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ABSTRACT

The task of aligning a score to corresponding audio is a
well-studied problem of particular relevance for a number
of applications. Having this information allows users to
explore the materials in unique ways and build rich inter-
active experiences. This contribution presents web appli-
cations that deal with the problem by implementing a two-
step synchronization process. The first step implements
a score-informed alignment while the second one can be
seen as a further refinement, particularly useful for a pre-
vious manual or semi-automatic synchronization. These
web implementations are specifically conceived to work
with the IEEE 1599 standard, which allows for multiple in-
stances of scores and audio renderings to be mutually syn-
chronized together. By adopting web technologies, users
are not tied to any specific platform. Evaluations of the per-
formances and current limitations of these processes will
be presented.

1. INTRODUCTION

This project originated from a practical need that emerged
in the production and editing of multimedia materials. IEEE
1599 is an XML-based standard format aimed at the multi-
layer representation of music 1 . To this end, an IEEE 1599
document typically contains anywhere between one and
many links to external audio files, scores, and timed in-
formation on the occurrence of musical events in order to
support audio-to-score alignment. For a high-level descrip-
tion of the standard and a recent discussion on the ben-
efits of possible applications to digital archives, see [1]).
In this context, the process of synchronization, which in-
volves identifying the note onsets, is often done manually
by experts, thus obtaining relatively precise timings of mu-
sical events, but it is very time-consuming. Even if this
may not be sufficient for some types of applications (for
example, timed score following), it may constitute a valid

1 For more information about the initiative, documentation, and exam-
ples, please visit https://ieee1599.lim.di.unimi.it/

Copyright: © 2023 Adriano Baratè, Goffredo Haus et al. This
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starting point for automatic post-processing in the absence
of a fully-automated procedure. A manual annotation pro-
cess can also result in poor annotations due to human inac-
curacy and delays introduced by the acquisition system. In
our current implementation the first step, aimed at synchro-
nizing audio to a reference score, draws inspiration from
the literature and uses Dynamic Time Warping (DTW) to
align two chromagram representations.

The second, or refinement, step is also based on a mod-
ified approach already presented in literature and an iter-
ative time-correction algorithm specially designed for this
purpose. It is worth noting that this second step can be em-
ployed regardless of the synchronization mechanism adopted
for the previous step.

The implementations are currently available in the form
of web applications that operate on IEEE 1599 documents.
Unlike other methods, such as [2], a web implementation
would ease the adoption for researchers who are not ex-
perts in locally deploying complex machine learning ar-
chitectures.

The paper is structured as follows: in Sections 2 and 3
we provide some general definitions and the approaches
that guided our solutions. In Section 4 we provide details
about the implemented solutions, while in Section 5 we
propose metrics to evaluate the performances. Finally, in
Section 6 we will present the results achieved in the test
phase, and, in Section 7 we present the current limitations
and further possible directions for this research.

2. SCORE-INFORMED TRACKING

For the first part of our process, we based our implementa-
tion on the work presented in [3], namely a score-informed
tracking algorithm.

The process can be described as follows: first, chroma-
grams are extracted from both the score and the audio;
once these two vectors are available, Dynamic Time Warp-
ing (DTW) is employed to find the best alignment of two
temporal sequences.
X := (x1, x2, . . . , xN ) represents the chroma vectors ex-

tracted from the score while Y := (y1, y2, . . . , yM ) are the
one extracted from the audio with xn, ym ∈ F , n ∈ [1 :
N ],m ∈ [1 : M ], where F is a feature space. Our imple-
mentation differs from the original one because both chro-
magrams are computed to have the same number of vectors
N = M .
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Let c : F × F → R be the difference between the two
vectors belonging to F . We obtain the matrix C(n,m) :=
c(xn, ym).

A warping path is defined as p = (p1, . . . , pL) with pl =
(nl,ml) ∈ [1 : N ] × [1 : M ] for l ∈ [1 : L] being mono-
tonic: 1 = n1 ≤ n2 ≤ · · · ≤ nL = N and 1 = m1 ≤
m2 ≤ · · · ≤ mL = M . The following condition on the
step size is also satisfied: pl+1 − pl ∈ (1, 0), (0, 1), (1, 1).
The total cost of p is defined as

∑L
l=1 c(xnl

, yml
). Once

an optimal path p∗ has been obtained we recursively com-
pute a new matrix D, that has the same size of C, where
every element D(n,m) contains the total cost of an opti-
mal warping path from t (x1, . . . , xn) and (y1, . . . , ym). A
new weight vector is also introduced (wd, wh, wv) ∈ R3.
The recursive definition of D is the following:

D(n,m) := min


D(n− 1,m− 1) + wd · c(xn, ym),

D(n− 1,m) + wh · c(xn, ym),

D(n,m− 1) + wv · c(xn, ym),
(1)

For n,m > 1. We also have that, D(n, 1) :=
∑n

k=1 wh ·
c(xk, y1) for n > 1, D(1,m) =

∑m
k=1 wv · c(x1, yk) for

m > 1, and D(1, 1) := c(x1, y1).
A diagram of the complete process is depicted in Fig. 1.

3. ONSET DETECTION

Onset-detection techniques aim at locating the occurrences
of the beginning of sound events in an audio signal. Many
of the concepts presented below have been formally de-
fined in [4].

The following definitions can help to understand some
key concepts:

• The note’s attack is the time interval in which the
note sound’s amplitude envelope grows;

• The transient is the time interval in which the signal
evolves in a relatively unpredictable way;

• The onset is a specific timing chosen to mark the
note’s transient, often corresponding to the begin-
ning of the transient or the first instant in which the
transient can be reliably detected, marking the be-
ginning of the sound event, which is what we are
interested in.

Finding the onset time is usually achieved by reducing
the signal to an Onset Detection Function (ODF), which
ideally peaks in correspondence with an onset [4].

Fig. 2 provides a graphical representation of these con-
cepts for the ideal case of a single note and a common
scheme for an onset detection algorithm.

3.1 The Complex Domain ODF

Concerning the reduction of a signal to an ODF, there are
mainly two categories: energy-based approaches and phase-
based ones, each one characterized by pros and cons. Please
note that ODFs detect the physical onsets of a signal. The
more the attacks of the notes are slow and/or soft, the more

these offsets tend to deviate temporally from the ones per-
ceived when listening.

There is a third signal-reduction approach that presents
the advantages of both the energy-based and the phase-
based approaches since it simultaneously considers the in-
formation related to the signal energy and phase. This ap-
proach, called Complex Domain (CD) [5], is implemented
in our proposed application.

In the energy-based and phase-based reduction approaches,
we assume that, locally, in regions where the signal is sta-
tionary, its amplitude and instantaneous frequency values
remain constant. To extend the assumption to both vari-
ables, a prediction of the signal values in the complex space
is introduced and then compared with the actual measure-
ment.

Let the measured value for the k-th bin of the n-th frame
of the STFT be:

Xk(n) = Rk(n)e
jϕk(n) (2)

where Rk and ϕk are the module and the phase of the cur-
rent frame, respectively.

Then, the predicted value for the same bin and frame can
be computed as:

X̂k(n) = R̂k(n)e
jϕ̂k(n) (3)

where the target module R̂k(n) corresponds to the module
of the previous frame Xk(n−1) and the target phase ϕ̂k(n)
corresponds to the sum of the phase of the previous frame
and the phase difference between the two previous frames:

ϕ̂k(n) = princarg
(
2ϕk(n− 1)− ϕk(n− 2)

)
(4)

The stationarity of the k-th bin can be calculated by mea-
suring the Euclidean distance in the complex space be-
tween predicted and measured vectors.

Γk(n) =

{[
ℜ(X̂k(n))−ℜ(Xk(n))

]2
+

[
ℑ(X̂k(n))−ℑ(Xk(n))

]2}1/2 (5)

By adding the stationarity measurements along all fre-
quency bins, we can construct the Complex Domain ODF
as:

CD(n) =
K∑

k=1

Γk(n) (6)

CD presents sharp peaks at the low-stationarity points of
the signal, and it is a robust spectrum-based ODF known
in literature [5] and still currently used as benchmark (see
[6]). As a further improvement, the proposed application
does use a differential version of CD. This choice is mo-
tivated by the fact that we want to give more importance
to sudden variations in the stationarity of the signal rather
than to its “absolute” stationarity.

Figures 3 and 4 report a comparison between pure CD
and the differential version on two audio fragments of dif-
ferent types. As a result, the peaks of the latter version tend
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Figure 1. Functional diagram for the implemented solution for Step 1. Green marks data while red marks functions that
process data.
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Figure 2. Top: An example of a single note’s attack, tran-
sient, and onset. Bottom: The phases of a typical onset
detection algorithm.

to adhere more to the ground-truth onsets of the signal than
those of the former one.

3.2 Peak Selection

Once the ODF has been calculated, to facilitate the pro-
cess of peak selection, it is possible to normalize and re-
duce the effect of the noise through smoothing. After the
post-processing, the ODF still contains peaks that do not
correspond to any signal onset. It is necessary to have a
threshold that discriminates the onset peaks from the non-

Figure 3. Pure and differential CD versions for a piano
signal.

Figure 4. Pure and differential CD versions for a saxo-
phone signal.

significant ones. A possible strategy is to set a positive
value δ and consider the peaks as onsets only when
ODF (n) ≥ δ. However, this choice would be suitable

only for signals with few variations in dynamics; in other
cases, there would be a tendency to detect fewer onsets
in the signal sections with lower dynamics, and too many
onsets where the dynamic level is high.

In literature, the most common definition of threshold for
this context makes it adapt to variations in the amplitude
of the ODF, in particular by exploiting a moving median,
as shown here:
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Figure 5. Overall view of the implemented solution.

δ̃(n) = δ+λmedian
{
ODF (n−M), ..., ODF (n+M)

}
(7)

where δ and λ are two constants that must be manually
calibrated by experimenting with signals of various types
and M is the window width of the moving median. Often λ
is set to 1 because it does not affect the results significantly.
Conversely, the choice of δ is critical, since it behaves like
an absolute threshold offset used to reduce the sensitivity
to very low ODF values. M should represent the longest
time interval within which the dynamic of the piece is not
expected to change (≈ 100 ms) [5].

After subtracting the threshold from the ODF, its local
maxima greater than 0 are chosen as the onsets.

4. WEB IMPLEMENTATIONS

The general goal of the proposed solution is to provide web
tools to perform audio-to-score synchronization. This pro-
cess can be seen as organized into two steps, as visible
in Fig. 5: the first step is the raw synchronization of au-
dio events’ onsets with symbolic score events, which can
be performed in a manual, semi-automated, or automated
way. The latter automated approach minimizes the effort
of producing a complete multi-layer musical document.
The inputs required are symbolic and audio information,
respectively; the expected output is a music document en-
coding an acceptable audio-to-score synchronization.

Step 2 is a refinement process aiming to improve the onset
synchronization of the events previously associated. For
the refinement step, in input, the application requires an
audio track on which to perform onset detection and a list
of onset timings expressed in seconds to be checked. In
output, it returns a list of readjusted timings that should
improve the list supplied in the input.

The proposed solution is based on the IEEE 1599 format,
an internationally recognized XML-based standard aiming
at a comprehensive representation of music. Structured as
a multi-layer document, an IEEE 1599 file potentially in-
cludes the General, the Logic, the Structural, the Nota-
tional, the Performance, and the Audio layers. Providing
an in-depth description of the format and its characteris-
tics would go beyond the scope of this paper; the inter-
ested reader can refer to the scientific literature on the sub-
ject [7–9]. For our purposes, it is sufficient to know that
an IEEE 1599 document can host multiple audio tracks re-
ferring to a single music piece. Musical events are listed
in a data structure known as the spine and, in the Audio
layer, these labels are associated with timings. Different

audio tracks potentially present different associations be-
tween musical events and timings, since they may come
from different performances.

In the IEEE 1599 format, rests are considered musical
events, too. 2 When rests are logically aligned with sound
events, the algorithm relies on the onsets of the latter to
synchronize the occurrence of rests. If, on the other hand,
rests take place simultaneously for all voices, the algorithm
does not correct their time positions.

The application adopts the following languages and li-
braries:

• the Web Audio API, 3 a powerful and versatile au-
dio control system for the web that lets developers
perform audio operations such as adding effects, an-
alyzing audio features, etc. In this work, the Web
Audio API is used to obtain the arrays of samples
for the audio files of the tracks to be synchronized;

• Plotly, 4 a high-level and declarative open-source li-
brary for creating graphics;

• Nayuki’s Fast Fourier Transform (FFT) algorithm, 5

a free and lightweight implementation for the opti-
mized calculation of the Discrete Fourier Transform
(DFT);

• the IEEE 1599 framework, a platform capable of
managing and manipulating IEEE 1599 documents,
used to extract the event timings to be readjusted.
Please note that the approach described in this pa-
per can be easily extended to other formats to rep-
resent event timing (e.g., CSV files or plain-text for-
mats with a list of markers, such as the ones exported
by Digital Audio Workstations); in these cases, the
IEEE 1599 technology would not be required.

Our solution implements the process described in Sec-
tion 3 and shown in Fig. 2. The spectrum of the input audio
signal is calculated through a STFT with a window size of
2048 samples and a hop size of 441 samples, as suggested
in [10].

For the validation of the refinement step, several ODFs
have been implemented and tested before choosing the fi-
nal one. Further information and an in-depth analysis of
the results are available in the Appendix (see Section 7).

The chosen ODF is standardized, i.e. scaled so that its
mean is set to 0 and its standard deviation to 1. Then, a
threshold is calculated by means of a moving median, cen-
tered in the current frame, with a window size equal to 21
frames, and subtracted.

The definition of the threshold is the one specified in
Equation 7 with δ = 0 and λ = 1. As mentioned be-
fore, the parameter δ is critical for the discrimination of
each peak as an onset. Normally, this value is chosen to

2 Conversely, in a computer-driven performance format (e.g., MIDI or
SASL/SAOL) rests would result from the absence of messages/sound.

3 https://developer.mozilla.org/en-US/docs/Web/
API/Web_Audio_API

4 https://plotly.com/javascript
5 https://www.nayuki.io/page/

free-small-fft-in-multiple-languages

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

157

https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://plotly.com/javascript
https://www.nayuki.io/page/free-small-fft-in-multiple-languages
https://www.nayuki.io/page/free-small-fft-in-multiple-languages


try to maximize onset detection on entire datasets. Choos-
ing δ = 0 frees the user from the necessity to conduct an
in-depth analysis based on data that is not available; In our
approach, the handling of low ODF values is provided by
a latter stage of processing. Fig. 4 shows the graph of an
ODF with the mentioned threshold. All its positive local
maxima in a sliding window of size 7 are considered as
onsets. Fig. 6 shows the graph of an ODF with the re-
spective peaks. We can observe that – due to δ = 0 – all
local maxima are marked as onsets, instead of the more
pronounced ones only, as in traditional approaches. For
each peak selected as an onset, the time and thresholded
ODF amplitude values are stored.

The strategy for adjusting timings is based on time neigh-
borhoods. Specifically, for each onset in the source doc-
ument, we consider all the peaks selected at the end of
the previous phase that fall within a time neighborhood of
user-defined width; in this sense, the implementation lets
the user improve the recognition of onsets based on some
features easily retrievable by a perceptual analysis. In par-
ticular, the user can discriminate between tracks with sharp
and soft onsets. This choice influences the width of the
neighborhoods: 0.1 s in the former case, 0.05 s in the lat-
ter. While this is currently a manual setting in future works
an automatic detection and dynamic adaptation to the track
type could be implemented thanks to the “transient pres-
ence detection” algorithm described in [11]. As mentioned
before, the candidate peaks are more numerous than the
real onsets of the signal, and more than one peak may fall
within each time neighborhood, since with δ = 0 we are
keeping all detected peaks.

To adaptively discard low ODF values, the choice falls on
the peak which has the maximum ODF value in the neigh-
borhood and, therefore, corresponds to the point of mini-
mum stationarity of the signal in the neighborhood. This
choice seems meaningful from a physical point of view
and allows to easily overcome the problem of the over-
abundance of peaks. Fig. 7 show two examples of time-
adjustment graphs. In the image, tapping onsets refer to
the result of a manual process where users can use a web
application to manually produce the synchronization.

Some additional scenarios must be taken into account.
First, depending on the frequency of musical events and
the window width, multiple neighborhoods of original tim-
ings can overlap. Overlaps are managed by considering a
peak only as a part of the neighborhood of the closest tim-
ing. Moreover, it is possible that a neighborhood does not
contain any peak of the ODF; in this case, the original time
is validated with no adjustment.

After the first readjustment phase based on the ODF, we
consider the average deviation between the new and the
originally notated time instants. If such a deviation is pos-
itive, the original positions on average occurred too early,
and, if negative, too late with respect to the ideal solution.
The correction step is made iterative by translating the no-
tated timings by the average deviation and then performing
a new adjustment step. The whole process is repeated un-
til either the average deviation between input and output
timings reaches a low threshold value or 10 iterations have

been performed. The results obtained during the last itera-
tion represent the final output.

The final output is an IEEE 1599 document where the Au-
dio layer contains a revised version of track timings and a
diagram similar to Fig. 7 to provide a graphical represen-
tation of the adjustments.

5. EVALUATION METRICS

This section aims to evaluate the performance of the al-
gorithm on some relevant music examples. Since ground-
truth timings are needed, we obtained or produced them by
following two processes:

1. By using Onset Leveau, a publicly-available dataset
made of 17 tracks with ground-truth onset timings
[12]. These time values, manually annotated by a
group of expert listeners, are considered a reliable
ground truth on which to measure the performance
of onset detection algorithms. The tracks are hetero-
geneous; in particular, they can be divided into solo
performances of monodic instruments (M), solo per-
formances of polyphonic instruments (P), and com-
plex mixtures of several instruments (CM); 6

2. By transcribing ad-hoc scores into MuseScore, an
open-source digital score editor, and exporting the
excerpts as IEEE 1599 documents thanks to an ad-
hoc plugin. Audio tracks can be obtained as render-
ings produced by MuseScore itself in MP3 format.
This operation also permitted obtaining an author-
itative list of accurate timings in the MP3s. Such
a list was extracted by invoking a Python script on
the corresponding MIDI files created by MuseScore
thanks to the Mido library. 7

As the algorithm employed in the second step was orig-
inally developed to adjust potentially inaccurate timings,
new lists of timings for music events had to be manually
produced and incorporated into the IEEE 1599 documents
via the Audio Mapper plugin of the IEEE 1599 Framework.
In this way, for both approaches, we had a starting scenario
in which the temporal localization of events was not neces-
sarily accurate and a ground truth that represented the ideal
results expected from the application of the algorithm.

In order to assess the proposed solution, we introduced
the following metrics. Let us call zfi the i-th ground-truth
onset time of a signal, and zoi the i-th estimated onset time
of a signal. The residuals zfi − zoi measure how far the
estimated times differ from the ground truth.

A common metric for measuring the accuracy of esti-
mated times is the Root Mean Square Error (RMSE),
which indicates how far each estimated value is, on av-
erage, from the ground truth. RMSE is defined as the
standard deviation of the residuals. Another metric that
shares the same goal is the Mean Absolute Error (MAE),

6 The database can be downloaded from http://perso.
telecom-paristech.fr/grichard/Onset_Labellizer/
Leveau.zip

7 https://mido.readthedocs.io
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Figure 6. Left: Differential CD ODF and threshold. Right: Differential CD ODF and the peaks selected as onsets.
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Figure 7. Examples of timing adjustments. Different “neighborhood” functions were adopted.

which measures the absolute value of the average resid-
ual. On one side, MAE penalizes all residuals equally,
whereas RMSE, by squaring residuals, is more sensitive
to estimates that deviate to a greater extent from the ground
truth.

If the process improves the timings, the following condi-
tions are expected to be satisfied:

• RMSE(ground, adjusted) < RMSE(ground, original);

• MAE(ground, adjusted) < MAE(ground, original).

We also compute the percentage of adjusted timings closer
to the ground truth than the original ones, called %M .

6. TESTS

The score-informed tracking algorithm has been tested with
a heterogeneous set of 21 tracks, 4 of which also appear in
the second step (the onset detection refinement). For each
track, 3 metrics have been computed against the ground
truth. Results are shown in Table 1.

In order to verify the effectiveness of the proposed solu-
tion, the application was first launched on 8 test documents

specially prepared in IEEE 1599 format. Test signals be-
long to one of the following families:

• Pitched percussive (PP) signals, for example with
keyboard instruments;

• Pitched non-percussive (PNP) signals, for example
strings or wind instruments;

• Complex mixture (CM) signals, i.e. complex mix-
tures of several instruments.

The characteristics of the analyzed tracks and the results
achieved on them using two neighborhood dimensions (0.1 s
and 0.05 s) are shown in Table 2. The last column provides
a measure of the execution time, which is formed by the
mean and the standard deviation of the times measured in
5 iterations. Please note that we are not looking for the
presence or absence of an onset; conversely, we know that
an onset is there from Step 1, and we want to move the
onset mark to the most likely timing inside a window. For
this reason, we think that scores based on mean error are
most suitable than confusion matrices of found onsets.

Then, the solution was tested on excerpts from the On-
set Leveau dataset. Compared to the scenario of IEEE
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Title Performer/Author Ensemble Avg(diff) Avg(ABS(diff)) STD(diff)
Ave Maria Andrea Bocelli Opera -0,088s 0,238s 0,462s
Intermezzo sinfonico Paul Bateman Orchestra 0,368s 0,370s 0,619s
Minuetto in Sol minore Romain Nosbaum Piano 0,051s 0,110s 0,161s
Eleanor Rigby The Beatles Strings + voice 0,012s 0,046s 0,066s
I pianti che grondano Elvira Vakhitova Piano + voice 0,051s 0,116s 0,224s
Pineapple Rag Tom Pascale Piano -0,023s 0,050s 0,070s
Gottes Macht und Vorsehung Franz Crass Piano + voice 0,010s 0,139s 0,170s
Musique d’enfants: Valse Unknown Piano 0,018s 0,076s 0,107s
City Of Stars Ryan Gosling, Emma Stone Piano + voice -0,047s 0,090s 0,140s
Gymnopedie n.1 Chase Coleman Piano -0,051s 0,114s 0,197s
Toccata Valeria Carissimi Harp 0,050s 0,060s 0,060s
Ave Verum Corpus Vienna Boys Choir 0,039s 0,134s 0,181s
Der Hölle Rache Cristina Deutekom Opera -0,184s 0,234s 0,221s
Andante religioso Barrios Mangoré Guitar 0,082s 0,191s 0,450s
Salve Decus Genitoris Unknown Choir 0,105s 0,111s 0,070s
Musette in D (T1) Johann Sebastian Bach Piano -0.067s 0.069s 0.043s
Für Elise(T2) Ludwig Van Beethoven Piano -0.044s 0.056s 0.054s
Por una cabeza (T3) Carlos Gardel String-4et -0.050s 0.065s 0.058s
September Earth, Wind and Fire Disco music -0.087s 0.087s 0.019s
The promised neverland (T4) Isabella’s Lullaby Violin -0.005s 0.037s 0.050s
The legend of Zelda Koji Kondo Orchestra -0.102s 0.102s 0.047s

Table 1. Results achieved for selected IEEE 1599 documents.

original narrow neighborhood large neighborhoodMP3 file 	 # onsets type
RMSE MAE RMSE MAE %M RMSE MAE %M

runtime ± STD

piano1 (T1) 33 s 51 PP 23 ms 17 ms 19 ms 9 ms 70.59 6 ms 4 ms 72.55 4.33 s ± 0.03 s
piano2 (T2) 33 s 60 PP 27 ms 19 ms 27 ms 14 ms 76.67 6 ms 5 ms 86.67 4.37 s ± 0.02 s
violin1 (T4) 29 s 35 PNP 49 ms 40 ms 32 ms 22 ms 71.43 56 ms 39 ms 54.29 4.76 s ± 0.10 s

violin2 16 s 41 PNP 45 ms 43 ms 35 ms 29 ms 80.49 44 ms 35 ms 70.73 2.02 s ± 0.11 s
sax 22 s 39 PNP 38 ms 33 ms 35 ms 30 ms 58.97 34 ms 29 ms 56.41 2.76 s ± 0.18 s

string 4et (T3) 18 s 54 CM, PNP 20 ms 15 ms 26 ms 19 ms 48.15 35 ms 24 ms 44.44 2.36 s ± 0.12 s
trumpet 4et 19 s 31 CM, PNP 48 ms 43 ms 67 ms 59 ms 22.58 85 ms 66 ms 32.26 2.53 s ± 0.14 s

jazz 4et 12 s 53 CM, PP 39 ms 37 ms 24 ms 10 ms 94.34 8 ms 5 ms 98.11 1.64 s ± 0.08 s

Table 2. Results for the IEEE 1599 documents specially prepared for testing. Improvements in bold, declines in italics.

category narrow neighborhood large neighborhood
µRMSE σRMSE µMAE σMAE µRMSE σRMSE µMAE σMAE

M 19 ms 3.91 ms 16 ms 3.52 ms 43 ms 9.54 ms 37 ms 9.44 ms
P 17 ms 2.15 ms 12 ms 1.52 ms 29 ms 4.71 ms 21 ms 3.36 ms
CM 18 ms 1.27 ms 14 ms 0.99 ms 25 ms 2.22 ms 19 ms 1.46 ms
sharp onsets 13 ms 1.08 ms 11 ms 0.90 ms 17 ms 1.43 ms 12 ms 1.02 ms
smooth onsets 21 ms 1.30 ms 17 ms 0.99 ms 41 ms 2.84 ms 32 ms 2.32 ms

Table 3. Aggregated results achived on Onset Leveau.

1599 documents, which also contain a Logic level with the
symbolic description of the events, in this case the score is
not available. For this reason, we prepared IEEE 1599 doc-
uments which in the Audio layer already contained ground-
truth timings. In an ideal case, the algorithm should not
change them, as they already correspond to the correct time
position of the onsets. The best results will be those where
RMSE and MAE are closest to 0.

By weighing each track by its number of onsets, the means
and standard deviations were calculated, grouping results
by track family and by the characteristics of their onsets.
These measures are respectively denoted by symbols µRMSE ,
µMAE , σRMSE and σMAE , and reported in Table 3.

Concerning the IEEE 1599 test documents, the analy-
sis of user-defined original timings highlights that, on av-
erage, they are delayed with respect to the ground truth.
This can be explained by considering the way for deter-
mining timings through the IEEE 1599 Framework: it is a
human-driven process where the user is asked to keep the
time like an “adaptive” metronome able to follow possible
agogic variations. In this sense, it is very uncommon to
perceive an onset in advance of its occurrence, whereas a
delay whose amount depends on the onset nature is nor-

mal. In general, the sharp onsets typical of a drum track
are expected to be perceived with more temporal accuracy
than the smooth ones of a violin track.

The values reported in Table 2 indicate that the applica-
tion has synchronized the onsets of the piano and the jazz
quartet tracks improving them. Due to the percussive char-
acter of the instruments, these tracks have sharp onsets that
abruptly alter the energy of the signal. This results in the
construction of ODFs with high peaks, therefore detectable
without difficulty. Being able to detect the peaks in a ro-
bust way allows us to use a neighborhood of 0.1 s in the
correction of the timings and, therefore, adjust onsets that
deviate also considerably from the ground truth.

The two violin tracks and the saxophone one, even if such
instruments do not have a percussive nature, were also im-
proved. The ODFs of these signals are generally not as
easily interpretable as those discussed above. The best re-
sults on violin tracks were obtained with the time inter-
val set to 0.05 s, which assumes that the original timings
are already quite accurate. Conversely, saxophone events,
with an ODF similar to the one in Fig. 4, were corrected
in a slightly better way with the large neighborhood. How-
ever, being the signal particularly clean, the differences in
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performance using the narrow or the large neighborhood
interval are almost negligible. The application did not im-
prove the tracks containing the string quartet and the trum-
pet quartet. In these scenarios, better results were obtained
with the narrow interval. Unfortunately, effective ODFs for
mixtures of instruments presenting smooth or undefined at-
tacks are an open problem and our current approach does
not provide improvements.

Concerning the Onset Leveau dataset, Table 3 shows that
the onset-detection accuracy by adopting the narrow neigh-
borhood always remained below a maximum value of 28 ms
in terms of RMSE. Aggregated data reported in Table 3
suggest that such precision is not strictly related to whether
the signal contains a monophonic solo instrument, a poly-
phonic solo instrument, or a mix of instruments. Rather,
precision always proved to be better when dealing with
sharp onsets instead of smooth ones, both when the neigh-
borhood was narrow and, even more so, when it widened.

7. CONCLUSIONS

The development of the solutions presented in this con-
tribution is based on the extensive literature available that
deals with the problem of audio-to-score synchronization.
The accuracy of the recalculated onset timings is inevitably
dependent on both the characteristics of the audio signal
under exam and the accuracy of the original timings. The
results obtained for instruments with sharp note attacks are
promising, and the performance of the algorithm is good
also for non-complex instrumental tracks with smooth at-
tacks. Unfortunately, results are poor for complex instru-
mental mixtures, especially when note attacks are smooth.

A challenge in assessing the performances of the appli-
cations stems from having access to ground-truth timings
and converting them into a suitable representation format.

The applications can be easily generalized to support other
timing-representation strategies, such as the lists of mark-
ers exported by many digital audio workstations and wave-
form editors. The applications and companion materials
can be downloaded from a GitHub repository 8 and [13]
and they will be integrated into the official website of the
IEEE 1599 standard. 9
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[1] A. Baratè, L. A. Ludovico, D. A. Mauro, and F. Simon-
etta, “On the adoption of standard encoding formats
to ensure interoperability of music digital archives:
The IEEE 1599 format,” in DLfM ’19: 6th Interna-
tional Conference on Digital Libraries for Musicology.
ACM, 2019, pp. 20–24.

[2] F. Simonetta, S. Ntalampiras, and F. Avanzini, “Audio-
to-score alignment using deep automatic music tran-
scription,” in 2021 IEEE 23rd International Workshop
on Multimedia Signal Processing (MMSP), 2021, pp.
1–6.

8 https://github.com/LIMUNIMI/
SMC2023WebAudio-ScoreSynchronization

9 The web player can already be used at https://ieee1599.
lim.di.unimi.it/music_collection.php

[3] F. Kurth, M. Müller, C. Fremerey, Y.-h. Chang, and
M. Clausen, “Automated synchronization of scanned
sheet music with audio recordings.” in ISMIR, 2007,
pp. 261–266.

[4] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury,
M. Davies, and M. B. Sandler, “A tutorial on onset de-
tection in music signals,” IEEE Transactions on speech
and audio processing, vol. 13, no. 5, pp. 1035–1047,
2005.

[5] J. P. Bello, C. Duxbury, M. Davies, and M. Sandler,
“On the use of phase and energy for musical onset de-
tection in the complex domain,” IEEE Signal Process-
ing Letters, vol. 11, no. 6, pp. 553–556, 2004.

[6] M. Schwabe, S. Murgul, and M. Heizmann, “Dual task
monophonic singing transcription,” Journal of the Au-
dio Engineering Society, vol. 70, no. 12, pp. 1038–
1047, December 2022.
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