
Received 21 June 2023, accepted 9 July 2023, date of publication 14 July 2023, date of current version 24 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3295434

On Nonlinear Learned String Indexing
PAOLO FERRAGINA 1, MARCO FRASCA 2, GIOSUÈ CATALDO MARINÒ 2,
AND GIORGIO VINCIGUERRA 1
1Department of Computer Science, University of Pisa, 56127 Pisa, Italy
2Department of Computer Science, University of Milan, 20133 Milan, Italy

Corresponding author: Giorgio Vinciguerra (giorgio.vinciguerra@unipi.it)

This work was supported by the European Union – Horizon 2020 Program under the scheme ‘‘INFRAIA-01-2018-2019 – Integrating
Activities for Advanced Communities’’, Grant Agreement n. 871042, ‘‘SoBigData++: European Integrated Infrastructure for Social
Mining and Big Data Analytics’’ (http://www.sobigdata.eu), by the NextGenerationEU – National Recovery and Resilience Plan (Piano
Nazionale di Ripresa e Resilienza, PNRR) – Project: ‘‘SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data
Analytics’’ – Prot. IR0000013 – Avviso n. 3264 del 28/12/2021, by the spoke ‘‘FutureHPC & BigData’’ of the ICSC – Centro Nazionale di
Ricerca in High-Performance Computing, Big Data and Quantum Computing funded by European Union – NextGenerationEU – PNRR,
by the Italian Ministry of University and Research ‘‘Progetti di Rilevante Interesse Nazionale’’ project: ‘‘Multicriteria data structures and
algorithms’’ (grant n. 2017WR7SHH).

ABSTRACT We investigate the potential of several artificial neural network architectures to be used as an
index on a sorted set of strings, namely, as a mapping from a query string to (an estimate of) its lexicographic
rank in the set, which allows solving some interesting string-search operations such as range and prefix
searches. Our evaluation on a variety of real and synthetic datasets shows that learned models can beat the
space vs error trade-off of the classic (possibly compressed) trie-based solutions for relatively dense datasets
only, while being slower to be trained and queried. This leads us to conclude that learned models are not
yet competitive with classic trie-based solutions, and thus cannot completely replace them, but possibly
only integrate them. Although our study does not settle the question conclusively, it highlights appropriate
methods, provides a baseline for comparison, and introduces several open problems, thereby serving as a
starting point for future research.

INDEX TERMS String dictionaries, string search, prefix search, tries, neural networks, machine learning,
data structures, learned indexes.

I. INTRODUCTION
We deal with the problem of indexing a sorted set S of
n strings s1, s2, . . . , sn drawn from an alphabet 6, with
|6| = σ , in order to efficiently answer the query rank(q),
whose output is the number of strings in S which are lexi-
cographically smaller than or equal to a given query string q.
Formally, rank(q) = |{s ∈ S | s ≤ q}|.

The rank query is powerful enough to allow solving several
other operations on S such as the lookup, which determines
whether a given string exists in S , the prefix search, which
finds all the strings in S having a given pattern as a prefix, and
the range search, which finds all the strings in S that fall in a

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

given query range.1 Given this, it comes as no surprise that the
problem of supporting rank arises frequently in applications,
including, to name but a few, databases (e.g. to implement
range queries [1]), bioinformatics tools (to find the rank or
to count k-mers [2]), and search engines (to enable query
autocompletion [3] or to index the vocabulary [4]).

The classic data structure to solve this problem is the
trie [5], [6], a multiway tree that stores each string s ∈ S
as a root-to-leaf path, and whose branches are labelled with
a character from 6 (see Section II). Since its inception in
the sixties, the trie has undergone many significant devel-
opments that improved its query or space efficiency such as

1A lookup amounts to compute i = rank(q) and check whether si = q.
A prefix search is given by the strings {si ∈ S | rank(q) ≤ i ≤ rank(q#)},
where # is a character larger than all the characters in 6. A range search with
endpoints l and r is given by the strings {si ∈ S | rank(l) ≤ i ≤ rank(r)}.

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

74021

https://orcid.org/0000-0003-1353-360X
https://orcid.org/0000-0002-4170-0922
https://orcid.org/0000-0003-1386-6770
https://orcid.org/0000-0003-0328-7791
https://orcid.org/0000-0002-0945-2674

P. Ferragina et al.: On Nonlinear Learned String Indexing

compacting its paths [7] or whole subtries [8], [9], [10], [11],
using adaptive representations for its nodes [12], [13], [14],
succinct representations of its topology [1], [15], and cache-
aware or disk-based layouts [16], [17].

A recent and quite different trend to solve the problem of
indexing S consists instead in learning an approximation of
rank via a model f , typically trained on a dataset of input-
target pairs (s, rank(s)) for s ∈ S, and then using the output
f (q) of this model as an estimate for the rank of string q [18].
Clearly, themodelmight incur in an error, measured as |f (q)−
rank(q)|, but as long as S is stored somewhere, the correct
rank of q can be determined by comparing q with a range of
strings . . . , sp−1, sp, sp+1, . . . around the predicted position
p = f (q). Since such comparisons can be computationally
expensive, one should aim at keeping the range size small
by training a model f with a low error, which, on the other
hand, often entails increasing the model complexity of f ,
thus possibly increasing the time to compute a prediction
and decreasing the space efficiency due to the storage of
additional model parameters. As a result, the design and
training of f should carefully counterbalance both the model
complexity and the model errors.

As of today, the learned indexing approach has mostly
been successfully applied to integers (i.e. short strings of 4 or
8 bytes) such as in [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], and [29], possibly stored in compressed
form [18], [30], [31] (see [32] for an introductory survey).
Overall, these studies have shown that learned indexes can
be as time efficient as classic indexes while being orders of
magnitude more space efficient, because they can exploit new
patterns and regularities in the data that classic solutions are
unable to detect.

For the case of variable-length strings, on the other
hand, the literature is scarce and the experimental results
that so far have been obtained [19], [33], [34], detailed in
Section II, show a general difficulty in beating the space-
time performance of classic solutions. Furthermore, unlike
for other indexing problems [35], [36], no study has system-
atically evaluated the impact of different model architectures
(especially nonlinear ones) to be used in learned string
indexes.

To fill this gap, we take a step back from the design
and implementation of learned string indexes and focus on
the more fundamental question of whether, and in which
cases, learned models can provide accurate enough esti-
mations for the task of indexing a string set under a
given space budget for the model parameters. As a first
attempt to answer this very difficult question, we conducted
experiments: 1) on various nonlinear model architectures,
including a new one, named Stair Multi-Layer Perceptron,
that we have specifically tailored for the task at hand;
2) on datasets from four diverse domains and applica-
tions (natural language, geographic information systems,
search engines, and genome sequences); and 3) by using
a very succinct representation of tries as a non-learned
baseline.

Our results show that learned models can beat the space
vs error trade-off of the classic trie-based solutions for some-
what dense datasets only, while being slower to be trained
and queried. This leads us to conclude that learned models
are not yet competitive with classic solutions, and thus cannot
completely replace them, but possibly only integrate them.

Although our study does not settle the question conclu-
sively, it highlights appropriate methods, provides a baseline
for comparison, and introduces several open problems,
thereby serving as a starting point for future research.

To summarise our contributions in points:

• We review the classic approaches to deal with the prob-
lem at hand, followed by a critical discussion of the
recently-proposed learning-based ones, highlighting the
importance of using a succinct trie implementation as a
baseline for comparison, as we do in our study.

• We consider a variety of existing nonlinear model
architectures, including multi-layer perceptrons, con-
volutional neural networks, and (bidirectional) long
short-term memory networks.

• We design a new model architecture, the Stair Multi-
Layer Perceptron, that achieves a space vs error per-
formance on par with or better than the above neural
network approaches by leveraging the specificity of the
problem.

• We identify four string datasets with widely different
characteristics and introduce a synthetic dataset gener-
ator to provide a broad picture of the performance of the
experimented approaches.

• We propose six open questions to encourage further
research on the problem.

• We release our source code, trained models, and datasets
publicly at https://github.com/giosumarin/ANN-string-
indexes.

A. PAPER OUTLINE
Section II provides some background and discusses related
work. Section III describes the methods of our study, datasets,
and experimental setting. Section IV presents the results.
Section V summarises our findings. Section VI proposes the
open questions.

II. BACKGROUND AND RELATED WORK
A trie [5], [6] is a multiway tree that stores each string s ∈ S
as a root-to-leaf path, and whose branches are labelled with
characters from 6. If a string in S is a prefix of another,
we can make sure that it does not end at an internal node
by appending a special character $ smaller than all other
characters in 6, as depicted in Figure 1. A traversal of the
trie guided by the characters in a query string q allows deter-
mining the lexicographic position of q among the strings in
S, from which the result of rank can be easily derived (e.g.
by storing the rank information at the n leaves).
The indexing scenario, we consider here, aims at storing S

somewhere (e.g. on a disk, possibly in compressed form) and

74022 VOLUME 11, 2023

P. Ferragina et al.: On Nonlinear Learned String Indexing

FIGURE 1. A trie on the set S = {a, an, that, the, these, this, those}.

building a small index data structure (e.g. small enough to fit
in main memory or in GPU memory) on S to enable efficient
rank queries. In this scenario, a trie T can be built on the
subset S ′ of S given by the strings at positions multiples of a
given sampling rate r . Then, a rank(q) query can be answered
in two steps. First, we determine the rank of q among the
strings in S ′ via a traversal of T ; say this rank is i. Second,
we determine the answer to the rank(q) query by comparing
q with the strings sir , . . . , s(i+1)r−1. Clearly, the sampling
rate r allows us to trade the space needed by the index T
with the number of string comparisons done in the second
step. Note also that, to save space, the strings in S ′ can be
truncated to their distinguishing prefixes, i.e. the smallest
prefix distinguishing a string from the others in S ′, so that
the resulting T has no (unary) paths with a single descendant
leaf (such as the path ‘‘ose’’ in the rightmost path of the trie
in Figure 1).

As mentioned in the introduction, the trie has under-
gone many significant developments since its inception. For
the purpose of this paper, we now recall one recent and
representative example of these developments, named Fast
Succinct Trie (FST) [1], [37], that we will use in our exper-
imental evaluation as a non-learned baseline. In FST, the
trie is not encoded via space-consuming pointers but via
two succinct representations, named LOUDS-Sparse and
LOUDS-Dense. The former representation concatenates the
branching characters in level-wise left-to-right-order into a
vector of characters, and employs two bitvectors of the same
size: the first bitvector marks whether the branch points to
an internal node or to a leaf, the second marks whether a
branching character is the first one of a node. For exam-
ple, the first two levels of Figure 1 are represented in the
FST by the vector of characters at$nh, and the bitvectors
11001 and 10101, respectively. In LOUDS-Dense, instead,
a single node is represented using three components: a bitmap
of size 256 that has the ith bit set if the node has a branch with
label i (thus, FST assumes an alphabet over bytes), a bitmap
of size 256 that marks whether a branch points to an internal
node or to a leaf, and a bit that indicates whether the prefix
that leads to the node is a string in S. The three components of
the LOUDS-Dense encoding of the various nodes in the trie,
again visited in level-wise left-to-right-order, are concate-
nated into three separate vectors. Both LOUDS-Dense and
LOUDS-Sparse use the so-called rank-select primitives on

bitvectors [15] to allow efficient trie navigation. FST employs
(the more query-efficient) LOUDS-Dense for the top levels
of the trie and (the more space-efficient) LOUDS-Sparse for
the bottom levels, where the dividing point is determined by
guaranteeing that LOUDS-Dense takes less than 2% of the
trie space, while still covering the frequently-accessed top
levels.

For what concerns the learned indexing approaches for
strings, the results available in the literature are, to the best
of our knowledge, RMI [19], RSS [33], and SIndex [34].

RMI [19] truncates the strings to a fixed length and uses
their ASCII representation as feature vectors, which are then
fed to a hierarchy of learned models (implemented as neural
networks with 1 or 2 hidden layers) to predict the rank. The
models in the hierarchy that have a high maximum error
are replaced with B-trees [38]. An evaluation on document-
ids from a web index shows modest improvements or no
improvement in time with respect to standard B-tree indexes,
but up to 2.7× less space. However, B-tree indexes are too
space-inefficient for string keys because they do not take
advantage of the common string prefixes [17], which is why
we use succinct tries as our non-learned baseline. Also, the
RMI implementation for strings is not open source.

RSS [33] is a trie in which each node uses 8 (or 16) bytes
for branching. If these 8 bytes are insufficient to determine
the rank of an input stringwithin a prescribedmaximum error,
then it builds another child node with the descending strings
having that 8-byte prefix, otherwise it feeds these 8 bytes (that
fit into a computer word) to an integer-based linear learned
index that predicts the rank of the string. The evaluation
shows that the lookup performance of RSS is worse than
a trie-based index (HOT [39]), but one or two orders of
magnitude more compressed. However, the use of succinct
tries (which we found to be 3.2–8.3× smaller than HOT on
the full datasets of Table 1) and the space-time trade-off given
by varying the sampling rate have not been evaluated, and we
cannot in turn do it because the RSS implementation is not
open source.

SIndex [34] greedily partitions the sorted input strings into
groups so that: 1) the range of characters that must be exam-
ined to determine the lexicographic position of a string within
a group is below a given threshold (where the range is given
by the minimum lcp and the maximum lcp of the strings in the
group); and 2) a linear model built to predict the rank of the
strings in the group has a mean error below a given threshold.
Then, it creates a root node, implemented as a piecewise
linear regression model, on the set of group pivots to route the
queried string to the correct group. The evaluation shows that,
on a dataset of URLs, SIndex has a lower query performance
than a classic index (Wormhole [40], which is a hybrid of hash
tables, tries, and B-trees) but better performance on randomly
generated strings. The space usage has not been evaluated in
the paper.

However, since the implementation of SIndex is open
source, we ran it on the dataset of Table 1 and measured
its space conservatively by considering just the space of the

VOLUME 11, 2023 74023

P. Ferragina et al.: On Nonlinear Learned String Indexing

pivots and of the linear model’s parameters, and ignoring
other data structure metadata and buffers to handle insertions.
On average it took 263.8×more space than the corresponding
(i.e. same mean error) FST, so we do not consider it further.

III. METHODS
As mentioned in Section I, to solve our string index-
ing problem we aim to learn an approximation of
rank : 6∗

→ {0, . . . , n} via a model f trained on the dataset
of input-target pairs (s, rank(s)) for s ∈ S.
As a technicality, we will actually facilitate the training

of our model, implemented as an Artificial Neural Network
(ANN), by scaling the targets to the range of reals [0, 1] and
scaling back the output of the model to the range of integers
{0, . . . , n}.
We evaluate f in terms of space and error. The space is

given by the storage of the model’s parameters in memory,
without compression, which in turn depends on the chosen
model architecture and hyperparameters, and thus it is fixed
(details below). The error is measured in terms of mean
(absolute) error

ε =
1
n

∑
s∈S

|rank(s) − f (s)|, (1)

and maximum (absolute) error

εmax = max
s∈S

|rank(s) − f (s)|. (2)

We ought to observe that, differently from a classic
machine learning task, the model f should overfit as much as
possible the input dataset to provide effective indexing (i.e.
to be close to the target function rank), which is why we do
not split S into training, validation and test set, but we use it
in its entirety to train and evaluate f [19], [32].

Note also that, in some applications, the query strings do
not necessarily belong to S but to its superset 6∗, thus giving
rise to other definitions of ε and εmax that take into account the
error on these strings too. We discuss this issue in Section VI.
We compare the space and error of the various ANN

architectures with the ones incurred by FST [1], built on a
sample of the input dataset given by the strings at positions
multiples of a given sampling rate r (see also Section II).
In this setting, the value r also corresponds to the maximum
error incurred by FST, because a search in such an FST can
determine the rank of a query string q as one of the sampling
positions 0, r, 2r, 3r, . . . , ⌊n/r⌋r, n, and thus the determined
rankwould be far from the correct rank(q) by atmost r . On the
other hand, if we assume queries are generated by a random
process such that the answers follow a uniform distribution
over the range {0, . . . , n}, then the mean error incurred by
FST can be defined as r/2, which is the value we report in
our figures. Finally, for what concerns the space occupied by
the FST, as motivated in Section II, we do not consider the
space for storing the string suffixes past the distinguishing
prefix.

In the following, we discuss datasets (Section III-A), how
we encode the inputs to the ANNs (Section III-B), which

TABLE 1. Characteristics of the real datasets.

ANN architectures we use (Section III-C), and the experi-
mental setting (Section III-D).

A. DATASETS
To best evaluate our methods on different kinds of string
distributions, we use four real datasets coming from dif-
ferent domains and applications (natural language, geo-
graphic information systems, search engines, and genome
sequences):

1) WORDS contains natural language words derived from
the Google Books 1-gram dataset.2

2) GEO contains the names of geographic locations
throughout the world.3

3) URL contains URLs from a Web crawl of the .uk
domain.4

4) DNA consists of all unique 12-mer in a DNA
sequence.5

To keep the training times and the space of the ANN
models low, we truncate the strings to a length of 20 in all
the above datasets except DNA.6 While this might be seen as
a limitation, actually, it will allow us to factor out the length
of the string when we compare our methods on different
datasets. Furthermore, we notice that longer strings could
be handled recursively by building a trie-like data structure
where the nodes correspond to the models (see Section II).

The features of our datasets after this preprocessing are
shown in Table 1.
Other than real datasets, we introduce a synthetic dataset

generator that creates length-L strings over an alphabet of
a given size σ , whose corresponding trie is full in the first
P levels and sparsely populated in the remaining levels.
Specifically, we first generate all the σP possible length-P
strings from that alphabet of size σ , and we complete each
of these strings to a length L by appending L − P randomly-
chosen characters. Then, given a density factor D ∈ [0, 1),
we further add ⌈Dσ L⌉ strings composed of L randomly-
chosen characters. We will vary L, σ , and D, while keeping
P = ⌊L/2⌋.

B. ANN INPUT CODING
Two approaches to feed the ANN with strings S are pro-
posed: the classical one hot and binary encodings. They differ

2https://storage.googleapis.com/books/ngrams/books/datasetsv3.html
3http://download.geonames.org/export/
4http://data.law.di.unimi.it/webdata/uk-2002
5 http://pizzachili.dcc.uchile.cl/
6We also remove common URL prefixes of the kind ‘‘http(s)://(www.)’’.

74024 VOLUME 11, 2023

P. Ferragina et al.: On Nonlinear Learned String Indexing

from each other in the way they encode individual characters
in 6.

• One hot encoding (ohe). This is a typical way to trans-
form a character into a numerical binary format. Each
symbol ai ∈ 6 is transformed into a σ -dimensional
binary vector voheai made up of all zeros except for a 1 in
position i.

• Binary encoding (bin). Each symbol ai ∈ 6 is converted
into the binary representation vbinai of the integer i. The
length of vbinai is ⌈log σ⌉.

Each string s ∈ 6∗ then is encoded as the binary string
obtained by concatenating the encodings of its characters
s1, . . . , s|s|, and denoted by CX (s) = vXs1 · vXs2 · . . . · vXs|s| , where
X ∈ {ohe, bin}, and · is the concatenation operator. When it is
clear from the context, we omit to specify the encoding type
X in this definition.

Strings are then truncated to m, the maximum longest
common prefix (LCP) between any two strings of S, aug-
mented by 1, since by definition of LCP their ranking is fully
determined by their first m characters. In order to have inputs
of fixed length, necessary to build an ANN model, padding
with a neutral symbol is performed to achieve the length m
for strings shorter than m.

C. ANN MODELS
The ANN models selected here have an input of size mσ

when strings (of length m) undergo ohe encoding and of
size m⌈log σ⌉ in the case of bin encoding. We considered
a variety of ANN models, covering recurrent, convolutional
and feed-forward neural networks, having as a central goal
that of yielding an effective but also succinct model. The
latter poses clear constraints to the configuration of the
model architecture. Indeed, we excluded from our analysis
ANN architectures that have an intensive memory usage, like
Transformers and their extensions [41], [42], [43].

• Multi-Layer Perceptron (MLP). A multi-layer percep-
tron is the most known and most frequently used type
of feed-forward neural network, composed of an input
layer, a last single-unit output layer (in our setting),
and at least one hidden layer between input and output
layers [44]. The input layer is fed with the binary string
C(s) (Section III-B), where each bit corresponds to a
dedicated input neuron. To infer a prediction in the
interval [0, 1], a sigmoid activation function is used for
the output unit (Figure 2 (a)).

• Convolutional Neural Networks (CNNs). CNNs are a
kind of feed-forward neural network able to extract
features from input data with convolution structures
exploiting spatial relationships [46]. In particular, 1D
CNNs are suitable to process 1D data, e.g. data repre-
sented through vectors, and are effectivewhen extracting
features from a fixed-length segment. This is the case,
for instance, of signal identification [47]. Multiple con-
volutional layers are commonly placed in sequence,
each able to extract different features at different levels

of abstraction. In our setting, such an architecture is
suitable because each input character is encoded by
a fixed-length vector, whose components are spatially
related. We designed a convolutional block sliding over
adjacent characters, having three 1D convolutional lay-
ers followed by one or more fully-connected (FC) layers
to perform classification. The last layer is a sigmoid
output unit (Figure 2 (b)), like the previous models
described in this section.

• Long short-term memory (LSTM). Recurrent neural

networks, and in particular LSTMs [48], have been
investigated intensively in recent years in text clas-
sification due to their ability to model long-range
dependencies [49]. Given a string s ∈ S, individual
coded characters vsi are fed to a dedicated LSTM cell
at each timestep, for a total of m timesteps. Two LSTM
layers are stacked atop each other (depth in RNNs helps
to capture temporal hierarchies [50]). Finally, a single
unit FC layer (if necessary preceded by other FC hidden
layers) is applied on the output of the rightmost cell
(Figure 3 (a)). Moreover, analogously to [51], we con-
sider two model variants: LSTM-multi, which includes
explicit dependence among all characters by concatenat-
ing the outputs of all LSTM cells in the last layer into
an additional FC layer, since typically considering just
the last LSTM cell outputs suffers from the vanishing
gradients issue (Figure 3 (b)); BiLSTM, a bidirectional
LSTM where each LSTM layer is duplicated to read the
input string even in reversed order. Gated Recurrent Unit
(GRU), a variant of LSTMs, is discarded here due to its
lower performance in this experiment, confirming the
results shown in [49].

• StairMLP (SMLP). This an architecture we tailored
leveraging the specificity of the problem. In particular,
we observe that the rank of a string mainly depends
on its leftmost characters. Our idea is to consider a
multi-input model where each character is supplied to
the network at a separate level, starting from the right-
most character to the leftmost one. This counter-intuitive
order represents an explicit way to foster the network
to pay more attention to the leftmost characters during
the training. The last coded character vsm is fed to an FC
layer, whose output, concatenated to the next (to the left)
coded character vsm−1 , becomes the input for a second FC
layer. Then a third FC layer receives the output of this
layer and the third last coded character vsm−2 , and so on
(Figure 4 (a)). The leftmost coded character vs1 is con-
catenated to the output of the FC layer associated with
the previous character (on the right) and fed to its FC
layer, whose output undergoes the classification block
made up, even in this case, by a sigmoid unit preceded
by zero or more FC hidden layers (Figure 4 (b)).
Another benefit of this stair multi-input architecture
is the possibility to assign a different number of hid-
den units to individual characters, so as to dedicate
more space/parameter resources to the most relevant

VOLUME 11, 2023 74025

P. Ferragina et al.: On Nonlinear Learned String Indexing

FIGURE 2. Example of MLP (a) and CNN (b) architectures to classify strings in the dataset az-words, when characters are encoded via one-hot
encoding. Strings are fed to both models (InputLayer) as a binary matrix of shape (None, 20, 27), whose components refer to, respectively, the variable
training batch size, the length of the string, and the alphabet size plus one (because of the added null character). For MLP, the input is effectively the
binary string obtained by concatenating (Flatten layer) the encoding of the corresponding characters, while CNN Conv1D operates a convolution on
entire characters (thus, no flattening is needed). Each box/layer shows also its output shape (last row in the box), in addition to the activation
function (second row), when applicable. Both architectures are obtained from the Keras API [45].

FIGURE 3. Example of LSTM (a) and LSTM-multi (b) architectures to rank string s ∈ S of length m,
where vsi is the encoding of the i th character of s.

characters for determining the string rank, also prevent-
ing themodel size to explode. Indeed, in theMLPmodel,
all characters are assigned to the same number of hidden
units, causing the size of the model to easily increase
when just a few hidden units are added. Clearly, the
possible configurations of hidden units across characters
are too many. Accordingly, we adopt a simple scheme to
assign hidden units that only needs to fix the number
of hidden units b parsing the leftmost character, and the
number of units d to be reduced for the next character
(on the right). Thus, the ith character from the left will be
parsed by an FC layer having max{b− (i−1)d, 1} units.
We name such a model SMLPb,d,h for short, assuming
a unique h-unit hidden layer is added before the output
layer.
Finally, to help prevent vanishing gradient problems,
we employ ReLU activation function for all FC layers
but the output one.

It is worth noting that the architecture of the SMLP model is
the result of a substantial design and modelling effort, which
investigated many different DNN architectures and their vari-
ants, which either performed worse or did not introduce any
advantage w.r.t. SMLP. Among them the most relevant are
the following ones: 1) a reversed SMLP, where characters are
read in the ‘‘usual’’ order, i.e. from left to right (actually, this
variant performs very poorly); 2) a multi-input architecture
in which, like SMLP, all characters are parsed by individual
FC blocks, but (unlike SMLP) all inputs are at the same
level; 3) a stair multi-input model, like SMLP, but where each
character is parsed by an entire MLP with one output neuron;
4) a variant of 3, where skip connections convey ahead the
outputMLPs associated with individual characters, namely to
a character placed at a fixed number of positions forward—
like for SMLP, forward means from right to left in the string;
and 5) a combined model, where the whole input is parsed
simultaneously by a LSTMblock and by a CNN block, whose

74026 VOLUME 11, 2023

P. Ferragina et al.: On Nonlinear Learned String Indexing

FIGURE 4. SMLP50,10,50 model for az-words strings. Beginning of the model (a) and its last layers (b) Box/layer formats are the same as in Figure 2.

TABLE 2. Specifications for the models. We use the following notation:
hidden units for FC layers (h), kernel size (k), stride (s), and hidden state
size (u) for LSTM cells.

outputs are concatenated and fed to a MLP block. LSTM and
CNN modules are configured as described in Section III-D.

Furthermore, we also implemented a variant of the training
procedure, decomposing the problem into m sub-problems,
each considering only the prefixes of a given length l ∈

{1, . . . ,m} of the strings in S. The rationale is verifying
whether the model could learn more efficiently simpler prob-
lems, and at the same time to have a significant initialization
of FC layer weights. This can be verified by training one
character at a time (via the corresponding sub-problem),
while clamping or just slightly refining the blocks already
trained and relative to shorter string prefixes. We discarded
such an approach because it was much more computationally
intensive, while leading to models with similar predictive
capabilities.

D. EXPERIMENTAL SETTING
The specifications of each layer in each architecture are pre-
sented in Table 2. Since in this evaluation errors are measured
on the strings in S, this set is used for the training, and we aim
to overfit it, in order to minimize the average error. To this
end, we run multiple incremental learning steps until conver-
gence for the Adam optimizer [52], with gradually reduced
learning rates, starting from 5E-04 to 1E-06. Furthermore,
to attempt reducing themaximum error, an enriched variant of
the training has also been tested, in which the strings with the
highest error after each training step (i.e., after the training
with a given learning rate until convergence) are replicated
multiple times. This is equivalent to using different sample
weights during training.

More in general, all themσ strings in 6m could be used for
training on a given data set S ⊂ 6m, and then evaluate the
model just on strings in S. However, this would sensibly slow
down the training. To avoid an excessive computational bur-
den, we tested two variants of such an enrichment approach:
the first one replicates top-0.05% error strings proportionally
to their error; the second one instead replicates top-0.05%
error strings a fixed number of times (identical for all strings).
Experimentally, we decided to retain the latter, since it has
fewer hyperparameters and leads to similar results. The per-
centage of strings to be replicated after each run has been
experimentally tuned, and increasing it tends to deteriorate

VOLUME 11, 2023 74027

P. Ferragina et al.: On Nonlinear Learned String Indexing

the average error ε, which is a behaviour to prevent in this
setting.

The configuration of the remaining hyperparameters (loss
function, batch size, patience, etc.) for all models has been
decided based on a small toy data set. The mean absolute
error (MAE) loss resulted in a lower average error with regard
to mean squared error (MSE) loss, which in turn tends to
yield a lower maximum error (this is expected since larger
errors tend to have a larger impact on the gradients). For the
SMLPb,d,h model, proposed here, different pairs (b, d) have
been tested in order to better investigate its behaviour. The
pairs are selected with the rationale of yielding models from
less to more succinct while attempting to ensure parsing with
more than one hidden unit the most significant characters,
roughly until the average LCP of the current dataset (Table 1).
To ensure a fair comparison, the dimension of the final FC
classification block is set as for the other compared models
(h = 50).

IV. RESULTS
A. REAL DATA
Our results on the four real datasets show that, although the
ANNs are capable to solve the problem with relatively low
errors, FST is more efficient in three out of four datasets
(Figure 5). On GEO and URL data the gap in favour of FST is
larger, and we conjecture that it might depend on two related
factors, namely the alphabet size σ and the string density,
intended as the ratio n/σm. Indeed, their σ is much larger than
that of WORDS and DNA data, and this in turn induces much
lower string density (4.77E-33 for GEO and 4.21E-34 for
URL), and larger one-hot encoding dimensions for the input
characters in ANNs. As a consequence, although the error ε

of ANNs is relatively small with respect to n on both GEO
(around 200 ≤ ε ≤ 800) and URL (around 35 ≤ ε ≤ 175)
data, these models cannot exploit the sparsity of the strings
like FST does. This is coherent with the results on the remain-
ing two datasets: on WORDS data, characterized by a lower
σ and higher density (4.49E-23) w.r.t. GEO and URL data,
ANNs obtain a space-error trade-off closer to that of FST; on
DNA data, the densest dataset of those considered (density
1.06E-07), neural networks are instead much better than FST.
Indeed, DNA data are even more dense (82%), if we consider
just the 4 distinct characters ATGC, which make 99.98% of
the data.7 To corroborate this analysis, in Section IV-B we
explore more in detail on synthetic data the behaviour of
ANNs and FST with regard to string density, alphabet size
and string length.

Concerning the results of ANNs, we can emphasize the
following relevant points.

1) ENRICHING TRAINING DATA
Because of their reduced size, the impact of training
data enrichment (see Section III-D) has been evaluated

7Given the presence of other symbols to denote sequencing errors, see e.g.
https://en.wikipedia.org/wiki/Nucleic_acid_notation.

on WORDS and URL data, specifically by comparing the
results of three SMLP models (SMLP100,10,50, SMLP50,5,50,
SMLP50,10,50) with and without replication of strings with
the highest error (the latter denoted as no enrich in Figure 5).
After tuning on a small subset of data, we decided to replicate
each of these strings 20 times. We have observed (results
not shown) that increasing this value more tends to increase
the mean error ε (while obviously decreasing εmax, see
Section VI). On WORDS data, both variants show similar
results in terms of mean error ε, while on URL data the
‘‘enriched’’ variants are always more effective. For this rea-
son, we decided to adopt the enriched variant to train all ANN
models.

2) SMLP VS OTHER ANN MODELS
The results of SMLPmodel suggest that our idea of designing
an architecture inherently aware of the character ‘‘relevance’’
can improve the capability in ranking strings.

In all datasets, classical MLP exhibits much worse space-
error trade-offs than SMLP. On the other hand, LSTMs and
BiLSTMs perform well on this task, confirming their known
ability in handling NLP tasks: The former is close to SMLP
performance, while the latter is worse than SMLP due to its
larger size. Due to their high training time, we have tested
CNN and LSTM-multi models only on WORDS data: the
former achieves results in line with those of LSTMs and
SMLPs, while the latter is less efficient than the baseline
LSTM, mainly because of its excessive size. For the same
reason, we have tested the binary encoding of characters only
for SMLP20,2,50 (denoted as bin input in Figure 5): it yields a
notable reduction in size, which however is counterbalanced
by lower effectiveness in ranking the strings, that makes the
overall error/space compromise in line with that of one hot
encoding.

3) SMLP BEHAVIOUR ANALYSIS
The configurations selected for SMLP aim thereby at inves-
tigating what is the most convenient strategy to distribute
neurons (and, accordingly, model parameters). Indeed, unlike
MLP, SMLP can assign a different number of neurons to pro-
cess individual characters, thus potentially designing more
complex blocks to parse the leftmost characters in the string
(see Figure 4). We have experimentally verified that such a
strategy pays more than equally distributing neurons across
characters, and in Figure 5 we show just a representative
of such a ‘‘flat’’ strategy on WORDS data, SMLP20,0,50,
which considers dense layers of the same width (20) to
process any input character. While not improving the perfor-
mance of SMLP20,2,50 model, it has a bit/string ratio more
than 3× higher. This behaviour is visible even comparing
SMLP50,10,50 and SMLP50,5,50 models: the former allocates
most of the space budget to the first 5 leftmost characters,
and results in a better space-error trade-off. An exception
is represented by DNA data, where SMLP50,10,50 is much
more inefficient than all other ANN models. We believe this
‘‘unexpected’’ behaviour is due to the specific nature of DNA

74028 VOLUME 11, 2023

P. Ferragina et al.: On Nonlinear Learned String Indexing

FIGURE 5. Results on real data.

data: unlike the other three datasets, it has an average LCP
of almost 11 and thus close to the average (and maximum)
string length of 12. This means that assigning blocks of
adequate complexity just to the first 5 characters is a choice
that does not allow the model to discriminate among a large
subset of strings. Results of SMLP20,2,50 and SMLP30,3,50
models support such an interpretation: they have a much
lower mean error and are more succinct than SMLP50,10,50,
but they ‘‘cover’’ with more than one neuron characters until
the average LCP.

Summarizing, our tests suggest that we need to pay atten-
tion to data set characteristics to configure an SMLP model
in relation to the available space/neuron budget, meanwhile
configuring it so as to allocate as much computational power
as possible to the leftmost characters.

4) QUERY TIME
We show in Table 3 the time taken by the various ANN
models to compute a prediction on the batch of WORDS
strings, averaged on 10 repetitions, both on a 1.80 GHz Intel
Core i7-10510U CPU and an NVIDIA GeForce GTX 1650

TABLE 3. Time (in seconds per query) taken by ANN models to query all
WORDS strings.

Max-QGPU. SMLPs perform similarly to LSTMs and CNNs
in terms of space vs error trade-off, but with a significantly
lower query time. Indeed, SMLP is around one order of
magnitude faster than the former, and at least twice faster than
the latter.

VOLUME 11, 2023 74029

P. Ferragina et al.: On Nonlinear Learned String Indexing

FIGURE 6. Results on synthetic datasets.

74030 VOLUME 11, 2023

P. Ferragina et al.: On Nonlinear Learned String Indexing

Concerning FST, which runs on CPU and is implemented
in C++ (unlike ANNs, implemented in Python 3, using Ten-
sorFlow and Keras), the two configurations yielding an error
similar to the most and least accurate ANNs (SMLP100,10,50
and SMLP20,2,50 - bin input) can be traversed on average
in 2.80E-07 and 1.99E-07 seconds per query, respectively
Therefore, compared to the above two ANNs run on CPU,
FST is 6.5× and 6.0× faster, and compared to the above two
ANNs run on GPU, FST is 3.9× and 4.6× faster.

B. SYNTHETIC DATA
This set of experiments is devoted to studying whether
it is possible to detect some characteristics of the input
dataset which can favour the effectiveness of ANNs over
FSTs. In particular, we considered 3 groups of 3 synthetic
datasets (generated according to the procedure detailed in
Section III-A), each group fixing two out of three features
among density (D), string length (L) and alphabet size (σ),
while varying the remaining one, plus a fourth group, where
instead we fix the total number of strings n and one of L and
σ . The rationale of the latter is to assess whether potential
trends found in the first three groups of experiments are
due just to the dataset size (and accordingly to the bit/string
ratio). In order to reduce the already high computational
burden (some datasets contain tens of millions of strings),
we only consider the SMLP100,10,50 model as the ANNs
representative.

The following behaviours can be identified: 1) SMLP’s
mean error ε reduces with the increase of string density
(Table 4, rows 1–3), which is quite natural since the network
can exploit a better approximation of the desired output; 2)
when the string density is fixed, the mean error of SMLP
reduces either when the string length or the alphabet size get
smaller (rows 4–9); 3) when fixing the number of strings, but
not the density, SMLP behaves not so in line with results
emphasized at point 2), or even inverse when the string
length rises (rows 10 and 12). Interpreting such results is not
immediate, and some observed trends are likely to be partially
induced by the randomness of both the training procedure
of the model (weight initialization, sample permutation, etc.)
and the synthetic data generation (random string sampling).
Concerning the maximum error, we note that in general it is
around two orders ofmagnitude larger than ε, and for a further
discussion about it see Section VI.
On the other hand, we can get a more detailed and clear

comparison between SMLP and FST by looking at Figure 6;
in particular:

1) SMLP is favoured more than FST by an increase of
string density (row 1 in Figure 6) but fixing L and σ ;

2) the behaviour with regard to σ instead is fluctuating,
since its increase favours SMLP when fixing L and
D (row 2), whereas it is almost negligible when fix-
ing L and n (row 4), but still in favour of SMLP for
increasing L;

TABLE 4. Results of SMLP100,10,50 model on synthetic datasets.

3) longer strings favour SMLPmore than FSTwhen σ and
one betweenD (row 3) or n (row 4) are fixed. The latter
trendmight be related to the rise of the number of nodes
in the FST that longer strings yield.

The results about the density variation (expected, as men-
tioned above) underline an interesting fact, that is, SMLP has
only benefits from a rise of string density, unlike FST: indeed,
SMLP size does not increase with the number of strings,
while FST size does, and SMLP performance improves
(Table 4).Moreover, these results provide a potential explana-
tion of why SMLP outperforms FST just on DNA data, which
indeed is the one having the highest string density among the
tested real datasets.

V. CONCLUSION
We studied the potential of learned nonlinear models to rep-
resent, in a small space and with a low error, an approximate
mapping from a query string to its lexicographic position
in a sorted string set. This task, motivated by the recent
achievements in learned indexing data structures for inte-
ger data [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], has received little attention in the literature [19],
[33], [34], possibly because of its difficulty. The preliminary
attempts in the literature, indeed, showed a general difficulty
in beating classic (non-learned) solutions, even the space-
inefficient ones.

To investigate these difficulties, we provided a systematic
experimental analysis of several nonlinear model architec-
tures (including a newly proposed one) on different kinds of
datasets, and we compared the performance of these models
against a strong classic solution, namely a succinct encoding
of the classic trie data structure [1]. Our results show that
learned models can beat the space vs (mean) error trade-off
of the classic trie-based solutions for relatively dense datasets
only, while requiring higher training and query time. This
leads us to conclude that learned models are not yet competi-
tivewith classic solutions, and thus cannot completely replace
them yet.

VOLUME 11, 2023 74031

P. Ferragina et al.: On Nonlinear Learned String Indexing

VI. OPEN QUESTIONS
While our evaluation provides new insights, it is not without
limitations. In particular, we identified the following open
questions to encourage future research:

• Are ANNs competitive only for input datasets having
a string density higher than a given threshold? Our
results show that the density of the string dataset is
a key element for ANNs to outperform FST in terms
of error/bit per string. We conjecture that it should be
possible to determine, for any given pair (6, m) of
alphabet and maximum string length, a density level
d̄ ∈ [0, 1] such that ANNs can beat a succinct trie in
representing any set S ⊂ 6m whose density d is higher
than d̄ . This conjecture is a direct consequence of the fact
that in principle, fixed the maximum string length and
the alphabet size, ANNs benefit twice from increasing
the string density: their size does not increase, unlike
what typically happens for FST, and they become more
accurate (see for instance Figure 6, first row);

• Can we design more effective ANN architectures for the
problem? Although in this study we examined dozens
of ANN models, in our opinion much still needs to be
done in this sense. The SMLP model, proposed here,
resulted at least as efficient as LSTM and CNNs, while
being more than twice faster than CNNs, and one order
of magnitude faster than LSTM. However, its results can
be considered sub-optimal. This suggests an interesting
open problem: how to distribute the space/neuron budget
across characters? For instance, one could partition the
space budget so that a character position i receives a
portion of the budget (in terms of model parameters)
on the basis of the maximum error in which we might
incur when classifying strings S by considering only the
characters forward from position i. This is equivalent to
consider the maximum number of strings in a sub-tree
rooted at level i, when considering the trie of S.
A different, still interesting open problem is how to
deploy ANNs compression, which we did not consider
here, to further reduce their space (e.g., [53], [54]).

• Can we lower the maximum error? The maximum error
has been considered only partially here, and there are
some applications where instead it is relevant or even
more important than the mean error. In such cases, the
training of ANNs should take it into account, since
we have experimented that the maximum error usu-
ally is at least two orders of magnitude larger than the
mean error. For instance, one could adopt suitable loss
functions (e.g., MSE instead of MAE), or implement
data-enriching procedures to foster themodel to improve
its ability to classify the strings corresponding to the
highest errors. Although wemainly focused on the mean
error, we have also verified that aweak string enrichment
can already help in this sense.

• Are ANNs robust to query on strings that do not belong
to the input set? In this paper, we defined and measured
the mean and maximum error of the model on the input

set S , cf. (1) and (2). In some applications, the model
could be fed with strings that do not belong to S but to
its superset6∗. If the model is not monotonic, the errors
on these strings could be much larger than the errors
computed on S, and this weakness could be exploited
by an adversary to create a batch of strings on which
the model incurs very large errors (i.e. close to n) thus
making the model useless for any indexing task. This
highlights the need to investigate ways of analysing and
fostering the robustness of the models to such inputs
[55], [56], [57].

• Do learned models have an advantage over classic trie-
based solutions when the string set is updated? We
found that learned models, such as SMLP, require some
hours to be trained, whilst the construction time of FST
takes just a few seconds. On the other hand, insert-
ing new strings in a succinctly-encoded trie requires
complex and inefficient restructuring operations [58],
while a learned model could update its weights more
efficiently via incremental or transfer learning [59].
We leave for future work the study of these and other
approaches to update a model and their comparison with
classic trie-based solutions.

• Can ANN compression methods improve the space-error
trade-off of ANNs? Several works recently proposed
strategies to reduce the space demand of ANN models
to the detriment of negligible or small accuracy drops
(e.g. [60]). Such approaches, e.g., weight and neuron
pruning, weight quantization, skeletonization, or knowl-
edge distillation, can be investigated to assess how the
gain in space efficiency compensates for the induced
accuracy decay. Such methodologies well performed in
classical holdout or cross-validation settings, but their
effectiveness has not yet been proven in a setting, like
ours, where we need to overfit data, and where even
minimal changes in the model (architectural or simply
in the learnt parameters) might induce large changes in
the model prediction.

REFERENCES
[1] H. Zhang, H. Lim, V. Leis, D. G. Andersen, K. Keeton, and A. Pavlo,

‘‘Succinct range filters,’’ ACM SIGMOD Rec., vol. 48, no. 1, pp. 78–85,
Nov. 2019.

[2] R. Chikhi, J. Holub, and P. Medvedev, ‘‘Data structures to represent a set
of k-long DNA sequences,’’ ACM Comput. Surv., vol. 54, no. 1, pp. 1–22,
Mar. 2021.

[3] U. Krishnan, A. Moffat, and J. Zobel, ‘‘A taxonomy of query auto
completion modes,’’ in Proc. 22nd Australas. Document Comput. Symp.,
Dec. 2017, pp. 1–8.

[4] J. Zobel and A. Moffat, ‘‘Inverted files for text search engines,’’ ACM
Comput. Surveys, vol. 38, no. 2, p. 6, Jul. 2006.

[5] R. D. La Briandais, ‘‘File searching using variable length keys,’’ in Proc.
20th Western Joint Comput. Conf., 1959, pp. 295–298.

[6] E. Fredkin, ‘‘Trie memory,’’ Commun. ACM, vol. 3, no. 9, pp. 490–499,
Sep. 1960.

[7] D. R. Morrison, ‘‘PATRICIA—Practical algorithm to retrieve information
coded in alphanumeric,’’ J. ACM, vol. 15, no. 4, pp. 514–534, Oct. 1968.

[8] T. Takagi, S. Inenaga, K. Sadakane, and H. Arimura, ‘‘Packed compact
tries: A fast and efficient data structure for online string processing,’’ IEICE
Trans. Fundam. Electron., Commun. Comput. Sci., vol. E100.A, no. 9,
pp. 1785–1793, 2017.

74032 VOLUME 11, 2023

P. Ferragina et al.: On Nonlinear Learned String Indexing

[9] P. Bille, I. L. Gørtz, and F. R. Skjoldjensen, ‘‘Deterministic indexing for
packed strings,’’ in Proc. 28th Annu. Symp. Combinat. Pattern Matching
(CPM), vol. 78, 2017, p. 6:1–6:11.

[10] K. Tsuruta, D. Köppl, S. Kanda, Y. Nakashima, S. Inenaga, H. Bannai, and
M. Takeda, ‘‘C-trie++: A dynamic trie tailored for fast prefix searches,’’
Inf. Comput., vol. 285, May 2022, Art. no. 104794.

[11] A. Boffa, P. Ferragina, F. Tosoni, and G. Vinciguerra, ‘‘Compressed string
dictionaries via data-aware subtrie compaction,’’ in Proc. 29th Int. Symp.
String Process. Inf. Retr. (SPIRE), 2022, pp. 233–249.

[12] A. Acharya, H. Zhu, and K. Shen, ‘‘Adaptive algorithms for cache-efficient
trie search,’’ in Proc. Int. Workshop Algorithm Eng. Experimentation
(ALENEX), 1999, pp. 300–315.

[13] D. Baskins. (2002). A 10-Minute Description of How Judy Arrays
Work and Why They are so Fast. [Online]. Available: http://judy.
sourceforge.net/doc/10minutes.htm

[14] V. Leis, A. Kemper, and T. Neumann, ‘‘The adaptive radix tree: ARTful
indexing for main-memory databases,’’ in Proc. IEEE 29th Int. Conf. Data
Eng. (ICDE), Apr. 2013, pp. 38–49.

[15] G. Jacobson, ‘‘Space-efficient static trees and graphs,’’ in Proc. 30th Annu.
Symp. Found. Comput. Sci., 1989, pp. 549–554.

[16] P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J. S. Vitter, ‘‘On search-
ing compressed string collections cache-obliviously,’’ in Proc. 27th ACM
SIGMOD-SIGACT-SIGART Symp. Princ. Database Syst., Jun. 2008,
pp. 181–190.

[17] P. Ferragina and R. Grossi, ‘‘The string B-tree: A new data structure for
string search in external memory and its applications,’’ J. ACM, vol. 46,
no. 2, pp. 236–280, Mar. 1999.

[18] N. Ao, F. Zhang, D. Wu, D. S. Stones, G. Wang, X. Liu, J. Liu, and S. Lin,
‘‘Efficient parallel lists intersection and index compression algorithms
using graphics processing units,’’ Proc. VLDB Endowment, vol. 4, no. 8,
pp. 470–481, May 2011.

[19] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, ‘‘The case
for learned index structures,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, May 2018, pp. 489–504.

[20] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann, D. Lomet, and T. Kraska,
‘‘ALEX: An updatable adaptive learned index,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data, Jun. 2020, pp. 969–984.

[21] P. Ferragina and G. Vinciguerra, ‘‘The PGM-index: A fully-dynamic com-
pressed learned index with provable worst-case bounds,’’ Proc. VLDB
Endowment, vol. 13, no. 8, pp. 1162–1175, Apr. 2020.

[22] P. Ferragina, F. Lillo, and G. Vinciguerra, ‘‘On the performance of learned
data structures,’’ Theor. Comput. Sci., vol. 871, pp. 107–120, Jun. 2021.

[23] M.Maltry and J. Dittrich, ‘‘A critical analysis of recursive model indexes,’’
Proc. VLDB Endowment, vol. 15, no. 5, pp. 1079–1091, Jan. 2022.

[24] C. Ma, X. Yu, Y. Li, X. Meng, and A. Maoliniyazi, ‘‘FILM: A fully
learned index for larger-than-memory databases,’’ Proc. VLDB Endow-
ment, vol. 16, no. 3, pp. 561–573, Nov. 2022.

[25] Z. Zhang, Z. Chu, P. Jin, Y. Luo, X. Xie, S. Wan, Y. Luo, X. Wu, P. Zou,
C. Zheng, G. Wu, and A. Rudoff, ‘‘PLIN: A persistent learned index for
non-volatile memory with high performance and instant recovery,’’ Proc.
VLDB Endowment, vol. 16, no. 2, pp. 243–255, Oct. 2022.

[26] X. Zhong, Y. Zhang, Y. Chen, C. Li, and C. Xing, ‘‘Learned index on
GPU,’’ in Proc. IEEE 38th Int. Conf. Data Eng. Workshops (ICDEW),
May 2022, pp. 117–122.

[27] D. Amato, R. Giancarlo, and G. L. Bosco, ‘‘Learned sorted table search
and static indexes in small-space data models,’’ Data, vol. 8, no. 3, p. 56,
Mar. 2023.

[28] D. Amato, G. L. Bosco, and R. Giancarlo, ‘‘Standard versus uniform
binary search and their variants in learned static indexing: The case of the
searching on sorted data benchmarking software platform,’’ Softw., Pract.
Exper., vol. 53, no. 2, pp. 318–346, Feb. 2023.

[29] S. Zeighami and C. Shahabi, ‘‘On distribution dependent sub-logarithmic
query time of learned indexing,’’ in Proc. 40th Int. Conf. Mach. Learn.
(ICML), 2023, pp. 1–12.

[30] A. Boffa, P. Ferragina, and G. Vinciguerra, ‘‘A learned approach to design
compressed rank/select data structures,’’ ACM Trans. Algorithms, vol. 18,
no. 3, pp. 1–28, Oct. 2022.

[31] P. Ferragina, G. Manzini, and G. Vinciguerra, ‘‘Compressing and querying
integer dictionaries under linearities and repetitions,’’ IEEEAccess, vol. 10,
pp. 118831–118848, 2022.

[32] P. Ferragina and G. Vinciguerra, ‘‘Learned data structures,’’ in Recent
Trends in Learning From Data, L. Oneto, N. Navarin, A. Sperduti, and
D. Anguita, Eds. Cham, Switzerland: Springer, 2020, pp. 5–41.

[33] B. Spector, A. Kipf, K. Vaidya, C. Wang, U. F. Minhas, and T. Kraska,
‘‘Bounding the last mile: Efficient learned string indexing,’’ in Proc. 3rd
Int. Workshop Appl. AI Database Syst. Appl. (AIDB), 2021, pp. 1–5.

[34] Y. Wang, C. Tang, Z. Wang, and H. Chen, ‘‘SIndex: A scalable learned
index for string keys,’’ in Proc. 11th ACM SIGOPS Asia–Pacific Workshop
Syst., Aug. 2020, pp. 17–24.

[35] D. Amato, G. Lo Bosco, and R. Giancarlo, ‘‘On the suitability of neural
networks as building blocks for the design of efficient learned indexes,’’ in
Proc. 23rd Int. Conf. Eng. Appl. Neural Netw. (EANN), 2022, pp. 115–127.

[36] G. Fumagalli, D. Raimondi, R. Giancarlo, D. Malchiodi, and M. Frasca,
‘‘On the choice of general purpose classifiers in learned Bloom filters:
An initial analysis within basic filters,’’ in Proc. 11th Int. Conf. Pattern
Recognit. Appl. Methods, 2022, pp. 675–682.

[37] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton, and
A. Pavlo, ‘‘SuRF: Practical range query filtering with fast succinct tries,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, May 2018, pp. 323–336.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 4th ed. Cambridge, MA, USA: MIT Press, 2022.

[39] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis, ‘‘HOT: A height
optimized trie index for main-memory database systems,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data, May 2018, pp. 521–534.

[40] X.Wu, F. Ni, and S. Jiang, ‘‘Wormhole: A fast ordered index for in-memory
data management,’’ in Proc. 14th EuroSys Conf., Mar. 2019, pp. 1–16.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. U. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 5998–6008.

[42] N. Kitaev, L. Kaiser, and A. Levskaya, ‘‘Reformer: The efficient trans-
former,’’ in Proc. 8th Int. Conf. Learn. Represent. (ICLR), 2020, pp. 1–12.

[43] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
‘‘Informer: Beyond efficient transformer for long sequence time-series
forecasting,’’ in Proc. AAAI Conf. Artif. Intell., vol. 35, no. 12, 2021,
pp. 11106–11115.

[44] S. Haykin, Neural Networks: A Comprehensive Foundation.
Upper Saddle River, NJ, USA: Prentice-Hall, 1994.

[45] Keras API. Accessed: Feb. 1, 2023. [Online]. Available: https://keras.
io/api/utils/model_plotting_utils/#plot_model-function

[46] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, ‘‘A survey of convolutional
neural networks: Analysis, applications, and prospects,’’ IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2022.

[47] Q. Zhang, D. Zhou, and X. Zeng, ‘‘HeartID: A multiresolution convolu-
tional neural network for ECG-based biometric human identification in
smart health applications,’’ IEEE Access, vol. 5, pp. 11805–11816, 2017.

[48] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[49] D. Britz, A. Goldie, M.-T. Luong, and Q. Le, ‘‘Massive exploration of neu-
ral machine translation architectures,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., 2017, pp. 1442–1451.

[50] M. Hermans and B. Schrauwen, ‘‘Training and analysing deep recurrent
neural networks,’’ in Proc. 27th Annu. Conf. Neural Inf. Process. Syst.
(NIPS), vol. 26, 2013, pp. 190–198.

[51] M. Goyal, K. Tatwawadi, S. Chandak, and I. Ochoa, ‘‘DeepZip: Lossless
data compression using recurrent neural networks,’’ in Proc. Data Com-
press. Conf. (DCC), Mar. 2019, p. 575.

[52] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), Y. Bengio and Y. LeCun,
Eds., 2015, pp. 1–15.

[53] G. C. Marinó, A. Petrini, D. Malchiodi, and M. Frasca, ‘‘Deep neural net-
works compression: A comparative survey and choice recommendations,’’
Neurocomputing, vol. 520, pp. 152–170, Feb. 2023.

[54] M. Gupta and P. Agrawal, ‘‘Compression of deep learning models for
text: A survey,’’ ACM Trans. Knowl. Discovery From Data, vol. 16, no. 4,
pp. 1–55, Jan. 2022.

[55] X. Wang, J. Li, X. Kuang, Y.-A. Tan, and J. Li, ‘‘The security of machine
learning in an adversarial setting: A survey,’’ J. Parallel Distrib. Comput.,
vol. 130, pp. 12–23, Aug. 2019.

[56] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and
D. Mukhopadhyay, ‘‘A survey on adversarial attacks and defences,’’
CAAI Trans. Intell. Technol., vol. 6, no. 1, pp. 25–45, Mar. 2021.

VOLUME 11, 2023 74033

P. Ferragina et al.: On Nonlinear Learned String Indexing

[57] E. M. Kornaropoulos, S. Ren, and R. Tamassia, ‘‘The price of tailoring the
index to your data: Poisoning attacks on learned index structures,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data, Jun. 2022, pp. 1331–1344.

[58] G. Navarro, Compact Data Structures: A Practical Approach. Cambridge,
U.K.: Cambridge Univ. Press, 2016.

[59] M. Kurmanji and P. Triantafillou, ‘‘Detect, distill and update: Learned DB
systems facing out of distribution data,’’ Proc. ACM Manag. Data, vol. 1,
no. 1, pp. 1–27, May 2023, Art. no. 33, doi: 10.1145/3588713.

[60] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, ‘‘Model compression and
hardware acceleration for neural networks: A comprehensive survey,’’
Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

PAOLO FERRAGINA received the Ph.D. degree in computer science from
the University of Pisa, in 1996. He was a Postdoctoral Researcher with Max-
Planck Institut für Informatik, Saabrücken, Germany, from 1997 to 1998.
He is currently a Professor of algorithms with the University of Pisa, where
he founded and leads the Acube Laboratory, whose research activities regard
the design of algorithms for big data, mainly in the form of texts and
graphs, in collaboration with companies worldwide, such as Bloomberg,
European Broadcasting Union (EBU), Google, Tiscali, and Yahoo!. He has
(co)authored more than 170 (refereed) publications, some books, and chap-
ters, achieving an H-index of 34 on Scopus andmore than 10,000 citations on
Google Scholar. His research results got four U.S. patents and some interna-
tional awards, such as the 1995 Best Land Transportation Paper Award from
IEEE Vehicular Technology Society, the 1997 Best Ph.D. Thesis in Theoret-
ical Computer Science by the Italian Chapter of the EATCS, the 1997 Philip
Morris Award on Science and Technology, the Yahoo! Research Faculty
Award, the three Google research awards, and the 2022 ACM Paris Kanel-
lakis Award. He is serving on the editorial board of the Journal of Graph
Algorithms and Applications (JGAA). He is an Area Editor of Encyclope-
dias of Algorithms (Springer) and Encyclopedias of Big Data Technologies
(Springer).

MARCO FRASCA received the Ph.D. degree in computer science from the
University of Milan, Italy, in 2012. Since 2017, he has been an Assistant Pro-
fessor with the Department of Computer Science, University ofMilan, where
he is currently a member of the Anacleto Laboratory, whose research activ-
ities regard the field of machine learning applied in biology and medicine.
He has been an Invited Research Visitor at several universities, including the
Terrence Donnelly Centre for Cellular and Biomolecular Research, Univer-
sity of Toronto, and the Institute of Molecular Biology, Johannes Gutenberg
University of Mainz. He contributed to consolidating the application of Hop-
field networks to classification and ranking problems with the development
of single- and multi-task parametric Hopfield models. His current research
interests include the design and analysis of new machine-learning methods,
with applications in bioinformatics, computational biology, and medicine.

GIOSUÈ CATALDO MARINÒ received the B.Sc. degree in computer sci-
ence from the University of Milan, Italy, where he is currently pursuing the
master’s degree in computer science. His current research interests include
machine learning and the compression of neural network models.

GIORGIO VINCIGUERRA received the Ph.D. degree in computer science
from the University of Pisa, in 2022. He is currently a Research Fellow with
the University of Pisa. His current research interests include compressed
data structures, data compression, and algorithm engineering. His thesis was
awarded the 2022 Best Ph.D. Thesis in Theoretical Computer Science by the
Italian Chapter of the EATCS.

Open Access funding provided by ‘Università di Pisa’ within the CRUI CARE Agreement

74034 VOLUME 11, 2023

http://dx.doi.org/10.1145/3588713

