced
in [78] suitable to specify epistemic, probabilistic, and reward properties of non-stationary
(or not fully specifiable) stochastic multi-agent systems. The language is targeted on
IPIRSs but can be also applied to the other kinds of imprecise Markov models previously
introduced. Notably, properties of IMCs, IMRMs, and IPISs can be specified via specific
languages, such as IPCTL [163], IPRCTL [157], and EIPCTL [158], which can be obtained
as fragments of EIPRCTL.

148CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

4.3.1 EIPRCTL Syntax
The EIPRCTL syntax is recursively defined as follows:

φ :=

{
> | p | ¬φ | φ1 ∧ φ2 | P∇bψ | P∇bψ | PJψ
E∇rφ | E∇rφ | EJφ | Kaφ | EΓφ | CΓφ | DΓφ

,

ψ := ©φ | φ1

⋃
φ2 | φ1

⋃≤t φ2 | φ1

⋃
≤r φ2 ,

ε := Ba
∇bφ | Ba

∇b
φ ,

where p ∈ AP , b ∈ [0, 1], J ⊆ [0, 1], a ∈ A, Γ ⊆ A, and ∇ is a short notation for
{<,≤,=,≥, >}.

The language is composed by φ, ψ and ε-formulae. The former extend classical propo-
sitional logic with usual operators for single-agent knowledge Ka, common knowledge CΓ,
and distributed knowledge DΓ, and with the following probabilistic modalities:

• P∇bψ: the lower probability of reaching a path that satisfies ψ is ∇b;

• P∇bψ: the upper probability of reaching a path that satisfies ψ is ∇b;

• PJψ: the probability of reaching a path that satisfies ψ belongs to the closed interval
J ⊆ [0, 1];

• E∇rφ: the lower bound of the expected cumulative reward earned by the system until
reaching a state that satisfies φ is ∇r;

• E∇rφ: the upper bound of the expected cumulative reward earned by the system until
reaching a state that satisfies φ is ∇r;

• EJφ: the expected cumulative reward earned by the system until reaching a state that
satisfies φ belongs to the closed interval J ⊆ [0, 1];

The ψ-formulae are standard CTL path-formulae [10, p.313] used to represent prop-
erties of paths:

• ©φ: in the next state of the path φ holds;

• φ1

⋃
φ2 φ1: φ1 holds along the path until φ2 holds;

• φ1

⋃≤t φ2: there exists a time-step τ ≤ t such that φ2 holds in the τ -step of the path
and φ1 holds in all the previous time-steps;

4.3. EPISTEMIC IMPRECISE PRCTL 149

• φ1

⋃
≤r φ2: φ1 holds in all states of the path until a cumulative reward lower then or

equals to r is earned then φ2 holds.

Finally, ε-formulae include the two following weighted-belief modalities5:

• Ba
∇bφ: the lower bound of the agent a degree of belief that φ will be reached eventually

in the future is ∇b;

• Ba
∇b
φ: the upper bound of the agent a degree of belief that φ will be reached eventually

in the future is ∇b.

4.3.2 EIPRCTL Semantics
Let us introduce a proper semantics for EIPRCTL formulae based on IPIRSs. This can be
seen as a generalisation of the semantics proposed in [163] for IMCs and those proposed
in [175] for standard (precise) PISs.

Semantics of state-formulae

We start by presenting satisfiability conditions for Boolean, probabilistic, and epistemic
φ-formulae separately.

Definition 67 (Semantics of Boolean formulae) Given an IPIRS 〈MIPIS, rew〉 and
a state s ∈ S, the following conditions hold:

〈MIPIS, rew〉, s |= p iff p ∈ l(s) ,
〈MIPIS, rew〉, s |= ¬φ iff 〈MIPIS, rew〉, s 6|= φ ,
〈MIPIS, rew〉, s |= φ1 ∧ φ2 iff 〈MIPIS, rew〉, s |= φ1 and 〈MIPIS, rew〉, s |= φ2 .

Definition 68 (Semantics of probabilistic formulae) Given an IPIRS 〈MIPIS, rew〉
and a state s ∈ S, the following conditions hold:

〈MIPIS, rew〉, s |= P∇bψ iff P IPIRS(s |= ψ)∇b ,
〈MIPIS, rew〉, s |= P∇bψ iff P IPIRS(s |= ψ)∇b ,

〈MIPIS, rew〉, s |= PJψ iff
{
〈MIPIS, rew〉, s |= P≥min Jψ and
〈MIPIS, rew〉, s |= P≤max Jψ .

For the probabilistic formulae, the satisfiability conditions refer to the lower and upper
bounds of PIPIRS(s |= ψ), where PIPIRS(s |= ψ) is the probability that a path π |= ψ belongs

5In the rest of this work, we refer to such doxastic formulae as imprecise probabilistic beliefs.

150CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

to the set of paths originating in s conditional to S0 = s.6 Similarly to standard PCTL
[10], the computation of the lower and upper bounds of PIPIRS(s |= ψ) varies depending on
ψ. We analyse further this point in Section 4.4 dedicated to model checking procedures.

Definition 69 (Semantics of expected reward formulae) Let Sat(φ) be the set of
all states that satisfy φ. Given an IPISR (MIPIS, rew) and state s ∈ S, the following
condition holds:

〈MIPIS, rew〉, s |= E∇rφ iff ExpRewSat(φ)(s)∇r ,
〈MIPIS, rew〉, s |= E∇rφ iff ExpRewSat(φ)(s)∇r ,

〈MIPIS, rew〉, s |= EJφ iff
{
〈MIPIS, rew〉, s |= E≥min Jφ and
〈MIPIS, rew〉, s |= E≤max Jφ .

.

Definition 70 (Semantics of epistemic formulae) Given an IPIRS (MIPIS, rew), an
agent i ∈ A or a group of agents Γ ⊆ A, and a state s ∈ S, the following conditions hold:

〈MIPIS, rew〉, s |= Kaφ iff ∀s′, s ∼a s′ : s′ |= φ ,
〈MIPIS, rew〉, s |= EΓφ iff ∀s′, s ∼Γ

E s
′ : s′ |= φ ,

〈MIPIS, rew〉, s |= CΓφ iff ∀s′, s ∼Γ
C s

′ : s′ |= φ ,
〈MIPIS, rew〉, s |= DΓφ iff ∀s′, s ∼Γ

D s′ : s′ |= φ .

Semantics of path-formulae

Definition 71 (Semantics of ψ-formulae) Given an IPIRS (MIPIS, rew) and a path
π, the following conditions hold:

〈MIPIS, rew〉, π |=©φ iff 〈MIPIS, rew〉, π(1) |= φ ,

〈MIPIS, rew〉, π |= φ1

⋃≤t φ2 iff ∃τ ≤ t :

{
〈MIPIS, rew〉, π(τ) |= φ2 and
∀τ ′ < τ : 〈MIPIS, rew〉, π(τ) |= φ1 ,

〈MIPIS, rew〉, π |= φ1

⋃
φ2 iff ∃t ≥ 0 :

{
〈MIPIS, rew〉, π(t) |= φ2 and
∀τ : 0 ≤ τ < t 〈MIPIS, rew〉, π(τ) |= φ1 ,

〈MIPIS, rew〉, π |= φ1

⋃
≤r φ2 iff ∃t ∈ N :

〈MIPIS, rew〉, π(t) � φ2 and
∀τ < t : 〈MIPIS, rew〉, π(τ) � φ1

and Rew(π, t) ≤ r .
6Here the subscript IPIRS denotes the fact that this probability is computed through the global tran-

sition matrix TIPIRS describing the stochastic behavior of the whole multi-agent system.

4.4. MODEL CHECKING 151

Semantics of weighted-belief formulae

The ε-formulae are doxastic formulae that specify the imprecise degree of belief of a specific
agent concerning the overall behaviour of the multi-agent system. In this regard, they
qualify as the imprecise “analogous” of the COGWED weighted belief formulae reported
in Chapter 1, Section 2.11. In COGWED, the degree of belief for a given formula φ and
a set of agents Γ is measured as the ratio between the respective steady-state probabilities
of the events Sat(φ) ∩ eq∼Γ

D(s) (i.e., the set of states that satisfy φ and at the same time
belong to the distributed-knowledge epistemic equivalence class of s) and eq∼

Γ
D(s). Here,

we adopt an analogous definition but considering imprecise upper (lower) steady-state
probabilities instead of their standard precise counterparts.

Analogously to standard Markov chains, the upper (lower) steady state probability
distribution of an IMC M relative to a given event B ⊆ S can be obtained as ιM · hB.
For a given state s ∈ S, the upper (lower) bound of the imprecise degree of belief relative
to a group of agent Γ and a formula φ is accordingly defined as the ratio between ιM(s) ·
h
Sat(φ)∩eq∼

Γ
D (s)

(s) and ιM(s) · hB(s). From this definition, we then obtain the following
satisfiability conditions for ε-formulae.

Definition 72 (Satisfiability of ε-formulae) Given an IPIRS (MIPIS, rew), and a state
s ∈ S,

〈MIPIS, rew〉, s |= Ba
∇bφ iff

ιM(s)·h
Sat(φ)∩eq

∼Γ
D (s)

(s)

ιM(s)·hB(s)
,

〈MIPIS, rew〉, s |= Ba
∇bφ iff

ιM(s)·h
Sat(φ)∩eq

∼Γ
D (s)

(s)

ιM(s)·hB(s)

4.4 Model Checking
In the present section, we explain how to check systems modelled by IPISRs against
properties specified in the EIPRCTL language. The procedure we present is obtained
by extending the parsing-tree algorithm for CTL presented in Chapter 2, Section 2.6.2.
We start by briefly recalling the structure and functioning of the parsing-tree. Then,
we extend the algorithm introducing a series of new sub-routines to solve specific model
checking tasks related to the different kinds of EIPRCTL formulae.

4.4.1 Parsing Tree
Let Λ be a short notation for either a φ-formula or an ε-formula. Given an IPISR
〈MIPIS, rew〉, a state s ∈ S, and a formula Λ, we define an algorithm that verifies whether

152CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

〈MIPIS, rew〉, s |= Λ. The algorithm works as follows:

1. Generate the parse tree of Λ, recursively decomposing Λ in its sub-formulae λ until
only atoms remain.

2. Traverse the parse tree of Λ visiting all the sub-formulae λ, starting from the leaves
and working backwards to the roots,

3. At each sub-formula λ, calculate the set of states that satisfy λ, denoted Sat(λ), by
checking whether s |= λ for all s ∈ S,

4. Calculate Sat(Λ) by composition of the various Sat(λ),

5. Check whether s ∈ Sat(Λ).

The algorithm includes a specific sub-routine to compute Sat(Λ) for each specific kind
of EIPRCTL formula λ, as following detailed.

Boolean formulae.

For Boolean formulae, Sat(λ) is computed as follows:

Sat(>) := S ,
Sat(p) := {s ∈ S : p ∈ li(s)} ,
Sat(φ1 ∧ φ2) := Sat(φ1) ∩ Sat(φ2) ,
Sat(¬φ) := S \ Sat(φ) .

Probabilistic formulae.

For formulae of the kind P∇bψ, P∇bψ and PJψ, the set Sat(λ) is obtained by computing
the lower and upper bounds of PIPIS(s |= ψ) for each s ∈ S and then check whether they
satisfy the specified threshold ∇b. The specific procedure to compute the lower and upper
bounds of PIPIS(s |= ψ) varies depending on the specification of ψ.

Next If ψ := ©φ, then PIPIRS(s |= ψ) corresponds to Ps(s1 ∈ Sat(φ)) and its upper
(lower) bound can be computed as in Equation (4.2).

Time-bounded Until If ψ = φ1

⋃≤t φ2, then PIPIRS(s |= ψ) corresponds to the probabil-
ity of hitting Sat(φ2) within a finite number of time-steps t conditional on S0 = s and with
the additional condition that all the states visited before reaching Sat(φ2) are in Sat(φ1).
For each s ∈ S, we denote such probability by htSat(φ2)|Sat(φ1)

(s). A recursive schema

4.4. MODEL CHECKING 153

analogous to that in Equation (4.4) can be formulated to compute h
t

Sat(φ2)|Sat(φ1)
. Let

ISat(φ1)\Sat(φ2) denote the indicator vector whose values are one for all s ∈ Sat(φ1)\Sat(φ2)
and 0 otherwise. A slightly modified version of the algorithm in (4.4) for computing
h
t

Sat(φ2)|Sat(φ1)
by recursion over increasing values of t is achieved as follows:

h
t

Sat(φ2)|Sat(φ1)
:= ISat(φ2) + ISat(φ1)\Sat(φ2)(T IPIS h

t−1

Sat(φ2)|Sat(φ1)
) . (4.14)

As in Equation (4.4), the initialisation is given by the indicator function of Sat(φ2)
while the recursive steps consist of iterated applications of the upper transition operator
to the hitting vector computed at the precedent time-step t − 1. The only relevant dif-
ference with the analogous scheme presented in Sec. 4.2.2 consists of the indicator vector
ISat(φ1)\Sat(φ2) that replaces the indicator vector IBc of the complement of the hitting event
B. In the general scheme, IBc limits the iteration considering only paths that have not
already visited an s ∈ B. Here, by using ISat(φ1)\Sat(φ2), we limit the iteration to only
those paths whose actual and previous states are all in Sat(φ1) and that have not already
reached a state s ∈ Sat(φ2). Notice that Equation (4.14) is the imprecise analogous of
the system of linear equations used to compute in P (s |= φ1

⋃
φ2) in the precise case, as

reported in [10, Sec. 10.2.1]. Finally, as for Equation (4.4), the computation of Equation
(4.14) is based on solving |S|t linear programming tasks and its time complexity is, thus,
polynomial in |S| t.

Until If ψ := φ1

⋃
φ2, then PIPIRS(s |= ψ) corresponds to the probability of hitting

Sat(φ2) conditional on S0 = s and with the additional requirement that all the states
visited before reaching Sat(φ2) are in Sat(φ1). To compute the lower and upper bounds
of this probability, we simply iterate the schema in Equation (4.14) over increasing values
of t until convergence.

Reward-bounded Until If ψ := φ1

⋃
≤r φ2, then PIPIRS(s |= φ1

⋃
≤r φ2) corresponds to

the reward-bounded hitting probability of Sat(φ2) with the additional condition that all
the states visited before reaching Sat(φ2) are in Sat(φ1). We denote this probability by
hrSat(φ2)|Sat(φ1)

. To compute the upper (lower) bound of the latter, we involve a sightly
modified version of the procedure introduced in Equation (4.10) and (4.11) .

Let ht,ρ0:r
Sat(φ2)|Sat(φ1)

be a matrix whose cells are the values of ht,ρSat(φ2)|Sat(φ1)
(s) computed

for each s ∈ S and for ρ : 0, 1, . . . , r.
For t = 0, we generate ht,ρ0:r

Sat(φ2)|Sat(φ1)
by computing the vectors ht=0,ρ

Sat(φ2)|Sat(φ1)
for ρ =

0, 1, . . . , ρ. as in Equation (1.17).
For t > 0, we generate ht,ρ0:r

Sat(φ2)|Sat(φ1)
by computing the various vectors ht,ρB for ρ =

154CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

0, 1, . . . , r as follows:

h
t,ρ

Sat(φ2)|Sat(φ1)
(s) =

1 if s ∈ Sat(φ2) and rew(s) ≤ ρ ,

0 if h(s) = 0 or s 6∈ Sat(φ1) \ Sat(φ2) or rew(s) > ρ ,

T ht−1,ρ−rew(s)
B (s) otherwise .

(4.15)

The schema is analogous to that in Equation (4.11). The only relevant difference is the
additional clause prescribing that ht,ρB (s) = 0 also for all s ∈ Sat(φ1) \ Sat(φ2), whereas
in Equation (4.11) ht,ρB (s) = 0 only for s ∈ S such that either hB(s′) = 0 or rew(s) > r.
The additional clause blocks the recursion for the successors of the initial state that do
not belong to Sat(φ1). Indeed, if a certain successor s′ 6∈ Sat(φ1) \ Sat(φ2) is reached
at a certain time-step τ of the iteration, then hrSat(φ2)|Sat(φ1)

(s′) takes value zero and the
recursion from that state is stopped. In such a way, it is possible to account for the
additional requirement that all states visited before reaching the hitting event Sat(φ2) are
in Sat(φ1). Notice that the slightly modification does not alter the general results about hrB
reported above. In particular, the time complexity of the procedure remains polynomial
in |S|t∗ (with t∗ denoting the convergence time-steps) as it practically depends on the
iterative step T ht−1,ρ−rew(s)

B (s), which is the same both in Equation (4.11) and (4.15).

Expected reward formulae.

For formulae of the kind E∇rφ | E∇rφ | EJφ, the procedure to determine Sat(λ) is based on
computing the lower or the upper bounds of ExpRewSat(λ)(s), with Sat(λ) ⊆ S following
the procedure in Equation (4.5).

Epistemic Formulae

For formulae of the kind Kiφ | CΓφ | DΓφ, the sub-routine to compute Sat(λ) is reported
in Fig. 8.

4.4. MODEL CHECKING 155

Notice that this sub-routine is analogous to the one introduced in Section 2.9.2 for
CTLK epistemic formulae. It works as follows:

1. It takes in input an IPIRS MIPIRS and a formula κφ;

2. It computes Sat(φ) by recursively calling the respective subroutine;

3. For each eq∼κ ∈ Eq∼κ , it checks whether eq∼κ ⊆ Sat(φ). If this is the case, then the
algorithm adds the whole equivalence class eq∼κ to Sat(κφ).

Imprecise weighted-belief formulae For ε-formulae, the procedure to compute Sat(λ)
is analogous to the one introduced in Section 2.11.2 for COGWED weighted-belief formulae
within the PIS-based semantic framework. The only relevant different is the replacement
of the initial probability vector ιMPIS and the hitting vector hMPIS with their imprecise
analogous ιMIPIS and h

MIPIS (or the analogous for lower probabilities). The algorithm is
reported in Figure 12.

156CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

Algorithm 12: Sat(BΓ
∇bφ)

Input: A PIS MIS and a COGWED weighted-doxastic formula B∇bφ
Output: Sat(BΓ

∇bφ)
1 Sat(BΓ

∇bφ)← {}
2 Compute Sat(φ) := {s ∈ S |MIS, s |= φ}
3 Compute the partition Eq∼

Γ
D(s)

4 foreach eq∼
Γ
D(s) ∈ Eq∼Γ

D(s) do
5 Compute hMPIS

Sat(φ)∩eq∼
Γ
D (s)

(s) through the schema in Equation (1.8)

6 Compute hMPIS

eq
∼Γ
D (s)

(s) through the schema in Equation (1.8)

7 if
ιMPIS (s)h

MPIS

Sat(φ)∩eq
∼Γ
D (s)

(s)

ιMPIS (s)h
MPIS

eq
∼Γ
D (s)

(s)
∇b then

8 Sat(BΓ
∇bφ)← {eq∼

Γ
D(s)}

9 end
10 end
11 return Sat(BΓ

∇bφ)

Figure 4.1

4.5 A Case Study on Healthcare Budgeting
We present a first validation of EIPRCTL based on a slightly modified version of the MRM
originally proposed in [117]. MRMs are used in that work to estimate the recovery costs
for patients in geriatric departments. Two kinds of recovery are considered: short-term
recoveries for acute cares have a daily cost estimated as £100, while long-term recoveries
cost £50 per day. From a cumulative perspective, long-term recoveries are more expensive,
since those patients typically remain in the hospitals for longer periods.

A
(£100)

L
(£50)

D
(£0)

ν
1

1− δ1− ν − γ

δγ

Figure 4.2: Transitions in a three-state MRM.

4.5. A CASE STUDY ON HEALTHCARE BUDGETING 157

The evolution across time of health conditions of a patient can be described through
a MC with three states: acute care A, long-term care L, and discharge or death D.
Transitions from L to A are considered impossible, while D acts as an absorbing state.
A parametrized version of the transition matrix for this model is in Figure 4.2. The
parameters have the following interpretation: the conversion rate ν corresponds to the
probability of passing from a short-term to a long-term recovery, while the dismissing
rates γ and δ correspond to the probability of being discharged/die, respectively, in a
short and long-term recovery. Rates γ, ν and δ vary depending on the patient and disease.
An assessment of these parameters for three different departments is in Table 4.1.

Rate (%) Department 1 Department 2 Department 3
γ 1.750 3.540 2.810
ν 0.031 0.187 0.149
δ 0.120 0.130 0.180

Table 4.1: Conversion and dismissing rates.

The reward rew associated with each state represents the daily cost per patient. In
a scale where one is assumed to correspond to one pound, the daily costs per patient are
described by a function such that rew(A) = 100, rew(L) = 50, and rew(D) = 0. When
a patient is dismissed or death she no longer has a cost for the hospital. Following these
specifications, it is possible to construct a (precise) MRM 〈M, rew〉 able to predict the
expected cumulative cost incurred by the hospital for each patient up to the time of the
patient’s discharge or death. Suppose that the total amount of financial resources per
patient available to the hospital is ρ := $40, 000. We are interested in verifying whether
the expected cumulative cost per patient is sustainable, i.e., it does not exceed the amount
of resources available. This corresponds to check whether:

ExpRewD(s) ≤ ρ ,

for both s = A, i.e., for a patient initially recovered in acute care, and s = L, i.e., for a
patient initially recovered in long-term care.

The MRM in [117] presents an important limitation, that is, it considers precise values
for the transition rates ν, γ and δ, which is tantamount to assuming that the probability
of a patient to change her health-condition is always the same independently from time.
This assumption is clearly problematic. For example, it is obvious that the probability
to die for patients in long-term cares increases with time. Imprecise probabilistic models
allow us to overcome this limitation by considering, instead of precise values, probability
intervals within which the transition rates can fluctuate over time.

158CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

In practice, we define an imprecise transition matrix for each department obtained by
a perturbation of the values of each column of Table 4.1. As a perturbation method for
converting a probability mass function into a credal set, we simply adopt a linear-vacuous
contamination [173]. The methods works as follows. If P (S) is a PMF over S, the CS
K(S) (see Section 4.2.1) becomes the CS that includes all the PMFs obtained as a mixture
(1 − α)P (S) + αP ′(S), where P ′(S) is any probability mass function and the parameter
α ∈ [0, 1] defines the level of imprecision in the CS (e.g., K(S) = {P (S)} for α = 0,
while for α = 1 we get the vacuous CS). In our example, we assume a perturbation level
α = 0.03. Hence, by applying the above contamination model to each row of the three
precise transition matrices described in Table 4.1, we obtain three imprecise transition
matrices T a, a ∈ {1, 2, 3} (where a is the number of the department to which the matrix
refers).

Given that the costs associated with each state in the model remain the same as above,
we have now obtained three different IMRMs, each describing the scenario related to one
of the three departments. We are still interested in checking whether, given a patient, the
expected cumulative cost incurred until the patient is dismissed or dies does not overcome
the available resources. However, we neither know from which one of the three departments
the patient comes nor whether it is recovered in acute (A) or long-term (L) care. We can
model this scenario as follows.

First, instead of considering a specific transition matrix T a, a ∈ {1, 2, 3}, we consider
an aggregated model where the global imprecise transition matrix is a pooling of the
imprecise transition matrices of each department.

Such a global imprecise transition matrix TIPIS can be obtained by the logarithmic
pooling as in Eq.(4.13). As an alternative, more cautious, estimate, we also consider
instead a conservative pooling consisting in taking as aggregated model the union of the
probability intervals of the imprecise transition matrices of the different departments.

Finally, the fact that, independently from which is the department the patient comes
from, we cannot know whether the patient is recovered in acute or long-term cares cor-
responds to assume that A ∼a L,∀a ∈ {1, 2, 3}, i.e., states labelled by A and L are
indistinguishable. We have now obtained a description of the considered scenario in terms
of an IPISR 〈MIPIS, rew〉.

Checking whether the upper maximum expected cumulative cost incurred by the hos-
pital until a patient is dismissed or dies is sustainable corresponds therefore to verify
whether or not the formula E≤ρD holds in the model 〈MIPIS, rew〉 for each state s in the
equivalence class {A,L}. To check this formula, we apply the procedure discussed in Sec.
4.4. The algorithms described in Sec. 4.2 are finally used to compute the upper bounds
of ExpRewD(s) for both s = A and s = L. The most cautious bounds returned by the

4.6. CONCLUSIONS 159

conservative pooling are:

ExpRewD(A) = $29′561 , (4.16)
ExpRewD(L) = $42′343 . (4.17)

As expected, the cumulative costs for patients initially admitted in acute-care are lower
and not exceeding the resources available to the hospital. The same does not happen for
patients initially admitted in long-term care.

The management of the hospital might consequently need to check how likely is the fact
that the cumulative costs for an hospitalised patient are exceeding the available resources.
We do that by checking that the probability of a patient to be dismissed/died before
the cumulative cost overcomes the available resources is sufficiently high, e.g., greater
than or equal to a threshold π := 0.95. This corresponds to check whether the formula
P≥π>

⋃
≤ρD holds in the model 〈MIPIS, rew〉 and for each state s in the equivalence

class {A,L}. Remarkably, by means of the algorithms described in Section 4.2 we obtain
that the formula is satisfied for both initial states. The resources overrun is therefore a
relatively unlikely event for the hospital.

4.6 Conclusions
An intrinsic limitation of probabilistic model checking is related to its fundamental reliance
on the use of standard Markov models, which can notoriously model only stationary agents
whose transition probabilities are all specified by known numerical values. To overcome
this limitation, we have presented a novel framework based on the theory of imprecise prob-
abilities and the related imprecise Markov models. More specifically, we have explained
how the use of imprecise Markov models allows us to apply probabilistic model checking
methods to both non-stationary agents and agents whose transition probabilities are not
fully known without comporting computational complexity issues. The key point is that
both probabilistic and reward inferences in imprecise Markov models can be computed
by iteratively solving linear programming tasks. This allows us to solve relevant model
checking tasks without increasing the computational complexity of the relative procedures,
which always remains polynomial in the number of states of the models. The chapter fo-
cuses specifically on stochastic multi agent systems, but the framework it introduces is
useful also for single-agent models. The main limitation is that, so far, we considered only
discrete-time models. Recent developments [96] in the study of imprecise continuous-time
Markov chains (CTMC) strongly suggest that an analogous framework can be introduced
for continuous-time models, which are of fundamental relevance for applications in fields
like computational and systems biology [22, 14]. In the model checking community, some

160CHAPTER 4. PROBABILISTIC MODEL CHECKING WITH IMPRECISE PROBABILITIES

works concerning non-stationarity issues in continuous-time Markov models have been re-
cently proposed. In [24], for example, non-stationary agents are modelled via uncertain
CTMCs, which are CTMCs whose transition probabilities vary non-deterministically in
time within bounded continuous intervals. Although uncertain and imprecise CTMCs are
similar, they are not equivalent formalisms. Notably, while an uncertain CTMC can be re-
garded as the largest family of precise CTMCs compatible with the bounds of the intervals,
an imprecise CTMC is the largest family of all, potentially non-Markov, non-homogeneous,
processes compatible with given constraints. In other words, imprecise CTMCs are more
expressive and potentially useful for a wider range of applications. So far, however, there
are no works specifically concerning model checking with imprecise CTMCs.

To conclude, another important development to consider might concern the develop-
ment of an imprecise-probabilistic framework for Markov decision-processes, notably for
the relevance of the latter and their natural connection with the field of Reinforcement
Learning [154] that we will involve in the last chapter of this thesis.

Chapter 5

Markov Models Semantics and
Logical Omniscience

Abstract
This chapter explores an innovative application of Markov model semantics to solve the
well-known and widely debated problem of logical omniscience. The chapter begins with
an overview of the most relevant proposed solutions to this problem. It argues that almost
all of these solutions are unsatisfactory because they fail to represent real-world agents as
both logically competent and non-omniscient in virtue of their limited inferential abilities
and resources. Subsequently, the chapter presents a novel solution based on explicitly rep-
resenting real-world agents’ knowledge as encompassing all and only the information they
can infer using their limited inferential resources and abilities. To capture this new con-
cept of explicit knowledge, the chapter introduces a semantic framework based on a new
typology of Markov models called Markov deduction structures. The latter model deductive
inference as a state-space exploration task, which is represented as a Markov decision pro-
cess whose states are finite sets of Boolean formulae, and the actions correspond to logical
rules. Reinforcement learning algorithms are then applied to solve this decision process and
determine if an agent can effectively infer certain information without exceeding its avail-
able resources. The second part of the chapter introduces the Markov Deduction Structures
Logic (MDSL), a new epistemic language defined based on the aforementioned semantics of
Markov deduction structures, and its a dynamic extension (MDSDL). The latter includes
specific operators for real-world agents’ relevant actions such as learning a new rule, sharing
resources, and exchanging information.

5.1 Introduction

The problem of logical omniscience [150] arguably represents one of the historically most
famous and discussed topics in the philosophy of epistemic logic. This problem arises from
the fact that knowledge and belief in the standard semantic framework of epistemic logic

161

162CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

are represented as closed under logical consequence and tautologies [150]. Historically,
this semantic framework is due to Hintikka [82] and is based on Kripke possible worlds
semantics [167]. In this framework, an agent is said to know a proposition φ if and only if
φ is true in all possible worlds that are epistemically accessible by the agent. The notion of
epistemic accessibility is considered primitive and is represented through an accessibility
relation on possible worlds, as in Kripke’s semantics. From the aforementioned definition
of knowledge, it can be easily demonstrated that if an agent knows φ then it knows all the
logical consequences of φ. By classical definition of logical consequence, if ψ is consequence
of φ, then there are no possible worlds where φ is true and ψ false. That is, the set of
worlds that satisfy φ is a proper subset of the set of worlds that satisfy ψ. Therefore, if
φ is true in all worlds epistemically accessible to an agent, so is ψ. Similar considerations
apply to tautologies: since a tautology is defined as a proposition that is true in all possible
worlds, then a tautology is a-fortiori true in all the possible worlds that are epistemically
accessible to an agent.

Representing knowledge as closed under logical consequence and tautologies is clearly
problematic, especially when the focus is on reasoning about real-world agents like humans,
computer programs, or AI systems. Consider an agent i that knows Peano’s axiom. As
long as we represent i’s knowledge as closed under logical consequence, we are committed
to claim that if i knows Peano’s axioms, then i knows all the theorems of arithmetic,
which is clearly absurd. Because of logical omniscience, it has been argued that standard
epistemic logic1 has to be regarded not as representing agents’ actual knowledge, but
rather the information about the world that agents implicitly possess given their actual
knowledge [109]. This point of view is consistent with several views in early mathematical
logic [74, 144, 32, 26], which considered the primary objective of logic not to describe
what conclusions real-world agents (humans and machines) are actually able to draw from
premises, but to identify which propositions they can ultimately accept as true without
becoming incoherent. For the majority of applications of epistemic logic, however, implicit
knowledge is almost useless. In fact,

“to predict or to explain a real-world agent’s actions we need to know what the
agent actually knows, and not what it possibly knows” [54, p. 4]

In other words, what we need is a logic of explicit knowledge. Such a logic should
represent agents as neither omniscient nor completely ignorant, i.e., unable to get to know
any of the logical consequences of their basic knowledge [54, 136]. What we need is
something in between: a logic that represents agents as knowing explicitly all and only

1From now on, we will use the term “standard epistemic logic” to refer to all modal systems developed
within the model-theoretic tradition and based on Hintikka’s modal analysis of knowledge [82]. Notably,
these include systems K, T, S4, S5 and their extensions [167].

5.1. INTRODUCTION 163

the information they can actually infer from their basic knowledge using their limited
resources and inferential abilities.

Along the years, several solutions have been proposed for the problem of logical om-
niscience. Many of them rest within the paradigms of possible worlds semantics [98] and
are based on the strategy of weakening epistemic logic so to invalidate axioms and rules
responsible for the emergence of logical omniscience [54]. Notable examples include neigh-
borhood semantics2, Levesque’s situations semantics [109], and various impossible worlds
semantics [81, 35, 177, 64, 18]. All these solutions are presented more in detail in Section
5.3.1.

As argued in [54, 136], these solutions based on the so-called “strategy of weakening”
are mostly unsatisfactory because either do not invalidate all relevant forms of logical
omniscience or represent agents as logically ignorant. In both cases, hence, the portrait
of the agents they provide remains unrealistic. Indeed, real-world agents are typically
neither omniscient nor fully ignorant but moderately competent, i.e., able to get to know
all and only the information they can actually infer from their actual knowledge using
their limited resources and inferential abilities [136].

Other different solutions have been proposed outside the paradigm of possible world
semantics. An example is the semantics of deduction models proposed by Konolige [95] and
inspired by research in logic-oriented AI and expert systems [73]. In this semantics, agents
are represented by pairs of a knowledge base KB and a set of rules ρ. The agent knows
a certain proposition p if and only if p can be derived from KB through ρ. Depending on
the rules that are included in ρ, one can obtain more or less inferentially powerful agents.
Logical ignorance corresponds to an empty ρ, while omniscience corresponds to include in
ρ all rules of classical propositional logic. Intermediate degrees can be obtained including
in ρ only some relevant rules, thus representing agents that are neither omniscient nor
ignorant.

More recent examples are represented by dynamic frameworks, e.g., [54, 136]. These
extend standard epistemic logic with operators to represent the actions of applying a
rule or executing an inference, which are then used to constraint explicit knowledge and
invalidate logical omniscience. For example, the DES4n system proposed in [54] includes
an axiom stating that “if an agent (explicitly) knows a proposition φ and φ |= ψ, then the
agent explicitly know ψ provided that it performs the right act of thought”. The agent is
therefore neither ignorant, as it can get to know some consequences of its actual knowledge,
nor omniscient, as its ability to get new knowledge depends on the effective execution of
an inference.

Another example is finally provided by depth-bounded logics [59] and their epistemic
extensions [103, 29, 104]. These logics constrain the inferential power of an agent by

2Alternatively called, minimal-models semantics or Scott-Montague semantics, see [73].

164CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

limiting the amount of so-called virtual information it can manage, where the latter is
represented in terms of the number of arbitrary assumptions an agent can introduce in a
logical deduction.

All the mentioned solutions technically resolve logical omniscience insofar they provide
a formalism in which both omniscience and ignorance are avoided. However, as we will
argue more in details in the following sections, they cannot be regarded as fully satisfactory
for a variety of different reasons. One of them is that they do not consider a fundamental
ability of rational real-world agents, which is that of optimizing their resources. Ideal
agents have infinite resources at their disposal, hence they have no necessity of optimising
their use. On the contrary, real-world agents have to take care of using their limited
resources at best. This is not to say that real-world agents always make the best use
of their resources, but that they should do it if they are rational. As logic is supposed
to focus on rational agents, we believe that a good definition of explicit knowledge should
presuppose that agents are able of making the best use of their limited resources. Following
this intuition, we propose a new definition of explicit knowledge according to that:

a real-world agent i explicitly knows a proposition φ if and only if i is able
to get to know φ (from its basic knowledge) given its inferential abilities and
making the best use of its limited resources.

Based on this definition, in this chapter we develop a new framework for epistemic logic
describing real-world agents’ reasoning as a states-space exploration process that can be
modelled via Markov decision processes and reinforcement learning. The framework in-
cludes: (i) a semantics based on a new class of models called Markov deduction structures,
(ii) a logic and a dynamic logic of explicit knowledge, and (iii) specific model checking
algorithms to verify whether real-world agents’ satisfy given desirable epistemic require-
ments. The chapter is organized as follows. In Section 5.2, we introduce the standard
treatment for epistemic logic based on possible world-semantics and discuss its relation
with the problem of logical omniscience. In Section 5.3, we discuss some well-known so-
lutions to the problem of logical omniscience proposed in literature, thereby focusing on
their strengths and weaknesses. In Section 5.4, we explain how to model real-world agents’
reasoning via Markov decision processes whose states are finite sets of formulae and ac-
tions correspond to logical rules. Notably, to represent agents with limited resources and
abilities, we introduce Markov deduction structures, a new class of algebraic structures
inspired by Konolige’s deduction models, of which the former can be considered a sort of
probabilistic generalization. In Section 5.7, we introduce the Logic of Markov Deduction
Structures (MDSL), a multi-agent logic of explicit knowledge based on the formalism of
Markov deduction structures and representing agents as knowing explicitly all and only
the information that they can infer from their actual knowledge making the best use of
their limited resources and inferential abilities. In Section 5.8, we extend the MDSL to a

5.2. EPISTEMIC LOGIC 165

dynamic framework to represent exchange of information and resources between agents.
In Section 5.9, we introduce specific model checking procedures for both MDSL and its
dynamic extension. We conclude with some remarks on future developments, concerning
in particular the implementation and the applications of the formalism here presented.

5.2 Epistemic Logic
The standard treatment for the logic of knowledge was originally introduced in [82]. It
concerns knowledge as a modal notion, like necessity and possibility, and is largely based
on the possible worlds semantics developed by Kripke [98].

Syntax

Let AP be a finite non-empty set of atomic propositions and let A be a finite non-empty
set of agents whose elements are denoted by i ∈ A. The language of standard epistemic
logic is defined as follows:

φ := p | ¬φ | φ1 ∧ φ2 | Kiφ

with p ∈ AP and i ∈ A. The language is an extension of standard propositional
logic with the addition of a modal operator Ki to represent knowledge of an agent i ∈ A.
In multi-agent contexts, the language is eventually extended with modal operators for
everybody knows EΓ, common knowledge CΓ, and distributed knowledge DΓ in a group of
agents Γ ⊆ A.

Semantics

The standard semantics of epistemic logic is based on Kripke models.

Definition 73 (Kripke model (KM)) A Kripke model KM is a tuple 〈Ω, {Ri
K}i∈A, v〉

where:

• Ω is a set of possible worlds;

• {Ri
K}i∈A is a family of accessibility relations Ri

K ⊆ Ω defined on worlds;

• v : Ω × AP is a Tarskian valuation function on pairs of worlds and atoms such
that, for any pair 〈ω, p〉 ∈ Ω × AP , V (ω, p) = 1 if p is true in ω and V (ω, p) = 0
otherwise.

166CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

Possible worlds are assumed to be coherent and complete with respect to atoms in AP ,
that is, for all atoms p ∈ AP and worlds ω ∈ Ω, either p is true in ω or it is false. There
are neither worlds where p has no definite truth value, nor worlds where p is both true
and false.

In the possible-worlds semantics, epistemic logic formulae are typically evaluated with
respect to a Kripke model MK and a world ω ∈ Ω, which represents the actual world. The
satisfiability conditions are defined as follows:

Definition 74 (Formula satisfiability)

MK , ω |= p iff v(p, ω) = 1 ,
MK , ω |= ¬φ iff MK , ω 6|= φ ,
MK , ω |= φ1 ∧ φ1 iff MK , ω |= φ1 and MK , ω |= φ2 ,
MK , ω |= Kiφ iff ∀ω′ ∈ Ω : ωRi

Kω
′ MK , ω |= φ .

Satisfiability conditions for knowledge are analogous to those of necessity and possibil-
ity expressed in the possible-world semantics for alethic modal logic. What changes is the
significance of the accessibility relation, which is here interpreted as epistemic accessibility:
we say that a world ω′ ∈ Ω is epistemically accessible from ω by an agent i if and only if
ω′ is coherent (i.e., it does not contradict) with i’s actual knowledge at ω.

A Kripke frame (KF) is a class of Kripke models specified by a pair 〈Ω, RK〉 of a
set of worlds and an accessibility relation RK . Different Kripke frames can be obtained
by varying the topology of the accessibility relation, e.g. by requiring it to be reflexive,
transitive, or Euclidean [167].

Definition 75 (Validity and satisfiability in Kripke frames) Let K be a Kripke frame.
We say that φ is valid in K if and only if φ is satisfied by all models in K. We say that φ
is satisfiable in K if and only if there exists at least one model in K that satisfies φ.

The largest Kripke frame is usually denoted by K and defined as the class of all Kripke
models that do not impose any restriction on the topology of the accessibility relation.
Relevant frames included in K can be obtained by requiring the accessibility relations to
satisfy specific algebraic properties, as follows:

• T is the class of all Kripke models such that Ri
K for all i ∈ A is reflexive;

• S4 is the class of all Kripke models such that Ri
K for all i ∈ A is reflexive and

transitive;

• S5 is the class of all Kripke models such that Ri
K for all i ∈ A is reflexive, transitive,

and euclidean;

5.2. EPISTEMIC LOGIC 167

Notice that, in S5 accessibility relations are in fact equivalent relations, hence totally
analogous to the relations introduced in the formalism of interpreted systems discussed in
the previous chapters. Kripke frames and interpreted systems are intimately related. In
particular, an interpreted system can be regarded as an S5-like Kripke frame characterized
by a finite set of words Ω, whereas in S5 worlds can be infinite.

5.2.1 Axiomatization
The various Kripke frames introduced above induce a hierarchy of axiomatic systems for
epistemic logic. At the basis of the hierarchy we find system K, which is defined by the
following axioms and rules:

Definition 76 (System K)

PC all substitution instances of propositional tautologies ,
K ∀ i ∈ A , Ki(φ→ ψ)→ (Kiφ→ Kiψ) ,
MP from φ→ ψ and φ infer ψ ,
Nec from the validity of φ infer ∀ i ∈ A , K iφ .

The system K is complete and coherent with respect to the frame K, i.e., the largest
possible class of possible Kripke models. It represents the weakest epistemic logic system
insofar all the other axiomatic systems can be obtained as extensions of K. Notably, the
system T is obtained by extending K with the truthfulness axiom:

T := Kiφ→ φ ,

which establishes the truthfulness of knowledge and it is complete and coherent w.r.t.
frame T . The system S4 is obtained by extending T with the positive introspection axiom:

4 := Kiφ→ KiKiφ ,

and it is complete and coherent w.r.t. the frame S4. Finally, the system S5 is obtained
by extending S4 with the negative introspection axiom:

5 := ¬Kiφ→ Ki¬Kiφ ,

and it is complete and coherent w.r.t. frame S5.
The problem of logical omniscience already emerges at the level of system K as a con-

sequence of the axiom K and the necessiation rule Nec, the former inducing closure under
logical consequence and the latter inducing closure under tautologies. As all epistemic
logic systems include K, they are all affected by the problem.

168CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

5.3 Solutions to Logical Omniscience
Along the years, several solutions have been proposed for the problem of logical omni-
science. These can be divided in three macro-groups: (i) model-theoretic solutions, (ii)
syntactic solutions, and (iii) dynamic solutions. In this section, we briefly analyse each of
them, identifying their strengths and weaknesses and arguing under which respect they
cannot be regarded as satisfactory.

5.3.1 Model-Theoretic Solutions
These solutions are based on weakening standard epistemic logic, invalidating the axioms
and rules responsible for the emergence of logical omniscience [54]. Arguably the most
representative kind of model-theoretic solutions are based on neighborhood semantics3,
Levesque’s situations semantics [109], or impossible worlds semantics [18].

Neighborhood Semantics

Given a set of possible worlds Ω, a neighborhood function N is a mapping N : Ω → 22
Ω

that assigns to each ω ∈ Ω a set of sets of possible worlds. A neighborhood model MN is a
tuple 〈Ω, N, v〉 of a set of possible worlds Ω, a neighborhood function N , and a valuation
function v. A semantics for epistemic logic can be formulated in terms of neighborhood
models by including a neighborhood function N i for each agent i ∈ A and then establishing
the following condition:

MN , ω |= Kiφ iff Sat(φ) ∈ N i(ω) ,

where Sat(φ) is the set of all worlds that satisfy φ. That is, an agent knows a given
proposition φ if and only if the set of worlds that satisfy φ are among those associated to
ω by the neighborhood function N i. As there are no constrains on which sets of worlds
N i assigns to a given world ω, closure under logical consequence is no longer valid. For
example, let assume that Ω := {1, 2, 3} and consider two propositions φ and ψ such that
Sat(φ) := {2} and Sat(ψ) := {2, 3}. In this frame, it holds that φ |= ψ as there are no
worlds ω where φ is true and ψ is not. Let assume that 1 is the actual world and that Kiφ.
In terms of neighborhood semantics, this is equivalent to say that {2} ∈ N i(ω). Since
N i is completely arbitrary, from {2} ∈ N i(ω) does not follow that also {2, 3} ∈ N i(ω).
Therefore, we can have models in which Kiφ holds and Kiψ does not hold even if φ |= ψ.
Closure under logical consequence is thus invalidated. A similar reasoning holds for closure

3Alternatively called, minimal-models semantics or Scott-Montague semantics, see [73].

5.3. SOLUTIONS TO LOGICAL OMNISCIENCE 169

under tautologies. To prevent an agent i from knowing all tautologies in a given world ω,
it is in fact sufficient to not include Ω in N i(ω).

The complete and coherent epistemic axiomatization of neighborhood semantics cor-
responds to the minimal system with no axioms in addition to propositional tautologies
and two rules: modus ponens and the following equivalence rule:

from φ↔ ψ and Kiφ infer Kiψ .

Neither the axiom K nor the rule Nec, responsible for the emergence of logical omni-
science, are present.

However, Neighborhood semantics and its axiomatization rise two fundamental issues
making them unsatisfactory solutions. The first one is that agents may potentially not
know any logical consequence of their actual knowledge, i.e., they could be completely
ignorant. This is a direct consequence of the fact that N i is completely arbitrary and
does not induce any constraint (in principle) on agents’ knowledge. Of course, one could
act on the specification of N i in order to include some relevant constraints. For example,
one could specify N i in such a way that if Sat(φ) ∈ N i(ω) for a given ω, then, for all
propositions ψ that can be derived from φ, say, within seven applications of modus ponens,
it holds that Sat(ψ) ∈ N i(ω). However, this solution looks ad-hoc and quite cumbersome
to implement in practice.

Another issue rises from the fact that neighborhood semantics does not invalidate all
relevant forms of logical omniscience. Indeed, agents are omniscient with respect to a
special form of logical consequence, that is, logical equivalence. Consider two propositions
φ and ψ. Let assume that Sat(φ) ∈ N i(ω). If φ and ψ are logically equivalent (i.e.,
φ ↔ ψ), then it holds that Sat(φ) = Sat(ψ). Therefore, if Sat(φ) ∈ N i(ω), then also
Sat(ψ) ∈ N i(ω) and, consequently, by the semantics of the knowledge operator, if Kiφ
and φ ⇐⇒ ψ, then Ki(ψ). Notice that, in the axiomatization of neighborhood semantics,
this is precisely what is established by the equivalence rule. In conclusion, neighborhood
semantics fails both to avoid logical ignorance and to invalidate all relevant forms of
logical omniscience. Indeed, although weaker than closure under logical consequence and
tautologies, closure under logical equivalence is still problematic for applications and leads
to several counter-intuitive conclusions. For example, suppose that an agent i knows that
2 + 2 = 4, since 2 + 2 = 4 is logically equivalent to all theorems of arithmetic, if we
represent i’s knowledge in terms of neighborhood semantics, we are forced to say that i
knows all theorems of arithmetic, which, again, is absurd.

Notice that closure under logical equivalence represents an issue not only for neighbor-
hood semantics but for all semantic approaches based on the paradigm of classical possible
worlds insofar they assume each proposition to be equivalently representable via its truth-
conditions and, thus, via the sets of possible worlds satisfying it. For all the semantic
approaches assuming this equivalence (i.e., all the approaches based on the paradigm of

170CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

classical possible worlds), there is no way to distinguish between propositions being true
in the same class of possible worlds: if two propositions have the same truth-conditions
they in fact count as the same proposition, hence the closure under logical equivalence.

In most contexts, included alethic modal contexts, this form of closure is not problem-
atic as the salva-veritate substitutability holds: two components of a statement having the
same truth conditions can be replaced with one another without altering the statement’s
truth-value. For example, in the sentence “necessarily 2 + 2 = 4 holds”, one can replace
the proposition “2+2 = 4” with another having the same truth-condition (e.g., “Fermat’s
Theorem”) and the truth-value of the whole sentence remains the same. This is not the
case of epistemic contexts, where replacing a proposition with another having the same
truth conditions can alter the overall truth value of the epistemic statement. By way of
exmaple, consider again the two propositions “2+2 = 4” and “Fermat’s theorem”. Even if
they have the same truth-conditions, we cannot replace them with one another in an epis-
temic statement as we do in other modal contexts. The statements “Alberto knows that
2 + 2 = 4” and “Alberto knows Fermat’s theorem”, indeed, are not logically equivalent:
there may be cases in which one is true and the other false.

From what said, it follows that closure under logical equivalence emerges whenever one
adopts a semantic approach based on classical possible worlds, hence making it impossible
to elaborate a satisfactory solution to the problem of logical omniscience while remaining
within this paradigm. Various solutions have therefore been proposed outside the paradigm
of classical possible worlds, but always remaining within the semantic model-theoretical
tradition. The latter are generally based on the assumption of the existence of non-
classical possible worlds, such as Levesque’s situations, which will be discussed in the
following paragraph, and impossible worlds, which we will examine in the next one.

Situations Semantics

A different model-theoretic solution that goes beyond the paradigm of classical possible
worlds is the situations semantics proposed by Levesque [109]. Situations are “generaliza-
tions of possible worlds where not every sentence in a language is required to have a truth
value” [109, p.199]. Models M in situations semantics are defined as tuples 〈S,B,T,F〉
where S is the set of all situations, B is the set of situations that could be the actual one
according to what is believed, T : AP → 2S is a function that assigns to each atom p of
the language the set of situations T (p) that supports the truth of p, and F : AP → 2S is
a function that assigns to each p ∈ Ap the set of situations F(p) that supports the falsity
of p. The set of possible worlds Ω is then defined as the set of all situations s ∈ S such
that, for all p ∈ AP , either s ∈ T (p) or s ∈ F(p), i.e., a possible world is a situation that
assigns a truth-value to each atoms in the language. The set of possible worlds compatible
with a given situation s ∈ S, denoted Ω(s), is defined as the set of all worlds ω ∈ Ω such

5.3. SOLUTIONS TO LOGICAL OMNISCIENCE 171

that: (i) if s ∈ T (p) then so is ω, and (ii) if s ∈ F(p) then so is ω. That is, a world ω
is compatible with a given situation s if and only if ω completes s, in the sense that it
assigns a definite truth-value to all atoms that have no definite truth-value in s.

Levesque uses situations semantics to distinguish between implicit and explicit knowl-
edge. The former is modelled as in standard possible-world semantics and is closed under
logical consequence and tautologies. The latter represents what a real-world agent actually
knows. A specific operator E is introduced in the language to model explicit knowledge
whose semantics is as follows:

Definition 77 (Explicit knowledge (Levesque)) Given a model M and a situation
s ∈ S, the following condition holds:

M, s |= Eφ iff ∀ s′ ∈ B : s′ ∈ T (p)

The incompleteness of situations prevents explicit knowledge to be closed under logical
consequence and tautologies. For example, consider two atoms p and q and suppose that
p |= q and E(p). In situations semantics, this corresponds to say that {ω : ω ∈ T (p)} ⊆
{ω : ω ∈ T (q)} and that ∀s′ ∈ B : s′ ∈ T (p). In this scenario, there may be situations
in B that assign value true to p (i.e., they are in T (p)) but do not assign any truth-value
to q (i.e., they are neither in T (p) nor in F(p)). Notice that these situations are perfectly
compatible with the condition that {ω : ω ∈ T (p)} ⊆ {ω : ω ∈ T (q)}, i.e., with the
requirement that if a situation s is in T (p), then all worlds that complete s assign the
truth-value “true” to q. However, if some s exists that assigns truth-value “true” to p but
does not assign any truth-value to q, then M, s 6|= E(q). Hence, from p |= q and E(p) does
not follow E(q). Closure under logical consequence is therefore violated, as desired. A
similar reasoning holds for closure under tautologies. From the fact that a proposition p
is true in all possible worlds (i.e., ∀ω : ω ∈ T (p)) it does not follow that for all situations
p is also true, simply because there may be situations in which p is neither true nor false.

Situations semantics invalidate all relevant forms of logical omniscience, including clo-
sure under logical equivalence that remains instead valid neighborhood semantics. For the
latter, simply observe that if two propositions p and q are true in exactly the same class
of possible worlds (i.e., they are logically equivalent), there may nevertheless be situations
in which p is true and q has no defined truth-value, and vice versa. Unfortunately, on the
other hand, situation semantics suffer from the same problem that makes neighborhood
semantics unsatisfactory, i.e., it represents agents as logically ignorant. As neighborhood
models, indeed, situations do not impose any constraint on the agents’ knowledge, i.e.,
there is nothing in the semantics granting that certain logically consequences can be known
if the agent has enough competences and resources, unless to introduce complicate ad-hoc
restrictions (e.g., by imposing that for all propositions φ that can be derived by a set of

172CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

premises Γ via at most four iterated applications of modus ponens: if all situations in B
assign value “true” to all propositions in Γ, then they also assign value “true” to φ). In our
research of a threshold between omniscience and ignorance, therefore, situations semantics
does not qualify as a satisfactory solution.

Impossible Worlds

The last model-theoretic approach we examine is that based on impossible worlds seman-
tics. This approach has been explored by a variety of authors in recent years, including
Hintikka [81], Cresswell [35], Wansing [177], Fagin [64], and Berto et Jago [18]. In a
nutshell, it consists of extending Ω with a set of impossible worlds Ω⊥ where rules of
classical logic do not hold. Truth in impossible worlds is modelled through a valuation
function δ : LAP → [0, 1] that assigns to each formula of the language LAP and impossible
world ω⊥ ∈ Ω⊥ an arbitrary truth-value. Impossible-worlds do not behave classically. For
example, we can have impossible worlds that satisfy both φ and ψ but do not satisfy φ∧ψ.

In impossible worlds semantics, the knowledge operator is evaluated with respect to
both possible and impossible worlds. Let Ω+ := Ω ∪ Ω⊥ and let A be a finite non-
empty set of agents, a model M in impossible worlds semantics is defined as a tuple
〈Ω+,A, {Ri}i∈A, v, δ〉, with v being the usual valuation function, δ being the valuation
function for impossible worlds and {Ri}i∈A being a family of accessibility relations defined
on both possible and impossible worlds. The semantics of the knolewdge operator Ki is
then defined as follows:

Definition 78 Given a model M and a world ω+ ∈ Ω+, the following condition holds:

M,ω+ |= Kiφ iff ∀ω′ ∈ Ω+ s.t. ωRiω′ : M,ω′ |= φ

Since knowledge is evaluated considering also impossible worlds, which are completely
ill-behaved, logical omniscience does not hold. To invalidate closure under logical conse-
quence, it is sufficient to have an impossible world among those accessible in which φ and
φ→ ψ hold but ψ does not hold. Similarly, closure under a given tautology can be easily
invalidated by including an impossible world in which that tautology does not hold.4

5.3.2 Syntactic Approaches
Outside the model-theoretical framework, a completely innovative approach to logical om-
niscience is the “syntactic” approach proposed by Konolige in [95] and based on deduction

4Notice that the definition of tautology is the same as in classical logic, a proposition φ is a tautology
if and only if it is true in all possible worlds, hence excluding the impossible ones.

5.3. SOLUTIONS TO LOGICAL OMNISCIENCE 173

models, formal representations of agents inspired by logic-based experts systems. A de-
duction model di for a given agent i ∈ A is a pair 〈KB, ρ〉 where KB is a finite set of
formulae in propositional language and ρ is a set of logical rules that apply to formulae in
KB. ρ is not required to include all rules of propositional logic and may be incomplete.
We write `i φ to denote that formula φ is derivable in the deduction model of i, i.e., it
can be inferred from KB by iterative applications of rules ρ.

In Konolige’s framework, a model M is defined as a tuple 〈Ω, {di}i∈A, v〉 with Ω a set
of possible worlds, {di}i∈A a family of deduction models, one for each agent i ∈ A, and
v the valuation function. The semantics of the propositional fragment is formulated with
respect to possible worlds, as in standard epistemic logic. The knowledge operator Ki,
instead, is interpreted on deduction models as follows:

Definition 79 Given a model M , the following definition holds:

M |= Kiφ iff `i φ .

That is, an agent knows a given proposition φ if and only if φ is derivable in the
deduction model associated to i.

Concerning the proof theory, the system BK provides a complete and coherent ax-
iomatization of the semantics of deduction models. In addition to all axioms and rules
of propositional logic, it includes: (i) a set ρ of rules for each agent i ∈ A, and (ii) the
procedural link rule stating that:

• from Kiφ1 . . . K
iφn and φ1, . . . , φn `i ψ, it follows that Kiψ.

In practice, each agent i ∈ A is represented as knowing all and only the propositions
that it can derive from KB through rules ρ. Agents in the logic of deduction models are
thus represented as neither omniscient nor ignorant. In this regard, Konolige’s framework
provides an effective solution to the problem of logical omniscience. In our opinion, how-
ever, this solution is not really satisfactory for a variety of reasons. First of all, Konolige’s
framework assumes the lack of logical omniscience to depend only on agents’ incomplete
knowledge of classical logic rules, while it depends also (and even mostly) on their limited
computational resources. Second, although knowledge is not closed under logical conse-
quence, it is still deductively closed with respect to rules in ρ. In some cases, this form
of closure may be unrealistic. Consider for example a proposition φ that the agent i can
infer from KB only through an incredibly high number of iterated applications of rules ρ:
would we still be prepared to say that i knows φ? if i has no sufficient time or resources,
it would never be able to know φ, even if the latter is derivable in its deduction model.
Third, the fact that an agent knows all classical logic rules clearly does not imply that it
is logically omniscient: there are plenty of real-world agents that know classical logic rules

174CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

and Peano’s axioms but none of them knows all theorems of arithmetic, simply because
they have not enough time and resources to derive them.

In conclusion, the logic proposed by Konolige solves logical omniscience but adopting
a wrong strategy. In particular, its main failure relies on not taking explicitly into account
agents’ resources and how these are used. Nevertheless, this logic makes a fundamental
progress with respect to model-theoretic solutions: relating knowledge explicitly to the
inferential procedures occurring in agents’ memory is very valuable and represents the
starting point of our framework, which is largely inspired by Konolige’s proposal.

5.3.3 Dynamic Approaches
We conclude by analysing solutions based on dynamic epistemic logic [168]. As noticed in
[136, p.9], it is “an agent’s ability to perform bounded, but non-trivial, logical reasoning
that makes agents logically non-omniscient and logically non-ignorant at the same time”.
Focusing on the relationship between knowledge and reasoning is therefore fundamental
to reach a good solution to the problem of logical omniscience. A way to model this
relationship is via Konolige’s deduction models presented in the previous section, another is
by introducing specific dynamic operators to represent agents’ reasoning processes. This is
the strategy explored by a number of dynamic theories of knowledge proposed in literature,
such as the Active Logics [60], the Logic of Finite Syntactic Epistemic States proposed in [2]
and Duc’s dynamic epistemic logic proposed in [53] and further developed in [54, 55]. By
way of example, we discuss here the dynamic epistemic logic LD proposed by Rasmussen
in [136], which can be considered itself and advancement over previous proposals.

Let R be a finite, possibly empty set of inference rules that an agent knows and can
apply. Let Ri ∈ R denote a generic element of this set. Let λi ∈ R denote the cognitive
cost of applying the rule Ri. The language of LD is defined as follows:

φ := p | ¬φ | φ1 ∧ φ2 | K | 〈Ri〉λiφ | [Ri]
λiφ

It includes atoms p, standard Boolean connectives for negation and conjunction, the
standard knowledge operator K and two dynamic operators with the following reading:

• 〈Ri〉λiφ means: “after some application of the inference rule Ri at cognitive cost λi,
then φ is the case”;

• [Ri]
λiφ means: “after any application of the inference rule Ri at cognitive cost λi,

then φ is the case”.

Arbitrary sequences of dynamic operators can be represented through the following
notation:

5.3. SOLUTIONS TO LOGICAL OMNISCIENCE 175

〈<〉λ := 〈Ri〉λi , . . . , 〈Ri〉λj ,
|<|λ := [Ri]

λi , . . . , [Rj]
λj ,

where Ri, . . . , Rj are arbitrary inference rules and λ = λi + · · ·+ λj.
Contrary to most of the solutions presented so far, the solution outlined in [136] is

presented in proof-theoretic rather then in semantic terms 5. The author provides an
Hilbert-style axiomatic system including the rule modus ponens and the following schema
of axioms:

Definition 80 (Axioms of LD)

PC all substitution instances of propositional tautologies ,
A1 〈<〉λKiφ→ φ ,
A2 〈<〉λKiφ→ 〈<〉λ[<]λKiφ ,
A3 〈<〉λφ ∧ 〈<′〉λ′

ψ → 〈<〉λ〈<′〉λ′
(φ ∧ ψ) ,

A4 〈<〉λ(φ ∧ ψ)→ 〈<〉λφ ,
RD 〈<〉λ(KiΓ) ∧ (Γ→Ri

φ)→ 〈<〉λ〈Ri〉λiKiφ

A1 is the analogous of the factivity of knowledge in standard epistemic logic. It es-
tablishes that only true propositions can be inferred through rules. A2 establishes that
known propositions remain known through reasoning. A3 establishes that if two proposi-
tions φ and ψ can be derived through two independent processes of reasoning 〈<〉λ and
〈<′〉λ′ , their conjunction φ ∧ ψ can be derived through the subsequent execution of 〈<〉λ
and 〈<′〉λ′ . A4 establishes that if a conjunction φ ∧ ψ can be derived through rules 〈<〉λ,
then it so one of its conjunct. Finally, RD is a schema including a specific axiom for each
rule Ri known by an agent. Each one of these axioms establishes that, given a rule Ri, if
i knows Ri and enough resources to apply it, then i knows all the propositions that can
be derived from its basic knowledge via one-step application of Ri.

By means of LD, we can represent agents that are neither completely ignorant nor
omniscient. In this regard, LD provides an effective solution to the problem of logical
omniscience. To prove this result, we can proceed as in [136, sec. 3.3]. For what concerns
ignorance, we have two cases. When R 6= ∅, agents can get to know new propositions
via rules application and thus are clearly not ignorant. When R = ∅, agents are in
fact ignorant but, since we are explicitly assuming that they know no rules of inference
(i.e., they have no inferential abilities at all), this is not paradoxical. For what concerns
omniscience, it can be proved showing that neither closure under logical consequence nor
closure under tautologies hold in the axiomatization of LD. For the former, it is sufficient
to notice that LD does not prove the following sequence:

5Even if the author promises to develop a model-theoretic semantics for the proposed logic in the
future, see [136, p. 2].

176CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

CL := KΓ ∧ (Γ→R φ)→ Kφ ,

where R is any relevant law of logic.
To prove that CL does not follow from the axioms of LD, it is sufficient to show that

it explicitly violates the schema RD. For CL, if an agent knows Γ and Γ→R φ, then the
agent automatically knows φ. By contrast, for RD the fact that the agent knows Γ and
Γ→R φ are not sufficient to state that the agent knows φ. It is also fundamental that the
agent knows the relevant rule R and is able to apply it given its cognitive cost. For this
to happen, two conditions are necessary: (i) R ∈ R, and (ii) the agent’s resources have to
be sufficient to support the cognitive cost of R.

Compared to Konolige’s syntactic approach, which allows to derive the lack of logical
omniscience of real-world agents from the incompleteness of their deductive apparatus, the
dynamic solution presented in [136] takes in consideration also another fundamental reason
why real-world agents are not omniscient: their limited resources. In this regard, the logic
LD satisfies the desired requirement of representing agents as knowing all and only the
propositions that can be derived from their basic knowledge given their limited resources
and inferential abilities. However, it still has some limitations, for what concerns our
purposes. First of all, it forces the representation of agents’ reasoning processes into syntax,
where these should be more properly represented in the semantics. Statements of epistemic
logic have the task of describing agents’ epistemic states and their logical relationships,
not their conditions of possibility. The latter, including the reasoning processes that
support the possibility of the occurrence of given epistemic states, should be more properly
represented in the semantics. Second, this type of solution is not very suitable for model
checking or formal verification tasks. The absence of a proper semantic framework to model
agents and their reasoning behaviour makes it difficult to apply model-checking techniques,
while the language of LD is too complex to be suitable for property specifications. Third
and most important, LD does not consider a fundamental aspect of reasoning with limited
resources, that is optimization learning. Real-world agents do not apply rules randomly
but try to find the pathway that allow them to minimize the use of resources. This
fundamental aspect, which is not considered in none of the solutions presented so-far, will
instead represent the starting point of our framework based on Markov decision processes
and reinforcement learning.

5.3.4 Depth-Bounded Logics
The final approach to logical omniscience we analyse before to introduce our framework
is that of Depth-Bounded Logics, whose more mature formulation can be found in [59].
Differently from the others here presented, this approach is not tailored specifically on
epistemic logic but focuses directly on the notion of logical consequence beyond all classical

5.3. SOLUTIONS TO LOGICAL OMNISCIENCE 177

logic formalisms, from propositional logic to its various extensions. Proponents of depth-
bounded logics, indeed, bring the origin of the problem of logical omniscience back to the
received view of logical empiricism according to which logical statements are “analytical
truths”, thus trivial and uninformative by their very nature. Logical reasoning, empiricists
claim, is not amplifying insofar all the information that we find in the conclusions of a
logical deduction is already contained in its premises; the logician’s work only consists
of making them explicit. This idea is sharply in contrast with computational complexity
results proving logical-deductive reasoning to be computationally hard. First-order logic,
just to given an example, is notoriously undecidable, which means that we have no finite
computational procedures to decide whether a statement expressed in this logic is valid or
not (i.e., whether a certain consequence follows from a given set of premises). For what
concerns propositional logic and its extensions, the decision problem can be solved but its
complexity is co-NP complete [31], meaning that it is among the most difficult problems
that can be solved via a finite computational procedure. Things do not go better for many
sub-classical logics: intuitionistic logic, for example, is P-SPACE complete, meaning that
its complexity is likely harder then that of classical propositional logic [151], while the
three most famous systems of relevance logics (i.e., Entailment, Relevance Logic, and
Ticket Entailment) are all proved to be undecidable [166]. Therefore, how is it possible
that logical reasoning is, at the same time, trivial and computationally hard? According
to proponents of Depth-bounded logic [58], the answer is that, contra the received-view,
logical statements are not (always) analytic and thus logical reasoning is not (always)
trivial. The idea of the analyticity of logic, they argue, was introduced in the received
view by logical empiricists motivated by their rejection of the Kantian notion of synthetic
a-priori, which they considered incompatible with their empiricist epistemology and the
scientific view of the world. In the depth-bounded logics paradigm, the Kantian idea of
synthetic a-priori is rehabilitated through the development of an informational semantics
and the introduction of the related concept of virtual information. The latter is information
(additional to that included in the premises Γ) that an agent must assume in order to derive
a certain logical consequence φ of Γ, and eventually discharges only after proving that
Γ ` φ. Virtual information therefore plays a crucial role in logical deduction. Consider for
example the disjunction elimination rule in a natural deduction system for propositional
logic: the latter asserts that given a disjunction φ1∨φ2, if one is able to prove that ψ follows
independently from both φ1 and φ2, then one can conclude that ψ follows from φ1 ∨ φ2

regardless of which among φ1 and φ2 is true. The application of this rule requires both
the disjoints φ1 and φ2 to be assumed at different steps of the derivation, and eventually
discharged only after proving that ψ follows independently from both of them. Notice
that the steps of assuming the truth of φ1 and φ2 are “non-analytic” as they require one
to go beyond the information it actually possesses and simulate scenarios in which it holds
information that it actually does not hold [58, pag. 23]. The necessity of managing virtual

178CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

information is what makes logical reasoning computationally hard and so it explains why
real-world agents are not logically omniscient. Stated otherwise, each further introduction
of virtual information in the course of reasoning involves a computational cost for the agent
that erodes its resources, hence limiting the number of conclusions it is able to derive from
a given set of premises.

To obtain a logic closer to real-world agents’ reasoning abilities, supporters of the
depth-bounded approach thus propose to limit the amount of virtual information an agent
can introduce in the course of a derivation. In technical terms, this result is obtained by
formulating a proof-theory consisting of classical intelim rules for connectives and a cut
rule BP (for Bivalence Principle), which corresponds to branching the deduction into
two paths, one following from assuming the virtual piece of information φ, and the other
following from assuming ¬φ (see, Figure 5.1). A depth-bounded derivability relation `k

Figure 5.1: Example of a derivation involving the cut rule. Image borrowed from [38].

(with k ∈ N) is then introduced, where Γ `k φ can be read as “φ is derivable from Γ
by applying at most k instances of BP (i.e., by introducing virtual information at most
k times). For k ≥ 0, we obtain a hierarchy of depth-bounded tractable approximations
of propositional logic. The basis of this hierarchy is given by setting k = 0. The latter
corresponds to a proof-system including only the intelim rules and not BP . This 0-depth
system does not require to introduce any amount of virtual information and is thus purely
analytical and computationally trivial. On the other hand, classical propositional logic
corresponds to limk→∞, while more or less powerful system can be obtained by fixing the
depth k, that is, by fixing the maximal amount of virtual information an agent can manage.

5.3. SOLUTIONS TO LOGICAL OMNISCIENCE 179

The interesting result is that all the depth-bounded approximations of the hierarchy are
computationally tractable, i.e., for each k ≥ 0, the complexity of deciding whether or not
a formula is derivable at depth k is polynomial to the lenght of the formula6 [59]. This
result provides a further reason in support of the idea that the correct strategy to obtain
a logic for real-world agents consists in limiting the amount of virtual information that
the agent can handle.

Regarding the semantics, for the 0-depth system this is given in terms of the three-
valued non-deterministic truth-tables reported in Figure 5.2. The latter provides an in-

Figure 5.2: Depth-bounded Logics Truth-tables. Image borrowed from [38].

formational reading of truth-values such that:

• v(φ) = 1 means “the agent holds the information that φ is true”;

• v(φ) = 0 means “the agent hold the information that φ is false”;

• v(φ) = ⊥ means “the agent does not hold any information about the truth-value of
φ” (here the notation ⊥ must not be confused with the usual logical constant for
“falsum”).

Non-determinism arises when some of the two arguments of a binary connective (respec-
tively ∧, ∨, and →) takes value ⊥. In this case, the truth-value of the whole formula
depends on additional information that the agent may or may not hold. Consider for
example the disjunction φ1 ∨ φ2 and suppose that v(φ1) = v(φ2) = ⊥. In this case, the
truth-value of φ1 ∨ φ2 will depend on whether or not the agent holds the information that
φ1 and φ2 may not be simultaneously false. If the agent holds such information, then

6measured in terms of the number of literals it includes.

180CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

v(φ1 ∨ φ2) = 1 (even if the agent does not know which of the two disjoints is true), other-
wise v(φ1 ∨ φ2) = ⊥. Borrowing the famous example by Quine [133], we may surely deny
the conjunction “animal X is a mouse and animal X is a chipmunk” even if we neither
hold the information that “animal X is a mouse” nor we hold the information that “animal
X is a chipmunk”. The corresponding 0-depth satisfiability relation |=0 is defined as usual
by requiring that all the valuations satisfying the premises also satisfy the conclusion.

So far the majority of works on depth-bounded logics available in literature focuses on
propositional and first order logic. As such, they cannot strictly be proposed as solutions
to logical omniscience as they lack of both a notion of agent’s knowledge and an agent-
relative (“subjective”) interpretation of the depth-parameter k. Actual formulations of
depth-bounded logics (see, [59]) present the depth k as a measure of the objective diffi-
culty of an inference, whereas in epistemic contexts we would k to represent a measure
of the subjective computational/cognitive power of an agent. In this regard, a prelim-
inary extension of the depth-bounded logic framework to epistemic contexts has been
recently presented by Larese in her PhD thesis [103]. The author focuses on multi-agent
settings and considers three infinite hierarchies of systems, respectively DBELu, DBELe,
and DBELc. Each of these hierarchy includes infinite approximations DBELxk (with
x = u, e, c) for increasing values of k. The difference between the hierarchies depend on
background assumptions about what agents know about the agent’s depth k of others
agents [103, p. 235]:

• In DBELu, none of the individuals knows that every individual’s depth is at least
k, for some fixed k ∈ N;

• In DBELe, every individual knows that every individual’s depth is at least k, for
some fixed k ∈ N;

• In DBELc, it’s common knowledge that every individual’s depth is at least k, for
some fixed k ∈ N.

The language is common in all these three hierarchies and is the same of standard
epistemic logic, a part for the fact that the knowledge operator Ki

k, which is labelled by
an index k denoting agent i’s depth. Semantically, each agent i ∈ A in a model M is
paired with a valuation function δMi that models the information actually available to the
agent. That is, if i actually holds the information that φ is true (respectively, false), then
δMi = 1 (respectively, δMi = 0). Otherwise, δMi = ⊥. The set of information actually
available to the agent i in the model M can be equivalently denoted by δMi . Hence, we
have that M |= Ki

kφ holds if and only if δMi `k φ, i.e., the agent i knows φ at a fixed
depth k if and only if i can derive φ from its actual information by introducing at most
k instances of virtual information. Similar semantics are introduced for the operators

5.4. A NEW FRAMEWORK 181

of everybody knows, common knowledge, and distributed knowledge, where the specific
satisfiability conditions vary depending on the hierarchy considered. For more details on
this topic, we refer to [103, Sec. 6.2].

The framework proposes by Larese and based on depth-bounded logics provides an
effective solution to the problem of logical omniscience, notably insofar it is able to repre-
sent agents as knowing all and only the propositions that they can infer given their limited
resources and inferential abilities. For this claim, it is sufficient to note that the agent’s
depth k, which constraints agent’s knowledge, is in fact a measure of the latter’s resources
and abilities. However, we identify two major limitations in the formalism proposed by
Larese and, more in general, in the approaches based on depth-bounded logics. The first
limitation is given by the assumption that limitations in agents’ inferential power only
depends on the amount of virtual information they are able to manage. This assumption
implies that two inferences requiring the same amount of virtual information comport the
same cost for the agent. Furthermore, it also implies that PB is the only rule that has an
effective cost for the agent, while all the other intelim rules have cost zero. This sounds
quite as an idealization, which is also in contrast with empirical evidence showing not
only that even the most simple rules (like modus ponens) may have a cost for real-world
agents, but also that different agents potentially incur in different costs for the same rules.
This limitation, we believe, is due to the shift that Larese does from the objective notion
of depth to the subjective notion of agent’s depth. This apparently trivial conceptual
shifts actually implies to assume that an objective measure, introduced to account for the
computational properties of deductive inferences, can be used to characterize a subjective
(and only empirically measurable) property like the inferential power of agents. Such an
assumption is arguably wrong and leads to the aforementioned issue. In addition to this
limitation, Larese’s framework, like all those analyzed so far, does not take into account
the ability of agents to learn and optimize their resources, which we consider fundamen-
tal to properly account for real-world agents abilities. Despite these limitations, Larese’s
framework captures some fundamental intuitions that we will use later in the development
of our proposal. For this reason, together with Konolige’s deduction models, it represents
one of two starting points of our work.

5.4 A New Framework

In this section, we present our proposal. Before presenting the details, we need to briefly
recap the fundamentals of Markov decision processes (see, [10]) and reinforcement learning
(see, [155]). For the former, we refer to Chapter 1, Section 1.5.4. An introduction to so-
called model-free reinforcement learning, on the other hand, is outlined in the following
section.

182CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

5.4.1 Reinforcement Learning
Reinforcement Learning (RL) is a Machine Learning technique that aims to learn from
interaction of the agent with the external environment, and is inspired from behaviorism
in that it maximizes the reward obtained by the agent throughout such an interaction
[155]. In a nutshell, Reinforcement Learning usually builds upon the idea of modeling
the agent and the environment as a Markov Decision Process which describe the control
problems we are interested in, and it aims at finding the best policy, even when the MDP
is not fully known or specified. One way of ranking policies according to the expected
reward they yield is described in the previous section.

In this section we focus on model-free RL, which works under the aforementioned
condition in which the MDP cannot be fully specified. This means the agent does not
have any way of predicting the result of its actions a priori, and can only proceed by
trial and error. In absence of a model, we can let the agent explore and evaluate the
space of policies by trial and error. For instance, a strategy may be that of starting with
some random policy and follow it until the end of the episode (i.e., an absorbing state is
reached). More precisely, we can let the agent start from the initial state s0, perform an
action according to the policy, and get a reward and the new state from the environment.
At this point, the agent picks another action from the policy, and the process continues
until an absorbing state sN is reached. This may be written as

τ = s0, a0, r1, s1, a1, r2, . . . , rN , sN

where τ is a trajectory (or episode) and corresponds to a path reaching a goal state.
Given a policy θ, we can sample N trajectories and estimate the discounted cumulative

reward (defined in Section 1.5.4) as follows:

V θ(s) =
1

N

N∑
i=1

R(τi)

where R is a function that maps τi to a reward.
Note again that this allows us to estimate V θ without knowledge of the underlying

MDP. Of course, we are free to choose the sampling procedure and this may in turn affect
the accuracy and robustness of our learning – one naive way of doing so is by following a
Monte Carlo approach [155, Ch. 5]

The V θ function may be decomposed using the so-called Q-function. The Q-function
is commonly used in reinforcement learning. It predicts the expected total reward of an
agent taking action a in state s and then following a particular policy θ thereafter. The
notation Qθ(s, a) refers to the expected cumulative reward the agent will receive starting

5.4. A NEW FRAMEWORK 183

from state s, taking action a, and then following policy θ for all future actions. Specifically,
it is defined as the expected sum of discounted rewards:

Qθ(s, a) = E

(
∞∑
t=0

γtrt+1 | θ, s0 = s, a0 = a

)

where γ ∈ [0, 1] is a discount factor that determines the relative importance of immediate
versus future rewards, and rt is the reward the agent receives at time t.

Specifically, the value of being in state s under policy θ is given by the expected value
of taking an action a in state s and then following policy θ thereafter, weighted by the
probability of taking that action under the policy:

V θ(s) =
∑
a

θ(s, a)Qθ(s, a)

Conversely, the Q-function can be computed recursively from the value function V θ. It
expresses the expected Q-value of taking an action a in state s as the expected immediate
reward plus the expected discounted value of being in the resulting state s′ and following
policy θ thereafter:

Qθ(s, a) =
∑
s′

T θ(s, a, s′)
(
R(s, a, s′) + γV θ(s′)

)

where T θ(s, a, s′) is the probability of transitioning from state s to state s′ when taking ac-
tion a under policy θ, and R(s, a, s′) is the expected immediate reward when transitioning
from state s to state s′ by taking action a.

Similarly to the expected cumulative reward case, we can learn the Q-function and the
associated policy according to the Q-Learning algorithm [155, sec. 6.5], which goes as
follows:

184CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

Algorithm 13: Q-Learning
Data: MDP = (S,Act, T, ι, R), discounting factor γ
Result: Optimal policy θ

1 Initialize Q arbitrarily;
2 θ ← ε-greedy policy with respect to Q;
3 foreach episode do
4 Initialize s;
5 while s is not terminal do
6 a← θ(s);
7 Take action a, observe r and the new state s′;
8 δ ← r + γmaxa′ Q(s

′, a′)−Q(s, a);
9 Q(s, a)← Q(s, a) + αδ;

10 θ ← ε-greedy policy with respect to Q;
11 s← s′;
12 end
13 end
14 θ ← greedy policy with respect to Q

where an ε-greedy policy with respect to Q is one that picks the “best” action a for a state
s with a probability 1−ε, and picks an action at random with probability ε (for a small ε).
A greedy policy is an ε-greedy policy where ε = 0. The algorithm initializes the Q-function
arbitrarily and uses an epsilon-greedy policy with respect to Q to select actions. Then, it
starts iterating over episodes. For each episode, the algorithm initializes the current state
s and starts a loop until the state s is terminal. At each step, the algorithm selects an
action a based on the current policy θ. It then takes action a, observes the reward r and
the new state s′, it calculates the temporal difference error δ as the difference between the
Q-value of the current state-action pair and the estimated value of the best action in the
next state, and updates the Q-function accordingly using δ and a learning rate α. The
algorithm then updates the policy based on the updated Q-function and sets the current
state to the new state s′. The algorithm repeats this process for multiple episodes until
convergence. The final output of the algorithm is the optimal policy θ that maximizes the
expected cumulative reward.

Note that Q-Learning is a suitable reinforcement learning technique when the state-
action space is small enough to be represented by a Q-table, but for larger and more
complex problems, alternative methods must be employed, such as Deep Q-Networks
[120] or Actor-Critic [154, Ch. 13].

5.5. TOWARDS MARKOV DEDUCTION STRUCTURES 185

5.5 Towards Markov Deduction Structures
The basic intuition beyond our framework is that resource-bounded reasoning in real-
world agents can be represented as a state space exploration process. The state space we
consider is a very peculiar one: it includes states that are finite sets of Boolean formulae
representing the information about the world actually available to an agent. We refer to
such a peculiar space as the information space. A reasoning process consists of an agent
that moves within the information space by selecting actions that correspond to rules.

Let i be a generic notation for an agent and let AP i be the set of atomic propositions
that i uses to represent elementary facts of the world. We assume AP i to be finite. The
knowledge representation language (KRL) of an agent LAP i is the set of all formulae φ
of maximum lenght t obtainable by combining atoms in AP i through standard Boolean
connectives. Here, the lenght of a formula φ is intended as the number of literals occurring
in φ and depends on the memory resources of the agent. Each KRL LAP i is associated
with an information space S i that corresponds to its power set, i.e., S i := 2LAPi . Each
element si ∈ S i is called an information state and consists of a finite collection of finite-
lenght formulae φ representing the information actually available to i. A rule ai is an
action that allows i to infer new formulae from those included in its actual information
state si and thus reach a new information state si′ including all the formulae in si plus
the formulae inferred from si through ai. All the rules that i knows and can apply are
collected in a finite set Acti. Analogously to the actions of an MDP, the rules ai are
typically non-deterministic. That is, there may be more than one possible state si′ that
can be reached from si by one-step application of ai ∈ Act. For example, consider the
state si := {P, P → Q,P → R} and the rule ai :=“from φ and φ → ψ, infer ψ”. In this
scenario, there exist two different possible states that can be reached from si by one-step
application of a, i.e., si′ := {P, P → Q,P → R,Q}, and si

′′
:= {P, P → Q,P → R,R}.

Given the selected rule, the choice between si′ and si′′ entirely depends on the probability
distribution describing the behaviour of i.

In what follows, we use notation si →ai s
i′ to state that si′ can be reached from si

by one-step application of the rule ai. If si →ai s
i′ , then we call si′ an ai-successor of

si. The set of all ai-successors of a given state si is denoted by Succai(si). Inferences in
our framework are represented as sequences of alternating states and rules (actions). By
analogy with paths of MDPs, we denote inferences by π, their states by π(t), t ∈ N and
their rules by απ(t). An inference π is said correct if and only if, for all t ≥ 0, it holds that
π(t + 1) ∈ Succαπ(t)(π(t)). The key point is that not all correct inferences are practically
feasible for agents with finite computational resources. This is due to the fact that every
time an agent applies a rule, it incurs in a computational cost that erodes its resources.
In this work, we assume that each rule ai ∈ Acti has a fixed computational cost that we
denote by cost(ai). The cumulative cost of a finite inference π := π(0), απ(0), . . . , π(t)

186CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

of lenght t, denoted Cost(π), is then defined as
∑t−1

k=0 cost(απ(k)). Let resourcesi ∈ N
denote the finite amount of computational resources available for an agent i. An inference
π is considered feasible for i if and only if Cost(π) ≤ resourcesi. At the same time, we
say that an inference π is optimal if and only if: (i) π is feasible, and (ii) for all other
feasible inferences π′, Cost(π) ≤ Cost(π′). We can then introduce a notion of fundamental
relevance for our framework, that of optimal derivability, which is defined as follows.

Definition 81 (Optimal derivability) For any given formula φ in the KRL LAP i, we
say that φ is optimally derivable for i if and only if there exists at least one optimal
inference π leading from the current information state si to an information state si′ that
includes φ.

Our final aim is to define a procedure to check whether a formula φ is optimally
derivable for i given its available resources. To this aim, we introduce a compact repre-
sentation of i in terms of an algebraic construct that we call Markov Deduction Structure
(MDS). The name recalls Konolige’s deduction models mentioned above, which inspired
our framework.

Definition 82 (Markov deduction structure.) A MDS for an agent i, denoted M i
MDS,

is defined as a tuple:
〈LAP i ,S i,Acti, costi, resourcesi〉

where:

• LAP i is a KRL defined over a finite set of atoms AP i;

• S i is the information space relative to LAP i;

• Acti is a finite non empty set of rules;

• costi is a cost vector that assigns a non-negative integer to each ai ∈ Acti representing
the cost of ai;

• resourcesi ∈ N is a non-negative integer representing the total amount of computa-
tional resources available for an agent i.

Given a MDS M i
MDS with KRL LAP i , notation si `M i

MDS
φ is used to denote that formula

φ ∈ LAP is optimally derivable in MMDS given initial state si.

5.6. DERIVABILITY CHECKING 187

5.6 Derivability Checking
Once introduced the concept of MDS, the next task is to define a procedure to check
whether si `M i

MDS
φ holds in a certain MDS M i

MDS. With a slightly abuse of terminology, we
refer to this task as derivability-checking and present two different strategies for addressing
it. The first strategy, described in Section 5.6.1, requires to specify and solve the MDP
associated to a given MDS. The second strategy, described in Section 5.6.2, is based on
reinforcement learning and requires only the specification of a reward function.

5.6.1 Derivability-Checking with Markov Decision Processes
Given a MDS M i

MDS, we denote its associated MDP by Mi
MDS. The latter is constructed

as follows:

• the states space and the set of actions of the decision process Mi
MDS are the same

of the relative Markov deduction structure M i
MDS;

• the specification of the transition matrix T i : S ×Act×S i → [0, 1] is left free to the
modeller and depends on how they want to characterize the probabilistic behaviour
of i. The only mandatory constraint is that for each si, si

′ ∈ S × S:

T i(si, ai, si
′
) :=

{
≥ 0 if s ∈ Succai(si) ,
0 otherwise .

This constraint ensures that i applies the rules correctly. A practical way to simplify
the task consists in assuming T (si, ai, si′) to be the same for all si′ ∈ Succai(si). In
this case, the transition matrix can be easily generated as follows:

T (si, ai, si
′
) :=

{
0 if si′ 6∈ Succai(si) ,

1
|Succai (si)|

otherwise .

• the specification of the reward function R : S i×Acti×S i → N is obtained as follows.
For each si, ai, si

′ ∈ S i ×Acti × S i:

R(si, ai, si
′
) :=

{
−cost(ai) if si′ ∈ Succa(si) ,
−∞ otherwise .

That is, if the agent correctly applies ai, then it gets a negative reward equals to −cost(ai),
otherwise it incurs in an infinite cost. In practice, this trick ensures that all transitions

188CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

stemming from an incorrect application of a rule are blocked and, thus, the agent can
follow only correct inferences.

Each policy θ in Mi
MDS identifies a sequence of rules that allow the agent to derive a

desired conclusion φ from an initial set of premises Γ. The goal event Φ is represented by
the set of states si′ ∈ S i including our desired conclusion φ, i.e., Φ := {si′ ∈ S i : φ ∈ si′},
while the initial state si ∈ S i is the state including all the given premises Γ. V θ

Φ denotes
the expected cumulative cost incurred by the agent i until reaching a state si′ ∈ Φ. That
is, V θ

φ represents the expected cumulative cost incurred by the agent to derive φ from
Γ applying the rules as specified by θ. An optimal policy θ∗ is a policy that minimizes
the expected cumulative cost incurred by i to derive φ from Γ. In practice, an optimal
policy in this context corresponds to a sequence of rules that allows the agent to derive a
certain conclusion from a given set of premises by making the best use of its computational
resources. Given this definition of optimal policy, we can re-define the concept of optimal
derivability of a formula φ ∈ LAP i with respect to the MDS M i

MDS representing the agent
i as follows.

Definition 83 (Optimal derivability in MDS) Let M i
MDS be a MDS and let Mi

MDS
its associated Markov decision process. Given a formula φ ∈ LAP i, we say that si `M i

MDS
φ

holds if and only if there exist an optimal policy θ∗ in Mi
MDS such that V θ∗

Φ ≤ resourcesi.

Algorithm 14 provides an automatic procedure to check whether si `M i
MDS

φ holds in
a given MDS M i

MDS based on building and solving the associated MDP Mi
MDS. The

algorithm works as follows. The first step consists of building the associated MDPMi
MDS

from M i
MDS following the strategy explained above in Section 5.6.1. Notably, this step

involves to specify a probability value for each tuple (si, ai, si
′
) ∈ S i × Acti × S i. The

modeller can perform this task manually, by selecting a proper probability value for each
(si, ai, si

′
) ∈ S i ×Acti × S i, or automatically by assuming T (si, ai, si′) to be the same for

all si′ ∈ Succai(si) and zero for all si′ 6∈ Succai . The latter is the strategy implemented
in Algorithm 14. The second step consists of constructing a modified transition matrix T
that is obtained by making all goal states (i.e., all si′ s.t. φ ∈ si′) absorbing. Insofar we
are interested in learning an optimal policy that reaches a given conclusion φ, this trick
ensures us that the procedure terminates when a goal state (i.e., a state including our
desired conclusion φ) is reached. The third step consists of using the associated MDP
with the modified transition matrix T to learn an optimal policy θ∗. This is obtained via
dynamic programming as explained in Section 1.5.4. The final step consists of computing
V θ∗
Φ through Equation (1.25) and checking whether V θ∗

Φ ≤ resourcesi: if this is the case,
then the algorithm returns “YES”, otherwise it returns “NO”.

5.6. DERIVABILITY CHECKING 189

Algorithm 14: Derivability Checking
Data: MDS = 〈LAP i ,S i,Acti, costi, resourcesi〉, formula φ ∈ LAP i , initial state

si ∈ S i

Result: “yes” or “no”
1 build the associated MDP Mi

MDS:
2 foreach si, ai, si

′ ∈ S i ×Acti × S i do

3 T (si, ai, si
′
) :=

{
0 if si′ 6∈ Succai(si)

1
|Succai (si)|

otherwise .
4 end
5 foreach si, ai, si

′ ∈ S i ×Acti × S i do

6 R(si, ai, si
′
) :=

{
−cost(ai) if si′ ∈ Succai(si)
−∞ otherwise .

7 end
8 make goal states absorbing:
9 foreach si

′ ∈ S i : φ ∈ si′ do

10 T (si
′
, ai, si

′′
) =

{
0 if si′ 6= si

′′

1 otherwise .
11 end
12 calculate θ∗ through Algorithms 2 and 1 ,
13 calculate V θ∗

φ (si) through Algorithm 1 ,
14 if V θ∗

φ (si) ≤ resourcesi then
15 return: YES;
16 else
17 return: NO;
18 end

5.6.2 Derivability-Checking with Reinforcement Learning
The strategy outlined in the previous section requires a full specification of the transition
matrix T i characterizing the probabilistic behaviour of the agent. In practice, this is
usually difficult to obtain as the dimensionality of the information space S i is too big7.
For this reason, a more feasible strategy we can adopt for derivability checking consists of
approximating the optimal policy θ∗ by applying model-free RL techniques, such as the
Q-learning introduced above in Section 5.4.1. This strategy is implemented in Algorithm

7Remember that Si is defined as the power set of the KRL LAP i , which is in turn the set of all
finite-length formulae that can be built by combining atoms in AP i with standard Boolean connectives.

190CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

15, which proceeds as follows. First, it builds a specification of the reward function Ri by
using the cost vector Costi as specified above. Second, it makes absorbing the goal states
by setting R(si, ai, si′) for all si ∈ Φ as follows:

R(si, ai, si
′
) =

{
−∞ if si′ 6= si ,

0 otherwise .

Third, it calculates the optimal policy θ∗ via Q-learning and the modified reward
function R. Finally, it checks whether V θ∗ ≤ resourcesi.

Algorithm 15: Model-free Derivability Checking
Data: MDS = 〈LAP i ,S i,Acti, costi, resourcesi〉, formula φ ∈ LAP i , initial state

si ∈ S i

Result: “yes” or “no”
1 build the reward function R:
2 foreach si, ai, si

′ ∈ S i ×Acti × S i do

3 R(si, ai, si
′
) :=

{
−cost(ai) if si′ ∈ Succai(si)
−∞ otherwise .

4 end
5 make goal states absorbing:
6 foreach si

′ ∈ S i : φ ∈ si′ do

7 R(si
′
, ai, si

′′
) =

{
−∞ if si′ 6= si

′′

0 otherwise .
8 end
9 calculate θ∗ through Algorithm 13 ,

10 calculate V θ∗

φ (si) ,
11 if V θ∗

φ (si) ≤ resourcesi then
12 return: YES;
13 else
14 return: NO;
15 end

5.6.3 Example
To illustrate our framework, consider the Markov Deduction Structure 〈LAP i ,S i,Acti, costi, resourcesi〉
such that:

• AP i := {P,R};

5.6. DERIVABILITY CHECKING 191

• LAP i is the set of formulae of length 4 that can be obtained by combining atoms in
AP i through the Boolean connectives ¬, ∧, ∨, and →;

• S i := 2LAPi ;

• Acti := {E∧; MP ;DS}, where E∧ is the usual rule of conjunction elimination, MP
is the modus ponens, and DS is the disjunctive syllogism;

• costi is defined so that costi(E∧) = 0, costi(MP) = 1 and costi(DS) = 2;

• resourcesi = 2.

Let si0 := {P ∨ R; ¬P ; P ∨ R → R ∧ R} be the initial state and let R be our desired
conclusion. Our task is to check whether si0 `M i

MDS
R, which corresponds to checking

whether there exists a policy θ that allows i to reach a state containing R without exceeding
its computational resources.

Figure 5.3: Representation of the associated MDP

We can solve the problem
by finding the optimal pol-
icy θ∗ that allows the agent
to reach the target informa-
tion state containing R from
the initial state, and then
check whether its expected
cumulative cost does not ex-
ceed the agent’s available re-
sources, here amounting to 2.
In this example, there are two
policies leading to an infor-
mation state that contains R,
namely θ1 and θ2 such that
θ1(s

i
0) = MP and θ1(s

i
1) =

E∧, where si1 = si0∪{Q∧Q};
and θ2(s

i
0) = DS.

Since both policies gener-
ate only one possible path, we
can compute V θ

R by summing
up the cost of the rules, i.e.,

V θ1
R = 1 and V θ2

R = 2. Therefore, θ1 is optimal. To determine whether si0 `M i
MDS

R, we
simply check if V θ1

R ≤ 2. In fact, V θ1
R = 1, and we can conclude that proposition R is

effectively derivable in the MDS of i.

192CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

5.7 The Logic of Markov Deduction Structures
This section introduces a logic of knowledge for real-world agents with finite resources
and inferential abilities based on the formalism of Markov deduction structures previously
introduced. We call it Markov Deduction Structures Logic (MDSL).

5.7.1 Syntax
Let At be a countable finite set of atomic propositions p, let A be a finite non-empty set
of agents indexed by i ∈ A and let Γ ⊆ A denote a finite non-empty group of agents. The
language LMDSL of the Markov deduction structures logic is defined as follows:

φ := p | ¬φ | φ1 ∧ φ2

ε := Aiφ | Kiφ | EΓφ | DΓφ,

λ := φ | ε | ¬λ | λ1 ∧ λ2 .
The language is composed by three kinds of formulae. The φ-formulae include atoms p

and standard Boolean connectives for negation and disjunction. These formulae are used
to represent both facts in the world and the information about the world that an agent
may possess. The ε-formulae include four different epistemic operators for awareness Ai,
knowledge Ki, everybody knows EΓ, and distributed knowledge DΓ. The epistemic operators
nest φ-formulae and have the following reading:

• Aiφ: “agent i is aware that φ”;

• Ki “agent i explicitly knows φ”;

• EΓφ “everybody in Γ explicitly knows φ”;

• DΓφ “it is distributed explicit knowledge in the group of agents Γ that φ”.

Notice that iterated nested epistemic operators are not allowed. For the same reason, the
language does not include an operator for common knowledge. A third meta-variable λ is
introduced to denote the combination of φ and ε-formulae by Boolean connectives.

5.7.2 Semantics
The semantics of the MDSL is obtained by merging the standard possible-worlds seman-
tics for propositional logic with the formalism of Markov deduction structures introduced
above. Notably, the satisfiability conditions for φ-formulae are defined as in classical

5.7. THE LOGIC OF MARKOV DEDUCTION STRUCTURES 193

propositional logic, while the satisfiability conditions for ε-formulae are based on Markov
deduction structures.

Definition 84 (Model (MDSL)) A model MMDSL in the MDSL is defined as a tuple
〈Ω,A, {Mi

MDS}i∈A, { a©i}i∈A, V 〉, where:

• Ω is a set of possible worlds;

• A is a finite non-empty set of agents;

• For each i ∈ A, Mi
MDS is a MDS that satisfies the condition AP i ⊆ At;

• For each i ∈ A, a©i : Ω → S i is a function that assigns to each world ω ∈ Ω
an information state si ∈ S i including all propositions true in ω that the agent is
actually aware of;

• V : Ω× LMDSL(At)→ {0, 1} is a valuation function that assigns a Boolean value to
each pair composed by a possible world ω ∈ Ω and an atom p ∈ LMDSL(At).

For φ-formulae, the satisfiability conditions are defined with respect to a model MMDSL
and a world ω ∈ Ω as follows:

MMDSL, ω |= p iff V (ω, p) = 1 ,
MMDSL, ω |= ¬φ iff MMDSL, ω 6|= φ ,
MMDSL, ω |= φ1 ∧ φ2 iff MMDSL, ω |= φ1 and MMDSL, ω |= φ2 ,

For what concerns the awareness operator Ai, its semantics strictly resembles the usual
one provided in the awareness structures [167, p. 82]. That is, it relies on a awareness
function a©i connecting each possible world ω ∈ Ω to an information states si ∈ S i

including all the information about ω (i.e., all the φ-formulae true of ω) that the agent is
aware of. The satisfiability condition for Ai is accordingly defined as follows:

MMDSL, ω |= Aiφ iff φ ∈ a©i(ω) ,

where a©i(ω) denotes the information state s ∈ S i that a©i assigns to ω.
The semantic of the explicit knowledge operator Ki is defined in terms of optimal

derivability in the MDS representing the agent i:

MMDSL, ω |= Kiφ iff a©i(ω) `M i
MDS

φ .

That is, an agent i explicitly knows φ if and only if φ is optimally derivable in M i
MDS

starting from the information the agent is aware of in ω, i.e., a©i(ω).

194CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

For what concerns the everybody-know operator, the usual intuition is that the for-
mula φ nested within the scope of EΓ represents information that all agents in Γ know
independently from any possible mutual interaction or cooperation among them. In other
worlds, EΓφ is the case if and only if all agents in Γ individually know (explicitly) φ. In
the semantics of MDSL, this intuition is captured simply requiring that φ is optimally
derivable in all the MDSs M i

MDS of all agents i ∈ Γ. The satisfiability condition for the
everybody knows operator is accordingly defined as follows:

MMDSL, ω |= EΓφ iff ∀i ∈ Γ : a©i(ω) `M i
MDS

φ .

For the distributed knowledge operator, the usual intuition is that the nested formula
φ represents information that all the agents in Γ explicitly know given that they cooperate
each other and mutually share the information they possess. In our framework, we assume
that agents cooperate whenever they share the following three fundamental elements:

1. the propositions they actually are aware of;

2. the rules of inference they know;

3. the computational resources they possess.

We model cooperation among agents in Γ by introducing a joint MDS MΓ
MDS and a

joint awareness function a©Γ, which are defined as follows.

Definition 85 (Joint Markov deduction structure) Given a group of agents Γ ⊆
A and their respective MDSs M i

MDS, i ∈ Γ, the joint MDS MΓ
MDS is defined as a tuple

〈LAPΓ ,SΓ,ActΓ, costΓ, resourcesΓ〉, where:

• LAPΓ is a joint KRL defined over the finite set of atoms AP Γ obtained as
⋃

i∈ΓAP
i;

• SΓ is a joint information space obtained as 2APΓ;

• ActΓ is a joint set of rules obtained as
⋃

i∈ΓActΓ;

• costΓ is the joint cost vector such that, for each a ∈ ActΓ, costΓ(a) := mini∈Γ cost
i(a)8

• resourcesΓ is the joint amount of resources obtained as
∑

i∈Γ resources
i.

8Here we assume that, in a cooperation scenario, for each rule a ∈ A, the agents in Γ collectively decide
that the agent in charge of applying the rule a is the one among them incurring in the least cost for the
application of that given.

5.7. THE LOGIC OF MARKOV DEDUCTION STRUCTURES 195

Definition 86 (Joint awareness function) Given a group of agents Γ ⊆ A, the joint
awareness function a©Γ is defined as a function that assigns to each ω ∈ Ω the information
state sΓ ∈ SΓ corresponding to the union of all information states of the various i ∈ A,
i.e.,

(∀ω ∈ Ω) a©Γ(ω) :=
⋃
i∈Γ

a©i(ω) .

Given both MΓ
MDS and a©Γ, the satisfiability condition for the distributed knowledge

operator is accordingly defined as follows:

MMDSDL, ω |= DΓφ iff a©Γ(ω) `MΓ
MDS

φ .

5.7.3 MDSL and Logical Omniscience
The MDSL framework provides a satisfactory solution to the problem of logical omni-
science as it satisfies all the requirements that we have above listed:

1. It solves all the relevant forms of logical omniscience, namely: closure under logical
consequence (and its special cases) and closure under tautologies;

2. It represents agents as moderately competent;

3. It represents agents as knowing all and only the formulae they can infer given their
inferential abilities and making the best use of their resources.

To prove (i), it is sufficient to observe that both models in which closure under logical
consequence does not hold and scenarios in which closure under tautologies does not hold
can be coherently defined in MDSL semantics. For the former, consider models in which
{ω : v(ω, φ1) = 1} ⊆ {ω : v(ω, φ2) = 1} and a©i(ω) `M i

MDS
φ1 hold but a©i(ω) `M i

MDS
φ2 does not hold. For the latter, consider models in which {ω : v(ω, φ) = 1} = Ω
but a©i(ω) 6`M i

MDS
φ. The same reasoning holds for the multi-agent versions of explicit

knowledge.
For what concerns (ii), simply observe that logically ignorance is avoided whenever at

least one non-trivial rule is included in the set of rules Acti.
Finally, notice that the semantics of the explicit knowledge operator Ki and its multi-

agent counterparts (EΓ and DΓ) are based on the notion of optimally derivability `M i
MDS

introduced in Definition 83, which captures the requirement expressed by (iii). For what
concerns limitations given by resources, these are modelled by considering feasible only
the inferences whose cumulative cost does not exceed the resources the agent has available.
For what concerns the clause related to “making the best use of the resources”, this is
implemented in the semantics by connecting the notion of optimal derivability (and, thus,

196CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

explicit knowledge) to the optimal policy θ∗, which represents the sequence of actions that
allows the agent to reach is inferential goal by minimising the cost incurred and, thus, by
making the best possible use of its limited resources.

5.8 The Dynamic Logic of Markov Deduction Struc-
tures

The previous section introduced a static framework to reason about knowledge in real-
world agents provided with finite amounts of computational resources. It is also of our
interest to reason about scenarios in which agents can share or exchange their knowledge,
abilities and resources. To this aim, we propose an extension of MDSL with dynamic
operators to model exchange of information, inferential know-how and resources between
agents. We call this extension Markov Deduction Structures Dynamic Logic (MDSDL).
This section is dedicated to present its language and semantics.

5.8.1 Syntax
The syntax of MDSDL is defined as follows:

φ := p | ¬φ | φ1 ∧ φ2

ε := Aiφ | Kiφ | EΓφ | DΓφ ,

δ := 〈a : j〉ε | 〈r : j〉ε | 〈[φ] : j〉ε ,

λ := φ | ε | δ | ¬λ | λ1 ∧ λ2 .

The language is obtained by extending the language of MDSL with a dynamic fragment
δ including the following dynamic operators:

• 〈a : j〉ε is the cooperative learning operator representing an agent j that teaches a
new rule to another agent i, respectively, a group of agents Γ. It is read:“Given that
i (resp. Γ) learns rule a from j, then ε holds”;

• 〈r : j〉ε is the resources exchange operator representing an agent j that shares part
of its resources with another agent i, respectively, groups of agents Γ. It is read:
“Given that j shares resources equals to r with i (resp. Γ), then ε holds”;

5.8. THE DYNAMIC LOGIC OF MARKOV DEDUCTION STRUCTURES 197

• 〈[φ] : j〉ε is the information exchange operator representing an agent j that shares a
certain information φ with another agent j, respectively, a group of agents Γ. It is
read: “Given that j shares information that φ with i (resp. Γ), then ε holds”;

Finally, as for the MDSL, all MDSDL formulae are closed under Boolean negation and
conjunction.

5.8.2 Semantics
At the semantic level, dynamic operators correspond to transformations that modify the
models according to the scenario specified by the operator. In what follows, we introduce
a specific transformation for each one of the dynamic operators introduced in the MDSDL
language. Based on the latter, we then introduce proper satisfiability conditions for the
different kinds of δ-formulae.

Cooperative Learning

Cooperative learning scenarios are characterized by an agent i ∈ A (the “student”) that
learns a new rule a from another agent j ∈ A (the “teacher”). Semantically, cooperative
learning is modelled by applying a transformation τ 〈a:j〉 : MMDS → M

〈a:j〉
MDSL mapping the

original model MMDS into a transformed model M 〈a:j〉
MDSL defined as follows:

• If a 6∈ Actj, i.e., if the teacher does not know the rule a carried by the cooperative
learning operator, then M

〈a:j〉
MDSL = MMDSL (the intuition is that if the teacher does

not know the rule to be taught, then no learning action actually occurs);

• If a ∈ Actj, then M
〈a:j〉
MDSL is obtained by transforming the MDS M i

MDS of agent i
into a new MDS M

i 〈a:j〉
MDS such that Acti 〈a:j〉 = Acti ∪ {a}, and costi 〈a:j〉 is obtained

by extending costi with a new cell including the cost of a (it is not required that
costi 〈a:j〉(a) = costj(a)).

A variation of cooperative learning consists of scenarios in which the student consists of
a group of agents Γ. Syntactically, these scenarios are modelled by nesting the cooperative
learning operator 〈a : j〉 either over an everybody-knows EΓφ or a distributed knowledge
DΓφ formula. Semantically, they are modelled as follows. In the case of a cooperative
learning operator nesting an everybody-knows formula (i.e., δ = 〈a : j〉EΓφ), the above
described transformation τ 〈a:j〉 is applied to the MDSs M i

MDS of all agents i ∈ Γ. When
j ∈ Γ, we simple add rule a to the sets of rules of all i ∈ Γ different from j. In the case
of a cooperative learning operator nesting a distributed knowledge formula (i.e., δ = 〈a :
j〉DΓφ), the above transformation is applied to the joint MDS MΓ

MDS, hence obtaining a

198CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

transformed joint MDS M
Γ 〈a:j〉
MDS

9. Notice that, if the cooperative learning operator 〈a : j〉
nests a distributed knowledge formula DΓφ and j ∈ Γ, then 〈a : j〉DΓφ and DΓφ are in
fact equivalent. Since a is included in Actj and j ∈ Γ, then a results to be included both
in MΓ

MDS and M
Γ 〈a:j〉
MDS . In such cases, the cooperative learning operator does not induce

any relevant transformation of the model.
Once introduced the notion of transformed model M 〈a:j〉

MDSL, the satisfiability condition
for cooperative learning formulae can be accordingly defined as follows:

MMDSL, ω |= 〈a : j〉ε iff M
〈a:j〉
MDSL, ω |= ε .

Resources Exchange.

Resources exchange scenarios are characterized by an agent j (the “exchanger”) sharing
some of its resources with another agent i, respectively, a group of agents Γ (the “ben-
eficiary”). Semantically, these scenarios are modelled by introducing a transformation
τ 〈r:j〉 : MMDSL → M

〈r:j〉
MDSL mapping the original model MMDSL into a transformed model

M
〈r:j〉
MDSL. The latter is obtained by increasing resourcesi and decreasing resourcesj, in the

respective MDSs, of the same value r. Notice that the transformation τ 〈r:j〉 applies only
under the condition that r ≤ resourcesj, i.e., an agent cannot exchange more resources
than it has available. If r > resourcesj, then no transformation occurs and the dynamic
formulae is considered not satisfied by default.

Special scenarios of resources exchange are those involving a group of agent Γ as the
intended beneficiary of the exchanged resources. Syntactically, these scenarios are mod-
elled by nesting the resource-exchange operator over an everybody knows or a distributed
knowledge formula. Semantically, they are modelled as follows. In the case of a resources
exchange operator nesting an everybody-knows formula (i.e., δ = 〈r : j〉EΓφ), the ad-
ditional resources r are distributed over all agents in Γ. That is, for each i ∈ Γ, the
transformed MDSs M i 〈r:j〉

MDS is obtained by increasing resourcesi of a value equals to r
|Γ| . In

the case of a resources exchange operator nesting a distributed knowledge formula (i.e.,
δ = 〈r : j〉DΓφ), the additional resources r are added directly to resourcesΓ in the joint
MDS MΓ

MDS, hence obtaining a transformed MDS M
Γ 〈r:j〉
MDS .

Once introduced the notion of transformed model M 〈r:j〉
MDSL, the satisfiability condition

for the resources exchange operator is accordingly defined as follows:

MMDSL, ω |= 〈r : j〉ε iff r ≤ resourcesj ∧ M
〈r:j〉
MDSL, ω |= ε

9Notice that the same result can be obtained by adding the rule a to one random i ∈ Γ and thus derive
the joint MDS. From how the joint MDS is defined, it follows that it will still include the new a rule.

5.9. MODEL CHECKING 199

Information Exchange.

Information exchange scenarios are characterized by an agent j (the “sender”) exchanging
a piece of information [φ] with another agent i (the “receiver”). Semantically, they are
modelled by introducing a transformation τ 〈[φ]:j〉 :MMDSL →M

〈[φ]:j〉
MDSL mapping the original

model MMDSL into a transformed model M 〈[φ]:j〉
MDSL . The latter is obtained as follows:

• If φ 6∈ a©j(ω), then MMDSL = M
〈[φ]:j〉
MDSL (the intuition is that if the sender is not

aware of the information to be exchanged, then no exchange of information actually
occurs);

• If φ ∈ a©j(ω), then the transformed model M 〈[φ]:j〉
MDSL is obtained by transforming the

awareness function a©i into a new awareness function a©i 〈[φ]:j〉 such that a©i 〈[φ]:j〉(ω) :=
a©i(ω) ∪ {φ} and, for all ω′ 6= ω, a©i 〈[φ]:j〉(ω) := a©i(ω). In practice, the transforma-
tion corresponds to change the actual information state of the receiver passing from
a©i(ω) ∈ S ′ to a new actual information state a©i 〈[φ]:j〉(ω) ∈ S i = a©i(ω) ∪ {φ}.

Also for information exchange, there are special scenarios involving a group of agent
Γ as the intended receiver. Syntactically, these scenarios are modelled by nesting the
information exchange operator over an everybody knows or a distributed knowledge formula.
Semantically, they are modelled as follows. In case of an information exchange operator
nesting an everybody-knows formula (i.e., δ = 〈[φ] : j〉EΓφ), the transformation τ 〈[φ]:j〉 is
applied to all i ∈ Γ. In case of an information exchange nesting a distributed knowledge
formula (i.e., δ = 〈[φ] : j〉DΓφ), the transformation τ 〈[φ]:j〉 replaces the original joint actual
information state a©Γ(ω) with a transformed joint actual information state a©Γ,〈[φ]:j〉 :=
a©Γ(ω) ∪ {φ}.

Once introduced the notion of transformed model M 〈[φ]:j〉
MDSL , the satisfiability condition

for the information exchange operator is then defined as follows:

MMDSL, ω |= 〈[φ] : j〉ε iff M
〈[φ]:j〉
MDSL , ω |= ε .

5.9 Model Checking
This section introduces a model checking framework for both MDSL and its dynamic ex-
tension. Given a model MMDSL, a world ω and a formula λ, our task consists of finding a
procedure that checks whether MMDSL, ω |= λ holds. For propositional formulae φ, the pro-
cedure is trivial. It consists of decomposing φ in its atomic components, determining their
truth-values in ω through V , and finally calculating the truth-value of φ by composition
using the truth-tables of Boolean connectives. For epistemic and dynamic formulae, we

200CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

need to introduce specific procedures based on the derivability-checking task for Markov
deduction structures presented in Section 5.5.

5.9.1 MDSL Model Checking
The model checking for MDSL requires to introduce a specific algorithm to check whether
a model MMDSL and a world ω satisfy a given MDSL epistemic formula ε. This algorithm is
reported in Figure 5.4 and works as follows. It starts by taking in input a model MMDSL, a
world ω ∈ Ω and a formula ε. Depending on the specification of ε, the algorithm switches
on a proper sub-routine:

1. If ε = Aiφ, the algorithm simply checks whether φ ∈ a©i(ω). If so, it returns “YES”;
otherwise, it returns “NO”.

2. If ε = Kiφ, the algorithm computes the derivability-checking task a©i(ω) `M i
MDS

φ
using one of the two algorithms presented in Section 5.6. If the derivability-checking
task is satisfied, the algorithm returns “YES”; otherwise, it returns “NO”.

3. If ε = EΓφ, the algorithm computes the derivability-checking task a©i(ω) `M i
MDS

φ
for each i ∈ Γ. If the derivability-checking task is satisfied for all i ∈ Γ, then the
algorithm returns “YES”; otherwise, it returns “NO”.

4. If ε = DΓφ, the algorithm builds the joint MDS MΓ
MDS and the joint awareness func-

tion a©Γ as specified in Section 5.7.2. Then, it computes the derivability-checking
task a©Γ(ω) `M i

MDS
φ. If the latter is satisfied, the algorithm returns “YES”; other-

wise, it returns “NO”.

5.9.2 MDSDL Model Checking
The model checking for the MDSLS extends that of MDSL with a proper algorithm to
check whether a model MMDSL and a world ω ∈ Ω satisfy a given dynamic formula δ. The
algorithm proceeds by applying a transformation that maps the original model MMDSL into
a modified model M ′

MDSL. As specified in Section 5.8.2, the kind of transformation applied
depends on the dynamic operator involved in the specified formula δ. Once obtained
M

′

MDSL, the algorithm checks whether M ′

MDSL, ω satisfy the formula ε specified within
the scope of the dynamic operator by applying Algorithm 5.4. The specific steps of the
algorithm are detailed in Figure 5.5.

5.10 Conclusions and Further Works
In this chapter, we have proposed a novel framework for reasoning about real-world agents’
knowledge based on representing agents’ reasoning as a state-space exploration process

5.10. CONCLUSIONS AND FURTHER WORKS 201

modelable via Markov decision processes and Reinforcement learning. Our approach pro-
vides an effective solution to the problem of logical omniscience insofar agents are repre-
sented as knowing all and only the logical consequences of the information they are aware
of making the best use of their limited computational resources and inferential abilities.
Compared to other solutions proposed so far for the problem of logical omniscience, ours
qualifies as innovative to the extent that it is the first to explicitly consider learning as
a fundamental constitutive ability of resource-bounded reasoning. However, there remain
some issues and limitations of our framework that we aim to solve in future works.

On the theoretical side, one major limitation concerns the possibility of expressing
nested epistemic modalities, which are not allowed neither in MDSL nor in its dynamic
extension. A possible solution for this limitation has been already proposed in [95] for
the logic of deduction models and consists of introducing a secondary MDS for each agent
i ∈ A representing i’s point of view on its own and other agents’ knowledge. However, we
believe to be very difficult to implement this solution in the formalism of MDSs, notably
as it would entail a proliferation of MDSs that risks to make the models’ specification a
very hard task. For this reason, we plan to explore other potential solutions for this issue.

On the implementation side, a major problem is represented by the dimension of the
state space S, which tends to be very high even when AP includes only a few propositional
atoms and a maximum length for the KRL formulae is fixed to a small number of literals
per formula. Large state spaces are notoriously difficult to handle efficiently using classical
reinforcement learning methodologies, including the Q-learning mentioned above. For an
efficient implementation of the formalism proposed here, it will therefore be necessary
either to explore reinforcement learning methodologies specific for large state spaces, such
as deep Q-learning (see e.g. [120]), or to identify a strategy to reduce the dimensionality
of S without affecting the expressiveness of the formalism. We demand the resolution of
these problems to a future work specifically dedicated to study the implementation and
to perform the experimental evaluation of the framework proposed here.

202CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

Figure 5.4: Model Checking Algorithm for MDSL/MDSDL ε-formulae

5.10. CONCLUSIONS AND FURTHER WORKS 203

Figure 5.5: Model Checking Algorithm for MDSDL δ-formulae

204CHAPTER 5. MARKOV MODELS SEMANTICS AND LOGICAL OMNISCIENCE

Chapter 6

Conclusions

Probabilistic model checking nowadays represents a research field of major interest in the
context of formal verification. A growing number of papers is published every year in the
area, covering both theoretical and methodological topics and implementation aspects.
Within its limitations, this thesis aimed at exploring some developments and applications
that, although “unconventional”, may nonetheless have interesting philosophical and prac-
tical implications.

Chapter 3 opened a new line of research at the intersection of model checking and
explainable AI that might prove particularly fruitful in the years to come. Indeed, despite
the increasing interest in explainable AI, a shared conceptual framework for this research
program is still lacking. In particular, there seems to be no agreement among scholars on
what in XAI counts as a good explanation, as well as on what the desirable properties of
a good explanation are. Limiting our analysis to post-hoc explanation methods based on
surrogate models, in this dissertation we have identified four desirable properties for XAI
explanations worth analysing: transparency, accuracy, trustworhtiness, and explanatory
power. We have provided a formal characterization for all of them and developed a model
checking framework to verify whether they are satisfied by our XAI tools. However, much
remains to be done in this field. For example, our framework focuses on only one specific
dimension of the opacity problem, i.e., access-opacity. Different versions, or extensions,
of the framework proposed here could be developed in the future to manage other forms
of opacity mentioned in the first part of the chapter. Among them, we plan to focus in
particular on causal opacity, which nowadays represents a form of opacity of major interest
for the AI community (see, [126]). Furthermore, the analysis we have proposed is specific
for higher levels of abstraction (notably, functional and design specification level), different
properties and related formalisms could be developed for lower levels of abstractions and
their related issues (e.g. resource allocation).

Chapter 4 addressed a major issue of contemporary probabilistic model checking de-

205

206 CHAPTER 6. CONCLUSIONS

riving from the assumption of stationarity connected with the use of Markov models. This
assumption has important limiting consequences on the application potential of model
checking techniques, in particular for what concerns the analysis of real-world systems
like biological networks. The theory of imprecise probabilities and the related impre-
cise Markov models offer a natural way out from the problem of stationarity, notably
insofar they allow for modelling non-stationary systems (with a sufficient degree of ac-
curacy) while avoiding complexity issues that affect other approaches. A first system-
atic approach to model checking with imprecise probabilities is advanced in the chapter,
including discrete-time Markov chains, Markov reward models, and probabilistic inter-
preted systems. Nonetheless, many issues still remain to be explored. Several extensions
of this framework to continuous-time models could be considered, starting from imprecise
continuous-time Markov chains [96] that are so relevant for the analysis of many real-world
systems. Secondly, the implementation aspects remain to be developed. In particular, we
need to understand whether existing model-checkers (like PRISM [100]) can be suitably
extended to deal with imprecise models, or whether the latter require the development
of dedicated software tools. Finally, a central topic to be explored concerns the appli-
cation potential of the proposed framework. In this regard, a promising field seems to
be the analysis of metabolic networks. In this area, there already exist several attempts
to develop probabilistic model checking frameworks that do not require the stationarity
assumption. To the best of our knowledge, however, none of them make use of imprecise
Markov models and present the same advantages in terms of computational efficiency.

Chapter 5 focused on a well-known and widely discussed issue related to epistemic
logic: the problem of logical omniscience. An innovative approach to this “old” problem
has been presented based on representing real-world agents’ reasoning as a space explo-
ration task that can be modelled through Markov decision processes and reinforcement
learning. This approach allows us to consider an aspect of resource-bounded reasoning
which is usually neglected in all the other approaches to the problem of logical omni-
science: learning. The assumption is that the rationality of a real-world agent (as opposed
to that of an ideal agent) lies not only in its being consistent with its basic knowledge,
but also in its being able to make the best use of the limited resources it has available. In
this regard, a real-world rational agent should be represented as neither omniscient nor
ignorant, but as knowing all and only the information it can infer making the best use of
its resources. Following this idea, agents in our framework are represented as able to learn
how to optimize the use of their resources in a deductive inferential task. Consistently with
the idea of representing reasoning as a space exploration task, the general framework we
adopt is that of reinforcement learning. Among the various advantages of our framework,
it’s worth mentioning that it creates a bridge between the logical-deductive representation
of agents characteristic of epistemic logic (and logic-oriented AI), and the representation
of agents as “heuristic reasoners capable of learning” typical of contemporary AI and ma-

207

chine learning. Also for this line of research, many issues remain to be explored. These
include the development of an appropriate language capable of supporting nested epis-
temic modalities and their related semantics, as well as the resolution of implementation
problems concerning the dimensionality of the considered state spaces and their compu-
tational tractability. Finally, we are inclined to believe that several fruitful connections
could be explored between the framework introduced here and the various approaches to
resource-bounded reasoning recently proposed both in the context of epistemic logic and
probabilistic model checking.

In conclusion, our hope is that, by showing the theoretical and methodological versa-
tility of probabilistic model checking and Markov models semantics, this dissertation will
stimulate the reader to explore developments and applications of these formalisms that
transcend the traditional scope of program verification and embrace diverse research areas,
both of practical and philosophical interest.

208 CHAPTER 6. CONCLUSIONS

Bibliography

[1] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on
explainable artificial intelligence (XAI). IEEE Access, 6:52138–52160, 2018.

[2] Thomas Ågotnes. A logic of finite syntactic epistemic states. University of Bergen,
Department of Informatics, 2004.

[3] Ethem Alpaydin. Machine Learning, Revised And Updated Edition. MIT Press,
2021.

[4] Beena Ammanath. Trustworthy AI: a business guide for navigating trust and ethics
in AI. John Wiley & Sons, 2022.

[5] Robert Andrews, Joachim Diederich, and Alan B Tickle. Survey and critique of
techniques for extracting rules from trained artificial neural networks. Knowledge-
based systems, 8(6):373–389, 1995.

[6] Nicola Angius, Giuseppe Primiero, and Raymond Turner. The Philosophy of Com-
puter Science. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, Spring 2021 edition, 2021.

[7] A. Antonucci, D. Huber, M. Zaffalon, P. Luginbühl, I. Chapman, and R. Ladouceur.
Credo: A military decision-support system based on credal networks. In Proceedings
of the 16th Conference on Information Fusion (FUSION 2013), Istanbul, Turkey,
2013.

[8] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel
Molina, Richard Benjamins, et al. Explainable artificial intelligence (xai): Con-
cepts, taxonomies, opportunities and challenges toward responsible ai. Information
fusion, 58:82–115, 2020.

209

210 BIBLIOGRAPHY

[9] C. Baier, C. Hensel, L. Hutschenreiter, S. Junges, J.P. Katoen, and J. Klein. Para-
metric markov chains: PCTL complexity and fraction-free gaussian elimination.
Information and Computation, 272:104504, 2020.

[10] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press,
2008.

[11] Pierre Baldi. Deep Learning in Science. Cambridge University Press, 2021.

[12] William Bechtel and Robert C Richardson. Discovering complexity: Decomposition
and localization as strategies in scientific research. MIT press, 2010.

[13] Claus Beisbart. Opacity thought through: on the intransparency of computer sim-
ulations. Synthese, 199(3):11643–11666, 2021.

[14] Nikola Benes, Lubos Brim, Samuel Pastva, and David Safránek. Model checking ap-
proach to the analysis of biological systems. In Pietro Liò and Paolo Zuliani, editors,
Automated Reasoning for Systems Biology and Medicine, volume 30 of Computational
Biology, pages 3–35. Springer, Cham, 2019.

[15] Jamal Bentahar, Bernard Moulin, and John-Jules Ch. Meyer. A new model checking
approach for verifying agent communication protocols. In Proceedings of the Cana-
dian Conference on Electrical and Computer Engineering, CCECE 2006, May 7-10,
2006, Ottawa Congress Centre, Ottawa, Canada, pages 1586–1590, Ottawa, 2006.
IEEE.

[16] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit,
Laure Petrucci, Philippe Schnoebelen, and Pierre McKenzie. Systems and Software
Verification, Model-Checking Techniques and Tools. Springer, Cham, 2001.

[17] Jakob Bernoulli. Ars conjectandi: opus posthumum: accedit Tractatus de seriebus
infinitis; et Epistola gallice scripta de ludo pilae reticularis. Impensis Thurnisiorum,
1713.

[18] Francesco Berto and Mark Jago. Impossible worlds. Oxford University Press, 2019.

[19] Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition.
Information science and statistics. Springer, 2007.

[20] Per Bjesse. What is formal verification? ACM SIGDA Newsletter, 35(24):1–es, 2005.

[21] Florian J Boge. Two dimensions of opacity and the deep learning predicament.
Minds and Machines, 32(1):43–75, 2022.

BIBLIOGRAPHY 211

[22] Lubos Brim, Milan Ceska, and David Safránek. Model checking of biological systems.
In Marco Bernardo, Erik P. de Vink, Alessandra Di Pierro, and Herbert Wiklicky,
editors, Formal Methods for Dynamical Systems - 13th International School on For-
mal Methods for the Design of Computer, Communication, and Software Systems,
SFM 2013, Bertinoro, Italy, June 17-22, 2013. Advanced Lectures, volume 7938 of
Lecture Notes in Computer Science, pages 63–112, Cham, 2013. Springer.

[23] Jenna Burrell. How the machine ‘thinks’: Understanding opacity in machine learning
algorithms. Big Data & Society, 3(1):2053951715622512, 2016.

[24] Luca Cardelli, Radu Grosu, Kim G Larsen, Mirco Tribastone, Max Tschaikowski,
and Andrea Vandin. Lumpability for uncertain continuous-time markov chains. In
International Conference on Quantitative Evaluation of Systems, pages 391–409,
Cham, 2021. Springer.

[25] Rudolf Carnap. An introduction to the philosophy of science. Courier Corporation,
2012.

[26] Rudolf Carnap and Paul A Schilpp. The Philosophy of Rudolf Carnap. Cambridge
University Press Cambridge, 1963.

[27] Davide Castelvecchi. Can we open the black box of ai? Nature News, 538(7623):20,
2016.

[28] Taolue Chen, Giuseppe Primiero, Franco Raimondi, and Neha Rungta. A computa-
tionally grounded, weighted doxastic logic. Studia Logica, 104(4):679–703, 2016.

[29] Giorgio Cignarale and Giuseppe Primiero. A multi-agent depth bounded boolean
logic. In Software Engineering and Formal Methods. SEFM 2020 Collocated Work-
shops: ASYDE, CIFMA, and CoSim-CPS, Amsterdam, The Netherlands, September
14–15, 2020, Revised Selected Papers, pages 176–191. Springer, 2021.

[30] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on logic of programs,
pages 52–71. Springer, 1981.

[31] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, pages 151–158, 1971.

[32] Joseph L Cowan. Wittgenstein’s philosophy of logic. The philosophical review,
70(3):362–375, 1961.

212 BIBLIOGRAPHY

[33] Carl F Craver and Lindley Darden. In search of mechanisms: Discoveries across
the life sciences. University of Chicago Press, 2013.

[34] Kathleen A Creel. Transparency in complex computational systems. Philosophy of
Science, 87(4):568–589, 2020.

[35] Max J Cresswell. Intensional logics and logical truth. Journal of Philosophical Logic,
pages 2–15, 1972.

[36] Adnan Darwiche and Auguste Hirth. On the reasons behind decisions. arXiv preprint
arXiv:2002.09284, 2020.

[37] Fabio A D’Asaro, Matteo Spezialetti, Luca Raggioli, and Silvia Rossi. Towards an
inductive logic programming approach for explaining black-box preference learning
systems. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, volume 17, pages 855–859, 2020.

[38] Fabio Aurelio D’Asaro, Paolo Baldi, Giuseppe Primiero, et al. Introducing k-lingo:
a k-depth bounded version of asp system clingo. In KR2021, pages 661–665. IJCAI
Organization, 2021.

[39] C. Daws. Symbolic and parametric model checking of discrete-time markov chains. In
L. Zhiming and K. Araki, editors, Theoretical Aspects of Computing - ICTAC 2004,
First International Colloquium, Guiyang, China, September 20-24, 2004, Revised
Selected Papers, volume 3407 of Lecture Notes in Computer Science, pages 280–294,
Cham, 2004. Springer.

[40] G. De Cooman, J. De Bock, and S. Lopatatzidis. Imprecise stochastic processes in
discrete time: global models, imprecise markov chains and ergodic theorems. Int. J.
Approx. Reason., 76:18–46, 2016.

[41] Gert De Cooman and Filip Hermans. Imprecise probability trees: Bridging two
theories of imprecise probability. Artificial Intelligence, 172(11):1400–1427, 2008.

[42] Gert De Cooman, Filip Hermans, and Erik Quaeghebeur. Imprecise markov chains
and their limit behavior. Probability in the Engineering and Informational Sciences,
23(4):597–635, 2009.

[43] Bruno De Finetti. La prévision: ses lois logiques, ses sources subjectives. In Annales
de l’institut Henri Poincaré, volume 7, pages 1–68, 1937.

[44] Pierre Simon de Laplace. Théorie analytique des probabilités, volume 7. Courcier,
1820.

BIBLIOGRAPHY 213

[45] Richard A De Millo, Richard J Lipton, and Alan J Perlis. Social processes and proofs
of theorems and programs. Communications of the ACM, 22(5):271–280, 1979.

[46] Augustus De Morgan. Formal logic: or, the calculus of inference, necessary and
probable. Taylor and Walton, 1847.

[47] Henk W de Regt. Understanding Scientific Understanding. Oxford University Press,
Oxford, UK, 2017.

[48] Karina V Delgado, Leliane N De Barros, Daniel B Dias, and Scott Sanner. Real-time
dynamic programming for Markov decision processes with imprecise probabilities.
Artificial Intelligence, 230:192–223, 2016.

[49] Lorenz Demey, Barteld Kooi, and Joshua Sack. Logic and Probability. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, Summer 2019 edition, 2019.

[50] Sébastien Destercke and Gert de Cooman. Relating epistemic irrelevance to event
trees. In Soft Methods for Handling Variability and Imprecision, pages 66–73.
Springer, Cham, 2008.

[51] Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, and Eds-
ger Wybe Dijkstra. A discipline of programming, volume 613924118. prentice-hall
Englewood Cliffs, 1976.

[52] Rolf Drechsler et al. Advanced formal verification, volume 122. Springer, 2004.

[53] Ho Ngoc Duc. Logical omniscience vs. logical ignorance on a dilemma of epistemic
logic. In Carlos A. Pinto-Ferreira and Nuno J. Mamede, editors, Progress in Arti-
ficial Intelligence, 7th Portuguese Conference on Artificial Intelligence, EPIA ’95,
Funchal, Madeira Island, Portugal, October 3-6, 1995, Proceedings, volume 990 of
Lecture Notes in Computer Science, pages 237–248. Springer, 1995.

[54] Ho Ngoc Duc. Reasoning about rational, but not logically omniscient, agents. Jour-
nal of Logic and Computation, 7(5):633–648, 1997.

[55] Ho Ngoc Duc. Resource bounded reasoning about knowledge. PhD thesis, Leipzig
University, Germany, 2001.

[56] Juan M Durán and Nico Formanek. Grounds for trust: Essential epistemic opacity
and computational reliabilism. Minds and Machines, 28(4):645–666, 2018.

214 BIBLIOGRAPHY

[57] Juan Manuel Durán and Karin Rolanda Jongsma. Who is afraid of black box algo-
rithms? on the epistemological and ethical basis of trust in medical ai. Journal of
Medical Ethics, 47(5):329–335, 2021.

[58] Marcello D’Agostino. Depth-bounded logic for realistic agents. L&PS–Logic &
Philosophy of Science, 11(1):3–57, 2013.

[59] Marcello D’Agostino, Marcelo Finger, and Dov Gabbay. Semantics and proof-theory
of depth bounded boolean logics. Theoretical Computer Science, 480:43–68, 2013.

[60] Jennifer Elgot-Drapkin, Sarit Kraus, Michael Miller, Madhura Nirkhe, and Donald
Perlis. Active logics: A unified formal approach to episodic reasoning. Technical
report, 1999.

[61] Alessandro Facchini and Alberto Termine. Intelligenza artificiale e metodo scien-
tifico: può l’ia sostituire l’intuizione umana nel processo di scoperta scientifica?
Rivista teologica di Lugano, 26(3):11–28, 2021.

[62] Alessandro Facchini and Alberto Termine. Towards a taxonomy for the opacity of
ai systems. In Philosophy and Theory of Artificial Intelligence 2021, pages 73–89.
Springer, 2022.

[63] Alessandro Facchini and Alberto Termine. Beyond hypothesis-driven and data-
driven biology through explainable ai: a proposal, unpublished.

[64] Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Vardi. Reasoning about
knowledge. MIT press, 2004.

[65] Andrea Ferrario, Michele Loi, and Eleonora Viganò. In ai we trust incrementally:
A multi-layer model of trust to analyze human-artificial intelligence interactions.
Philosophy & Technology, 33:523–539, 2020.

[66] James H Fetzer. Program verification: The very idea. Communications of the ACM,
31(9):1048–1063, 1988.

[67] Bruno de Finetti. Foresight: Its logical laws, its subjective sources. In Breakthroughs
in statistics, pages 134–174. Springer, 1992.

[68] Ionut Florescu and Ciprian A Tudor. Handbook of probability. John Wiley & Sons,
2013.

[69] Robert W Floyd. Assigning meanings to programs. Program Verification: Funda-
mental Issues in Computer Science, pages 65–81, 1993.

BIBLIOGRAPHY 215

[70] Alex A Freitas. Comprehensible classification models: a position paper. ACM
SIGKDD explorations newsletter, 15(1):1–10, 2014.

[71] Nir Fresco and Giuseppe Primiero. Miscomputation. Philosophy & Technology,
26:253–272, 2013.

[72] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

[73] Marcello Frixione. Logica, significato e intelligenza artificiale. F. Angeli, 1994.

[74] Warren Goldfarb. Frege’s conception of logic. Future pasts: The analytic tradition
in twentieth-century philosophy, pages 25–41, 2001.

[75] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Gian-
notti, and Dino Pedreschi. A survey of methods for explaining black box models.
ACM Comput. Surv., 51(5):93:1–93:42, 2019.

[76] Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, and Fosca Gi-
annotti. A survey of methods for explaining black box models. ACM computing
surveys (CSUR), 51(5):1–42, 2018.

[77] Marta Halina. Mechanistic explanation and its limits. In Stuart Glennan and Phyllis
Illari, editors, The Routledge handbook of mechanisms and mechanical philosophy,
pages 213–224. Routledge, 2017.

[78] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[79] Mihály Héder. The epistemic opacity of autonomous systems and the ethical conse-
quences. AI & SOCIETY, pages 1–9, 2020.

[80] Filip Hermans and Damjan Škulj. Stochastic processes. Introduction to Imprecise
Probabilities, pages 258–278, 2014.

[81] Jaakko Hintikka. Impossible possible worlds vindicated. In Game-theoretical seman-
tics, pages 367–379. Springer, 1979.

[82] Kaarlo Jaakko Juhani Hintikka. Knowledge and belief: An introduction to the logic
of the two notions. 1962.

[83] Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

216 BIBLIOGRAPHY

[84] Charles Antony Richard Hoare. The mathematics of programming. In Foundations
of Software Technology and Theoretical Computer Science: Fifth Conference, New
Delhi, India December 16–18, 1985 Proceedings 5, pages 1–18. Springer, 1985.

[85] Colin Howson and Peter Urbach. Scientific reasoning: the Bayesian approach. Open
Court Publishing, 2006.

[86] Paul Humphreys. The philosophical novelty of computer simulation methods. Syn-
these, 169(3):615–626, 2009.

[87] Paul Humphreys. The philosophical novelty of computer simulation methods. Syn-
these, 169(3):615–626, 2009.

[88] Alan Hájek. Interpretations of Probability. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall
2019 edition, 2019.

[89] PK Illari and Jon Williamson. Mechanisms are real and local. In Phyllis McKay
Illari, Federica Russo, and Jon Williamson, editors, Causality in the Sciences, pages
818–844. Oxford University Press, 2011.

[90] Samin S Ishtiaq and Peter W O’Hearn. Bi as an assertion language for mutable
data structures. In Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 14–26, 2001.

[91] Ulf Johansson, Rikard König, and Lars Niklasson. The truth is in there-rule extrac-
tion from opaque models using genetic programming. In FLAIRS Conference, pages
658–663. Miami Beach, FL, 2004.

[92] John D Kelleher. Deep learning. MIT press, 2019.

[93] Rob Kitchin and Gavin McArdle. What makes big data, big data? exploring the on-
tological characteristics of 26 datasets. Big Data & Society, 3(1):2053951716631130,
2016.

[94] A.N. Kolomogoroff. Grundbegriffe der wahrscheinlichkeitsrechnung. Ergebnisse Der
Mathematik, 1933.

[95] Kurt Konolige. A deduction model of belief and its logics. PhD thesis, Stanford
University, USA, 1984.

[96] Thomas Krak, Jasper De Bock, and Arno Siebes. Imprecise continuous-time Markov
chains. International Journal of Approximate Reasoning, 88:452–528, 2017.

BIBLIOGRAPHY 217

[97] Thomas E. Krak, Natan T’Joens, and Jasper De Bock. Hitting times and probabil-
ities for imprecise markov chains. In Jasper De Bock, Cassio P. de Campos, Gert
de Cooman, Erik Quaeghebeur, and Gregory R. Wheeler, editors, International
Symposium on Imprecise Probabilities: Theories and Applications, ISIPTA 2019,
3-6 July 2019, Thagaste, Ghent, Belgium, volume 103 of Proceedings of Machine
Learning Research, pages 265–275, Ghent, 2019. PMLR.

[98] Saul Kripke. A completeness theorem in modal logic. J. Symb. Log., 24(1):1–14,
1959.

[99] Maya Krishnan. Against interpretability: a critical examination of the interpretabil-
ity problem in machine learning. Philosophy & Technology, 33(3):487–502, 2020.

[100] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd
International Conference on Computer Aided Verification (CAV’11), volume 6806
of LNCS, pages 585–591. Springer, 2011.

[101] Adam La Caze. Frequentism. In The Oxford handbook of probability and philosophy.
2016.

[102] Imre Lakatos. Proofs and refutations. Nelson London, 1963.

[103] Costanza Larese. The Principle of Analyticity of Logic, a Philosophical and Formal
Perspective. PhD thesis, Scuola Normale Superiore di Pisa, 2019.

[104] Marco Larotonda and Giuseppe Primiero. A depth-bounded semantics for becoming
informed. In Software Engineering and Formal Methods. SEFM 2022 Collocated
Workshops: AI4EA, F-IDE, CoSim-CPS, CIFMA, Berlin, Germany, September
26–30, 2022, Revised Selected Papers, pages 366–382. Springer, 2023.

[105] Gregory F Lawler. Introduction to stochastic processes. Chapman and Hall/CRC,
London, UK, 2018.

[106] Ronald J Leach. Introduction to software engineering. Chapman and Hall/CRC,
2018.

[107] Hannes Leitgeb and André Carus. Rudolf Carnap. In Edward N. Zalta and Uri
Nodelman, editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research
Lab, Stanford University, Summer 2023 edition, 2023.

[108] Sabina Leonelli. Data-centric biology: A philosophical study. University of Chicago
Press, 2016.

218 BIBLIOGRAPHY

[109] Hector J Levesque. A logic of implicit and explicit belief. In AAAI, pages 198–202,
1984.

[110] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable
AI: A review of machine learning interpretability methods. Entropy, 23(1):18, 2021.

[111] Charles H Lindsey. A history of algol 68. In History of programming languages—II,
pages 27–96. 1996.

[112] A. Lomuscio and F. Raimondi. MCMAS: A model checker for multi-agent systems.
In Holger Hermanns and Jens Palsberg, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, 12th International Conference, TACAS 2006
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006, Proceedings, volume 3920
of Lecture Notes in Computer Science, pages 450–454, Cham, 2006. Springer.

[113] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. Mcmas: A model checker
for the verification of multi-agent systems. In International conference on computer
aided verification, pages 682–688. Springer, 2009.

[114] Ezequiel López-Rubio and Emanuele Ratti. Data science and molecular biology:
prediction and mechanistic explanation. Synthese, 198(4):3131–3156, 2021.

[115] Bernard Marr. Big Data: Using SMART big data, analytics and metrics to make
better decisions and improve performance. John Wiley & Sons, London, 2015.

[116] Denis Deratani Mauá, Cassio Polpo de Campos, Alessio Benavoli, and Alessandro
Antonucci. Probabilistic inference in credal networks: New complexity results. Jour-
nal of Artificial Intelligence Research, 50:603–637, 2014.

[117] Sally I. McClean, B. McAlea, and Peter H. Millard. Using a Markov reward
model to estimate spend-down costs for a geriatric department. J. Oper. Res. Soc.,
49(10):1021–1025, 1998.

[118] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.
Artificial intelligence, 267:1–38, 2019.

[119] Enrique Miranda and Gert De Cooman. Structural judgements. Introduction to
imprecise probabilities, pages 56–78, 2014.

[120] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

BIBLIOGRAPHY 219

Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[121] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

[122] Peter W O’Hearn and David J Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, 1999.

[123] Andrés Páez. The pragmatic turn in explainable artificial intelligence (xai). Minds
and Machines, 29(3):441–459, 2019.

[124] Cecilia Panigutti, Alan Perotti, and Dino Pedreschi. Doctor xai: an ontology-based
approach to black-box sequential data classification explanations. In Proceedings of
the 2020 conference on fairness, accountability, and transparency, pages 629–639,
2020.

[125] Judea Pearl. Causality. Cambridge University Press, 2 edition, 2009.

[126] Judea Pearl. The seven tools of causal inference, with reflections on machine learning.
Communications of the ACM, 62(3):54–60, 2019.

[127] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics:
A primer. John Wiley & Sons, London, 2016.

[128] Judea Pearl and Dana Mackenzie. The Book of Why: The New Science of Cause
and Effect. Hachette, London, 2018.

[129] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 46–57. ieee, 1977.

[130] Karl R Popper. The propensity interpretation of probability. The British journal
for the philosophy of science, 10(37):25–42, 1959.

[131] Giuseppe Primiero. On the foundations of computing. Oxford University Press,
2019.

[132] Stathis Psillos. Scientific realism: How science tracks truth. Routledge, London,
2005.

[133] W. V. Quine. The roots of reference. British Journal for the Philosophy of Science,
27(1):93–96, 1976.

[134] Frank P Ramsey. Truth and probability. In Readings in formal epistemology, pages
21–45. Springer, 2016.

220 BIBLIOGRAPHY

[135] B Randell and JN Buxton. Software engineering techniques: Report of a conference
sponsored by the nato science committee, rome, italy, 27th-31st october 1969. 1970.

[136] Mattias Skipper Rasmussen. Dynamic epistemic logic and logical omniscience. Logic
and Logical Philosophy, 24(3), 2015.

[137] Hans Reichenbach. The theory of probability. Univ of California Press, 1971.

[138] Hans Reichenbach. The direction of time, volume 65. Univ of California Press, 1991.

[139] John C Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pages
55–74. IEEE, 2002.

[140] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust
you?” explaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pages
1135–1144, 2016.

[141] Felipe Romero. Philosophy of science and the replicability crisis. Philosophy Com-
pass, 14(11):e12633, 2019.

[142] Sheldon M Ross. Introduction to probability and statistics for engineers and scien-
tists. Elsevier, 2004.

[143] Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and
Chudi Zhong. Interpretable machine learning: Fundamental principles and 10 grand
challenges. CoRR, abs/2103.11251, 2021.

[144] Bertrand Russell. Introduction to mathematical philosophy. Taylor & Francis, 2022.

[145] Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-
Robert Müller. Explainable AI: interpreting, explaining and visualizing deep learning,
volume 11700. Springer Nature, Cham, 2019.

[146] Dana Scott. Outline of a mathematical theory of computation. Oxford University
Computing Laboratory, Programming Research Group Oxford, 1970.

[147] Dana S Scott and Christopher Strachey. Toward a mathematical semantics for com-
puter languages, volume 1. Oxford University Computing Laboratory, Programming
Research Group Oxford, 1971.

[148] Glenn Shafer and Vladimir Vovk. Probability and finance: it’s only a game!, volume
491. John Wiley & Sons, London, UK, 2005.

BIBLIOGRAPHY 221

[149] Jan Sprenger and Stephan Hartmann. Bayesian philosophy of science. Oxford
University Press, 2019.

[150] Robert Stalnaker. The problem of logical omniscience, i. Synthese, pages 425–440,
1991.

[151] Richard Statman. Intuitionistic propositional logic is polynomial-space complete.
Theoretical Computer Science, 9(1):67–72, 1979.

[152] Mauricio Suárez. Philosophy of probability and statistical modelling. Cambridge
University Press, 2020.

[153] Emily Sullivan. Understanding from machine learning models. The British Journal
for the Philosophy of Science, 2020.

[154] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction.
Adaptive computation and machine learning. MIT Press, Cambridge, MA, 1998.

[155] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction.
Adaptive computation and machine learning. MIT Press, 1998.

[156] Matti Tedre. The science of computing: shaping a discipline. CRC Press, 2014.

[157] A. Termine, A. Antonucci, A. Facchini, and G. Primiero. Robust model checking
with imprecise markov reward models. In International Symposioum on Imprecise
Probabilities: Theories and Applications, ISIPTA 2021, July 6-9 2021, Granada,
Spain, Proceedings of Machine Learning Research, Granada, 2021. PMLR.

[158] Alberto Termine, Alessandro Antonucci, Giuseppe Primiero, and Alessandro Fac-
chini. Logic and model checking by imprecise probabilistic interpreted systems. In
European Conference on Multi-Agent Systems, pages 211–227. Springer, 2021.

[159] Alberto Termine, Alessandro Antonucci, Giuseppe Primiero, and Alessandro Fac-
chini. Imprecise probabilistic model checking for stochastic multi-agent systems.
Forthcoming in SN Computer Science, Forthcoming.

[160] Alberto Termine, Giuseppe Primiero, and Fabio Aurelio D’Asaro. Modelling accu-
racy and trustworthiness of explaining agents. In Logic, Rationality, and Interaction:
8th International Workshop, LORI 2021, Xi’ian, China, October 16-18, 2021, Pro-
ceedings 8, pages 232–245. Springer, 2021.

222 BIBLIOGRAPHY

[161] N. T’Joens, T.E. Krak, J. De Bock, and G. De Cooman. A recursive algorithm for
computing inferences in imprecise markov chains. In G. Kern-Isberner and Z. Ogn-
janovic, editors, Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty, 15th European Conference, ECSQARU 2019, Belgrade, Serbia, September
18-20, 2019, Proceedings, volume 11726 of Lecture Notes in Computer Science, pages
455–465, Cham, 2019. Springer.

[162] Isaac Todhunter. History of the Mathematical Theory of Probability from the time
of Pascal to that of Laplace. Macmillan and Company, 1865.

[163] Matthias C. M. Troffaes and Damjan Škulj. Model checking for imprecise Markov
chains. In Fabio Cozman, Thierry Denoeux, Sebastien Destercke, and Teddy Sei-
denfeld, editors, ISIPTA ’13 : Proceedings of the Eighth International Symposium
on Imprecise Probability: Theories and Applications, pages 337–344. Society for
Imprecise Probability: Theories and Applications (SIPTA), July 2013.

[164] Raymond Turner. Computational artifacts. In Computational Artifacts, pages 25–29.
Springer, Cham, 2018.

[165] Natan T’Joens and Jasper De Bock. Global upper expectations for discrete-time
stochastic processes: in practice, they are all the same! In International Symposium
on Imprecise Probability: Theories and Applications, pages 310–319. PMLR, 2021.

[166] Alasdair Urquhart. The undecidability of entailment and relevant implication. The
Journal of Symbolic Logic, 49(4):1059–1073, 1984.

[167] Hans van Ditmarsch, Wiebe van der Hoek, Joseph Y. Halpern, and Barteld Kooi,
editors. Handbook of Epistemic Logic. College Publications, London, 2015.

[168] Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. Dynamic epistemic
logic, volume 337. Springer Science & Business Media, 2007.

[169] Alexandros Vassiliades, Nick Bassiliades, and Theodore Patkos. Argumentation and
explainable artificial intelligence: a survey. The Knowledge Engineering Review, 36,
2021.

[170] John Venn. The logic of chance, an essay on the theory of probability. 1876.

[171] Paul Voigt and Axel Von dem Bussche. The eu general data protection regula-
tion (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing,
10(3152676):10–5555, 2017.

[172] Richard Von Mises. Probability, statistics, and truth. Courier Corporation, 1981.

BIBLIOGRAPHY 223

[173] Peter Walley. Statistical reasoning with imprecise probabilities. Chapman and Hall,
New York, 1991.

[174] Peter Walley. Towards a unified theory of imprecise probability. Int. J. Approx.
Reason., 24(2-3):125–148, 2000.

[175] Wei Wan, Jamal Bentahar, and Abdessamad Ben Hamza. Model checking epistemic-
probabilistic logic using probabilistic interpreted systems. Knowledge Based Systems,
50:279–295, 2013.

[176] Eric Wang, Pasha Khosravi, and Guy Van den Broeck. Probabilistic sufficient ex-
planations. arXiv preprint arXiv:2105.10118, 2021.

[177] Heinrich Wansing. A general possible worlds framework for reasoning about knowl-
edge and belief. Studia logica, 49(4):523–539, 1990.

[178] Richard Zach. Hilbert’s Program. In Edward N. Zalta, editor, The Stanford En-
cyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2019
edition, 2019.

[179] Carlos Zednik. Solving the black box problem: a normative framework for explain-
able artificial intelligence. Philosophy & Technology, pages 1–24, 2019.

	Probability and Markov Models
	Basic Terminology
	The Philosophical Meaning of Probability
	Classical Interpretation.
	Frequentist Interpretation.
	Subjective Interpretation.

	The Axiomatization of Probability
	Kolmogoroff's Axioms
	Operations with Probability

	Stochastic Variables
	Markov Models
	Markov Chains
	Inferences in Markov Chains
	Markov Reward Models
	Markov Decision Processes

	Probabilistic Model Checking: a Primer
	Formal Verification
	The General Idea of Formal Verification
	De Millo-Lipton-Perlis Argument
	Fetzer's Argument
	Formal Verification Today

	On Model Checking
	Transition Systems
	Predecessors and Successors
	Executions, Paths and Traces
	Reachability

	Linear Time Properties
	Safety and Liveness Properties

	Linear Temporal Logic
	LTL Semantics
	LTL Model Checking

	Computation Tree Logic
	CTL Semantic
	CTL Model Checking

	Probabilistic Computation Tree Logic
	PCTL Syntax
	PCTL Semantics
	PCTL Model Checking
	Example of a PCTL Application

	Multi-Agent Systems
	CTLK
	CTLK Semantics
	CTLK Model Checking

	PCTLK
	PCTLK Semantics
	PCTLK Model Checking

	COGWED
	COGWED Semantics
	COGWED Model Checking

	Probabilistic Model Checking for Explainable AI
	Introduction
	Machine Learning Systems
	The Opacity Problem
	Access Opacity
	Link Opacity
	Semantic Opacity

	Explainable Artificial Intelligence
	Reliability Properties of post-hoc Explanations

	A Multi-Agent Semantics for Explanation Reliability Properties
	Ex-PCTL Syntax
	Ex-PCTL Semantics
	Satisfiability of and -formulae
	Satisfiability of -formulae
	Satisfiability of formulae
	Satisfiability of formulae

	Model-Checking
	-formulae
	-formulae
	-formulae
	-formulae

	Example
	Scenario 1
	Scenario 2

	Conclusions

	Probabilistic Model Checking with Imprecise Probabilities
	Introduction
	Imprecise Markov Models
	Imprecise Transition Matrices
	Imprecise Markov Chains
	Inference in Imprecise Markov Chains
	Imprecise Markov Reward Models
	Imprecise Probabilistic Interpreted Systems
	Imprecise Probabilistic Interpreted Reward Systems

	Epistemic Imprecise PRCTL
	EIPRCTL Syntax
	EIPRCTL Semantics

	Model Checking
	Parsing Tree

	A Case Study on Healthcare Budgeting
	Conclusions

	Markov Models Semantics and Logical Omniscience
	Introduction
	Epistemic Logic
	Axiomatization

	Solutions to Logical Omniscience
	Model-Theoretic Solutions
	Syntactic Approaches
	Dynamic Approaches
	Depth-Bounded Logics

	A New Framework
	Reinforcement Learning

	Towards Markov Deduction Structures
	Derivability Checking
	Derivability-Checking with Markov Decision Processes
	Derivability-Checking with Reinforcement Learning
	Example

	The Logic of Markov Deduction Structures
	Syntax
	Semantics
	MDSL and Logical Omniscience

	The Dynamic Logic of Markov Deduction Structures
	Syntax
	Semantics

	Model Checking
	MDSL Model Checking
	MDSDL Model Checking

	Conclusions and Further Works

	Conclusions

