Annali di Matematica Pura ed Applicata (1923 -) (2021) 200:1517-1571
https://doi.org/10.1007/s10231-020-01047-5

®

Check for
updates

Functional calculus on non-homogeneous operators on
nilpotent groups

Mattia Calzi' - Fulvio Ricci'

Received: 16 January 2020 / Accepted: 27 September 2020 / Published online: 29 December 2020
© The Author(s) 2020

Abstract

We study the functional calculus associated with a hypoelliptic left-invariant differential
operator £ on a connected and simply connected nilpotent Lie group G with the aid of the
corresponding Rockland operator Lo on the ‘local’ contraction Go of G, as well as of the
corresponding Rockland operator £, on the ‘global’ contraction G, of G. We provide
asymptotic estimates of the Riesz potentials associated with £ at 0 and at oo, as well as of the
kernels associated with functions of £ satisfying Mihlin conditions of every order. We also
prove some Mihlin—Hormander multiplier theorems for £ which generalize analogous results
to the non-homogeneous case. Finally, we extend the asymptotic study of the density of the
‘Plancherel measure’ associated with £ from the case of a quasi-homogeneous sub-Laplacian
to the case of a quasi-homogeneous sum of even powers.

Keywords Nilpotent Lie groups - Hypoelliptic differential operators - Multiplier theorem -
Heat kernel - Riesz potentials

Mathematics Subject Classification 43A22 - 22E30

1 Introduction

This paper deals with functional calculus on non-homogeneous left-invariant hypoelliptic
self-adjoint differential operators on nilpotent Lie groups.

Functional calculus on self-adjoint Rockland operators (i.e., left-invariant, hypoelliptic
and homogeneous) has been widely studied in the literature, in particular on sub-Laplacians
(cf., for instance, [9,10,15,23-28]), but also in greater generality (cf., for instance, [7,8,16,17,
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20,22]). Also functional calculus on non-homogeneous sub-Laplacians has been considered
(cf., for instance, [2,20,22,34]).

The approach introduced in [30] indicates that it is possible to transfer information on
operators that are functions of a (positive) Rockland operator £ on a connected and simply
connected graded group G, or on its convolution kernel, to analogous information relative
to the projection of L ona general connected and simply connected, but not necessarily
homogeneous, quotient group.

Let G = G /1 be the quotient group, where we assume that / is not dilation invariant
to avoid trivialities. The one-parameter family of isomorphic quotient groups G; = G/,
where I is [ dilated by s € R, admits two limits Go = G/I() and G = G/Ioo (no longer
isomorphic to G), where Iy and I, are dilation invariant, so that G and G, admit induced
gradations from G.

Correspondingly, the operator £ induces a family (L )se[0,+00], Of projected operators on
the different quotients. The limit operators Lo, Lo are Rockland, while the other £, lack
homogeneity, remaining, however, hypoelliptic. More precisely, they are weighted subcoer-
cive, according to the definition introduced in [371.1

The starting point in the analysis of [30] is a weighted generating family X1, ..., X, of
the Lie algebra g of G. The (Lie algebra of the) group G is then interpreted as the quotient
of the free nilpotent Lie algebra F of sufficiently high step with generators X1, ..., X,; the

Lie algebra F is then endowed with the (unique) gradation obtained assigning to each X ;
a degree equal to the weight of X ;. Thus, in the above notation, F is the Lie algebra of
G and the quotient map is uniquely determined by the condition that each X j is mapped
onto X ;. A non-commutative homogeneous polynomial P in n indeterminates (endowed

with the same Welghts of X1,..., Xp) is then considered under the assumption that the
operator L=PX,,...X,)is hypoelhptlc (hence Rockland). In particular, also the operator
L=PXy,...,Xp)is hypoelhptlc, examples of such operators are the sums of even powers

of generating vector fields.
It was proved in [30] that there is a fundamental solution K of £ satisfying the asymptotic
relations?

K(x)~ Px)+ Ko(x) asx —> 0, K(x) ~ Kso(x) asx — 00,

where K¢ and K, are fundamental solutions of Ly on G and of L, on G, respectively,
while P is a suitable polynomial on Gy.

The results of the present paper can be divided into four parts. The first part concerns the
heat kernels associated with the operator L, i.e., the kernels of the operators e~/ £ 1n Sect. 2,
we recall the basic constructions of [30] and then we introduce a (somewhat redundant) family
of left-invariant vector fields X ; on each group Gy, s € [0, oo], which behaves nicely under
dilation (which can no longer be defined as automorphisms of the group G, but rather as
isomorphisms between different G). We then introduce two moduli | - | and |- | , on each
G the former behaves nicely under dilation and equals a homogeneous norm on G near the
identity e and a homogeneous norm on G o, near oo, under suitable identifications; the latter,
inspired by [20,22], is a compromise between the modulus | - | and the Riemannian distance

!' Functional calculus on weighted subcoercive operators (or systems of operators) has been developed in
[20-22]. In these works, the homogeneous limit G mentioned above is used, at least for comparison with the
homogeneous setting by a contraction argument.

2 These formulas assume identifications, as manifolds, of G with Gy and Goo, respectively. This will be
explained in the next section. More precisely, it is proved in [30] that K (x) admits two infinite asymptotic
expansions at 0 and oo, with terms which are homogeneous of increasing and decreasing orders, respectively,
relative to the dilations of the corresponding limit group.
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from e associated with the vectors X ;. The importance of | - | , lies in the fact that it grows
much faster than | - | at 0o, in general, so that it leads to better multiplier theorems. In Sect. 3,
we then make use of the vector fields X, ; and the moduli | - |  to prove uniform ‘Gaussian’
estimates for the kernels A ; of the e™’ Ls (Theorem 3.1); we also consider estimates of the
derivatives in s of the &, ;, appropriately defined.

In the second part (Sect. 4), we extend the asymptotic estimates in [30] to general complex
powers of £ (Theorem 4.4), defined by analytic continuation in the same fashion of the
Euclidean case. Even though it would be possible to use the same techniques employed in
[30], we shall rely as much as possible on the estimates on A, ; provided in Theorem 3.1; in
this way, we are able to describe more precisely also the higher-order terms of the obtained
developments, in some specific situations (Theorem 4.7).

In the third part (Sect. 5) we give asymptotic estimates to kernels of more general multiplier
operators (Theorem 5.12) and prove some multiplier theorems of Mihlin-Hormander type
(Theorems 5.15, 5.17). For what concerns the asymptotic estimates, here we consider more
general functions of the operator L—namely, functions satisfying Mihlin conditions of every
order up to the multiplication by a fractional power. Even though these functions include the
complex powers of £, Theorem 3.1 is not completely contained in Theorem 5.12, since several
terms of the developments obtained in the latter are only defined up to polynomials. We then
pass to some multiplier theorems, which are generalization of some of the results presented in
[22] to the non-homogeneous case. While Theorem 5.15 is stated in full generality and gives
non-homogeneous Mihlin—H6rmander conditions on the multipliers in the fashion of [2,34],
Theorem 5.17 makes use, in a quite more specific situation, of the techniques introduced in
[15,16] and then systematically developed in [20,22] to lower the regularity threshold up to
half the topological dimension of G (instead of half the growth of the volume of G as in
Theorem 5.15). Optimality is achieved when G is a product of Métivier and abelian groups,
and £ is (any) hypoelliptic sub-Laplacian thereon.

The fourth part (Sect. 6) deals with the spectral Plancherel measure 8, and its comparison
with B, and B, (Theorem 6.4), when L is ‘quasi-homogeneous’, following [34]. Here,
we both extend the results of [34] to sums of even powers of generating homogeneous vector
fields (instead of quasi-homogeneous sub-Laplacians), and we also observe that the estimates
on the density of S, with respect to the Lebesgue measure on R automatically improve to
asymptotic expansions at 0 and at co.

2 General setting

In this section, we shall present the general framework in which we shall work in the sequel.
It is basically the same as that of [30], except for the fact that we shall not require that the
graded group G be a free nilpotent Lie group. We shall briefly repeat the basic constructions
for the ease of the reader.

2.1 Contractions

Let G be a graded, connected, and simply connected Lie group with Lie algebra g, with
gradation (g;); let pr; be the projection of g onto §; with kernel D ,; 5, and define
n:=rnix{j >0:7g; 7&0}.

On G we introduce the dilations x — r - x, r € Ry = (0, 00), adapted to the given
gradation, i.e., such thatr - x = r/xifx €g iz We shall sometimes denote by p, the dilation
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by r. A linear subspace v of g is graded, i.e., b = @j v}, if and only if it is homogeneous,
i.e., invariant under dilations. We say that a linear map from a graded subspace v of g to g is

— homogeneous if it maps v Ng; into §; for every j;

— strictly subhomogeneous if it maps v Ng; into P ii<j g for every j;

— strictly super-homogeneous if it maps v Ng; into P > g forevery j.

Now, let G be the quotient of G by a (not necessarily homogeneous) normal subgroup,

and denote by 7 the corresponding projection; we shall assume that G is simply connected.
Let i be the kernel of dmr, and observe that ker 7 = expg i since G is simply connected.
Then, define

ig ::Eanrj (iﬂ(@ﬁj/>>, and i ::éprj (iﬂ(
j=1 j=1

J'=J

Di))

For s € (0, 00), we define iy := s~ -i.

The following result is basically a generalization of [30, Proposition 2, Lemma, and Corol-
lary of § 2].

Proposition 2.1 The vector spaces iy and i, are graded ideals of § and have the same
dimension as i. In addition, there are two linear mappings ¥o.1: o — §and Yoo 1: ico — §
such that

Yo,1 is strictly subhomogeneous and I + 1 is a bijection of iy onto i;
— Voo,1 IS strictly super-homogeneous and I + Y1 is a bijection of i, onto i;

- deﬁning,fors € ]R+, Wo,s andwoo,s as !ﬁo,s = s_l 'WO,I(S . ) and WOO,X = s_l 'Woo,l (S . );
respectively, these maps are strictly sub- (resp. super-)homogeneous and

lim Yo,s =0, lim Voo,s = 0;
S0+ 5—00

if o and b, are graded complements of iy and i in g, respectively, then they are also
algebraic complements of i for every s € R.

Proof 1t is clear that iy is a graded subspace of ; let (io ; = io N g;) be its gradation. Take
x € Eju for some j; and y € iy, j, for some j2; let us prove that [x, y] € i, j,+j,. Now, there
isy’ €isuchthaty —y’ € @j,<j2 g, sothat [x, y] € [x, y'] + (®j,<j2 §j1+j/), whence
[x,y] = prj, +j2([x, ¥') € ig,j,+j,- By the arbitrariness of x and y, it follows that ig is a

graded ideal. In the same way, one proves that i is a graded ideal.
Now, let us define ¥ 1. Observe that, by induction, we may define a basis (e;) of i and

an increasing sequence (k;) such that (ek)kfkj is a basis of i N <EB]~,SJ- ﬁj/) for every j.

Let us prove that, for every j, (prj (e/())kjfl <k<k; is a basis of ig ;. Clearly, it will suffice
to prove linear independence. Now, if (kg <k<k; is a family of real numbers such that

DMk prj(er) = 0, then Zk;71<k§k,' Aer € iN (@j’<j ﬁj/). Hence, there is a family
(Ak) k<k; | of real numbers such that

Z Arer = Z Aker,
kj—1<k=<k; k<kj-1

whence Ay = O forevery k =1, ..., k;. Then, we may simply define | as the linear map
such that

vo.1(pr;(er)) = ex — prj(er) = Z prj(ex),

J'<J
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forevery j =1,...,nand foreveryk =k;_ +1,...,k;. Then v i is strictly subhomo-
geneous and

(I +vo.0)(prjlen) = ek,

showing that I + ¥ 1 maps ip onto i bijectively. It is also clear that

Vo (pr(en)) = Y 5777 pryi(en), (1)

J'<i

which tends to 0 as s — 0.

In a similar way, one constructs ¥/« and proves the corresponding properties. In partic-
ular, we see that i, ip, and i, have the same dimension.

Let b, be a graded complement of ip in §. Since the mapping s +> i is continuous on
[0, co] (with values in the Grassmannian of (dim i)-dimensional subspaces of @), it follows
that b is an algebraic complement of i, for some r > 0. Therefore, b, = (s~'r) - b is an
algebraic complement of iy = (s7r) -1, for every s € (0, 00).

The assertions concerning b, are proved in a similar way. O

Observe that, by (1) and its analogue for ¥ s, the linear mappings ¥ y and ¥/, depend
polynomially on s.

For s € [0, 0o], consider the quotient Lie algebras g, = §/i,. Dilation of g by r > 0
induces an isomorphism between g, and g,-1; in particular, g, is isomorphic to g; for every
s € (0, 00), while g and g, need not be isomorphic with any other g,. We call g, and g,
the local and the global contractions of g,, respectively.

We fix once and for all two graded algebraic complements f and b, of ip and i,
respectively. By Proposition 2.1, both §, and b, are complementary to i; for all s € R

Definition 2.2 For s € [0, 00), let Py s be the projection of g onto b, with kernel i, and, for
s € (0, 00, let Pog_s be the projection of g onto b, with kernel ;.

Lemma 2.3 Py is homogeneous and, for every s € Ry, Py s — Po.o is strictly subhomoge-
neous; in addition, Py s = rb. Py s(r-) foreveryr,s € Ry.

Analogously, Pso oo is homogeneous and, for every s € R4, Poo,s — Poo,00 IS Strictly
super-homogeneous; in addition, Px s = rl Poo s(r ) for everyr,s € R.

Proof The homogeneity of Py and Pso, o i Obvious, as well as the scaling properties of the
projections. Thus, we may reduce ourselves to proving sub- (resp. super-)homogeneity of
Po.1 and Pwo 1. Then, take x € gy for some k, and let us prove that pr;, (Po.1(x) — P o(x)) =
0 for h > k. Indeed, assume that prj,(Pp 1(x)) # O for some h > k, and let 4’ be the
maximum of such . Then, prj,(x — Pp 1(x)) = pr;,(Po.1(x)) = 0 for every h > h’, so that
pr, (x—Pp,1(x)) € ipsince x — Py 1 (x) € iby the definition of Py 1. Since prj, (Po,1(x)) € by
and hy Nig = {0}, we then deduce that ' = k and that x — pr;(Po.1(x)) € ip, so that
pry (Po,1(x)) = Po,0(x).

One proves analogously that P 1 — Poo, oo 18 strictly super-homogeneous. O

Each map Py ¢ (resp. P s) induces a Lie algebra structure on b (resp. h,); we denote
by [-, -Jos (resp. [-, - ]oo,s) the corresponding Lie bracket. In other words,

[x,ylos = Poslx,yl, Yx,yehby  [x Vs = Poslx.y], Yx,yeb. (2
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Notice that, for r, s € Ry,

relx,ylos =r-x,r-ylg,-15, Y,y €bo, 7 -[x, Y]eos
=[r-x,r Yleo,15 YX,y € hoo. 3)

We use the Baker—Campbell-Hausdorff products induced by the Lie brackets in (2) to
realize either b, if s € [0, 00), or h,, if s € (0, oo], as the underlying manifold® of the
group Gy = G / expg is. We call Go and G the local and the global contractions of Gy,
respectively.

Notice that

[x. ¥lo.s = [x, ¥lo,0 + O(s), s — 0, uniformly for x, y bounded in b, @

[x, ¥]oo.s = [X, Y]oo,00 + O(1/5), s — oo, uniformly for x, y bounded in b,

and the analogous formulae for products in Gy.

We denote by my, s € [0, oc], the canonical projection of G onto G and bydms: g — g,
its differential. By an abuse of language, we shall keep the same notation whenever Gy, or
gy, is identified with either h or b,.

Since the ideals ip and i, are graded, the corresponding quotients g, and g, inherit a
gradation and the corresponding dilations. These dilations coincide with the restriction to b
and b, respectively, of the dilations of §.

For s,r € Ry, it follows from (3) that dilation by r on either h, or h,, induces an
isomorphism of G onto G,-1, for every s. Notice that the so-induced mappings Gy — G,-1;
do not depend on the chosen identifications (cf. (ii) and (iv) of Proposition 2.4).

We denote by Q , 0o, and O~ the homogeneous dimensions of 5, Go, and G, respec-
tively.

The following result generalizes [30, Proposition 3 and p. 264].

Proposition 2.4 For every s € Ry, define 1y := (POO,S)‘ho 2 hg = beos let N be a homoge-
neous norm on'g. Then,

(1) As is the unique linear mapping such that x — Ag(x) € ig for every x € b, in addition,
As is invertible and its inverse k;l = (Po,s)y,, is the unique linear mapping such that
X — A;l(x) € is for every x € b

(i1) Ay intertwines the two identifications of g, with b, resp. b, i.e.,

Aslx, y]O,s = [Asx, Asy]oo,s

forallx,y € by,

(iil) Ay — 1 is strictly super-homogeneous and ks_] — 1 is strictly subhomogeneous;
(v) Apg =} - As(r-) foreveryr > Q.
(V) Qoo = Qo;

(vi) N(As(x)) = O(N(x)) for x — o0 in by and N(As_l(x)) = O(N(x)) forx — Oin
Do

Proof By the definition of Py s, Poo,s, the two cosets x +iy and A4 (x) +i coincide for x € bj.
This gives (i) and (ii); (iii) and (iv) follow directly from Lemma 2.3.

3 In principle, we shall privilege the realization of G on b for s close to 0 and that on b, for s close to co.
We prefer anyhow to keep the double realization for every s € R in order to avoid apparent discontinuities
in s at some finite point, on the one hand, and a priori quantifications of ‘closeness’ to 0 or co, on the other.

@ Springer



Functional calculus on non-homogeneous operators on nilpotent groups 1523

To prove (v), we argue as in the proof of [30, Proposition 3]. Define b ; := Ej N by and

Boo,j =0 N boo, and set s = 1. Since A is super-homogeneous, we see that, for every
k=1,...,n,

@M(bo,]’) + @ Doo.j = Doos

Jj<k Jj=k
so that

> dim(bo ) + Y dim(ha ;) = dim ().

Jj<k Jj=k
Summing up all these inequalities, we see that
ndim(ho) — Qo + Qoo = ndim(hy,),

whence Q > Q.
For what concerns (vi), fix a norm || - || on g and observe that there is a constant C > 1
such that

1 Iy Iy
& max|lpr ()| < N ) < € max|lpry ()]

for every x € g. Further, by [10, Proposition 1.6] we see that there is a constant C’ > 0 such
that, for x € b,

N(s(x)) < €'Y N (pry(x)))
k
< CC" Yy max {{IAs (pri o), 1 (pry ).
k

Therefore, there is a constant C” > 0 such that

N(Os(x)) = €Y max {|lpre )|, lIpry oI} < nC” +C" Y lpre )1,
k k

so that N(As(x)) = O(N(x)) for x — oo in fj.
The second part is proved similarly. O

2.2 Invariant vector fields
We now pass to the approximation of differential operators, following [30, § 4].

Definition 2.5 Let V be a homogeneous vector space, with dilations p,, r € R4+. If T is a
distribution on V, we define pT and T o p, by

<p;"T,g0> = (T,gaop;l> and (T o pr, @) = <T,r7ngopr’1>

for every ¢ € CZ°(V), where Q is the homogeneous dimension of V. We also define

(o)« T = (p; H*T.
We say that a function (or a distribution) f is homogeneous of degreed € Cif fop, = re f
forallr € Ry. Wesay that f islog-homogeneous of degree d € IN if there are a homogeneous
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polynomial P of degree d on V and a homogeneous norm N such that f — Plog N is
homogeneous of degree d.*

We say that a continuous linear operator X : C*°(V) — C*°(V) (for example a (linear)
differential operator) is homogeneous of order d it X(f o p,) = rd(X f)opyforallr > 0.

Notice that, if X is a left-invariant differential operator under a homogeneous Lie group
structure on V, then Xf = f % (X§p) and X is homogeneous of order d if and only if the
distribution Xdp is homogeneous of degree —Q — d.

In addition, if f is a function of class C*° on V and M is the operator of multiplication
by f, then f is homogeneous of degree d if and only if M ; is homogeneous of order —d.

As a consequence, if X is a homogeneous differential operator of order d and f is a
homogeneous function of degree d” and of class C*, then f X is a homogeneous differential
operator of order d — d’.

Finally, observe that, if an element X of the enveloping algebra of G is homogeneous of
degree d, then the corresponding left-invariant differential operator is homogeneous of order
d, and conversely. Similar statements hold for (~}, Go, and G

Now, observe that b, and b, are graded subspaces of g, so that also f N b, is a graded
subspace of §. Hence, we may complete a homogeneous basis of h N b, to homogeneous
bases of b and b, and then complete the union of the two (which is a homogeneous basis of
Bo + boo) to a homogeneous basis of §. Consequently, we may state the following definition.

Definition 2.6 We denote by (X )jeJ & homogeneous basis of g g such that there are two
subsets Jy and J, of J such that 1t (X ) jeJ, is a basis of b, while (X ) jeJ 1S a basis of hoo
We denote by d; the degree of X (as an element of the graded Lie algebra g, so that X is
homogeneous of orderd; asa dlfferentlal operator). Fixing coordinates on g associated w1th
the basis (X )jes, We denote by (9;) jes the corresponding partial derivatives.

Define X ; := dmy (X ) for every j € J and for every s € [0, oc], so that

d.
(I")*Xs,j =r fxrfls’j

for every s € [0, oo], for every r > 0, and for every j € J.
Finally, fix a total ordering on J and define, for every y € N/,

“TI%.

jeJ
XY — Vi
X' =[]x7,
jeJ
so that X” is homogeneous of order d, := Y jes vjdj. Define 87 and X!, for every

s € [0, 00], in a similar way. To simplify the notation, we shall identify IN/0 and IN/ with
subsets of IN/; when y € IN (resp. y € IN/), we shall also write By (resp. d%,) instead of
Y.

The following result is a simple generalization of [30, Propositions 4 and 5]. Observe
that, even though in [30, Propositions 4 and 5] the polynomials py .+ and peo . ,» Were
constructed comparing the products on Go, G, and G, if one tries to define the matrix

4 If N’ is another homogeneous norm, then f — P log N = f— P log N + P log(N /N’) is still homogeneous
of degree d.
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8y, + po /) as the inverse of (8, + po,y,,’), then one would only prove that the pO
are (everywhere defined) rational functions. Consequently, we shall present a different proof

Proposition 2.7 For every y € IN’, there are two unique finite families

’
(Poyy)yrento  and — (py, )y rento

of polynomials on b such that, identifying G5 and Go with Y for every s € [0, 00),

XU = XD+ 5" Y poy XY XY = XU+ Y s X
y/ ’

In addition, py, ., and p(’)’y’y, are sums of homogeneous polynomials of degrees strictly
greater than d,,» — d,,.
Analogously, there are two unique finite families

/
(pwaaV')y’eW"w,dy/>dV and (poo,y,y’)y’elN"w,dy/>dy

of polynomials on Y, such that, identifying Gy and G 5 with b, for every s € (0, oo],

X! =X + styfdy/poo’w,(s XYL, XL =XV + styfdy/péo%y,(s XY,
v’ v’

In addition, ps, ., and p(’)O y,y! are sums of homogeneous polynomials of degrees strictly

smaller than d,,r — dy.5
In particular,

limX! =X}/, lim X} =X%, .
s—0 §—>00

Notice that, when y € IN/0, it may happen that Po,y,y 7 0and p(’)’ vy # 0. Nonetheless,
it is always true that both po ,, ,, and pé% , Vanish at 0.

For example, consider the case in which G is the free two- -step nilpotent Lie group on
three generators X 1, X 2, and X 3 (and the standard drlatlons) and deﬁne i as the vector space
generated by [Xl, Xg] X1 — X3, [X1 Xg] and [Xz,Xg] X1 — X3 Then, ig = [g, gl
and G is isomorphic to the three-dimensional Heisenberg group, while G is isomorphic to
R3. Fix coordinates (x1, x2, x3) on G corresponding to the basis (X1 1, X1,2, X1,3), so that
Xo,j = 0x : under the identification of Gy and G| with . Then, simple computations show
that

X1 =Xo1—2X0, —2x
1,1 = A0,1 ) 0,1 ) 0,3
x| —x3 X1 — X3
X12=Xo2 + 3 Xo,1 + 7 X0,3

X2 X2
X13=Xo3+ ?Xo,r + ?Xo,&

5 By the general theory, it is also clear that 3 ; yj’. <2 vjif oy, #0, p/O oy # 0, Pog,y,,r # 0,01
Pooyy #O-

@ Springer
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while
X2 X2
Xog=X11+=X11+=X13
2 2
X1 — X3 X] — X3
Xo2=X12 — X111 — X
0,2 1,2 3 1,1 3 1,3
Xos=X13— 22X, —2x
03=X13— 5 X11— 5 X13,

whence our assertion.

Proof Observe first that [40, Theorem 1.1.2] shows that there are two (unique) finite families
(Po,y.y) and (p;, y V,) of C* functions on b such that

y vy _ Y _ ’ Y
X) —Xp = ZPO.,V,V’XO =- ZPO,)/,)/’XI
v v

-1

Applying the dilation by s, we then get

st T pogy (s Xy ==Y s g, (5 OXY

for every s € (0, 00). Now, let us prove that the py , ,- and the p(’) y.y Are polynomials.

Observe that ((Xf/)o)y, NNyl <k is a basis of the space of distributions on b supported
2 vis
at 0 and of order at most k, for every k € IN and for every s € [0, 0o). Therefore, there are
two families (Sp,,) and (S(’) y,) of polynomials on b such that (Xg S0,y)(0) = 4, ,,» and
(X]'Sy () = 8,1, for every y” € N0, Then, define Sy, (y) := o (x™" -G, y) and
S)’W/(y) = S(/),y,(x’l -G, ¥) forevery x, y € b, so that

(XG Sey) () = XTS,000) = 8y
for every y’, y” € IN/0_ Therefore,

POy () = (X} = XP) (S, () = (X] S, ) (x) = 8,
Dby (0 = (X5 = X])(S, 0 (0) = (X[ S, () =8,y

for every y’ € IN/0 and for every x € ho. Now, it is clear that the mappings b, > (x, y) —
Seyr (X6, ) = S0y (@ gy (16, ) and bog 3 (. y) > S, (xgy ¥) = 85, (g,
(x -G, ¥)) are polynomials; therefore, it is easily seen that py ,, ,- and p(’)%y, are polynomials.

Finally, let us prove that pg ., and po , are sums of homogeneous polynomials of
degrees strictly greater thand,r —d,, Indeed observe that the continuity of Ppsand [ -, -Jos
in s at 0 shows that

0= lim (X, — X)) = Tim > % % po, (s )X
s—0t -

s—0t

. d,—d !
hrg+ s V’pé’y,y,(&)X;’ .
§—>

’ ’
Since the X} are pointwise linearly independent for every s and converge to the Xg , we

must have pg (s - x), pé.y y/(s - X) = o(st’_dV) for s — 0%, for every x € bg. The
assertion follows in this case.
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The properties of the families (peo,,,) and (p/OO y y,) are proved even more easily. O

2.3 Moduli

Here, we construct some control moduli on G and the Gy, following [21, § 2.3]. Cf. also
[31,37] for more details on ‘weighted’ control distances.

Definition 2.8 For every x € 5, we define |x| (resp. |x|,) as the greatest lower bound of the
set of & > 0 such that there are an absolutely continuous curve y:[0,1] — G and some
measurable functions a; : [0, 1] — R such that |||, < dj (resp. [lajlloo < min(e, & djy)
for every j € J, such that y(0) = e and y (1) = x, and such that

Y0 =) "a;X))ya

jelJ

for almost every ¢ € [0, 1]. We define B(r) (resp. By (r)) asthe setof x € G such that x| <r
(resp. |x|, < r), for every r > 0.

Proposition 2.9 The following hold:

— |-l and |-\, are finite, symmetric, and proper maps which vanish only at e;

= lziz2l = lz1l + |22l and |z) 224 < |21li + |22ly for every z1, 22 € G;

— |z| = |zl for every z € G such that |z|, < 1 (or, equivalently, |z| < 1); in addition,
1z] < lzls < |z|" forevery z € G such that |z, = 1;

B.()" € B.(r) € B.(1)"*! for every r € [h, h + 1] and for every h € IN;

| - | is a homogeneous norm.

Recall that a continuous function f between two topological spaces X and Y is said
to be proper if it maps closed subsets of X onto closed subsets of ¥ and if its fibres are
quasi-compact. In this case, saying that |-| and |- |, are proper is equivalent to saying
that |- | and | - |, are continuous and that the associated closed balls { z€G: lz] <r } and
{ z€G: |zl < } are compact for every r > 0.

The proof is simple and is omitted.

In order to provide some more insight into the moduli | - | and | - |, let us introduce some
more notation. First, we define |x|’ % as the greatest lower bound of the set of ¢ > 0 such
that there are an absolutely continuous curve y : [0, 1] — G and some measurable functions
aj: [0, 1] — R such that ||la;||», < & for every j € J, such that y(0) = e and y(1) = x,
and such that

Y1) =" ajtOX))ya
jeJ
for almost every ¢ € [0, 1]. Then, it is not hard to see that the following hold:
- x|y = |x|R for every x € G such that |x|, > 1 or, equivalently, |x|R > 1;

— |x|% < |xlp < |x|, forevery x € G such that |x|, < 1 or, equivalently, x|} < 1;
- |x|, = max(|x], |x|R) for every x € G.

In addition, if we denote by dg the (left—mvanant) Riemannian distance associated with the
(left-invariant) R1emanman metric for Wthh (X )jes is an orthonormal basis, then |x|’ R =
dr(0,x) < dim G x|, » forevery x € G. Consequently, |- |, is a reasonable compromise
between a homogeneous norm (locally) and a Riemannian distance (globally).
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Definition 2.10 For every s € [0, co] and for every x € G, we define

x|y ;= inf |z| and |x|;,:= inf |z|,.
75 (2)=x ’ 75 (2)=x
We define B, (r) (resp. By «(r)) as the set of x € és such that |x[; < r (resp. |x[; , < r), for
every r > 0.

One may prove that the moduli | - | and |- |5 , can be defined in the same fashion of the
moduli |- | and | - |,. We leave the details to the reader.

Proposition 2.11 The following hold:

1. ||y and |- |, are symmetric, subadditive, and proper maps which vanish only at e;

2. x|y = |xl|s  forevery s € [0, o0] and for every x € Gy suchthat |x|s , < 1, in addition,
x|y < |xlg« < |x|] for every x € Gy such that |x|s , > 1;

3. Bs,*(l)h C B «(r) C Bs,*(l)h"'lfor every s € [0, oo], for every r € [h, h + 1], and for
every h € IN;

4. |r- x|y =rlx|,, for every s € [0, 00], for every r > 0, and for every x € G s;

5. the mappings [0, 00] x G 3 (s, 2) — |75(2)|; and [0, 00] x G 3 (5, 2) = |75(2)]s 4
are continuous;

6. there is a constant C > 0 such that

1. .
Emln(|P0,s(Z)|v | Poo,s (2)]) = |75 (2)]s = C min(| Pos(2)], | Poo,s (2)])
for every s € (0, 00) and for every 7 € g.

Proof 1-4. These assertions follow from the corresponding ones of Proposition 2.9.

5. Fix z € g and observe that, since | - | is proper, for every s € [0, 0o] there is y; € i,
such that |z 4 ys| = |75 (2)|,. In particular, |z 4+ ys| < |z[, so that the set { ys: s € [0, o0] }
is relatively compact in g. Then, fix s” € [0, co] and observe that there is a sequence (sy) of
elements of [0, oo] converging to s’ such that kll)ngo |75 (2|5, = liminf|7(2)],. Notice that

S—>5

we may assume that (ys, ) converges to some y’ in g, so that y’ € iy. Therefore,
17 (2)]y < lz+ Y| = lim |z 4 yg| = lim |74 (2)],, = liminf|z(2)],.
k—o00 k—o00 s—s’

Conversely, take a sequence (s;) of elements of [0, co0] converging to s” such that
klim |7TS1§ (Z)|S1’< = lim sup|7m,(z)|,, and observe that we may take yé, € isi’ for every k € IN,
— 00 “k

s—s'
in such a way that the sequence (y; ,) converges to y, . Therefore,
k

17y (Dly = |z +yyl = lim |z 4y, | > lim |7y (2)]; = limsup|m;(2)].,
k—o0 Sk k—oo Tk k se>s
whence the first assertion. The second assertion is proved similarly.
6. The assertion follows from Proposition 2.4 and from 4 and 5. O

Definition 2.12 For every s € [0, oo], we define vg, as the unique Haar measure on G
such that vg, (Bs(1)) = 1. We define D;, the volume growth of G, in such a way that
vg, (U ky < kPs for k — oo for every compact neighbourhood U of e (cf., for instance, [14,
Theorem II.1]).

Notice that vg, (Bs «(r)) =< rPs as r — 400, for every s € [0, 0o], thanks to 3 of
Proposition 2.11.
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Corollary 2.13 The following hold:

1. Dy = D1 > max(Dyg, Dyo) for every s € (0, 00);
2~ Dl S QOO;
3. Do < Qo (resp. Do < Qo0), with equality if and only if Gg (resp. G ) is stratified.

Notice that it may happen that either Dy > Dy, or Dy < Do, or D > max(Dg, Dwo).
Indeed, consider the case G = H' x R, G = ]Hl, where H! is the three-dimensional
Heisenberg group; denote by X, Y, T, U a basis of g such that [X, Y] = T, while the
other commutators vanish, and endow G with coordinates such that ((z, t), u) corresponds to
exp(Re zX+1Im zY +¢T +uU); endow G with similar coordinates and define 7 ((z, t), u) :=
(z, t+u). Define dilations on G sothat X ,Y, T, U havedegrees 1, 1, 2, 3, respectively. Then,
i= (T —U)R,igp = UR, and i, = TR, so that Gg = H', and G, = R>. Hence, in this
case, Dp =4 > 3 = Dqo.

If, in the same example considered above, we choose dilations on G in such a way that
X,Y,T,Uhavedegrees 1, 1, 2, 1, respectively, thenip = TR and i, = UR. Consequently,
Dy =3 <4 = Dg.

Finally, if we consider G, ,and G as the products of the ones in the preceding examples,
then clearly D} =8 > 7= Dy = Do.

Proof 1. Since Gy is isomorphic to G, for s € (0, 00), it is clear that Dy = D;. In
addition, denote by g, the Lie algebra of Gy, and define inductively g; 17 := g, and
Os.1j+1] = L85 85,()] for every j > 1. Then, D5 = ijl dim gy 1 (cf., for example,
[14, Theorem II.1]). Now, since lim+[x, yls = [x, ylo for every x, y € by, it is easily

s—0

seen that dim gy ;) < dim g, j;; for every j € IN, whence Dg < Dj. In the same way
one proves that Do, < Dj.
2. Indeed, Proposition 2.11 and the above remarks imply that

P < vG, (B1+(r) < v, (B1(r)) =< r&>

as r — +o00. The assertion follows.
3. This follows easily from the formula for Dy used in 1. O

Here is a simple result which will be useful later on. The proof, which is a simple modi-
fication of that of [41, VIII.1.1], is omitted.

Lemma 2.14 For every s € [0, oc], for every p € [1, 0], for every f € C'(Gy), and for
every x € Gy,

1FCx) = fllp < Yl 1 X i £l
jelJ
We conclude this subsection with some uniform estimates on the growth of the volume
of the balls associated with the | - | . Indeed, observe that the preceding facts prove that for
every s € [0, oo] there is a constant Cy > 0 such that vg, (BS,*(r)) < CyrDs for everyr > 1;
however, we shall need to know that one may take the C; to be independent of s. Actually,

we shall prove a finer result, showing how the growth of the volume of balls decreases as s
approaches 0 or oo.

Proposition 2.15 There are constant C > 0 and two integers No, Noo > 1 such that

max(r20, sNopDry ifs €0, 1]

max (rP=, s7Neoy D1y ifs € [1, 00]

vG, (Bys(r) < C {
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forevery s € [0, co] and for every r > 1. In addition, when G is stratified, so that Qo = Dy
and Qo = Doo = Dy by Corollary 2.13, one may take No = Qs — Qo.
In particular, for every ¢ > O there is a constant C; > 0, independent of s, such that

Imin((1+ [+ 15,0707 s 7N 41+ 1, 07270 < Ce
forevery s € [0, 1], while
Imin((1 4+ 1) 7P s (A4 [ )P < Ce
forevery s € [1, ool
Notice that, when G is not stratified, then (the optimal) Ng and N, may be smaller or larger
than D1 — Do and D; — D, respectively.
Let Fj be the Lie group whose Lie algebra has a basis X, Yy, ..., Yy suchthat Y; | =

[X, Y] forevery j = 1,...,k — 1, while the other commutators vanish. Consider G =
R x F}, with basis of the corresponding Lie algebra U, X, Yy, ..., Y. Fix d,d’ € IN*
such that d < k +d’ — 1. Give degree 1 to X, degree j +d' —1toY; (j = 1,...,k),
and degree d to U. Define i; := (Yy — U), so that iy = <Y1< - sk+d’*l’dU> for every
s € [0, 00). Then, define hy = (X, Y1, ..., Yk—1, U) and fix a neighbourhood of the identity
0 = [—1, 17¥*! (in the coordinates associated with the basis X, Yi, ..., Ys_1, U). Then,
the Baker—Campbell-Hausdorff formula shows that, for every s € [0, 0],
(X1, y1,u1) Gy -+ Gy Xhy Yy Up)
= (Pu(x1, Y15 - X i)y 1 4+ A gy + 55T Ry Gy v, )

for every (xj,y;,uj) € Q (with y; € [—1, l]k_l), j =1,..., h, where P, and R, are
suitable polynomial mappings (independent of s). Integrating in (x, y) first and then in u, we
see that

Vpy (@67 = (1 — sK+0 =1y (@Golty o ghtd'=1=dy, (gl

= hD() _’_Sk-‘rdl—l—th[

for h — oo, uniformly for s € [0, 1], where vy, denotes Lebesgue measure on . Now, it is
not hard to see that this quantity is comparable with vg, (Bj,«(h)) (uniformly for s € [0, 1]
and i > 1), so that Ny = k +d’ — 1 — d, which may be either smaller or larger than
k—1=D;— Dyg.

Choosing d > k + d’ — 1, one may then obtain examples with N, either smaller or
larger than D1 — D«. Taking products, examples with both No — (D1 — Dg) # 0 and
Noo — (D1 — Do) # 0 (with all combinations of signs) may be produced.

Proof We shall divide the proof into several steps.

1. We consider only the case s € [0, 1], since the case s € [1, oo] is completely analogous
(or almost trivial when G is stratified, see 4). Define @17 := @ and, by induction, G41) :=
(9. Gx)]s so that () is a decreasing sequence of graded ideals of g (the lower central series).
Notice that, arguing as in the proof of Proposition 2.1, one may prove that iy N E[k] converges
to some limit i (x) € ip NGy as s — 0T, for every k € IN*. Then, for every k € IN* choose
a graded complement V; of (io N G[x1) + Gpx+17 in Gpx) and a graded complement Wy of ig x in
io NG Observe that Py, Vi is a graded complement of ig NGy in gy for every k € IN¥,
so that we may assume that hy = @, Vi. Analogously, observe that Wi @ (D~ Vi) is
a graded complement of iy x in Gj; arguing as in the Proof of Proposition 2.1, we then see
that Wi © (/4 Vi) is a graded complement of iy N gy in Gy for every s € (0, 00).
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Then, we may ﬁnd afamily (k;) je, of positive integers and ahomogeneous ba31s (Y )jedo
of hy such that (Y Jk;=k is a basis of Vi, for every k € IN*, and such that Y has degree

d; for every j € Jo. Choose, in addition, a homogeneous basis (Y )jes, of Wy for every
k € IN* (to make the notation consistent, we assume that the Jl‘, , for k € N, are mutually
disjoint); we define k; := k and we denote by d; the degree of Y; for every j € Ji. Define

Y(Y) Po, 3(Y ) for every j € J = = e Ji; observe that Y(g) = Y for some (hence

every) s € [0, 1] if and only if j € Jy, and that Y;O) = 0if and only if j € J \ Jo.
2. Observe that 5 of Proposition 2.11 shows that there is a constant C; > 0 such that,
under the identification of G with b,

By o(1) S Y [=C1. 1Y} =: Q4
Jj€do

for every s € [0, 1]. In addition, denoting by vy, the (fixed) Lebesgue measure on b, again
by 5 of Proposition 2.11 we see that there is a constant C > 0 such that

vG, = Cavy,

under the identification of G with . Thanks to 3 of Proposition 2.11, it will then suffice to

estimate uhO(Q:YG"h) for every h € IN* and for every s € [0, 1].
3. Now, observe that, arguing as in the proof of [6, Theorem 2 of Chapter II, § 6, No. 4],
we see that, for every ji, ..., jn € Jo,

o0
~ ~ (_1)}7’!—1 1 le Nlm,h
Vi Vj =3 —— 2 g
m=1 1], [ | =1

where

[P T = @d (7)) - ad (@) ) - @d (T - ad (7 o) T

J1 Jh - J1 J1 Jh
where 71 == max { h': £,y #0}, £/, := €, foreverym’ = 1,...,m — 1, and €, =
b — (Sh,7 i)w - Then, taking 1 into account, we see that
K lTl
v, S h] € <(Y =181+, dj <y 1dj, +- +z,,,,,d,h>+11

for every 41, ..., £, with |€1], ..., |€y,| > 1 and for every m € IN*. Therefore, there is a
constant C3 > 0 such that

Ggh . S
0" € 3 I=Cahy, CohM1YyY
jeJ

forevery s € [0, 1]andforevery h € IN*. Now, arguing by induction on Card( T ) > Card(Jp),
we see that

Sicwtieat B = Y U (DR

jel 70T re(—1,1y) i€V
"
j//

-0
Card(J")= Card(Jo)g e 1.1}

+ Y10, 11C3e, hh 17,(”>

J-//EJ//
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Therefore,
.. h T C~(¢
Vho(QsGS ) < 22Card(J)—Card(Jo) Z v, Z[O’ 11C3hki Y}”
J'CJ.Card(J")=Card(Jo) jeJ’
2card( [ €3 cardt) k (5)
_ ard(J) ’ 7 (s
_s (7) 3 ko det (Yj, )

J'C T, Card(J")=Card(Jo)

where k1= ZJ-EJ/ kj and det (?}9) is the determinant of the basis (?j(s)) o of hoy with
jeJ’

respect to the measure vy, (that is, with respect to any basis whose fundamental parallelotope
has measure 1).

Now, take J’ C J such that Card(J’) = Card(Jy) and det (17;‘5) ) # 0 for some (hence

every) s € (0, 1]. Observe that, since det ()7 ;f)) = det (?}9) 4+ O(s), the first assertion
will be established if we prove that k;» < D for every such J', and that k;» = Dy if
det (?}@) # 0. Then, for every k € IN* define J; as the set of j € J' such that k; = k, and
observe that (?j) jelpai 7, is the basis of a graded subspace of ;) whose intersection with
igN Tj[k] is O for every s € (0, 1], since (?}S))jeuk,zk g, is the basis of a subspace of Tj[k] + i

whose intersection with i; is 0 and ?j - ?}S) € i, for every s € (0, 1] and for every j € J'.
Therefore, » 1/~ Card(J},) < dim[(gg) + i5)/is] so that, summing over k € IN¥,

ky=Y_ kCard(Jj) < Y dim[(gy +is)/is] = D;
keIN* keN*
for every s € (0, 1], where the last equality follows from [14, Theorem II.1].

Finally, assume that det (?J((,]) ) # 0. Then, by 1 we see that J' = Jy, so that the assertion
follows by the same argument used above.

4. Now, assume that G is stratified. Then, it is clear that gy, = Equk Eq, so that the
assertion for s € [1, oo] is trivial. Thenlvconsider the preceding construction for s € [0, 1]
and observe that k; < d; for every j € J, with equality when j € Jo. Take J’ asin 3.

Observe that we may construct, by induction on k = 1, ..., n, mutually disjoint subsets
J{ of J' such that J' N Jy € J; and such that (Y;S))jeuk,zk 7 is the basis of a graded
complement of (@q<k ﬁq) N by in by, for every k = 1, ..., n. Define k;. := k for every
Jj € J; and for every k = 1,...,n, and observe that d; > k; for every j € J' thanks to
Proposition 2.7. Furthermore, define 171.] " as the homogeneous component of degree k} of
17;1) for every j € J/, and observe that (?j.f)jgjr is a basis of . In addition, arguing as
in 3 above we see that ) ;_, k Card(J)) = Y j_; kdim(hy N'g;) = Qo = Dy since G is a
stratified group, so that

Bk det (17;‘5)) = WP (hsykr—PogXjer ik ey ((sk-/" o ?}”),»EJ/) :

Now, observe that > jelt dj — kj > 0, so that our assertion will be established if we prove
that det ((sk-/ffaj ?;S))je‘]/> is independent of s € [0, 1], and hence equal to det ((?]J’)]‘e‘]’).

To prove this fact, one may use Gauss elimination to the family (sk/' =4 ?;‘Y)) (more precisely,
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to the matrix of the coordinates of the vectors ¥**) with respect to the basis ()7 i) jed;) and
observe that, by homogeneity arguments, the resulting family is (linearly independent and)
independent of s. O

3 Estimates of the heat kernel

We now introduce the operators in which we shall be mamly interested. Fix a homogeneous
left-invariant differential operator £ on G such that £ + £* is a positive Rockland operator
of degree §; then, we define £, := dr; (E) for every s € [0, oo]. We shall sometimes write
L instead of £ to simplify the notation.® Then, the operators L, £, and L are weighted
subcoercive, hence hypoelliptic (cf. [21, Theorem 2.3]).

Denote by (ﬁ,)bo the heat kernel of Z, which we shall consider as a semi-group of
measures on G. In addition, for every s € [0, oo] and for every ¢+ > 0, we shall define
hg = (ns)*(ﬁ,), so that (A ;);~0 is the heat kernel of £;. Observe that

Brse = (7" )by o,

for every r > 0, for every s € [0, oo], and for every ¢ > 0.

We fix a Lebesgue measure on g and identify E with its density. With the A, ; we shall
be more careful, though. Indeed, for s € (0, co) the group G can be identified with both
ho and b, and it is not possible to find Lebesgue measures on b, and h,, which induce the
same measure on Gy for all s € (0, 00). Therefore, we shall fix two Lebesgue measures on
ho and b, and define two densities kg s ; and hoo 5, Of by ; accordingly.

Precisely, for s € [0, 00), we define hg s as the density of (Pp, s)*(;[,) with respect to the
fixed Lebesgue measure on h; in this way, hg s ; becomes the (density of) &g ;, under the
identification of g, (hence of Gy) with b, given in Definition 2.2. Observe that, with these
choices (and with a suitable Lebesgue measure on ig, independent of s),

ho s, (x) = f he(x +y + 0.5 () dy
io

for every s € [0, 00), for every ¢ > 0, and for every x € b.

Analogously, for s € (0, oo] we shall define i 5 ; as the density of (Poo,s)*(rz,) with
respect to the fixed Lebesgue measure on . Similar remarks apply.

We now prove some uniform estimates on £ ; and s s, and their derivatives which
cannot be derived from the general estimates for weighted subcoercive operators.

Theorem 3.1 Fix ¢ > O and d € R, and let Xo and X, be two homogeneous differential
operators with continuous coefficients on by and b, respectively, of order d. Then, for every
k € IN there are two constants C, b > 0 (independent of s) such that the following hold:

1. forevery s € [0, 00), for every x € Y, and for every t > cs’,

8
L |1/, )iy, | 3T
C _ x5 C —b T
k b\m/ = "x)| i .
Xoxhoe, 1.1 0| < e S e ,

6 Notice that in [30] the operator Lis only required to be Rockland; nonetheless, since we are interested in
the corresponding heat kernels, additional restrictions have to be imposed.
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2. forevery s € [0, 00), for every x € b, and for every t € (0, es™9,

5 )
! =1 Is (D)5 \ 8T
k — byt~ x) c —b( =57
X008 0,0, ()] < —gprgre OOl < e (6)
t 3 t 3

Proof 1. Consider the first assertion; notice that we may reduce to the case in which
= f0%, where f is a continuous homogeneous function on b, of degree d, — d;
notice that d, —d > 0 since f is continuous. Now, observe that, with a change of variables,

hoo,ir(X) = / he(x 4y + Yoo, () dy
loo

_ QO ~
— / LG x4y + Yo gyt ) dy
loo

for every x € b, for every s € [0, 00), and for every ¢t > 0. Therefore, Faa di Bruno’s
formula shows that

)
t Qoo+da+k

k! ~ \
Z i agoa)/l+~'~+ykhl(t*/ﬂ x4y

Xoo0s hog, 10,1 (x) = ‘
Sh_ tvel=k

oo

+]/f00(f hs)= l(y))l_[(gl s ls'=t="hs woo'/ (y)) dy

for every s € [0, 00), for every ¢ > 0, for every k € IN, and for every x € fj,. In addition,
observe that af, (pr j oV, /\,) is a (linear) polynomial of degree at most j — ¢ for every
j =2,....,nand forevery £ = 1,...,j — 1, and is O otherwise. Therefore, there are
Cy, b> O such that |X008kh 2/t (X)] 18 less than

8
Cq T -1
dy—d Bl foxty =1 OIS d,—k
“gorarr X > e 20~ (1+ |yh%

t §
Y tyel=k

for every (x,y) € by @ i, for every s € [0, 00), and for every ¢ > es? (cf. [21, Theo-
rem 2.3 (e)]). Now,

1 _,
77 (Y + Yoo s (D) = = |m/<t D)k Elr—/ﬁ-(x+y+woo,l/\(y>>|

for every (x, y) € by @ is, for every ¢ > 0, and for every s € (0, co], with some abuses of
notation. Therefore,

8

c -

k 1 21-6p |JT ([ X)‘, . do—d

| XooBshoe, i (Ol = gz = 7 /*It fx e
t 5

8
—6

)
ble—'h. 1 5~
% Z e b‘ x+y+1ﬂw(,— /as)fl(y)‘ (1 + |y|)dyfk dy

i
Sk lyel=k T
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Now, fix a norm || - || on g, and recall that Yoo/, is strictly super-homogeneous, so that
there are two constants C», Cé > 0 such that

" 1
[ Voo, ()] < C2 ZH (prj oo, ) 1+ + yj—D||

j=2
n
1
<) [prj ovoon | (Il + .+ [yj1])?
j=2

= Cymax (1517, yI7).

for every y € i with homogeneous components yy, ..., y,, and for every s’ € [0, c].
In addition, observe that all homogeneous norms on G are equivalent and that both b,
and is are homogeneous subspaces of g, so that there is a constant C3 > 0 such that
lz1 + 22| = C3(lz1] + |z2]) for every z1, 22 6 g, and such that |x + y| > & (x| + [y]) for

every (x,y) € by @ ino. In addition, since 3 > 1, there is a constant C4 > 1 such that

R I N E I

8
a]afl +Cl;71 < (al +a2)5" < C4 <a16—1 +a2571>.

Then, for every x € b, for every y € i and for every ¢ > cs?,

. 8
[ x4y Yo iy )]

§ k)
> %If'/” A N L () L
C;71C4
># |t_l/“.x|85j+| %
zZ 3 ( yl“) CzﬂlﬁX(lyI " Iyln).
C I'Cy

Therefore, there is a constants Cs > 0 such that

L"-’ 1 . 1 s
2EBl x4y Vo gt T 2 o (AT 4 )~ Cs

for every (x,y) € by @ ico, for every s € [0, 00), and for every ¢ > cs®.

Hence, there is a constant C¢ > 0 which is greater than

8 8
- - —2T=3p|tPxty 1 ]! -
|t s x|dm d Z e ) X+}+‘/foo.(1 i) 1()’)| (1 + |y|)dy kdy

i
SE elyel=k "

for every x € b, forevery s € [0, 00), and for every ¢ > ¢s8, so that

8
C1C6 _ L —is. =1
k 273 Bl (=)
1 X000 hoo, it (O = —5mre ' '
f §

2. Consider, now, the second assertion. Observe that we may assume that Xo = f 8{)"0 for
some « and some continuous homogeneous function f on b, with degree d, — d. Notice
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1536 M. Calzi, F. Ricci

that d, — d > 0 since f is continuous. Then, Faa di Bruno’s formula shows that

f(x) k! ~
Xoaskho,s,t(x) = 0pidak Z ) 88‘8”110 hx +y+ 1/’o,t‘/»s(y))'
1T *Jio
> i1 Uyel=k
k

n(;' s’

=1

Ye
sﬂ%w”@ﬂ dy

for every s € [0, 1], for every t > 0, for every k € IN, and for every x € b. In addition,
observe that af/ (pr_ i OI/I()’S/) is a (linear) polynomial of degree at most n and of homogeneous
order at least j + ¢ forevery j = 1,...,n — l and forevery £ = 1,...,n — j,and is O
otherwise. Therefore, there are Cq, b > 0 such that |X03§‘h07 5,1 ()] is less than

5
Ci 7b|t x4
Y s DI d,+k —d,—k
= DY) s O |y k(g gyl
§
f S tyel=k

for every (x, y) € by @ ip, forevery s € [0, 00), and for every ¢ > O (cf. [21, Theorem 2.3]).
Therefore, arguing as in 1 we see that

5 8

2T Bl (¢~ h-x) 5T

X0 ho,s. ()] < = Crle= - x|da=d

Qp+d—k
tis

« Z —27_3blt /8x+w+l/f0,l/x (v)\f|y|dy+k(1+|y|)n|y| dy—kdy
Y tlyel=k

for every x € b, for every s € [0, 00), and for every ¢ > 0.
Now, observe that there is a constant C, > 1 such that

1 . 1 1
amln(IIZII, Izl < Izl < Co max(|z]l. [Iz]| ")

forevery z € g.Inaddition, observe that the linear mapping Ly : x4y — x+y+v ¢ (y)isan
automorphism of g for every s” € [0, 00), and that the mapping [0, 00) > s’ — Ly € L(g)
is continuous. Therefore, there is a constant C3 > 0 such that IIL;,1 | < C3 for every
s" € [0,c”/]. In particular, assuming that ||x + y|| = ||x|| + [|y]l for every (x, y) € by D ip
for simplicity,

\

1 7]/ 1 1
1~ y — (4 y /“>
v ey om0z o (G Iy D))

—— QI X+ )
CrC4

1 1/s 1 1
> ——— (x| + 1yl

for every (x, y) € ho @ ip, for every s € [0, 00), and for every ¢ € (0, ¢s~%]. Hence, there is
a constant C4 > 0 such that
8

5
85—

|t—1/s _xlda—d Z e_zl =3 b~ /‘x+y+tl//0t|/5 )] «
io
Sh_L tyvel=k
d,+k —d, —k
x [y A 4 [y R dy < ¢y
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for every (x, y) € by @ ip, for every s € [0, 1], and for every ¢ € (0, ¢s 797, so that

5 8
—2T8 Bl (= o) | 5!

€
1X00 10,51 (x)] < C1Ca

Qo+d—k
t 5

(x,y) € hy @ ip, for every s € [0, 00), and for every ¢ € (0, ¢s~%]. The proof is complete. O

Proposition 3.2 For every ¢ > 0 and for every y, there are C > 0 and w > 0 such that for
every s € [0, oo] and for every t > 0,

C
4, ©
5
Proof Observe that [21, Theorem 2.3 (f)] implies that there are C and w such that
C

t
< —e¥
- Y&

t s

wt

HXZhS,teCI . ‘&*

=
1

H)N(Vi[ted T

for every ¢t > 0. Therefore,

) ~ o~ o~ c
HX}/hs,ze‘l'l” = H () (tht eC(\-Is,*OTr.v))Hl < HXVhfeCH* < e
5
for every t > 0 and for every s € [0, co]. O

4 Riesz potentials

We keep the notation of the preceding section. Here, we generalize the asymptotic study of
the fundamental solutions made in [30] to the complex powers of L. Notice first that, while

the convolution kernels of £, ° (the Riesz potentials) are easily defined when Rea < Q,
in order to define them also for Rea > Q, we shall need to argue by analytic continuation.

4.1 Definition and (log-)homogeneity of Riesz potentials

In the following statement, functions on b (resp. h,) are identified with distributions by
means of the fixed Lebesgue measure on f (resp. h,).

Proposition 4.1 Foreverys € (0, oo] there is a uniqgue meromorphic S’ (Gy)-valued mapping
a — I on C, with poles of order at most 1 at the elements of Qoo + N, such that the
following hold:

1. ifa € C, =8k < Rea < Qo + ky for some ki, ko € N, and o ¢ Qoo + N, then

1 L ot} de
lnosa = t5 | hoost — L) 8= | —
00,5,0 F(‘;)/() 00,5, j;:]( 3) Oj! ;

1 R
(LS
T2 ey

J<ki

1 oo, ()7 ) de
+ @) / 15 | hooyst — Z 33>/ohoo,s,t(0)7, " + Pyakys
5/ J1 dy <ky v
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1538 M. Calzi, F. Ricci

where Ps o 1, is a sum of homogeneous polynomials on Y, of degree at most ky — 1;
2. Inos.a € Ly (Do) when Rea > 0;
3. the restriction of Ino,s.a 10 Yoo \ { 0} has a density of class C*°;
4. Ios,—sk = [,féofor every k € IN.

Similar assertions hold for s = 0, replacing b, with b, dec With 3o, and Qo with Q.
Proof Fix s € (0, oo]. In addition, fix k1, ko € IN and observe that, if 0 < Rea < QT‘”, then
Ios.0 = 10, /Oot%hoo,s,t g
5) !

I

_ ! lt% h > (=L)s dr
_F(%) 0 00,s,t — 0 P

Jj<ki

J
> '<“+J>F< ICESC R

ka

‘oo ) ()7 de
ts oo,s,t_ Z 0 hoovt(o)i 7+Ps,a,k2’

F( ) dy, <k

where
xV +00 o« dt
Py oty (x) 1= F( ) Zk !/1 15 0hoo,5.1(0) —

for every x € b,. Taking into account Lemmas 7.5, 7.6, and 7.7, it suffices to prove that the
mapping o — Py 4k, extends to a meromorphic mapping on C with poles of order at most
1 at the elements of Q. + IN. Indeed,

Wohog s,-2(0) = f oh-s (¥ + Voos (1) d

oo
_ 10ty f OLT1 (v 41 - Voos (" - ) dy
1o

for every x € G and for every ¢+ > 0. In addition, since Y« ¢ is linear and strictly super-
homogeneous,

toos (1 y) =D 7 pr (Yoo ,s (e)
l<j

for every + > 0 and y € ix. As a consequence, the mapping ¢ — Bgohooq 5.1 (0) extends

to a mapping of class C* on R. Let ZjZQoo+dy bs,y,jtj be its Taylor development at the
origin.
Now, fix N € IN and observe that, for Reax < N + 1,

+o00 . dr 1 dr
/ tgagohoo,s,t(o) 7 = 8/ t_aa(})/ohoo,IﬂS 0) 7
1 0

! - dt ! dr
=5 Y bs,y,jfo t‘“+/7+/0 t“"O(tN“) —

Qootdy<j<N

by, /1 —R N
=5 LI AV A O(I e"‘J“)dt.
X5t

Qootdy =j=N
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By the arbitrariness of N, it follows that the mapping o — f l+°° ts aéloohoo*‘“ +(0) % extends
to ameromorphic mapping on € with poles of order at most 1 atevery element of Q o, +d,, +IN.
Summing up all these facts, it follows that the mapping & — I s, €Xxtends to ameromorphic
mapping on C, with poles of order at most 1 at every element of Q, 4+ IN. Finally, it is clear
that Ino 5.k = LF8o.

The case s = 0 is treated similarly. O

Definition 4.2 Fix s € (0, oo]. For every « € C such that @ ¢ Qs + N, we define I,
as the distribution on G, induced by the distribution I s of Proposition 4.1 under the
identification of G with b, (in other words, I ; = (75)«(Ic0,5,o) by an abuse of notation).
We define I o, for @ € Qo + IN, as the zeroth-order term of the Laurent expansion of the
mapping o’ > I o ata.’

We denote by Iy, the distribution on g induced by I , under the identification of G
with b, for every s € (0, 00); Ip,0,« is defined as in Proposition 4.1. We define Iy :=
(10)+(L0,0,a), With the same abuse of notation used above.

Proposition 4.3 For every s € (0, o0], for every r > 0, and for every o € C, the following
hold:

Lo (r)also =17 %15 o if Is,. is regular at o (in which case also I, . is regular at a);

2. (r ks = r gy +r % logr P where P, is a polynomial such that
Poig () = 0(|x|r_}12‘:°+a) for x — oo, if Is,. has a pole at o (in which case also
I,-15. . has a pole at @). In addition, P o is homogeneous of degree — Qoo + a.

s,00

Analogous assertions hold for s = 0, replacing b, with ty and Q. with Q.

In particular, I o is homogeneous of degree —Q~ + o when I, . regular at o, while
I« 1s log-homogeneous of degree — Qo + o otherwise (cf. Definition 2.2).
Analogous statements hold for Iy o, with the obvious modifications.

Proof The first assertion for 0 < Rea < Qo follows easily from the equality (r - ).hs; =
h,-15 3, which holds for every r > 0, for every s € [0, 0c], and for every 1 > 0. The general
statement then holds by holomorphy.

For what concerns the second assertion, take s € (0, oo] and a pole « of I ., so that, in
particular, @ € Qo + IN. Then, for every &’ # « in a neighbourhood of «, and for every
r>0

_ /
rslsg =177 Lt s

so that, taking the zeroth-order term of the Laurent expansions of both sides of the equality

at o,

(r)slyg =r Loty o —r *logr lim (&' — o) -1 4.
o' —a ’

Now, with the notation of Proposition 4.1, it is easily seen that, chosen k; = 0 and k, =
Qo +a+1,

lim (¢ — )l ,—15.4(x) = Lim (&' — @) Pty g4, (X).
o' —>a ’ ’ o —>a o

By inspection of the Proof of Proposition 4.1, we see that lim (¢’ — &) Po o'k, iS @ homo-
o' —a
geneous polynomial of degree — O + «, whence the result. O

7 Notice that the mapping o’ > I o may be regular at .
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4.2 Asymptotic expansions

We keep the notation of the preceding sections. We prove some asymptotic developments
of the I, generalizing those proved in [30] for the fundamental solutions. Even though the
procedure of [30] may be generalized to the present setting, we prefer to give a different
proof, which is shorter and gives a little more insight into the meaning of the further terms of
the development. We then present, under rather restrictive assumptions, another proof which
describes quite explicitly the terms of the development.

Theorem 4.4 Take and o € C and s € Ry.. Then, the following hold:

1. there is a sequence of log-homogeneous functions (Iélo(?a) of class C*® on h o \ {0} such

that I(O)a = Ino,00,a, SUch that I(k) has degree — Qo + o — k, and such that for every
N € N and for every y there is a constant Cy ,, > 0 such that, for every s € [1, 00),

ago (IOO,S,Ot - Z S_kl(k) ) )| =<

k<N

—N
Cn,ys

(x|~ Reatd,+n (1 Hlogls -xID

for every x € b, such that |x| > 5L the factor 1 + |log|s - x|| may be omitted if
¢ Qoo +d, +N+N;

2. there are a sequence (Py 1) of homogeneous polynomials on by and a sequence (1 (k)) of
log-homogeneous functions of class C* on b \ { 0} such that Ié’ ; = 10,0, Such that

Io(ko)[ has degree —Qo + «a + k, such that Py o x has degree k, and such that for every
N € N and for every y there is a constant C}V,y > 0 such that, for every s € (0, 1],

k _
())/ Ios,0 — Z kl() Z sk Q0+aPot,k (x)

k<N k<—Qo+Rea+N
/ N
CNJ,S

= W(l + [log|s - x[|)

for every x € b such that 0 # |x| < s~1; the factor 1 + |log|s - x|| may be omitted if
a¢ Qo+d, —N+1IN

Proof 1. Define Huo(s', t, x) := hoo,j; (x) for every s” € [0, 00), for every ¢ > 0, and for

every x € b, to simplify the notation. Take & € C such that 0 < Rea < Q«, and observe
that a Taylor expansion of H in the first variable gives

I : /lti’s‘h Ly o /ma"H 0.1, )% 4 NR
= — — —_ o) —+s ,
00,5,a 1_,(%) 0 00,s,t ; = k!]—'(%) . 1 {100 P s, o, N

where
R / té / 3 H, (1 Q)N—] de !
s, a,N = (N 1)'F( ) 1 oo , 1, P

Now, Lemma 7.6 implies that the mapping o — ﬁ fo t%hw st % extends to an entire
8
function with values in £'(h,) + S(hs)- Next, observe that

Qoo 1 1
Hoo(s' 1, x) =17 5 Hoo(t™"s', 1,7 . %)
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for every s” € [0, 00), for every ¢ > 0, and for every x € b, so that

Qootk

W Hoo(0,1,x) =175 88 Hoo(0,1,67 - x)

for every x € b, and for every ¢ > 0.
Therefore, Lemma 7.6 and the estimates of 8{‘ Hy (0, t, -) provided in Theorem 3.1 show
that, for 0 < Rea < QO + £,

L a0 Y = L [t Y 4R
F(%) 1 140; oo(»t»’)*—k”w(%) A 150y oo(,t,~)7+ ak

t

where fo,k is an entire function of & with values in £'(h5,) + S(hoo). In addition, we also
see that the mapping, initially defined for 0 < Rea < Qs + &,

wr 1H = ] /+Oot%3kH 0.1 %
e RC(%) Jo Py

extends to a meromorphic function on C such that Iés)a is homogeneous of degree — Q oo +o —

k for every o in the domain of holomorphy of I é]é) (argue as in the proof of Propositions 4.1

and 4.3). Log-homogeneity holds at poles, where Ié.’f?a denotes the zeroth-order term of the

Laurent expansion of Ié]é) (argue as in the Proof of Proposition 4.3).
Finally, assume that Re@ < Qo + N. Observe that there is a constant C > 0 such that

s ()] = C (x| — 1)

for every s’ € [1, 0o] and for every x € b, thanks to Proposition 2.11. Therefore, Theo-
rem 3.1 and the preceding computations imply that Ry , v (x) is well defined for x # 0 and
that there are there are two constants C’ > 0 and b > 0 such that, for every y,

8

+00 Rea—Qoo—dy-N _p( k1\5T df

|8z)>/oRs,a,N(x)| < C// t B € <’I/ﬂ) 7
1

Hence,
100 _Rea+Qoctdy +N
3

102 Ry v ()] < €' R Cndy—N f i
0

s dr
efbtﬁ I =
1

The assertion follows for s fixed. In order to get uniform estimates for s € [1, co), reduce
to the case s = 1 by means of Proposition 4.3. Let us give some more details in the case in

which I, . has a pole at «. Indeed, for every s € [1, 00], Ino,5,0 — 2 4<n s_klé]é?a equals
s—a(s—l s (Ioo,l,a — Z Ié’é?(X) + 5 %logs (s—1 O (Pl,a om — Z Po/c,k) s
k<N k<N

where Pj 4 is defined in Proposition 4.3, while P, is a suitable homogeneous polynomial
on b, of degree —Q + o — k. Since the term

ol (100,1,0, -y 1;';?&>

k<N

satisfies the estimates of the statement, all we need to prove is that Py o1 — D, _y PU’[ X
has degree at most — Qs + o — N. One may prove this by expressing P; , and the Po/l X

in terms of Ay ; and its derivatives in s~!. Nonetheless, since the above proof shows that
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To s = D ke sk Ié.lf?a satisfies the estimates of the statement (with constants depending
on s), the same necessarily applies to s~ logs(s 1), (Plﬁa oM — D joN Po’l,k>, whence
our claim.

2. Define Hy(s, t, x) := ho s (x) for every s € [0, 00), for every r > 0, and for every
x € by, to simplify the notation. Take o € C such that 0 < Rea < Qp, and observe that a
Taylor expansion of Hy in the first variable gives

I = E P! fltgakH 0,1 )dt +sVR + : /+ t5h d
s, — N sy ) — N ] o, f T
0,s,a = k'F(%) 0 1410 P s, o, N F(%) . 0,s,t ;

where

1 L, rt dr
R =——— | 5| aNHy@Os,t, YA —)N"1do —.
5,0, N F(?)(N—l)![) j(; 1 0(@s )( ) P

1 +o00
(& J1
to a meromorphic function on C with values in £(G). In addition, as in 1 one may prove that

Now, by means of Lemma 7.7 we see that the mapping o +—> t%ho,& ' % extends

09—+ 1
O Hy(0,1,x) =175 0 Hy(0, 1,177 x)

forevery x € fpand forevery ¢ > 0. Therefore, making use of the estimates of 8{‘ Hy(0,1, -)
provided in Theorem 3.1, we see that

’ 1 oo 2k ds o0
R‘Y,()l,k = F(%) . ts 81 HO(O, t, )7 eC (G_g),

initially defined for Rea < Q¢ — k, extends to a meromorphic function on C. In addition,
we also see that the mapping, initially defined for —k < Rea < Qo — &,

w._ 1
o — Io,a =ar

! %k dr /
@y (S GEHy (0.1, ) — + R

extends to a meromorphic mapping on C.8 Let us prove that Iéko)( is homogeneous of degree

— Qo + a + k for « in the domain of holomorphy of Iéﬁ))[. By analyticity, we may reduce to
prove this fact for —k < Rea < Q¢ — k, in which case

RO /wt%akﬂ(m )dt
Oa_k’['(%) 0 1 10\Y, I, ; 5

so that the assertion is easily established. Log-homogeneity holds at the poles of Ié{(,), where
1512 denote the zeroth-order term of the Laurent expansion of I(gk? ato.
Finally, take y and assume that Rea > Q¢ + d, — N; in addition, define |x | =

i{(l)f“ms(x)h for every x € b, and observe that x| > O for every nonzero x € B,
sel0,

and that there is a constant C > 0 such that

1 /
— x| < |x]" < Clx|
C

o
8 Using the estimates of H( provided in Theorem 3.1, it is not hard to see that fol ts 3{‘ Hp(0,1t, -) dr

T
Ll (Gy) forRea > —k.
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for every x € hg such that [x| < 1 (cf. Proposition 2.11). In addition, Theorem 3.1 and the
preceding computations imply that there are there are two constants C’ > 0 and b > 0 such
that
8
I Rea—0g— x|\ 5T
w{b(f/) i
t

190 Ry an ()] < C’ / ‘
0

so that Ry o,y (x) is well defined for x # 0. In addition,
+00 _N—Rea . L
18 Ry ()] < C'Jx|/RE—Qo—d,+N / e s 4
' - 0 t

The assertion follows for s fixed. In order to get uniform estimates for s € (0, 1], reduce to
the case s = 1 by means of Proposition 4.3 (argue as in 1). O

Observe that, with the same techniques used to prove [30, Theorem 2], one may prove the
following result.

Corollary 4.5 Take s € (0,00), y € N/, and « € C such that Rear > d,. Then, for every

Reozdy<l_l<Ready
0

p,q € (1, 00) such that
induces a bounded operator from L’7 (G ) into LY(Gy).

convolution on the right with XY Is o

Notice that, if convolution on the right with X1 5.« induces a bounded operator 7 from
L?(Gy) into L9(Gy) for some p,q € (1, 00) and for some s € (0, o0), then Regi;d” <

1 _ l < Regody Indeed, take r > 0 and f € L?(G,-1,), and define p,(x) := r - x for

» =<
every e G,-1,. Then,
Ts(f opr) = (fopr)* (Xgls,a) =[f=* (pr)*(Xrls,a)] o pr = r—a+dy (Tr—lsf) O Or,

where T,-1; is given by convolution on the right with Xf*'s -1 o Now, identify Gy with
b for every s’ € [0, s]. Observe that, denoting by vy, the fixed Lebesgue measure on b, we
have vg, = ag vy, for some ag ¢ > 0; in addition, the mapping s’ > ag ¢ is continuous
on [0, s] thanks to 5 of Proposition 2.11. Therefore, there is a constant C > 0 such that

Cr- U/"||f||Ln(bo) =Clfo pr”Ll’(hO) = pReatdy I(T,-15f) 0 Pr||Lf1(r,0)
rfReonrdy*Q«./t/||Tr71Sf||Lq(h0).

for every f € L?(hy) and for every r > 1. Now, T,-1, f converges pointwise to Tp f as

r — 400 for every f € S(h,) with vanishing moments of all orders,” so that

. . Rea—d +Q0<l—l)
< 4 9 7
||T0f||Lq(h0) = C”f“Lp(ho) llrnlgfr

forevery such f. Since Ty # 0, itfollows thatRe «—d,, > Qo (7 — 7) The other inequality
is proved similarly.

Proof We shall briefly indicate the procedure employed in [30], for the sake of completeness.

When p # ¢, observe that X! I; o belongs to weak L” for every r € (1, 00) such that
Reasdy I < Reoé % thanks to Theorem 4.4. Then, arguing as in the Proof of [10,

Qoo r
Proposition 1.19], we see that weak L” convolves L” (Gy) into L9(Gy) for 4 i é = r, and
p.q,r € (1,00).

9 Notice that the set of such [ isdense in L (fg), since p € (1, 00).
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When p = g, take T € C°(Gy) so that T equals 1 in a neighbourhood of e. We shall prove
that tX! I; o convolves L?(Gy) into itself; one may prove analogously that also (1 — XY/ L5 o
convolves L”(Gy) into itself and conclude the proof. Now, Proposition 2.7 and Theorem 4.4
show that tX) I .o €quals TXS Ip, up to an integrable function, under the identification of
G with G through h,; consequently, it will suffice to show that th Ip o convolves L? (Gy)
into itself (with respect to the convolution of Gy). Now, it is clear that there is a constant
C > 0 such that

/ —Q —d,,
X} (eX) o) (x)| < Clxls 7

for every x € G, and for every y’ with length at most 1, thanks to 6 of Proposition 2.11. By
Lemma 2.14, we then see that we may take C in such a way that

[yls
x| 0t

I(tX) Io.0) (xy ™) — (2Xb To.0) ()| < C

for every x, y € Gy such that |x|; > 2|y|, > 0. In addition, since Xg Ip,« 1s a homogeneous
distribution of degree —Qo + a — d, it is clear that X())’ Ip o has zero mean on the unit
sphere (relative to |- |) when Im o = 0. Similar remarks apply to (Xg Ip o). Taking into
account [12, Lemma of Chapter III, § 3.1], it is not hard to see that we may apply [12,
Theorem of Chapter III, § 4.3], so that ng I, convolves LP(Gy) into itself for every
p € (1, 00). O

Remark 4.6 Observe that, if G = R” and £ = A? — A, then it is not hard to prove that
Iio = I2 % Jy, where J, = ((1 — A)~7)8) and 12 is the kernel of (—A)~7 defined by
analytic continuation, for every o € C. Then, observe that, for « € (0, 00) \ (n + IN), I(XA
and J, keep a constant sign (in particular, they vanish nowhere), so that

114 (0) = (Ju % I2)(0) = / Jo()IL(=x)dx #0
]Rn

when o > n. Hence, the polynomials appearing in the local expansion of /, in Theorem 4.4
cannot be omitted, in general.

Theorem 4.7 Take o € C and s € R. Then, the following hold:

1. assume that G| = G (under the identification through Y,) as Lie groups and that
[L1, Loo]l = 0. Let doo be the least degree of the nonzero homogeneous components of
L1 — Loo. Then, for every N € IN and for every y there is a constant Cy , > 0 such
that, for every s € [1, 00),

Xgo (IS,OI - Z (_(Z/a> (Ls — »Coo)kloo,a-&-ék) (x)

- SiNCN,y
— |X|Q°O_Re a+dy +N(deo—08)

(I + [logls - x[[)

for every x € Y, such that |x| > s~1; the factor 1 + log|s - x| may be omitted if
a ¢ Qoo +dy + N(deo —8) +IN;

2. assume that G1 = Gy (under the identification through %) as Lie groups and that
[L1, Lo] = 0. Let dy be the greatest degree of the nonzero homogeneous components of
L1 — Lo. Then, there is a sequence (Pq i) of homogeneous polynomials on G such that
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Py i has degree k for every k € IN, and such that for every N € IN and for every y there
is a constant C 5, > 0 such that, for every s € (0, 1],

—a/$
X} (1 -> ( k/ )(cs — £0)*Io,a+5k

k<N

- > sk Cote Pot,k) (x)

k<—Qo+Rea+N(5—dy)

sNCy (1 + [log|s - x]|)

<
- |x|Q0—RC(x+dy—N(8—d0)

for every x € b such that 0 # |x| < s~1; the factor 1 4 log|s - x| may be omitted if
¢ Qo+d, — NG —dp) +IN.

Let us describe some examples. Take a two-step nilpotent Lie group G and a hypoelliptic
sub-Laplacian £ thereon. Then, we may endow G with the structure of a stratified group
in such a way that £ = L, + L', where L, and £ are homogeneous sums of squares of
degrees 2 and 4, respectively. By means of the construction described in Introduction, we
may choose a two-step stratified group Ganda sub-Laplacian Linsucha way that Gy = G
as Lie groups'® and £; = Lo + s 2L for every s € (0, oc]. Thus, in this case the first part
of Theorem 4.7 applies.

If, in the preceding example, we define £ = £X + £ for some k > 3, then, applying an
analogous construction, we get Gy = Gy as Lie groups and £, = L’;O + 52&=D 2/ for every
s € [0, 00), so that the second part of Theorem 4.7 applies.

Proof Assume that G| = G as Lie groups and that [£], L] = 0. Define, for every ¢ > 0,
for every s € (0, oo], and for every 6 € [0, 1],

0
hgt) = hoo,(1-0)r * Ny, 013

observe that (hf,) ); is a semi-group under convolution and that the mapping 6 — hf? €
S'(G) is of class C* on [0, 1], with

dk
g = GO = Lo )

for every t > 0, for every s € (0, oo], and for every 6 € [0, 1]. Now, Proposition 2.11 and
Theorem 3.1 imply that for every y and for every k € IN there are two constants C, b > 0
such that

)
_p( s )3T
IXZ(Ly — Loo) hE) )] < o(4)
t

Qoo+dy Thdoo ¢
5

for every s € [1, oo], for every t > 1, for every 6 € [0, 1], and for every x € G;. Now, take

a € Csuchthat 0 < Rea < Qo, and observe that a Taylor expansion of hf} in 6 gives

1 Ly dr (=DF  [too dt
I o= t5hy, — 15Ky — Loo)¥hoos — + Ry an,
s, F(%) /(; s,t / +k<21:v k'I“(%) ) ( s oo) 00,1 P + s,a,N

where
(=N

T a1 N ©) N1 g, 41
R == ts Ly — L hy /(1 —=0)"""do —.
s,o,N F(l;)(N—l)!/; /(; ( s oo) s,t( ) P

10 This is a general fact when Gisa two-step stratified group, cf. the Proof of Theorem 5.17
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The proof then proceeds as that of Theorem 4.4.
The case in which Gy = Gg and [Ly, L£o] = 0 is treated similarly. O

5 Spectral measures and multipliers

In this section, we assume that £ is Rockland and formally self-adjoint, but not necessarily
positive. Then Esz is weighted subcoercive, so that (L) is a weighted subcoercive system in
the sense of [20,21]. Then, the operator Ly, considered as an unbounded operator on L%(Gy)
with initial domain C2°(Gy), is essentially self-adjoint (cf. [21, Proposition 3.2]). We shall
then denote by o (L) the corresponding spectrum.

Now, if m: 0 (Ly) — C is bounded and Borel measurable, then there is a unique distri-
bution ICz, (m) on G such that

m(Ls)p =@ * Kg,(m)

for every ¢ € CS°(Gy) (cf. [21, Subsection 3.2]). In addition, there is a unique positive
Radon measure B, on o (L) such that I extends to an isometry of L*(B r,) into L%(Gy)
(cf. [21, Theorem 3.10]).

Lemma 5.1 There is a constant C > 0 such that
min ((s™'r"#)Q0, (5717 2e)
min(s— <0, s~ Cx)

Be,([—r,r]) <C
forevery s € [0, oo] and for every r > 0. In particular, Bz, ({0 }) = 0 for every s € [0, oo].

For the proof, argue as in [34, § 2], using the estimates for the heat kernel associated with
L? provided in Theorem 3.1.

Proposition 5.2 The following hold:

1. for every bounded Borel measurable function m: R — C, for every s € [0, oo], and for
everyr > 0,

Ke, (m) = (="K, (m(r? ));

2. B, = vG,(Bs(r) (- )iBe,):
3. the mapping [0, 00] 3 5" Bc,, is vaguely continuous.

Proof Fix s € [0, o0], r > 0, and m e S(R), sothat Kz(m) € 8(5), where ICz(m) denotes
the right convolution kernel of m (L) (cf. [20, PLOposition 4.2.1]). Now, [21, Proposition 3.7],
applied to the quasi-regular representation of G in L?(Gy), implies that

(”3)*(’Cf(m)) = ’Cﬁs (m).
Now, 71,5 = (r~1+) o 75 o (r - ); in addition, since (r - )*E = r‘SZby homogeneity, we have
K, (m) = (=" )y () (Kpm@® ) = ™' ), (m® ).

The spectral calculus then shows that Kz, (m) = r1 K r,(m (%)) for every bounded
Borel measurable function m: R — C. In addition, if m € S(R), then, identifying K, (m)
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and C, (m) with their densities with respect to vg,, and vg,, respectively,

/}R mdBg,,(h) = Kr,, (m)(e)
=G, (Bs(r)K, (m(r® -))(e)

= vg, (Bs(r)) /}R md(r® ).Be, (V).

sothat Bz, = vg, (Bs(1)) (r‘s - )« B, by the arbitrariness of m. In addition, itis easily seen that
Kr,, (m)(e) converges to K (m)(e) as s’ — s (see also Lemma 5.4). Thanks to Lemma 5.1
and the preceding remarks, this is sufficient to prove that B¢, converges vaguely to 8., as
s — 5. O

5.1 Asymptotic developments

Definition 5.3 For every m € S(RR) and for every s € [0, co], we denote by Ko s (m) (for
s # 00) and Ko s (m) (for s # 0) the densities of the measures corresponding to K (m) on
bho and b, respectively, under the usual identifications.

Lemma 5.4 The mappings
[0,00) 35+ Ko € LIS(R); S(hy)) and [0,00) 35 = Ko,y € LISMR); S(ho))

are of class C*.

Proof We prove only the first assertion. Observe that Kz = (75)s o Kz; since K7 €
LSMR); S (5)) by [20, Proposition 4.2.1], it will suffice to prove that the mapping [0, co) >
s> (Pog)s € L(S(@); S(hp)) is of class C*. Now, for every s € [0, 00), denote by L, the
automorphism x + y > x + y + Yo s(y) of (the vector space) g = b, @ 1o, and observe
that L depends polynomially on s, so that we may define L for every s € R. With this
modification, it is readily verified that L is still a measure-preserving automorphism of g for
every s € R, since v ¢ is strictly subhomogeneous. Then, observe that Py = Py, o LS_1
for every s € [0, 00); since (Po,0)s € L(S@); S(hp)), it will suffice to prove that the
mapping R 3 s > (L7 1) € L£(S(@)) is of class C*°. However, this last assertion is an easy
consequence of the fact that the mapping R > s — L € L(g) is of class C*. O

Definition 5.5 For every k € IN, for every s € [0, 00), and for every m € S(R), define

dk
K (m) = Ko,s (m),
»§ dS/k §'=s ’
and
) d*
’Coogl/v(m) = ds/k ’Coo,‘/\-'(m)-
s

Lemma 5.6 Take k € IN and m € S(R). Then, for every s € [0, 00) and for every r > 0,
K m(r® ) = r* () K, (m)

Km0y = r 7).k m)

Proof The assertion follows from Proposition 5.2 by differentiation. O
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Definition 5.7 Take r € R, and define M, (R*) as the set of m € C*°(IR*) such that for
every k € IN there is a constant Cy > 0

dk
‘mm < Clal*

dak

for every & € R*. We endow M, (R*) with the corresponding semi-norms.

Definition 5.8 Take » € R U { oo} and s € [0, co]. We define S/ (Gy) as the dual of the
set S, (Gy) of ¢ € S(Gy) such that fGY ¢(x)P(x)dx = 0 for every polynomial P such that
P(x) = O(|x]}) for x — oo; we thus identify S/(Gy) with the quotient of S'(Gy) by the set
of the polynomials as above. Similar definitions replacing G with f, or h,, and |- | with

Observe that, if s € (0, oo], then S, (Gy) = S, (h4) under the identification of G with
hoo (cf. 6 of Proposition 2.11).

Definition 5.9 Take r € R, and define CZ, (h) as the setof K € S” Oo—r (o), such that the
following hold:

— for every « such that dy > —Qo — r, 35 K has a density of class C* on b, \ {0} and
there is a constant C, > 0 such that

Co

|8gK| = |x|Q0+r+da

for every nonzero x € hj;
— there is a constant C > 0 such that

(K, @) = CO"

for every ¢ € S_gy—,(hp) such that Suppg € B(1), and ||0§ ¢l < 1 for every a with
length at most ([r] + 1) 4.

We endow CZ, () with the corresponding semi-norms.

We define CZ,(h,) in a similar way. For every s € (0, 00), we define CZ,(Gy) as the
setof K € SiQoo*r(G‘Y) such that there are Ko € £'(Gy) + S(Gy) and Koo € C®(Gy) N
S/_Qoo_r (Gy) such that K = Ko + Koo, and such that the distributions on by and b,
corresponding to Ko and K belong to CZ,(h) and CZ,(h,), respectively. We endow
CZ,(Gy) with the corresponding topology.

Finally, we denote by vg, the Haar measure on (R, -) such that fooo fdvg, =

Jo° f(x) & forevery f € C.(R).

Proposition 5.10 Take r € R, a set B and a bounded family (¢; p)ie(0,00),beB Of elements of
Sr(ho)- Then, the mapping t +— t="(t - )sr b € S’_Qo_r(bo) is VR -integrable and the set
of

+00 dt
Kp = / )P —,
0 t

as b runs through B, is bounded in CZ,.(h). In addition, K}, has a representative Eh, for
every b € B, such that for every o there is a constant C,, > 0 such that

198 Kp(x)| < + [log|x|1)

o
|x|Qo+r+da a
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for every x € by \ {0}, and for every b € B; the factor 1 + |log|x|| may be omitted if
—Qo —r —dy ¢ N. In addition, if L is a bounded subset of Cé[r]+l)+ (ho), then there is a
constant C' > 0 such that

(Kb vr(6 )| < C'6"(1 + [log8])

forevery 8 > 0, for every € L, and for every b € B; the factor 1 + |log 0| may be omitted
if—Qo—r¢NN

Notice that, arguing in the spirit of [32, Theorem 2.2.1], where the case r = 0 is
essentially considered, one may prove that for every bounded family (Kp)pep of ele-
ments of CZ,(h) there is a bounded family (¢;,5):~0,pep Of elements of Soo(hg) such that
K, = 0+°° 17"t )b % for every b € B.

Analogous statements hold for b,.

Proof We shall divide the proof into several steps.

1. Let L be a subset of S_p,—, (hy) which is bounded in cr+b+ (ho). Forevery ¥ € L,
denote by Py the Taylor polynomial of v of degree [r] about 0. Then, there is a constant
C1 > 0 such that

| = Py)(x)] < Crl ITHHD
for every x € . Since ¢; , € S-(h) for every ¢t > 0 and for every b € B,
heo dt ho dt
A ), YO ) T 7 Kb, (U = Py) (6 -))] "

dr
R

1t

1
serclf (D
0

for every 6 > 0, for every ¥ € L, and for every b € B. On the other hand, denote by P;
the Taylor polynomial of ¢; ; of degree —Q¢ + [—r] about O, for every r > 0 and for every
b € B, and observe that there is a constant C, > 0 such that

[(@r.b — Prp)(x)| < Calx|QHr D
for every ¢ > 0 and for every b € B. Then, since ¥ € S_g,—r(ho),
+00 _ dr +o00 B dt
[ e e = [0~ P
1y ]/H

+o00 dt

<0rC, H ||~ QuH=r Dy H f ~Qo—r—(~Qo+{-ri+n, 4

- 1Jq t
Next, take o such that d, > — Q¢ — r, and observe that there is a constant C3 , > 0 such

that
C3 o
o s
190 @160 = (1 + |x])QoFr+datl

for every x € b, for every ¢t > 0, and for every b € B. Then, fix a nonzero x € f,, and

observe that
t dt
8“ x — X —
0% 5L (|x| )‘

+00 dr +oo /4 Qo+r+dgy
[T rgemwl S = | (f)
0 t 0 | x|

+o0 Qo+r+d
<C3 a|x|*Q0*r*da / t—a g
’ 0 (1 4 1)Qotr+datl ¢

~
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for every b € B.

Taking into account all the preceding inequalities, we see that the mapping ¢
177t )wprp € S’_Qo_r(bo) is vR_ -integrable and that the set of K}, as b runs through
B, is bounded in C Z; (h).

2. Keep the notation of 1, and denote by P, ;, ; the homogeneous component of P; ; of
degree j, forevery j = 0,...,—Qqg + [—r]; define Pt/’b => P;p, ;. Then, the
arguments of 1 show that

~ Lo , o dr
Kp = )@y = Pry) T +
0 1

j<—=Qo—r

+00

_ dr
17 )@ — Prp) .

defines a representative of K in S’(hg) (treat fol () PI’ b dr separately). In addition,

t
arguing as in 1 we see that, for every o,
x| dt +o0 dr
o Qo+ [/ 170G (1) wpr b (x) " +/ 1705 (1 )a(@rp — Prp)(x) T]
0 |x|
is uniformly bounded as x runs through hj \ { 0}, and b runs through B. Now, take j € IN
such that j < —Qo + [—r]. If j < —Qo — r, then clearly

|x|r+Qo+da

x| dr
/ 1795 (1) s Py, j (X) t‘
0

is bounded as x runs through b \ { 0 }, and b runs through B. Finally, if j = —Q¢ — r, then
clearly

|x|r+Q0+da

|x| ow dt
_— t7 0N (t ) Prp i(x) —
1+ [loglx]] /1 0 )e i, j (0 5 ‘

is bounded as x runs through b \ { 0 }, and b runs through B. The other estimates are proved
in a similar way. Thus, K, is the required representative of K. O

Corollary 5.11 Take s € (0,00), r € R, a set B, and a family (¢, p)i~0.pep Such that
©r.b € S (Gyy) for every t > 0 and for every b € B, and such that for every k € IN there is
a constant Cy > 0 such that

Ck

XY ()| € ——
st (1 + |x]5)¥

forevery y suchthatd, <k, foreveryb € B, for everyt > 0, and for every x € G;. Then,
the mapping t — t7"(t - )s@rp € S/—Qw—r(GS) is VR, -integrable for every b € B, and the
set of

oo de
Ky = / 7t ) (@ pv6,,) —
0 t
as b runs through B, is bounded in CZ,(Gy).

Proof By an abuse of notation, we shall identify G, with b if s” € (0, 1) and with b, if
s” € (1, 00). In addition, we shall identify the measures ¢; pv,, Wwith its density @; , with
respect to the fixed Lebesgue measure of f, for 1 < s~L or to the fixed Lebesgue measure
of b, fort > s~1. Then, @, p, differs from ¢, j, o 5, by a multiplicative constant which stays
bounded as ¢ runs through R .
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Observe first that, using Proposition 2.4 and 6 of Proposition 2.11, it is not difficult to
show that there is a constant C > 0 such that

L+ [xly = C(A+ |x7)
for every x € b, and for every s” € (0, 1), while
I+ x|y > C(1 +|x])

for every x € h, and for every s” € (1, 00).

Hence, the set of @; p, as ¢ runs through (0, s_l) and b runs through B, is bounded in
S(hp), while the set of @y p, as ¢ runs through (s_l, 00) and b runs through B, is bounded in
S(hs). Consequently, Proposition 5.10 and its proof imply that the

—1

o, dr
Kpo = £ )b —
0 1

are well-defined elements of §’(G;) and stay bounded in CZ, (); analogously, the

+00 ) dr
Kp.oo = / (- )Pt —
s—1 t

are well-defined elements of S” Qo—r(G s), and stay bounded in CZ, ().

It will then suffice to prove that Kj o equals a Schwartz function in a neighbourhood of
oo, and that (every representative of) K ~ is of class C* on the whole of G (with the
required boundedness).

On the one hand, take k > 1 and «, and observe that there is a constant Cy o > 0 such
that

~ Cr,a
o ’
|aO got,b(-x)| =< (1 + |x|)k+Q0+r+da

for every x € b, for every r € (0, s‘l), and for every b € B. Then,

s~ —Qo—r—d —k
t o dt Cr oS
o 5
186 Kp,o ()| < ck,a/O T et = o

for every nonzero x € b, and for every b € B. By the arbitrariness of k and «, it follows
that the (1 — 7)Kj o stay in a bounded subset of S(f) as b runs through B, where 7 is an
element of C2°(hy) which equals 1 on a neighbourhood of 0.

On the other hand, denote by P; 5, ; the homogeneous component of degree j of the Taylor
series of ;. € S(h4,) about 0, for every ¢ > 0, for every b € B, and for every j € IN. If

k > —Qoo — r, then
oo dt
/ 7t ) Prpk —
s t

-1

is a well-defined homogeneous polynomial of degree k, while for every « there is a constant
Ct o > 0such that

/—&-Oot,raa(l.)* azb_ZPtbj (x)g <Cl/< |x|(k*da)+
s e ' ” t| o

j<k
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for every x € b, and for every b € B. Define

~ +oo dr
P -r =~ _ . —_
Koo = fs—l ) | @b ‘ > Py t’
J<=Qo0—r1
so that K, b.oo 18 @ well-defined representative of K, o (under the identification of G with
hso) by the Proof of Proposition 5.10. Then, for every k € IN, the

~ oo - dt too dr
Koo,b=/1 () §0t,b—ZPt,b,j 7‘1‘ Z t r(t’)*Pt,b,jT
N

- <k —Qoo—r<j<k !

stay bounded in Ck([joo). By the arbitrariness of k, it follows that the I?oo,b stay bounded in
C™(hoo)- o

Theorem 5.12 Take r € R. Then, the following hold:

— for every k € IN, the continuous linear map IC(()]%: C(R*) — CZ5-k(hy) induces a
unique continuous linear map IC(()IT()) : M (R*) = CZ,5-1(hg) such that, if § is a bounded
filter on M, (R*) which converges pointwise to some m in M, (R*), then ngf())(S) con-
verges to IC(()]jz)(m) in S/—Qo—r6+k(b0)"

— for every k € N, the continuous linear map /cé’;),oo: CX(R*) — CZrs1k(hso) induces

a unique continuous linear map IC((QOO: M, (R*) — CZ,54k(hso) such that, if § is
a bounded filter on M, (R*) which converges pointwise to some m in M,(R*), then

ICgé),oo(S’) converges to Ké’é),oo(m) in SLQ stk Do)y

— foreverys € (0, 00), the continuous lineai"cmap Ke,: CP@R*) — CZ:5(Gy) induces a
unique continuous linear map Kr,: M, (R*) = CZ,5(Gy) such that, if § is a bounded
filter on M, (R*) which converges pointwise to some m in M, (R*), then K (F) con-
verges to Kz (m) in SLQOFHS(GS).

Inaddition, let M be a bounded subset of M, (R*), and take to € C2°(hy) and 1o € C°(hso)
such that o and T equal 1 in a neighbourhood of 0. Then, the following hold:'!

— for every N € N, there is a bounded family (Ko m N.s)meM.sc©,1] of elements of
CZrs—n(ho) such that

7 (’Co,s(m) - s"/%’%(m)) = s 10 Kom.N.s

k<N

in SLQ075V+N(bO),f0r everym € M and for every s € (0, 1];
— for every N € NN, there is a bounded family (Koo m.N,s)meM, se[l,00) Of elements of
CZ,54+N (hoo) such that

(1 — 7o) (/coo,s(m) -y s—"/cg’;’,oo(m) =5N(1 = 100) Koo, N.s

k<N

in S’_Qm_ar(ho),for everym € M and for every s € [1, 00).

T We denote by Ko, s(m) and Koo s(m) the distributions on ho and b, respectively, corresponding to
K £, (m) under the usual identifications.
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Proof Let M be a bounded subset of M, (R*) and fix a positive function ¢ € C(R*)
such that fooo o(y°1) dTy = 1 for every » € R*. Let us prove that the family

& rm(y=? )®)y>0,mem is bounded in S(R). Indeed, take & and observe that there is a
constant Cj, > 0 such that

‘m(k) < Culal™?

dar

for every A € R*, for every m € M, and for every p =0, ..., h. Then,

i i O T Il e ) Xsuppi) ()

1 dh
Y o™ (A)‘
h1+hy=

for every A € R*, for every y > 0, and for every m € M, whence the assertion. Next,
let us prove that IC( )(m’ ) (and analogously IC 5(m )) has all vanishing moments for m’ €
C(R*). It will sufﬁce to prove our assertion for k = 0, hence for K., (m’). Now, for
every h € IN we have m), := (-)7"'m’ € C°(R), so that Kz, (m') = L"K ., (m}). Since
every polynomial is £"-harmonic for sufficiently large & (use Proposition 2.7 or observe
that a similar property applies to L by homogeneity arguments), the assertion follows by
(sesquilinear) transposition.

Therefore, for every k € IN, the family (y% K5 (m(y~* - )))y=0.5¢[0.11.men is bounded
in Suo (Bg), while the family (y9 K& (m(y™8 - )9)) y=0.sef1.00l.men is bounded in Seo (hag).
Hence, Propositions 5.10 and 5.11 show that the

+00 d
Kifpomi= [y kom0
0

are well defined and stay in a bounded subset of /C,s_ (o) for every k € IN, that the

(k) T sk (k) -8 dy

are well defined and stay in a bounded subset of /C,s1« (h,) for every k € N, and that the

oo —r8 -8 dy
K, (m) :=/0 Y )KL, (m(y™° ) —

are well defined and stay in a bounded subset of KC,5(Gy). Therefore, the so-defined lin-
ear mappings IC(() ()), Icgf))oo, and Kz, are continuous; in addition, by Proposition 5.2 and
Lemma 5.6 and the choice of @, they agree with their previous definition on S(R), S(R),
and M, (R*) N € (R*), respectively.

Now, if § is a filter on M which converges to some m( pointwise on R*, then
YIEHy e converges pointwise to v mo(y~% )g, hence in S(R). As a consequence, also
IC(()’%(y‘S’S(y"S -)g) converges to ICgf())(y‘S’mo(y"s -)p) in S(hy) for every k € IN. Hence,
IC((f()) (&) converges to K(()]f()) (mp)inS” Oo—rd+k (ho) forevery k € IN. The analogous assertions

concerning K, for s € (0, 00), and IC((QOO, for k € IN, are proved similarly. The first three
assertions of the statement are therefore established.
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Now, observe that, for every N € IN,

Koy (m(y™ )g) = 37 Km0 90 2 A

k<N
! _ (] _ Q)Nfl
+ (sy)N/O Ké{\i)ye(m(y 8 .)w)m de
for y € (0, s~1), while
—k
Koosym(y ™" )¢) = Y~ KL oo (m(y~* )9) (Syk)'
k<N
N[ W)y L
+ (sy) /0 Koo my™")e) T a0

for y € (s~ 00). Tn addition, the i} K%, (m(y=* - )g) U1~ d6 are bounded in Sxo (ho)

as y run through (0,s™"), while the fy K&, (m(y~ - )p) U325 6 are bounded in

Soo(hso) as y runs through (s~!, 00). In addition, observe that, if V is a finite-dimensional
vector space, F is a closed subset of V with non-empty interior, and P is a linearly indepen-
dent finite set of polynomials on V, then the mapping S(F) 3 ¢ > ( f o(x)P(x)dx) € cP
is onto, where S(F) is the set of ¢ € S(V) supported in F, with the topology induced by
S(V). Applying [4, Proposition 12 of Chapter II, § 4, No. 7], we see that, if By and By, are
bounded subsets of C*°(h) and S(h), respectively, then there are bounded subsets B, and
B[, of S;5_n(hg) and S5 (ho) such that 7o By = 19 Bj) and (1 — Too) Boo = (1 — 7o) B
Hence, Corollary 5.11 (and its proof) again implies that the

7 (’Co,s(m) - sk/cg%(m))

k<N

stay bounded in toK,5—n (hg) as m runs through M and s is fixed, while the

(1= 7o0) (K:oo,s(m) -y s"/cg’;{oo(m))

k<N

stay bounded in (1 — Too) s+ N (Hs) @s m runs through M and s is fixed. In order to establish
uniform boundedness for general s as in the statement, it suffices to reduce to the case s = 1,
taking into account Proposition 5.2 and Lemma 5.6. The proof is therefore complete. m}

5.2 Multiplier theorems

Here, we shall repeat the arguments of [20, § 4.1] in order to provide a multiplier theorem
for the operators L, which will imply some sort of continuity for the mapping s — Kz (m)
for more general m. Even though the following results hold when £ is self-adjoint, in order
to avoid some technical issues we shall assume that £ is positive.

In this section, when [ is a measure on G which is absolutely continuous with respect
to the Haar measure, we shall write ||IL||L[J(UG“_) to denote the LP norm of its density with
respectto vg,, p € [1, oo].

We recall the definition of some Besov spaces on R (cf. [39, Theorem of Section 2.6.1]
and [3, Section 5]).
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Definition 5.13 Take o > 0. Then, BS, o (R) is the space of f € L*°(IR) such that
1
1A% £
x#0 |x|*
where AUTD £ . 25‘231 (=Dledt1=J ([a];rl)f(- + jx) for every x € R, endowed with
the corresponding topology. We denote by b5, ., (R) the closure of Bgo+olo (R) in BZ, . (R).

We also denote by H*(IR) the classical Sobolev space of f € L2(R) such that Z~1((1 +
|-1)%/2F f) € L%, where F denotes the Fourier transform.

Recall that vg, is a Haar measure on the multiplicative group R..

Proposition 5.14 For every r > 0, for every y, and for every ay, ay > 0 such that ay > ay
there is a constant C > 0 such that

IXV K, 0m) (4 1150 206,y < Cllmilge g

for everym € ng,oo(]R) with Suppm C [—r, r], and for every s € [0, oo].
If B, has a density with respect to vr, bounded by min[( - Y&k ()P, then we may
take C in such a way that

IXY K, ) (L + 11y D 20y < Cllmll oo iy
for every m € H*2(R) with Suppm C [—r, r], and for every s € [0, 00].

Proof Proceed as in the proofs of [20, Lemma 4.1.1 to Theorem 4.1.6], taking into account
the following modifications and remarks:

— define

for every £ € Z;
replace the references to [21, 2.3 (e) and (f)] with Theorem 3.1 and Proposition 3.2;
sup B, ([—r, r]) is finite for every r > O thanks to Lemma 5.1;

s€[0,00]
— if Bz, < C'min[(-)*”, (-)*/] - vR, for some C’ > 0, then there is a constant C” > 0
such that Bz, < C” max[(-)*F, ()] v, forevery s € [0, co]. o

Here, Ll'oo(v(;s) denotes the weak-L! space on the space G, endowed with the measure
VG-

Theorem 5.15 Take Ny and N~ as in Proposition 2.15. In addition, take a nonzero ¥ €
CX(R4) and a > 0, and for every s € [0, oo] denote by Mg s the space of m € LIIOC(]R+)
such that

0, = sup (1 mGe N yoyors gy + @/ ™2y oo g )

t>s9

+ sup (Y ml )l osraorg + @/ Py ma )l oy g )

0<r<s®

is finite. Then, for every p € [1, 00) there is a constant C, > 0 such that

Im (LNl 2Lt wg,): Lt 06, < Crllmlla,,
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and such that, if p > 1,

Im (L) £wr e,y < Collmlla,,

for every m € My g and for every s € [0, 0o].
In addition, take so € (0, 00), two functions mg, m such that

sup lmoll pm, - SUP IMocllpg, , < 00,
O<s<so §>50
and f; € LP(Gy), for every s € [0, 00), such that fy converges to fy in L?(hy) as s — 0T,
and such that f; converges to foo in LP (ho,) as s — +00; then,

SE)I{)L(fx * K, (mo)) = fo * Kgy(mo) and S_l)irfoo(fv * K, (Moo)) = foo * Ko (Meo),

in LP (ho) and in L? (H,), respectively.
Finally, assume B, has a density with respect to vr, which is bounded by min[( - Yok,
()P define M:” as the space of m € LllOC (R+) such that

llmll ag,, := sup (||1pm(r-)||H<D0+a)/2(]R) + (t/s‘s)“”"/éllllfm(t')||H<Dl+a)/2(]R))

t>s8

+ sup @wmawmwmwmm+am%”meawm@wmm)

0<t<sd

is finite. Then, Mg ¢ may be replaced by M:, ¢ in the previous assertions.

Taking into account Theorem 6.4, this generalizes [2] for higher-order operators, and also
[34, Theorem 2] for quasi-homogeneous sums of even powers of left-invariant vector fields
on a homogeneous group, with No = D — Dy at least when these powers are all equal.
Notice that the proofs of [2, Theorem] and [34, Theorem 2], which are based on the property
of finite speed of propagation of the wave equation, cannot be extended to the present setting.

Observe that multiplier theorems for higher-order positive operators, based on the prop-
erties of the associated heat kernels, have also been considered in the literature (cf., e.g.,
[11,35]). In [11], multiplier theorems for higher-order positive differential operators on dou-
bling Riemannian manifolds, based on suitable Gaussian estimates, are developed using
techniques which are essentially similar to those of [20,22]. In [35], multiplier theorems for
positive operators in a very general setting, based on suitable Gaussian and Stein—Tomas
restriction estimates, are developed with different techniques.

Let us now compare Theorem 5.15 with [35, Theorem 5.2]. Using the estimates provided
in Theorem 3.1 and [35, Theorem 5.2], one finds the following result: ‘if p €]1, oo[, & >
0|t -1
that, for every m € L*°(R),

, and v is a nonzero element of C2°(R.y), then there is a constant C > 0 such

Im(LOllzwrog, )y =€ Sugllw m(t )l weoo )’
>

Notice that the difference between using BY, . (R) or W**°(R) is immaterial, since

Bgo/’oo(IR) C W**(R) C BS, ,(R) forevery o’ > a.
The preceding result is weaker than Theorem 5.15 in at least three aspects. Firstly, the

regularity threshold is Qo ‘% - H instead of Dy ‘% — % , as one gets interpolating the result
of Theorem 5.15 with the case p = 2. Secondly, no endpoint estimates are provided in [35,
Theorem 5.2], while Theorem 5.15 provides uniform weak type (1, 1) estimates. Finally, it

is not clear if [35, Theorem 5.2] provides results which are uniform in s.
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Proof We shall divide the proof into two steps.

1. We shall denote by M, the space M, ; under the first set of assumptions, and the space
M& ; under the second set of assumptions. Notice that we may assume that v is positive
and chosen in such a way that ZjeZ Y273 ) = 1 for every A > 0. Fix ¢ € (0, ). Then,
Propositions 5.14 and 2.15 imply that there is po > 1 such that for every y there is a constant
5,, > 0 such that

/a X2, K, m@T )OI+ flysy)" dx

2-Js
< / X2, K, rm@7 D)1+ [xlys, ) dx < Cy Imlly,
2=Js
for every p € [1, pol, for every s € [0, o], for every m € Mj, and for every j € Z. In
addition,

f Ko, (W m2% -))(x)dx =0

s

forevery s € [0, oo], for every m € My, and for every j € Z. Observe that, since Dy, Dy >
1, the space M embeds in L*°(IR) (cf. [20, Propositions 2.3.2 and 2.3.6]). On the other hand,
observe that

K, @™ ym) = @77 )uKe, , (ym@7 )

for every s € [0, oo], for every m € M, for every y, and for every j € Z.
Now, since m is the sum of the series Y _ jez. v (2~ 87 ym pointwise on (0, co), and since
the partial sums of that series are uniformly bounded, we see that

Ke,(m) =Y Ke, (g% -)ym)
JEZ

in the space of (right) convolutors of L2(Gy), for every s € [0, oo] and for every m € M;
in particular, in ' (Gy).

Let us first prove that the sum converges in LlloC (G5 \ { e}). Indeed, take a compact subset
L of G \ { e }, and observe that

D ek, @ m)lly <Y llxar Ke, ; (0 m@%7 )]y

Jj€Z J€Z
< ZCO VG, ;. (2J L)f’o +ZCO sup| - |2 iy
]<0 j>0 2/.L

v, Y, (B @) + Cosupl- 1 327,
Jj=<0 j>0

which is finite for every s € [0, 00] and for every m € M with |m|,, < 1, since
VG, ; (Byis(2))) = 2/Q% a5 j — —oo for fixed s # O thanks to 6 of Proposition 2.11,
while vg, (Bo(2j)) = 2790 for every j € Z.

Next, let us prove that

wp Y- [ @@ me ™ K @ m@]dx < o
iy, <1 /€% 70

vEe

@ Springer



1558 M. Calzi, F. Ricci

Indeed,

/| o e @m0 — Ko 27 m)ax
X SZ )‘ s

2Jyly=1

B Z / ; |’C£27,-Y(1/fm(25/.))((2j,y)—1x)
2yl ¥ Wlami 22127 Yy ;

— K, 5, (Y m2%7 ) ()| dx

= Z / ; “Cﬁrjs(\ﬁm(zsj.))(x)'dx
2ilyly>1 1x15—j =271yl

-~ —&
<2Co Y, swp x5,
24|yl >1 X522 1yl

=2Co Y @yh~,

2lylsz1

which is uniformly bounded for s € [0, o], [m|ly, <1,andy € G5\ {e}.
Finally,

/\I 20yl K, (027 ym)(y~'x) = K, (27 - )m) (x)] dx
Xlg=21yls

27yl <1
- Z ./ ; \Ke,_; (¥ m(2% )27 - y)x)
2/ ]yl <1 [xly—j =212yl
—Ke,, (m@% ))(x)|dx
C Cdy
=2 C 20 1270l
j'el 2iy|, <1

which is uniformly bounded fors € [0, oo, [|m|ly, < l,andy € Gs\{e } (here,Lemma?2.14
is applied to Kﬁz*h (Yym(2%7 .)) = ’C£27j5(wm(28j -NH).
Observe, now, that, for every s € [0, oo] and for every ¢ > 0,
VG, (Bs(21)) VG, (Bi-15(2))
v, (Bs(1)  vg_, (Bi-i,(1)

=G, (Bi-152)),
which is a bounded function of r~'s on [0, co]. Therefore, thanks to [36, Theorem 3 of
Chapter 1] we see that for every p € [1, 2] there is a constant Cj, > 0 such that
ML £t (v, )16, = Crllmliag,,
and such that, if p > 1,
MLl e g,y = Cplimllpy,

for every s € [0, oo] and for every m € M;. A similar assertion holds, by duality, also for
p € (2,00).

2. Now, identify G with b for every s € [0, sp], and observe that

lim m(Ls) = m(Ly)
s—0t
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in L(L? (b)) for every m € S(R). Define A’;i/a,s replacing the Besov spaces Boo oo With the
little Besov spaces oo, o0, and define MS as ./(/lva/z,s and M‘; ¢ under the first and second
set of assumptions, respectively. Observe that M; embeds continuously into M (cf. [20,
Proposition 2.3.2]), so that we may replace M, with My in the assumptions. Then, by means
of [20, Corollaries 2.3.10 and 2.3.7, and Proposition 2.3.13] we see that tS(R) is dense in
T M, for every T € C°(RR"), so that

SE}%(TW!O)(Q) = (tmo)(Lo)

in L(L?(hy)), since the (tmg)(Ly) are equicontinuous on L” (h) thanks to 1 and the assump-
tions on mg. Therefore, for every finite subset J of Z,

lim (@@ mo)(Ly) = Y (W27 Hmo)(Lo)

S0y jeJ
in L(L?(hy)). Now, define K, 5.k 1= ka<j§k Ke, (W(2‘5«’ -)mg) and J € CX(R) so
that = Yo ¥(27% -) on R*. Then,

Kmg.s.k = K, Q2% ) — 27 )y % K, (mo)

for every s € [0, so] and for every k € IN. Therefore, for every ¢ € C2°(h,) we have, with
some abuses of notation,

limsupllg *xg, Kz, (mo) — @ *Gy Ky (mo)ll,
s—0t

< limsup ([l¢ *G, Kz, (m) — ¢ %G, Kmo.s.kll»
s—0t

+ 19 %6, Kmg.s.k — @ *Go Kimo.0.kll ) + 110 %64 Kimg.0.x — @ %64 Ko (mo)ll»)
<2C" sup g — ¢ *g, Ko, (W% ) — g% ),
s€[0,s0]

where C” = sup [lmo(Ls) |l zLr(G,))- Now, since ¢ € C2°(hy) and since the K, V), as s
s€[0,s0]
runs through [0, so], stay in a bounded subset of S(b), it is easily seen that

lim sup ¢ — ¢ *q, Kc, (%) —y @7 ), =0,

k=00 5[0, 50]

whence
lim @ *xg, K, (mo) = ¢ *G, Kr,(mo)
s—0t

in L?(h). Since the mo(Ly), as s runs through [0, s¢], induce equicontinuous endomorphisms
of L?(hy), the assertion in the statement follows. The case s — +00 is treated similarly. O

Notice that the regularity threshold in Theorem 5.15 is not optimal, in general. We shall
now present an improvement of Theorem 5.15, under more restrictive hypotheses, in the
spirit of [15,16,22]. Let us briefly recall the notion of capacity introduced in [20,22]; we shall
present it in a slightly simpler way in the setting of two-step stratified groups.

Definition 5.16 Let G’ be a two-step stratified group with Lie algebra g'; let (g], g5) be the
stratification of g’ and take h € { 0,...,dimg} } Endow g’ with a scalar product. Then, we
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say that G’ is h-capacious if there is a linearly independent family X1, ..., X, of elements
of g’l and a linearly independent family 71, ..., Tj of elements of 9’2 such that

=

TIEX, - Dlge Z (XX, (TIT))]

for every X € g} and for every T € g).

For instance, if G’ is the product of a finite family of Métivier or abelian groups, then G’
is dim[G’, G']-capacious (cf. [22, Proposition 3.9]), so that the following result applies (with
a suitable choice of G) when £; has the form Zjejl (iX;)*, where o € 2IN* and (X ;) is a
family of left-invariant vector fields on G| which generates its Lie algebra.

Notice that, when G’ is an H-type groupand £y = £} —}_; Tj2, where £ is the standard
(homogeneous) sub-Laplacian and the T stay in the centre of g;, then Theorem 5.17 is a
consequence of [29, Corollary 2.4].

Theorem 5.17 Assume that G is a two-step stratified group and that G  is h-capacious for
some h € IN. Then, thereish’ > (h— Qoo + Qo)+ such that Gy is h'-capacious. In addition,
take a nonzero Y € CP(Ry4) and o > 0, and for every s € [0, ool denote by My s the space
ofm € Ll (R+) such that

loc

lmllaq,,, := sup <||Wm(f )”B(Qo—h +a)/2

t>0

(R)
+1+ [/SB)(Qo—h —Qo0o+h)/(28) It - )||Bc(,cQch_h+a)/2(R)>

is finite. Then, for every p € [1, 00) there is a constant C, > 0 such that

||m(£x)||z;(L1(vG jLL®(ug,)) = Cl||m||Ma:

and such that, if p > 1,

Im(Lllcirg,) = Cplimllag,

for every m € My g and for every s € [0, 0o].

An analogue of the convergence results for s — 01 and s — +00 of Theorem 5.15 can
be proved, with the same techniques, also under the assumptions of Theorem 5.17. We leave
the details to the reader.

Notice that, when G is a product of Métivier group (so that one may take h =
dim[G, Go]), then Qg — k' and Qo — h both equal the Euclidean dimension dim G
of G1, so that

Imll am,, = fgg”lﬂm(t ' )IlBgcclfrg.xcGl+a>/2(]R)-

Therefore, at least when £ is a sub-Laplacian, the regularity threshold of this result is optimal
(cf. [19,25]). Cf. [1,15,16,20,22-25,28] and the references therein for other results in this
direction.

Proof We shall divide the proof into two steps.
1. Observe first that Gy = G as Lie groups for every s € (0, oo], under the identification
with b . Indeed, it suffices to observe that, if X, Y € b, then[X, Y] € @,,sothat[X, Y]; =
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Poo s[X, Y] = Poo,co[X, Y] = [X, Y]oo thanks to Lemma 2.3. Fix scalar products on f,, and
bo such that the bases ()N( j)jels and (f j)jelJo are orthonormal. Observe that, since G is
h-capacious, there are two linearly independent families (Y;) j—1,... » of elements of b, N'g;
and (T}) j=1,...n of elements of h, N 9, such that

.....

yeres

M=

KTIX, - Joodlyx, = ) HXIY;(TIT))]

~.
Il
-

l

forevery X € h, NG, and forevery T € h, NG,. By the preceding remarks, we also have

=]

M=

KTIX, - Iolye, = ) (X1Y;(TIT;)

1

~.
Il

forevery s € (0, oc], forevery X € h,, NG}, and forevery T € h,, NG,. Then, repeating the
arguments of [22, Section 3] with minor modifications, we see that for every a1, a2, @3 > 0
such that ap < % and a3 > o there is a constant C; > 0O such that

h
XU K m)(+ 1[0 [+ 1¢-1v)n* < Cillmllgs g
=1 L2(Gy)
for every s € (0, oo], for every y with length at most 1, and for every m € ngm(]}{) with

support in [—1, 1]. Then, arguing as in the proof of [22, Theorem 3.11], we see that for every
o > °‘§_h there are ¢ > 0, pop > 1, and a constant C, > 0 such that

X5 K, YA+ 119 Lo,y < Collmllpe, o w)

for every p € [1, pol, for every s € [1, oo], for every y with length at most 1, and for every
m € B, o (R) with supportin [-1, 1].

2. Take (¥;) and (7}) asin 1, and observe that (¥;) is the basis of an algebraic complement
of pry iy ingy; in particular, ((¥Y;)) N (i; Ng;) = 0. Since i; N'g; = ip NGy by definition, we
may assume that ¥; € h forevery j = 1, ..., h. Now, define &’ := dim[(((T})) + ip)/io].
so that A’ > h — Qs + Qo; then, we may assume that T, ..., Tjy belong to b, so that
PooTj € ((Tj)ji=1,. w) forevery j =h'+1,..., h.Since the Py1T;, j =1,...,h,are
linearly independent, and since pr(Po,1T;) = (Po,1 — Po,0)T, we see that the pr (Py,1T}),
for j = A" +1,..., h, are linearly independent. More precisely, we see that the ¥, j =
1,...,h,and the pry(Po1Tj), j' = h'+1,..., h, are linearly independent.

Therefore, there is a constant C; > 0 such that

h
UTILX, - 1)lgs = C1 Y WXIYNT|PoaTy)|
=1

for every X € hy N g, and for every T € by N g,. Observe that the dilations are self-adjoint
with respect to the chosen scalar product on f, so that

h
KTIX, - 19)lgs = C1 Y _KXIY(T | PoT))
Jj=1

for every s € [0, 00), for every X € ho N gy, and for every T € hy N g,. In particular, for
s = 0 we infer that G is h'-capacious. Then, repeating the arguments of [22, Section 3] with
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minor modifications, we see that for every o, a2, @3 > 0 such that oy < % and a3 > o]
there is a constant C, > 0 such that

h
XY K, (m)(1 4110 [T+ 1P T 1Y) D < Collmllgs )
j=l L2(Gy)

for every s € [0, 00), for every y with length at most 1, and for every m € B33 oo (IR) with
support in [—1, 1]. Therefore, we need to prove that

h
sup f A+ 1X[ 4570 X @)™ A+ [PosTH X YD) 72 dX < o0

s€[0,11 gy il
whenever 0 < ap < 1, o/l +hay > Qp, and a1 + hay > Q. Notice that it will suffice to
prove the preceding assertion when o is sufficiently close to 1, so that we shall also assume
that O{/l > Qo— Moy + (1 —az)(h —h).

Notice that the preceding arguments imply that there are a homogeneous basis (Z;) je,
of by, a partition (Jo.1, Jo.2, Jo.3) of Jo, and two maps «,«": {1,...,h} — Jy such that
the following hold:

- (Z}j)jex, is abasis of g, N by and Ziy=Tjforevery j=1,..., h';

— (Z})jeus, is the basis of pry (Po,1(V)), where V is an algebraic complement of N (ho+
i) = (G2Nbo) @ (G2 Nixo) in Gy and Z,.(j) = pry(Po,1(T))) forevery j = h'+1,..., h;

— (Zj)jeuss is the basis of an algebraic complement pr; (P 1(V)) + (g Nip) ing; and
Zy(jy = Yjforeveryj =1,...,h.

Now, take j € { W+1,...,h } and observe that (pr,(Po,1T;)|pry(Po,17T})) = 0, so that
|PosTj| > s|Zy, ;| for every s € [0, 00). In addition, using 6 of Lemma 2.14, it is not hard
to prove that there is C3 > 0 such that

(X|Z)|" for every j € Jo.1
IX|s = C3{min([(X|Z;)], s~ (X|Z;)|"?) forevery j € Joo
{X1Z ;)| forevery j € Jo.3

for every X € hg. Denote by p;, ;(X) the right-hand side of the preceding inequality.

Now, observe that our assumptions on o« and oy show that we may find 8; > 0 and
B for every j € Jo such that the following hold: o = }°;; B; and o = 3=, B}
Bj = ,3} > 2 for every j € Jo1 \/c({ 1,...,h’}); Bj > 2and,3} > 1 for every j €
Jop \k({ W +1,...,h}); B = B >2—axforjew({l,....h)); B; = B; > 1for

every j € Jo 3. Therefore, it will suffice to prove that

h/
sup f [T+ P OF + PP pg ;0P TT (1 + [(X1Ze))]) ™ x
s€[0,1] /g jeJ j=1
h
< T (U4s]{X1Zeip))™* dX < oo.
j=h'+1

Now, use Tonelli’s theorem to integrate separately each coordinate with respect to the basis
(Z). We shall prove that the integrals of the factors corresponding to Z,(jy for j = h' +
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1, ..., h are uniformly bounded for s € [0, 1]; the other factors are easier and left to the
reader. Then, we have to prove that

sup/ (1 +min(x, /x/$) P (1 + sx)* dx < o0,

s€(0,1]1J0

where 8 > 2 — az(> 1). Now, on the one hand,

1/s 1/s 1
f (1 +min(x, /x/s) (1 +sx)" % dx < / (1+x)Pdx < =t
0 1
for every s € [0, 1] since B > 1. On the other hand,
+oo T g 1
/ (1 4+ min(x, V/x/s) P (1 +sx)™ 2 dx < sﬁ/ x"27%dx < o
/s 1 5 tor— 1

for every s € [0, 1] since g +ary>1+ “—22 > 1 and B8 > 1. The proof is then completed as
that of Theorem 5.15. O

6 Quasi-homogeneous operators

We shall now investigate further the properties of the Plancherel measures ., in some
specific situations: following [34], we shall prove that, when Ly is ‘quasi-homogeneous’ in
a suitable sense, then B, has a density of class C* with respect to vR, , with complete and
almost explicit asymptotic expansions at 0 and at co.

In addition to the assumptions of Sects. 2 and 4, we assume now that there is a finite
family (Ly)eer of self- adjoint, positive, homogeneous, left-invariant differential operators
on G with the same degree & such that £ = D el Ly. We also assume that G is endowed
with the structure of a homogeneous group of homogeneous dimension Q, and that ds; ([,g)
is homogeneous of degree &, for every £ € L.

Before proceeding further, let us describe an example.

Example 6.1 Let (X, )eer be a (finite) generating family of homogeneous elements of the
Lie algebra of G1, and define £ = Z£5L(’X )*¢, where oy € 2IN* for every £ € L. In
addition, let G be the free nilpotent group with L generators and the same step as G; denote
by (X )eel the generators of its Lie algebra. We endow G with the unlque gradation for
which X’ is homogeneous of degree [ o e for every ¢ ¢eL. Letn;: G — G be the
unique homomorphlsm of Lie groups such that that d (X ) = X, forevery £ € L. In this
context, we may define ﬁg =( XZ)‘” 6= ]_[eeL ap,and §p := d/ ., where d/ is the degree
of X}, forevery £ € L.

Now, for every 6 € (0, 7] define Xy := {e*"¥: x € R,y €] — 6, 6[ }, and for every

a € CL define
Za = ZagZ@;
lel

the reader may easily verify that L, + E = LReqisa pos1t1ve Rockland operator for every
ae EWL, We define £; , := dmg (C )for every a € Z‘/ and for every s € [0, oo]; observe
that L , is weighted subcoercive, so that we may denote by (A 4;)>0 its heat kernel. In
addition, we define 7 - a := (¢%ay), for every a € CL and for every t € C\ R_; we still
denote by ra the multiplication of a by the scalar r for every a € C* and for every r € C.
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Proposition 6.2 Denote by §2 the set of (t,a) € C x CL such that ta € Z'ﬂLz, and observe
that hy ;4 is defined for every (t, a) € S2. In addition, the following hold:

— the mapping §2 > (t,a) — hi.4 € C*(G)) is holomorphic;
— N1t rqa = N1 1.0 whenever (t,ra), (rt,a) € $2;
— hitra(e) = r_th,,,a(e) whenever (t,r - a), (t,a) € 2.

Proof Let us prove that, for every p € IN and for every (¢, a) € £2, dom(ﬁf’m) is the space

WP of f € L*(Gy) such that X} f € L?(G)) for every y such thatd,, < §p, endowed with

1
the topology induced by the Hilbertian norm f + (Zdy <5p ||X¥ f ||%) . On the one hand,

p
1,ta

) embeds continuously into W”. On

arguing as in the proof of Corollary 4.5, we see that XJ{ (I +£? )~! induces a bounded

14
1,ta

the other hand, it is easily seen that C2°(G 1), which is contained (and dense) in dom(ll’f p o)
is contained and dense in W7, whence the asserted equality.

Now, it is clear that, if f € W', then the mapping 2 > (t,a) — Li,.f € L*(Gy)
is holomorphic, so that (L1 14)(1,a)es2 1S an analytic family of type (A) in the sense of [18]
(more precisely, the restriction of (L1 14)(1,a)es2 to every complex line is an analytic family
of type (A)). In addition, £ ;, is weighted subcoercive thanks to the preceding remarks, so
that it is the generator of a holomorphic semi-group by [37, Theorem 8.2]. Therefore, [18,
Theorem and 2.6 of Chapter 9] implies that the mapping 2 > (¢, a) — e Ll e L(LE(GY))
is holomorphi(:.12 Therefore, taking the derivatives in ¢ we see that, for every p € IN, the

mapping

operator on L*(G1) for every such y, so that dom(£

2535t a) > £V e Fla e £(L2(G)))

Lta
is holomorphic, so that the mapping
25 (t,a) > e Fle € L(LA(G1); WP)
is holomorphic. By the arbitrariness of p, this implies that the mapping
23 (t,a) > e Fle e L(LA(G); W)
is holomorphic, where W is the intersection of the W?”, endowed with the correspond-

ing topology. Since L] ,, = Lz, and since £2 is conjugate-symmetric, by (sesquilinear)

transposition we see that the mapping
23 (t,a) > e e e LW™; L2(G)))

is holomorphic, where W~ is the strong dual of W.!3 Finally, arguing again as above we
see that the mapping

25t a) > e Fla e LW W)

12" First apply [18, Theorem and 2.6 of Chapter 9] to the intersection of every complex line with £2, and then,
recall that a mapping from 2 into the Banach space L(L2(G 1)) is holomorphic if and only if it is holomorphic
on every line.

13 1n principle, we should endow L(W~°; L%2(G 1)) with the topology of uniform convergence on the
equicontinuous subsets of W ~°, instead of the topology of bounded convergence. However, W is a reflexive

Fréchet space since it is isomorphic to a closed subspace of the reflexive Fréchet space L(G )]Ndlmc] (cf.
[4, Propositions 14 and 15 of Chatper IV, § 1, No. 5 and Corollary to Theorem 1 of Chapter IV, § 2, No. 2]),
so that W~ is bornological by [4, Proposition 4 of Chapter 1V, § 3, No. 4]; therefore, a subset of W~ is
bounded if and only if it is equicontinuous on W by [4, Propositions 9 and 10 of Chapter III, § 3, No. 7].
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is holomorphic. Now, the Sobolev embeddings easily show that the inclusion W™ C
C®°(G) is continuous; consequently, also the canonical mapping L(W™°; W®) —
L(E'(G); C*®(G))) is continuous. Now, L(£'(G1); C*°(G))) is canonically isomorphic
to C*(G1 x G1) by the Schwartz’s kernel theorem (cf. [38, Proposition 50.5]), so that the
mapping

25 (t,a)> hirq € CP(GY)

is holomorphic.

The second assertion is trivial, while, for what concerns the third one, just observe that
(prG‘)*Ll,m = Lr.qa)1 for every (¢,a) € 2 and for every r > 0, where p,G‘ denotes the
dilation by r in G (not to be confused with the mapping r - : G; — G, of the preceding
sections); the general assertion follows by holomorphy. O

Corollary 6.3 Takea € IR_L,_. Then, thereis ¢ > 0 such that the mapping t — hj ; 4(e) extends
to a holomorphic mapping Hy : Xx )¢ — C. In addition, for every k € IN there is a constant
Cr > 0 such that, for every t € R*,

d .
— H,(it)

k
’ drk

. _ Q0 _Oco
< Cemin (16757, 1175 7F).

The proof is similar to that of [34, Lemma 4] and is omitted.

Theorem 6.4 Tuke a € Ri. Then, Br,, has a density fq of class C™ with respect to Vg .
In addition, there are two constants Cy, Coo > 0 such that, for every k € IN,

Qo Q9 _
a(k)()\) ~ Co (T Aok
k
as » — 0T, while
FP0) ~ Ca (Q—“’> )k
8 Ji
as A — +oo, where xy ;= x(x —1)---(x —k + 1) for every x € R.
In particular, in this situation we may apply the second part of Theorem 5.15, thus extend-
ing [34, Theorem 2], which corresponds to the case oy = 2 for every £ € L in the situation
of Example 6.1.

Proof Observe that, with the notation of Corollary 6.3,
Hq(1) = / e dBe,, ()
[0,00)

for every t > 0, so that
F(e™ B, (1) = Ha(e +it)

for every ¢ > 0 and for every ¢ € R. Passing to the limit for ¢ — 0T, we see that the
restriction of F (B¢, ,) to R\ { 0} has a density of class C°, and that

F(Bry (@) = Hu(ir)
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for every ¢ # 0. Then, Corollary 6.3 and [34, Proposition 1] show that B¢, , has a density f,
of class C* with respect to vg_ such that for every k € IN there is a constant C;, > 0 such
that

9] Ooco
£P0)] = Comin (3775, 2755 7)

for every & > 0. Now, Proposition 5.2 shows that s20 f,(s~% - )ug . converges vaguely to
the measure B, as s — 07. In addition, by homogeneity it is easily seen that there is a

[¢]
constant Cp > 0 such that B, , = Co(- )TO VR, - Finally, the preceding estimates show that

2
the s20 £, (s~ -) stay bounded in C°°(IR..), so that they converge to COATO in C®°(Ry).
The first assertion follows; the second one is proved similarly. O

7 Appendix: Technical lemmas

In this section, we consider a homogeneous vector space V, endowed with a homogeneous
basis d of translation-invariant vector fields and a homogeneous norm | - |; for every y, we
denote by d,, the degree of 3. We fixe > 0,n e Rand 7’ € RN,

Recall that S(V') denotes the Schwartz space, S’(V) the space of tempered distributions,
D'(V) the space of distributions, and £’ (V) the space of distributions with compact support
on V. We denote by M! the space of bounded (Radon) measures.

Definition 7.1 Define 7, ,(V) as the space of H € C(R4 x V) such that the set of
tQEHH (1, ¢ +), as ¢ runs through R, is bounded in S(V).
We endow H, , (V) with the topology induced by the norms

H v sup sup(1 + [x)" Y 1@ |9 H(z, 1% x)),
t>0xeV dy<h

for h € IN, so that H, , (V) becomes a metrizable locally convex space (actually, a Fréchet
space).

Lemma?7.2 Take H € He (V). Then, [t — H(t, -)] € C(Ry; S(V)). In particular, the
function 8{ H is continuous for every y.

Proof Take fy > 0, and observe that the set of H (¢, -), as ¢ runs through [’70, 2tp], is bounded,
hence relatively compact, in S(V). Therefore, H (¢, -) has at least one cluster point in S(V)
ast — fy. On the other hand, each cluster pointof H (¢, -)in S(V) ast — t is also a cluster
point of H(¢, -) in EV(V) ast — fo, so that it must equal H(f, -) by the continuity of H.
The assertion follows. O

Lemma?7.3 Take H € HSV,,(/J(V) such that 8{‘H IS HS’,,]/((V)for every k € IN. Then, the
following conditions are equivalent:

1. the mapping Ry >t — BfH(t, -) € D'(V) extends by continuity to [0, 00), for every
k e N;

2. themapping Ry >t — B{CH(I, ) € E'(V) 4+ S(V) extends by continuity to [0, 00), for
every k € IN;

3. there is T € C2°(V) such that T equals 1 on a neighbourhood of 0 and such that the
mapping Ry > t +— rafH(t, ) € E(V) extends by continuity to [0, 00), for every
k € IN;
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4. for every T € C2°(V) such that T equals 1 on a neighbourhood of 0, the mapping
Rist— tafH(t, ) € E'(V) extends by continuity to [0, 00), for every k € IN.

Proof Tt is clear that 1 implies 4, that 4 implies 3, and that 2 implies 1. Let us then prove
that 3 implies 2. Then, take T as in 3, and observe that it will suffice to prove that the mapping
Ryt (1-— r)BkH(t ) € S(V) extends by continuity to [0, co), for every k € IN.
Then, take &, k € IN, and observe that, since Bk H e H, '(V), for every N € IN there is a
constant Cy > 0 such that

sup |9¥aY H(t, x)| < Cw
dy <h 172 T (4 e x|V Qetmiedy

for every (t, x) € Ry x V. Then, forevery (t,x) e Ry x V
> 19F8Y (1 — ©) 0 pry) HI(t. )|

dy<h

Cn

< y 5

XSupp(1— o (%) Z Z /|y//y 18" 7lloo N, Qe+nj+ed,n—eN’
dy<hy'+y"=y AU

therefore, there is C ;V > ( such that, for every (¢, x) € (0, 1] x V,
eN—Qe—n; —eh

(1+ xpN

’

> 10507 (v — ©) 0 pry) H1(, )| < Cly
dy<h

which tends to 0 as t — O provided that N > Q + %" + h. The assertion follows by the
arbitrariness of k, i, and N. O

Definition 7.4 We define Hg . (V) as the space of H satisfying the equivalent conditions
of Lemma 7.3. We endow Hg 7 (V) with the topology induced by the norms of H, ,/ (V)
applied to 8{‘H (k € IN), and by the semi-norms

H +— sup sup
te(0,1] peB

<ra{<H(t, ), (p>‘

as k runs through IN, 7 is an element of C2°(V) which equals 1 on a neighbourhood of 0,
and B runs through the bounded subsets of C*° (V).

Lemma 7.5 Take © € C°(V) such that T — 1 vanishes of order 0o at 0, and fix p € IN. In
addition, let M, be the set of (Radon) measures |1 on Ry such that fol tPd|u|(t) < o0,
and such that f]+°° t*d|u|(t) < +o0 for every k € IN. Endow M, with the corresponding

topology.
Then, for every u € M), and for every H € H, ,(V), the mappingt — (1 —1)H(t, -) €
S(V) is p-integrable. In addition, the bilinear mapping

+o00
My X Hey(V) 3 p > / (1—)H(t, ) du(r) € S(V)
0

is continuous.
Proof Indeed, take © € M), and H € H, (V). Observe that, for every N € IN, there is a

continuous semi-norm py on H, , (V) such that

1H
te@Fdy)+n (] 4 |p—¢ . x|)N

10Y H(t, x)| <
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for every x € V and for every y such thatd, < N; fix k € IN and y. Then, apply Leibniz’s
rule and, for r < 1, estimate the derivatives of 1 — t with |- |N —k for some fixed N >

max(d,, Q0 +d, + P j" ); we then see that there is a constant C’ > 0 such that

197 [(L = D H(, )| < CEWN=L= =g < CtP ],
for every x € V. On the other hand, if + > 1, then simply estimate the derivatives of 1 — 7
with xsupp(1—7); we then see that there is a constant C” > 0 such that
k 1n.etk—Q)—
[x|*[aY[(1 = D)H(, )](x0)| < C"t* "||H||pmax(k.dw

for every x € V. Therefore,
+o00
/ 17 [y — DH (. 1601l 0)
0

< CUHl, [ 0+ C M, [ P50 dllo
0,1] [1,4+00)

By the arbitrariness of k and y, the assertion follows. O

Lemma 7.6 Forevery i € M'((0, 11) and for every H ﬁg,n/(V), the mapping

. 1
te T HG, ) =Y 9 HO, )= | € € (V) +8(V)
Jj<k J:
is scalarly p-integrable and its integral belongs to £' (V) + S(V). In addition, the bilinear
mapping

1 . J
— t
T W CIOBED ST O G
0 & J:
<
is continuous from M1 ((0, 1]) x ﬁa,n/(V) into £'(V) + S(V).
Proof Take some t € CZ°(V) which equals 1 in a neighbourhood of 0, and let us prove that
the mapping ¢ — 11 (H(z, )= Dk B{H(O, )’]—J,) € &' (V) is scalarly p-integrable

and that its integral belongs to &(V). Observe that, since £'(V) is quasi-complete, by
[5, Proposition 8 of Chapter VI, § 1, No. 2] it will suffice to prove that the mapping

t> 1%t (H(t, = B{H(O, )%) € &'(V) is continuous and bounded. However,
Taylor’s formula implies that

j<k

(1 _ s)k*l

—k N J ﬁ — : k .
T H@, ) ZalH(O’ )j! _/o O H (s, ) (k —1)!

Jj<k

Now, for every bounded subset B of C°°(V) there is a continuous semi-norm ppg of ﬁg,n/ V)
such that

(ot .0 <11,
for every ¢ € B and for every ¢ € (0, 1]. Hence,
; t/ IH |
—k J PB
t* sup <H(r, =Y 8 HO, ~)].!,w> <

k!
peB j<k
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whence our claim (cf. also Lemma 7.3). The assertion then follows by means of Lemma 7.5.
O

Recall that O¢ (V) is the set of f € C°(V) such that there is k € IN such that 3% f (x) =
0(|x|k) as x — oo for every o; Oc(V) can then be identified with the dual of the space
O/C(V) of convolutors of S(V') and carries the corresponding strong dual topology (cf. [33,
pp. 244 and 245] and [13, Chapter II, § 4, No. 4]).

Lemma 7.7 Forevery k > 0, for every i € M'([1, +00)), and for every H € Hen(V), the
mapping

Y4
A N IR 8%’H(t,0)% € Oc(V)
y:
dy <k

is scalarly p-integrable, and its integral belongs to Oc (V). In addition, the bilinear mapping

+00 " ()V
(1, H)I—)/ O H(, ) =) agH(t,O)7 du(r)
l .
dy <k

is continuous from M1, +00)) x He,y (V) into Oc (V).

Proof Observe that [5, Proposition 8 of Chapter VI, § 1, No. 2] implies that it will suffice to
prove that the mapping

Y4
ts QT G - 3 B;H(t,O)% € Oc(V)
y!
dy <k

is continuous on [1, +00) and takes values in an equicontinuous subset of O¢ (V) (considered
as the strong dual of O (V)). Now, continuity is clear. In addition, fix " and observe that
[10, Theorem 1.37] implies that there is a constant C,» > 0 such that

’ ’ xV
0y H(t,x)— Y 9" H(t,00=
dy, <k v

<Cy, Z Ix|%  sup 82}’+V,H(l‘,xl) ,

x'|<C.,/|x
Z_/Vj5[§]+l [x|=C, /x|
dy >k

where d is the minimum degree of the nonzero homogeneous elements of V, forevery x € V
and for every ¢ > 0. Therefore, there is a continuous semi-norm p,» on H, (V') such that

’ ’ xV k
0 H(t,x)— Y o™ H(, 00— | <~ @HH7( 4 |x|)D([d]+])||H||py,,
V.
dy, <k

where D is the maximum degree of the nonzero homogeneous elements of V, for every
x € V and for every ¢ > 1. The assertion follows easily. O
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