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Abstract. We initiate the exploration of the cosmology of dark fifth forces: new forces acting
solely on Dark Matter. We focus on long range interactions which lead to an effective violation
of the Equivalence Principle on cosmological scales today. At the microscopic level, the dark
fifth force can be realized by a light scalar with mass smaller than the Hubble constant today
(. 10−33 eV) coupled to Dark Matter. We study the behavior of the background cosmology
and linear perturbations in such a Universe. At the background level, the new force modifies
the evolution of the Dark Matter energy density and thus the Hubble flow. At linear order,
it modifies the growth of matter perturbations and generates relative density and velocity
perturbations between Dark Matter and baryons that grow over time. We derive constraints
from current CMB and BAO data, bounding the strength of the dark fifth force to be less
than a percent of gravity. These are the strongest constraints to date. We present potential
implications of this scenario for the Hubble tension and discuss how our results are modified
if the light scalar mediator accounts for the observed density of the Dark Energy. Finally,
we comment on the interplay between our constraints and searches for violations of the
Equivalence Principle in the visible sector.
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1 Introduction

The existence of Dark Matter (DM) is supported by a large variety of observations. This
strong evidence, however, concerns only its gravitational interactions, providing no insights on
its microscopic properties. Current data leave wide open the landscape of possible DM masses
and interactions, and besides the development of a large number of experimental strategies,
we are just scratching the surface of the theoretically plausible microscopic theories of DM.
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Facing this plenitude of theoretical possibilities, it is interesting to take a more data-
driven methodology and focus on what we can learn about the nature of DM using present
and forthcoming observations. Following this approach, we initiate the exploration of DM
scenarios that can be uniquely tested with cosmological measurements at an exquisite level
of precision. These are dark sectors where DM is self interacting through a dark fifth force
which has a range comparable to the size of the observable Universe.

Cosmology offers the unique possibility of studying the very long range dynamics of DM,
where the presence of any force other than gravity results in an effective violation of the weak
Equivalence Principle (EP). The idea is to use the Universe as a “scale” and try to measure
by how much the inertial and gravitational masses of DM can differ in light of the available
data. In this sense, cosmological observations can be viewed as dark fifth force experiments,
in analogy with the many tests of long range forces in the visible sector [1–3].

In this paper we begin a systematic study of the cosmological signatures of dark fifth
forces. As the first step we focus on the constraints from linear cosmology, looking at the
current Cosmic Microwave Background (CMB) data from Planck [4] and Baryon Acoustic
Oscillations (BAO) data [5–8]. For concreteness, we consider the case where the dark fifth
force is mediated by trilinear interactions of the DM with a light scalar mediator, whose mass
we take to be lighter than or equal to the size of the Universe today (mϕ . H0 ' 10−33 eV).
We leave the exploration of constraints from non-linear cosmology, as well as different mass
regimes and non-minimal realizations of a dark fifth force, for future works.

The presence of a long range force between DM particles severely affects both the
cosmological background and the linear regime of perturbations, resulting in a strong upper
bound on its strength. We will show this is constrained to be roughly two orders of magnitude
weaker than gravity, as long as the mass of the scalar and its initial displacement from the
origin are small enough to make its contribution to the vacuum energy negligible. This
scenario, which we call a “pure fifth force” or 5F for short, was first studied in refs. [9–12]
(see also later discussions of possible observational imprints [13–17], including on galactic
scales [18, 19]).

In the opposite regime, the light scalar vacuum energy can account for the observed
amount of Dark Energy (DE) today. In this scenario, which we call Coupled Dark En-
ergy (CDE), the scalar is a quintessence field coupled to the DM through trilinear interactions
and minimally coupled to gravity. Such interaction between DM and DE was first studied
in refs. [20–22] and has been subject of intense activity in subsequent literature [23–36]. In
our simple setup and with natural values for the scalar potential, the tuning of the initial
displacement of the scalar field required to match the value of the Cosmological Constant (CC)
does not allow us to take the mass of the scalar arbitrarily small and at the same time retain
an observable coupling with DM. Saturating this condition (i.e. taking the highest possible
mass mϕ = H0) yields constraints on the strength of the coupling similar to the ones for a
pure fifth force.

Finally, we take a look at the generic implications of the presence of a dark fifth force
on a consistent relativistic theory of DM. Requiring naturalness of the scalar potential forces
the DM mass to be below about 10−2 eV. This bound could be overcome in non-minimal
models (for instance imposing supersymmetry in the dark sector), but it indicates a generic
correlation between a dark sector endowed with a fifth force and ultralight DM produced in
the early Universe through the misalignment mechanism [37–39]. We explore the parameter
space of simple axion DM scenarios and discuss the interplay between the dark fifth force
constraints derived here and fifth force constraints in the visible sector.
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This paper is organized as follows. In section 2 we illustrate our framework, deriving the
equations that govern the dynamics of DM in the presence of a fifth force and of the fifth
force field itself. We then study the behavior of the background in section 3 and move to
the linear perturbations in section 4. The constraints derived from CMB and BAO data are
discussed in section 5. In section 6 we comment on the interplay between our constraints
and searches for EP violation in the visible sector. Section 7 contains our conclusions. In a
triptych of appendices A, B, C we give further technical details about the equations governing
the cosmological dynamics.

2 Framework

In this section we show how to describe the cosmological imprints of a dark fifth force. We
start in section 2.1 by studying the behavior of a DM particle in the presence of an external
gravitational field plus a scalar fifth force. We then derive the equations governing a fluid of
DM particles in the non-relativistic limit. This limit is the one relevant for DM, although
in principle our derivation could apply to relativistic fluids like neutrinos [40, 41]. The
relativistic expressions are provided in appendix A. In section 2.2 we give explicit examples of
full relativistic quantum field theories realizing this fluid behavior and outline their properties.

We assume the Universe is described by a flat FLRW metric and consider only scalar
perturbations around it, which can be written in Newtonian gauge as

ds2 = −
(
1 + 2Ψ(x, t)

)
dt2 + a2(t)

(
1 + 2Φ(x, t)

)
δijdxidxj , (2.1)

where Ψ and Φ coincide with the two gauge invariant Bardeen potentials [42]. For some
applications we will make extensive use of other gauges, in particular the synchronous gauge,
to which coordinate transformations are well known [43].1 The equations governing the
perturbations in synchronous gauge are provided in appendix B.

2.1 Particles and fluids

In the classical limit, we can derive the worldline of a DM particle (independently of its spin)
in an external background with a non trivial metric gµν and a scalar fifth force s [22] as

Sχ = −
∫

dλ mχ(s)
√
−gµν

dxµ
dλ

dxν
dλ , (2.2)

for some affine parameter λ. We take mχ(s) to be a function of s only, whose explicit form
depends on the microscopic interactions between the DM and the scalar fifth force. By varying
the action we find the geodesic equation

d2xµ

dσ2 + Γµνρ
dxν
dσ

dxρ
dσ + ∂ logmχ(s)

∂s

∂s

∂xν

(
gµν + dxµ

dσ
dxν
dσ

)
= 0 , (2.3)

1The synchronous gauge is a full gauge fixing of the metric only if the perturbations are defined in a frame
comoving with one (or more) pressureless species that follows the standard General Relativity geodesics. This
is not the case for DM interacting with new light degrees of freedom, hence strictly speaking the synchronous
gauge cannot be defined in our setup. We then defined the synchronous gauge with respect to a small
fraction of regular cold Dark Matter (CDM) ρc, not subject to the new long range force. In particular, we set
Ωc = 10−5 today and we checked that this value has no observational impact given the current uncertainties of
cosmological data.
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where dσ =
√
−gµν dxµ

dλ
dxν
dλ dλ and the Γ’s are the usual Christoffel symbols. The fact that

the DM mass does not drop out from the integral in eq. (2.2) indicates a violation of the EP
in the dark sector, which results in a modification of the DM geodesic equation controlled by
the space-time profile of the scalar field s.

We define the 4-momentum of the χ particles as

Pµ ≡ dxµ
dλ =

(
(1−Ψ)E, (1− Φ)pi/a

)
, (2.4)

with the mass shell condition gµνP
µP ν = −m2

χ(s) providing the dispersion relation E =√
m2
χ(s) + p2. This allows us to rewrite the geodesic equation as

dPµ
dλ + ΓµνρP νP ρ + 1

2
∂ m2

χ(s)
∂s

∂s

∂xν
gµν = 0 , (2.5)

which in the non-relativistic limit and in flat space-time reduces to the form ẍi = −∇iΨ−
(∂ logmχ(s)/∂s)∇is. We clearly see that the particle acceleration feels both the gravitational
force (the gradient of the gravitational potential) and the scalar fifth force.

The DM single particle phase space density fχ(x, t,p) satisfies the Vlasov equation [44]

∂fχ
∂t

+ dxi
dt

∂fχ
∂xi

+ dpi
dt

∂fχ
∂pi

= 0 , (2.6)

where we treat the DM as a collisionless fluid and encode its interaction with the fifth force in
the geodesic equation, very much as we do with gravity. This treatment is consistent as long
as the fifth force mediator s has a large occupation number and can be viewed as a coherent
field acting on test particles.

We then proceed and compute the first two moments of the Vlasov equation, assuming
χ to be pressureless (i.e. neglecting terms of order p2/E2 or higher) and expanding to the
linear order in the metric perturbations. The resulting continuity and Euler equations read

ρ̇χ + 3(H + Φ̇)ρχ + 1
a
∇i(ρχviχ)− ṡ ∂ logmχ(s)

∂s
ρχ = 0 , (2.7)

(ρχviχ)· + 1
a
∇jΣij + 4Hρχviχ + ρχ

a
∇iΨ + ρχ

a

∂ logmχ(s)
∂s

∇is = 0 , (2.8)

where ρχ =
∫

d3pEfχ/(2π)3 is the energy density, viχ = ρ−1
χ

∫
d3ppifχ/(2π)3 is the fluid

velocity, H is the Hubble parameter and ()· indicates derivatives with respect to the coor-
dinate time t. The equations are fully non-linear in the χ density and velocity perturba-
tions. The piece of Eq. (2.8) containing the second moment of the phase space distribution,
Σij =

∫
d3ppipjfχ/[(2π)3E], needs to be included for a perturbative treatment beyond linear

theory [45, 46].
The presence of the new long range force modifies the Euler equation in eq. (2.8),

introducing a new acceleration term similar to the one induced by the gravitational potential,
but controlled by the field dependence of the DM mass. This was expected, since the
classical non-relativistic 1/r potential generated by the exchange of the fifth force adds to
the gravitational potential in flat space-time. Interestingly, the effect of the new force can be
rewritten as the gradient of the inertial mass, ρχ(∂ logmχ(s)/∂s)∇is = nχ∇imχ(s), which
shows once again how the presence of a scalar force induces a violation of the EP.
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The continuity equation in eq. (2.7) is also modified, reflecting the fact that only the
total energy density of χ and s is conserved. This introduces an explicit dependence of the
DM density on the time evolution of the fifth force field s , which will impact the behavior of
the cosmological background (discussed in section 3) and the growth of density and velocity
perturbations (discussed in section 4). These effects cannot be easily decoupled parametrically
from the modification of the Euler equation and need to be included in a complete description
of the fifth force dynamics. As a result, the imprints of a fifth force in the cosmological
observables cannot be fully captured by looking purely at the non-relativistic limit of the
Vlasov equation, as done for example in refs. [12, 47].

A completely equivalent way of deriving the fluid equations above would have been to
start from the energy-momentum tensor for the microscopic degrees of freedom, and then
rewrite it in terms of the macroscopic fluid variables. We explicitly show this derivation in
appendix A.

2.2 Fields

The continuity and Euler equations for DM should be complemented with the equations
describing the dynamical evolution of the scalar fifth force and gravity. In general, the
microscopic Lagrangian controlling the fifth force and DM dynamics can be parametrized as

L = Kχ − Vχ +Ks − Vs − Vint , (2.9)

where Kχ is a canonical kinetic term for the DM and Vχ is its potential energy.2 On the
other hand, Ks and Vs are the kinetic and potential energy of the fifth force field, and Vint
parametrizes the interactions between the two species. To strengthen the analogy with the
gravitational potential we define the 5th force kinetic term as Ks ≡ −∂µs∂µs/(2Gs), where s
is dimensionless, like metric perturbations are, and Gs is a dimensionful constant analogous
to GN . We thus define the dimensionless ratio

β ≡ Gs
4πGN

, (2.10)

which determines the strength of the 5th force with respect to gravity. The Einstein and
Klein-Gordon (KG) equations are written as

Gµν = 8πGN
∑

x=χ, s, ...

Tµνx , (2.11)

2s−Gs
∂Vs
∂s

= Gs
∂Vint
∂s

, (2.12)

where 2s ≡ 1√
−g ∂µ (√−g gµν∂νs) is the KG operator. Energy-momentum conservation for

the sum of the DM and fifth force fluids requires ∇µ(Tµνχ + Tµνs ) = 0 , but the individual
stress tensors are not conserved. We thus have the freedom to choose which stress tensor the
interaction term Vint is contributing to. We find it convenient to package the interaction in
the DM stress tensor, which makes transparent the appearance of the field dependent mass
mχ(s) and its relation with the interaction term Vint. With this choice we can write ∇µTµνχ =
−∇µTµνs = −(∂Vint/∂s)∂νs, where the DM energy density is given by ρχ = 2(Vχ + Vint)
assuming the DM to be pressureless (see appendix A for a detailed discussion).

2We stress that, despite the notation, the DM is not assumed here to be a scalar.
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At this point, we pause briefly to discuss the decoupling limit of the 5th force, which
is not entirely trivial due to the use of the dimensionless field variable s. The rewriting
Ks = −∂µs∂µs/(8πGNβ) makes it apparent that in the decoupling limit β → 0, s ∼ β1/2 is
required in order to keep fixed the kinetic term of the 5th force field. Therefore the last piece
on the left-hand side of the continuity and Euler equations, (2.7) and (2.8), vanishes. The
decoupling is also manifest in the KG equation (2.12), where the right-hand side vanishes
because Vint is at least linear in s. To inspect the decoupling in the Einstein equation (2.11)
it is useful to recall the structure of the DM stress tensor,

(Tχ)µν = (derivative terms)− gµνVχ − gµνVint , (2.13)

whose last term vanishes for β → 0. In summary, in the decoupling limit we recover two
non-interacting species (and fluids) with separately conserved stress tensors, as expected.

So far our discussion has been general, but we now focus on the minimal scenarios of
interest in this work, where both Vχ and Vint are quadratic in χ. We assume Vχ to contain only
a mass term for DM while the DM interaction with the fifth force takes the schematic form
Vint ∼ χ2F (s), with F (s) some function of the 5th force field. As discussed in appendix A, in
this case the relation ρχ = 2(Vχ + Vint) can be written as

∂Vint
∂s

= ρχ
∂ logmχ(s)

∂s
, (2.14)

which provides an explicit map between the microscopic interactions in the field theory
picture (the left hand side of the equation) and the fluid description (the right hand side of
the equation).

We now write two explicit particle physics models as examples of the microscopic
interpretation to the parameters Gs and mχ(s). The simplest way to realize a dark fifth
force scenario is through a trilinear interaction between the Dark Matter particle χ and the
scalar mediator ϕ (taken to have canonical field dimension). While in this paper we focus
on this simple case, we emphasize that our formalism applies to any interaction of the form
Vint ∼ χ2F (s), provided F (s) can be expanded as a power series ∑n≥ 1 cns

n where cn are
dimensionless coefficients.

Explicitly we can write

Lfermion DM = −1
2χ(

→
/∇ −

←
/∇)χ−mχχχ−

1
2∂µϕ∂

µϕ− Vs(ϕ)− gDϕχχ , (2.15)

Lscalar DM = −1
2∂µχ∂

µχ− 1
2m

2
χχ

2 − 1
2∂µϕ∂

µϕ− Vs(ϕ)− gDmχϕχ
2 , (2.16)

where the DM χ is a Dirac fermion in eq. (2.15) or a real scalar in eq. (2.16). The non
relativistic potential generated in Minkowski space-time by the exchange of the scalar fifth
force with the DM particles as external sources can be written as V (r) = −g2

De
−mϕr/(4πr)

independently of the DM spin. As a consequence, at distances r � m−1
ϕ the long range

force is equivalent to a shift in Newton’s constant, GN → GN (1 + β), where β was given in
eq. (2.10) and we defined

s = G1/2
s ϕ , Gs = g2

D

m2
χ

. (2.17)

The field dependent DM mass ismχ(s) = mχ(1+s) for fermionic DM andmχ(s) = mχ

√
1 + 2s

for real scalar DM.

– 6 –
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A non-polynomial dependence of the DM mass on the fifth force field can in principle
be realized if ϕ is a non-minimally coupled scalar in Brans-Dicke theories [48], a string
theory dilaton [49], or the dilaton of spontaneously broken conformal symmetry [50]. The
cosmological implications of mχ(ϕ) = mχe

−βϕ/MPl for an ultralight scalar were considered
already in the seminal papers on coupled quintessence [20, 21]. In this work we do not consider
these scenarios, leaving a detailed analysis for future study.

2.3 Fifth force potential and naturalness

As our goal is to study the phenomenology of a new long range attractive force operating
in the dark sector, the force mediator ϕ is assumed to have physical mass smaller than or
equal to the Hubble scale today and to interact with DM through trilinear interactions like
the ones in eq. (2.15) or eq. (2.16). In general, we can consider the renormalizable potential
for the scalar fifth force mediator

Vs(ϕ) = 1
2m

2
ϕϕ

2 + cϕ
3 ϕ

3 + λϕ
4 ϕ4 , (2.18)

where naturalness requires its parameters to be as large as the size of the radiative corrections
controlled by the interaction strength with DM. Explicitly we find for both scalar and
fermionic DM

m2
ϕ &

β

(4π)2
m4
χ

M2
Pl
, cϕ &

β3/2

(4π)2
m4
χ

M3
Pl
, λϕ &

β2

(4π)2
m4
χ

M4
Pl
, (2.19)

where MPl = (8πGN )−1/2 = 2.4 × 1018 GeV is the reduced Planck mass and we used the
definitions in eq. (2.10) and eq. (2.17) in the estimates above. For simplicity, in this paper we
take Vs to contain just a mass term m2

ϕϕ
2/2. Nonetheless, we have checked that a very similar

cosmology is obtained by considering for instance a purely quartic potential with effective
coupling λϕ = βm2

ϕ/(s̄2M2
Pl), where s̄ is the typical field value during matter domination (see

for example figure 1). Taking a linear combination of mass, cubic and quartic would also
leave our results qualitatively unchanged.

We recall here that for a scalar field with physical mass much larger than H0, the
purely quadratic and purely quartic potentials result in very different late-time evolutions,
in particular for the cycle-averaged background energy density of the scalar, as thoroughly
studied in the decoupled case [51–53]. An extension to include a coupling to DM has been
made in ref. [54], where a scalar field with purely quartic potential playing the role of Early
DE was considered.3

Requiring mϕ . H0 and the naturalness of the fifth force potential in eq. (2.19) can be
read as an upper bound on the DM mass (see also ref. [34]),

mχ . β−1/4 (4πmϕMPl)1/2 ' 0.02 eV
(0.01

β

)1/4 (mϕ

H0

)1/2
, (2.20)

where we set as reference for β the ballpark value of our cosmological constraints, as derived
later in section 5. Therefore, a relativistic field-theoretical description of the dark fifth force
mediator without fine-tuning requires the DM to be an ultralight boson. In this mass region

3The formal correspondence between our description and the one in ref. [54] is {mχ(ϕ), ρχ, Vs(ϕ)} ↔
{A(φ), ρ̃dmA(φ)4, V (φ)}, so that their perturbation equations in synchronous gauge match ours (reported in
appendix B) after the identifications δχ ↔ δ̃dm + 4(∂ logA(φ)/∂φ)δφ and θχ ↔ θ̃dm.

– 7 –
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the DM may for instance be an axion, produced via misalignment or other non-thermal
mechanisms. While this observation does not affect our analysis of the cosmology, we will
return to its implications for particle physics in section 6. One should also keep in mind
that the naturalness bound in eq. (2.19) can in principle be circumvented in non minimal
DM models, for instance enforcing supersymmetry in the dark sector. In such non minimal
scenarios the DM could be heavier and possibly fermionic.

Having introduced our theoretical framework, we are now ready to present the background
and first order cosmological dynamics in the next two sections. For definiteness, when providing
numerical results we always refer to a representative model with scalar DM and purely
quadratic fifth force potential, namely −L = (∂µχ∂µχ+m2

χ(s)χ2)/2+M2
Pl(∂µs∂µs+m2

ϕs
2)/β

with mχ(s) =
√

1 + 2s . However, we emphasize again that our findings have little dependence
on the DM spin and the precise form of the ϕ potential.

3 Cosmological background

At the background level, the momentum of the χ particles redshifts with the expansion of
the Universe like the one of all other particles, ṗi = −Hpi. This guarantees the existence
of a frame where the spatial part of the fluid 4-velocity of each species is zero, hence
homogeneity and isotropy are preserved. We thus split each variable in a background
component plus a perturbation around it, with the former depending only on time. For
example ρχ = ρ̄χ(t) + δρχ(x, t) and s = s̄(t) + δs(x, t), and so on for the other species.

The equation of motion for the background DM density is directly obtained from the
continuity equation (2.7). Switching to conformal time τ we have

ρ̄′χ + 3Hρ̄χ = ρ̄χ
∂ logmχ(s)

∂s
s̄′ , (3.1)

where ()′ denotes derivatives with respect to τ and H = a′/a is the conformal Hubble
parameter. The field dependent mass and its derivatives are, here and throughout the
text, evaluated in the background. Eq. (3.1) can also be derived by writing in the non-
relativistic limit ρ̄χ = mχ(s)n̄χ and imposing conservation of the comoving number density,
n̄′χ + 3Hn̄χ = 0. We see that while the number density of DM scales proportionally to the
volume (i.e. n̄χ ∼ a−3), the energy density does not, unless s̄ is constant. As we show below,
the KG equation forces s̄′ < 0 throughout the cosmological history so that the right-hand
side of eq. (3.1) is negative and non-zero, corresponding to a net energy transfer from the
DM to the 5th force field which modifies the redshift behavior of the DM energy density.

The KG equation for the scalar field is

s̄′′ + 2Hs̄′ +Gsa
2Vs,s +Gsa

2ρ̄χ
∂ logmχ(s)

∂s
= 0 , (3.2)

where Vs,s ≡ ∂Vs/∂s, and for the remainder of this paper by Vs we always indicate the self
interaction of s in the background, and similarly for its derivatives. The above equation is
derived starting from the Lagrangian for the fields, eq. (2.12), and rewriting the source term
as a function of the χ fluid variables according to eq. (2.14). At the background level the
energy density and pressure of the 5th force mediator are

ρ̄s = (s̄′)2

2Gsa2 + Vs , Ps = (s̄′)2

2Gsa2 − Vs , (3.3)

– 8 –
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satisfying the equation of motion

ρ̄′s + 3Hρ̄s(1 + ws) = −ρ̄χ
∂ logmχ(s)

∂s
s̄′ , (3.4)

where ws ≡ Ps/ρ̄s is the equation of state parameter of the 5th force fluid. The sum of this
equation with (3.1) is identically zero on the right hand side, reflecting the energy conservation
for the total fluid.

3.1 New cosmological parameters
The background evolution depends on three new parameters beyond the ones of ΛCDM: i)
the dimensionless quantity β as defined in eq. (2.10) determines the coupling strength of the
5th force in units of GN ; ii) the mass of the 5th force mediator mϕ is assumed to be smaller
than H0 in order for the interaction to be long range till today; iii) the dimensionless initial
background value of the 5th force field s̄ini controls the size of its contribution to the vacuum
energy, together with mϕ and β.4

We consider two physically distinct scenarios where the scalar field s plays different roles
in the cosmological history:

• Pure Fifth Force (5F): the scalar field s leaves observable imprints only by mediating
a long range force between DM particles, whilst its energy density ρ̄s remains negligible
throughout the cosmological history. In this case we set s̄ini to a very small value (for
definiteness we choose s̄ini = 10−4) and determine the value of the CC density parameter
ωΛ that satisfies the closure condition today, ∑i ω

0
i = h2. In the 5F scenario the

evolution of the s background undergoes the phases A and B described in section 3.2.

• Coupled Dark Energy (CDE): in addition to mediating a 5th force, s also accounts
for the DE. In this case we set the CC to zero, ωΛ = 0, and fix the initial field value
s̄ini by imposing the closure condition ∑i ω

0
i = h2. The fine-tuning of the CC is thus

replaced by the fine-tuning of the initial conditions for s. The required initial field
value is always much larger than in the case of a pure 5th force: assuming a quadratic
potential Vs, for a scalar mass mϕ ∼ H0 one finds s̄ini ∼ O(1) whereas for smaller masses
the initial condition scales as s̄ini ∼ H0/mϕ.5 In the CDE scenario the s background
evolution consists of phases A, B, and C as detailed in section 3.2.

Finally, the energy density of the χ particles, ωχ, replaces the one of standard CDM. For
practical reasons, Boltzmann codes like CLASS [55, 56] take as input the present day value of
the energy density of each species, ω0

i , and evolve it back to the desired initial redshift using
the well known behavior with the scale factor of CDM, baryon, photons, etc. This is not
possible in our case, because we do not know a priori the exact time dependence of ωχ and
ωs. For consistency with the other species, we use as input parameter the energy density that
the χ particles would have had they evolved with a−3 like CDM. We dub this parameter ω̃d
and set the initial density of χ as

ωχ(aini) ≡ ωini
χ = ω̃d a

−3
ini . (3.5)

Clearly, ω0
χ 6= ω̃d and the procedures described above enforce flatness.

4The initial value of the derivative s̄′ini is also required to solve the KG equation, but this is determined as
a function of the other input parameters as discussed in section 3.2.

5Since s̄ undergoes only a modest relative change across cosmic time, the vacuum energy can be estimated
directly from its initial value. Requiring the scalar to account for the DE today imposes (Vs)ini = m2

ϕM
2
Pls̄

2
ini/β ∼

3H2
0M

2
Pl , from which the scaling s̄ini ∼ H0/mϕ follows.
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3.2 Background behavior
The background field s̄ exhibits a remarkably rich cosmological history, consisting of several
successive epochs characterized by distinct dynamics. Its evolution directly impacts the one
of the DM density, as can be seen by solving eq. (3.1):

ωχ(a)
ω̃d

= mχ(s̄)
mχ(s̄ini)

a−3 . (3.6)

Since s̄ is a monotonically decreasing function of time,6 χ redshifts faster than CDM. We
now present an analytical understanding of the solutions across cosmic time. The analytical
approximations we provide are in very good agreement with numerical results, which are
presented in section 3.3 below.

A) Radiation dominated era: ρ̄s ∝ a−2. During radiation domination (RD, where
H = 1/τ at zeroth order in β) the s self-interaction can be neglected in the KG equation,
Vs,s � ρ̄χ(∂ logmχ(s)/∂s). We proceed perturbatively in β, making the approximations

∂ logmχ(s)
∂s

= constant , Ωχ(a) = Ω̃da
−3 , (3.7)

where Ω̃d = ω̃dh
−2. The KG equation is then solved by

s̄ ' s̄ini −
3β
4
∂ logmχ(s)

∂s

Ω̃d

(Ω0
r)1/2H0(τ − τini) , (RD) (3.8)

where a solution scaling as τ−1 has been discarded, and we have used the leading-order
expression a = (Ω0

r)1/2H0τ , with Ω0
r = Ω0

γ+Ω0
ν if neutrino masses are neglected. Quantitatively,

the linear dependence on a implies that s̄ remains approximately constant until matter-
radiation equality, as seen in figures 1 and 3. However, several insights can be extracted
from eq. (3.8). First, it determines the natural value of s̄′ini as a function of the other input
parameters. Second, via eq. (3.3) it establishes that for the very small potentials Vs relevant
to this work, ws = +1 throughout RD. However, the energy density does not scale as a−6, as
it would for a decoupled field with w = +1, but redshifts as ρ̄s ∝ a−2 instead. Consistency
with the fluid equation (3.4) then requires the following quantity to be a constant of motion,

ρ̄χ(∂ logmχ(s)/∂s)s̄′
3Hρ̄s(1 + ws)

= −2
3 , (RD) (3.9)

which can be easily checked using the approximate analytical solution and is verified numeri-
cally to high accuracy. The fraction of the total energy density stored in s grows rapidly as
ρ̄s/ρ̄tot ∝ a2 until matter-radiation equality. This solution is in fact an attractor, to which
trajectories with initial velocity s̄′ini larger or smaller than the one fixed by eq. (3.8) rapidly
converge. Such trajectories correspond to a nonzero coefficient for the τ−1 solution that was
discarded in eq. (3.8). If the coefficient is negative, s̄′ini is larger than the natural value and
ρ̄s undergoes an initial period of kination with a−6 scaling before converging to the attractor.
If the coefficient is positive, there is an initial phase of kination that ends when ρ̄s reaches
zero, after which the trajectory very quickly converges to the attractor. These features are
clearly visible in figures 2 and 4.

6This applies generally during the radiation and matter dominated eras, when the evolution is driven by the
interaction with DM. That it also holds during the DE dominated epoch depends on our choice of quadratic
potential for s.
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Figure 1. (Left) The time evolution of s̄ in a pure 5th force scenario, assuming β = 0.005. In the
analytical solution for the MD epoch, eq. (3.10), we have set s̄eq = s̄ini . (Right) The same as in the left
panel, but now assuming s is a Coupled Dark Energy field. The vertical dot-dashed line corresponds
to the redshift at which the s equation of state parameter crosses zero as it transitions from ws = +1
to ws = −1, derived analytically in eq. (3.17).
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Figure 2. (Left) In the top panel, the time evolution of the energy density of the different species in a
pure 5th force scenario, assuming β = 0.005. The bottom panel shows the fractional contributions. For
the scalar field s, the light orange dotted line shows the analytical estimate of ρ̄s/ρ̄tot during early MD,
as found in eq. (3.12). In both panels, light orange dashed curves show the scalar field evolution starting
from initial values of s̄′ different from the natural expectation determined by eq. (3.8): from bottom
to top, s̄′ini = {0, 102, 104}(s̄′ini)natural . (Right) The same as in the left panels, but now assuming s is a
Coupled Dark Energy field.
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B) Early matter dominated era: ρ̄s ∝ a−3. At least for the early part of matter
domination (MD, where H = 2/τ at leading order in β), the self interaction potential Vs
remains negligible both in the KG equation and in the s equation of state. Making again the
approximations in eq. (3.7), the KG equation is solved by

s̄ ' s̄eq − 2β∂ logmχ(s)
∂s

fχ log τ

τeq
, (MD) (3.10)

where we defined
fχ ≡

ρ̄χ
ρ̄m
' Ω̃d

Ω̃d + Ω0
b

, (3.11)

with the last equality holding at zeroth order in β. A solution scaling as τ−3 has been
discarded in order to match to the evolution in RD and the leading order expression of the
scale factor a = (Ω̃d + Ω0

b)H2
0τ

2/4 has been used.
Since ws = +1, one immediately obtains ρ̄s ∝ a−3 and a simple estimate for the

(constant) fraction of energy density in s (see also ref. [21]),

ρ̄s
ρ̄tot
' β

3

(
∂ logmχ(s)

∂s
fχ

)2
. (MD) (3.12)

In addition, we derive perturbative solutions up to O(β) for Hubble and the DM density
fraction, focusing on the 5F scenario where s̄eq ≈ s̄ini ≈ 0 in eq. (3.10). The second Friedmann
equation is written as

a′′ = H2
0

2 a3Ωtot '
H2

0
2 (Ω̃d + Ω0

b)
[
1− 2βf2

χ

∂ logmχ(s)
∂s

log τ

τeq
+ β

3 f
2
χ

(
∂ logmχ(s)

∂s

)2]
,

(3.13)

and it is solved by

a = 1
4(Ω̃d + Ω0

b)H2
0τ

2
(

1− 2βf2
χ

∂ logmχ(s)
∂s

log τ

τeq

)
, (MD, 5F) (3.14)

where non-log-enhanced terms have been dropped, since they are numerically negligible. Thus,

H(a) = a′

a2 = H0(Ω̃d + Ω0
b)1/2a−3/2

(
1− β

2 f
2
χ

∂ logmχ(s)
∂s

log a

aeq

)
. (MD, 5F) (3.15)

We also exploit eq. (3.6) to write a perturbative expression for the DM density fraction,

ωχ(a)
ω̃d a−3 = 1− βfχ

∂ logmχ(s)
∂s

log a

aeq
. (MD, 5F) (3.16)

The appearance of the logarithms in eqs. (3.15) and (3.16) implies that the deviation from
ΛCDM of the background evolution is parametrically enhanced by a factor . log (1 + zeq) ≈ 8
with respect to the naively expected size of O(β). The log-enhanced effects encoded by these
formulae match well the numerical results, as shown in figure 5.

If s is a pure 5th force field, the above solutions persist until the CC comes to dominate
the total energy density of the Universe. In this final phase of CC domination the dynamics is
modified, but eq. (3.12) still provides a good estimate of the s energy density fraction today,
as can be seen in the left panels of figures 2 and 4.
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Figure 3. Same as figure 1, but for β = 0.02.

�����

���

����

����

�� ���� ��� ���

��-��

��-�

��-�

����

�����

���

����

����

�� ���� ��� ���

��-��

��-�

��-�

����

Figure 4. Same as figure 2, but for β = 0.02.

C) Late matter dominated era: ρ̄s ' constant . If s is a coupled quintessence field the
above discussion applies, but at some time during MD the equation of state eventually changes
from ws = +1 to ws ' −1, crossing zero when the equality (s̄′)2 = 2Gsa2Vs is satisfied. For
the assumed quadratic form of Vs, this corresponds to

log across '
2
3 log

(
β

s̄ini

∂ logmχ(s)
∂s

Ω̃d

(Ω̃d + Ω0
b)1/2

H0
mϕ

)
. (ws crosses 0 , CDE) (3.17)

Since s̄′ ∝ β, increasing the 5th force coupling strength delays this crossing (i.e. it decreases
| log across|) if all other parameters are kept fixed. On the other hand, in the limit mϕ � H0
one would find the scaling 1� s̄ini ∝

√
βH0/mϕ, leading to across ∝ (mϕ/H0)2/3. Hence, a

smaller mϕ/H0 corresponds to an earlier crossing. Equation (3.17) is an excellent estimate
of the time when the transition takes place, as demonstrated by the second row of panels
in figure 5.
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Figure 5. (Left) From top to bottom: Hubble normalized to ΛCDM, equation of state parameter for
the 5th force field, DM density ωχ normalized to CDM, and comoving distance normalized to ΛCDM,
for β = 0.005. We focus on the time evolution from matter-radiation equality onwards. Dashed and
dot-dashed lines correspond to analytical approximations discussed in the text. (Right) Same as in the
left panels, but for β = 0.02.

After the transition to ws ' −1, initially the potential term is still negligible in the KG
equation and the approximate solution (3.10) still applies, giving ρ̄s ' m2

ϕs̄
2/(2Gs) ' const,

modulo a logarithmic evolution. Eventually, the potential energy dominates in the KG
equation too and s effectively becomes a decoupled quintessence field. This new regime,
however, does not modify the scaling of the s background energy density because the fluid
equation (3.4) now has the decoupled solution ρ̄s ∝ a−3(1+ws) ' const , since ws ' −1.

Finally, once Ωs becomes of O(1) the dynamics follows well-known solutions from
(decoupled) quintessence models, see e.g. ref. [57] for a review.
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3.3 Numerical results

Numerical solutions for background quantities are obtained through implementation in
the Einstein-Boltzmann solver CLASS [55, 56]. In all cases the input parameters include
{β, mϕ/H0, Ω̃d} beyond the ΛCDM ones. Two distinct shooting procedures are applied
depending on the scenario considered: for pure 5th force, s̄ini is set to 10−4 and ωΛ is
determined by imposing the closure condition today; for Coupled Dark Energy, ωΛ is set to
zero and s̄ini is determined from the closure requirement. The background solutions have also
been cross-checked using a Mathematica code where the evolution equations were transformed
into a system of first-order ODE, as done in ref. [58] by generalizing previous methods [59].

Figures from 1 to 5 show the evolution of background quantities, focusing on four
benchmark cosmologies (beside ΛCDM): for the case of 5F we set mϕ/H0 = 0.1, taking
β = 0.005 or 0.02; for CDE we take mϕ/H0 = 1 and again β = 0.005 or 0.02. Anticipating
the results of section 5, the smaller choice β = 0.005 corresponds approximately to the
95% c.l. upper bound we have set in the 5F scenario using Planck and BAO data. On the
other hand, the stronger coupling β = 0.02 is well within our bounds in the CDE scenario
and is instructive for the 5F case as well, where it qualitatively represents the larger values
β ∼ 0.01 that may resolve the Hubble tension. For concreteness, in this section we set
all standard ΛCDM parameters to their Planck best fit values [4]. In addition, we take
Ω̃d = 0.27. The same benchmarks are also used in section 4 when presenting the dynamics of
cosmological perturbations.

The second row of figure 5 confirms that in the CDE scenario the transition from ws = +1
to ws ≈ −1 takes place during late MD, as predicted by eq. (3.17). Furthermore, a departure
from ws = +1 is observed in the 5F scenario as well, during the CC-dominated phase. This is a
consequence of the choice mϕ/H0 = 0.1; for smaller mass of the scalar, ws ≈ +1 would persist
until today. Finally, the last row of figure 5 shows the comoving distance χ(z) =

∫ z
0 dz

′/H(z′),
normalized to ΛCDM. For 5F we observe the expected high-z enhancement, while for CDE
the comoving distance is close to its standard value.

The numerical implementation of the background equations also reveals the presence
of an upper bound on β in the 5F scenario, simply coming from the existence of a solution
to Einstein’s equations until z = 0. For cosmological parameters close enough to the Planck
ΛCDM best fit values, increasing β to O(0.1) reduces so much the energy density in the χ
fluid that the Universe never arrives at a CC dominated phase. The scalar field s becomes
dominant and quickly overcloses the Universe before any accelerated expansion can begin.
This result highlights the importance of consistently including the effects of new degrees of
freedom both at the level of the background and of the perturbations, even though the latter
are naively considered to be most affected by the new dynamics. We will see another example
of the importance of a consistent background evolution in section 4.2.1.

An analogous bound does not exist in the CDE case. A larger β is always compensated
by a larger initial value of s̄, yielding in all cases a smooth transition from a matter dominated
to a CDE dominated Universe.

4 Cosmological perturbations

Similarly to the cosmological background, the equations of motion at linear order in perturba-
tion theory can be derived from the general equations for the DM fluid discussed in section 2.1
and the ones for the scalar fifth force and the metric in section 2.2. Expanding to first order
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the continuity equation (2.7) and Euler equation (2.8) for the DM fluid we obtain

δ′χ + θχ + 3Φ′ − ∂ logmχ(s)
∂s

δs′ − ∂2 logmχ(s)
∂s2 s̄′δs = 0 , (4.1)

θ′χ +
(
H+ ∂ logmχ(s)

∂s
s̄ ′
)
θχ − k2

(
Ψ + ∂ logmχ(s)

∂s
δs

)
= 0 , (4.2)

where ∇i → iki in Fourier space and we have made the definitions δx ≡ δρx/ρ̄x and θx ≡ ivixki .
The KG equation for the scalar fifth force in eq. (2.12) expanded at first order is7

δs′′ + 2Hδs′ + k2δs+ s̄′(3Φ′ −Ψ′) + a2Gs
(
Vs,,s δs+ 2Vs,sΨ

)
(4.3)

+ a2Gsρ̄χ
∂ logmχ(s)

∂s
(δχ + 2Ψ) + a2Gsρ̄χ

∂2 logmχ(s)
∂s2 δs = 0 .

As we have seen in the previous section, at the background level the presence of the scalar fifth
force impacts the Hubble flow in a highly non-trivial way, which also depends on whether the
scalar is accounting or not for the DE in the Universe today. Now, from the equations for the
DM perturbations one actually recognizes the imprint of the new force as a modification of
the strength of the gravitational potential. In eq. (4.2) we see how the velocity field is driven
by the spatial derivatives of the gravitational potential Ψ which is augmented by the presence
of the 5th force potential (∂ logmχ(s)/∂s) δs. This effect dominates over time derivatives of
the potential for modes whose wavelengths are much shorter than the horizon size, generating
relative velocity and density perturbation between DM and the baryons that will grow over
time. This is in striking contrast with the ΛCDM cosmology for which, given adiabatic initial
conditions, relative velocity perturbations decay with time and relative density perturbations
stay, at best, constant after recombination (ignoring reionization).

Interestingly, the time dependence of the s background affects the behavior of the
fluctuations, in three different ways: i) in the continuity equation (4.1) a term proportional to
δs is present and controlled by s̄′; ii) similarly, in the Euler equation (4.2) a term proportional
to s̄′ enters the friction term; iii) moreover, the Hubble rate H depends non-trivially on s̄, and
this dependence cannot be dropped for a meaningful prediction of the CMB or matter power
spectrum. For modes with wavelength much larger than the horizon, the terms proportional
to k2 in eq. (4.2) can be dropped, yet the explicit dependence of the equations on s̄′ remains
together with the implicit one coming from H. This implies that we expect differences with
respect to a ΛCDM Universe even on super-horizon scales.

In the KG equation (4.3) the first line contains the standard terms for an uncoupled
scalar, whilst the second line contains the new terms generated by the interaction of s with
the DM. Deep inside the horizon, the scalar field satisfies a Poisson equation of the form

k2δs = −a24πGNβ
∂ logmχ(s)

∂s
ρ̄χδχ , (deep inside the horizon) (4.4)

to be compared with the corresponding equation for the Newtonian potential,

k2Ψ = −a24πGN
∑
x

ρ̄xδx , (4.5)

as derived from the perturbed Einstein equations (4.6) and (4.7) given below. Thus, at the fluid
level, the strength of the new interaction is dictated by Gs(∂ logmχ(s)/∂s), rather than by Gs

7The term containing Ψ in the second line appears to be missing from eq. (5.8) of ref. [27].
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alone. For example, for our representative model one has Gs(∂ logmχ(s)/∂s) = Gs/(1 + 2s̄).
Since s̄ does not evolve much over time, we could therefore fine-tune the initial condition
of s̄ to some very large value, effectively decoupling the DM from the scalar field. This is
indeed what happens if one wants a very light and coupled scalar, mϕ � H0, to play the
role of DE at late times. In this regime the energy density in the scalar field behaves like
∼ m2

ϕM
2
Pls̄

2
ini/β, and to reproduce the energy density in DE s̄2

ini � β is needed, implying that
the strength of the fifth force effectively goes to zero. For this reason we have chosen the
largest possible value of the mediator mass, mϕ = H0, as our CDE benchmark.

Finally, we write Einstein’s equations in the form

k2Φ = 4πGNa2∑
x

[
ρ̄xδx + 3H

k2 (ρ̄x + Px)θx
]
, (4.6)

k2(Φ + Ψ) = −12πGNa2∑
x

(ρ̄x + Px)σx , (4.7)

where σx are the shear perturbations. To solve these equations we need to express the
perturbed fluid variables for the scalar field in terms of the perturbed field variables [60],

δρs = s̄′δs′ − s̄′2Ψ
Gsa2 + Vs,sδs , δPs = δρs − 2Vs,sδs , (ρ̄s + Ps)vis = − s̄

′∇iδs
Gsa2 , (4.8)

while no shear perturbation is generated, since the scalar field is minimally coupled.

4.1 Initial conditions
To set up the initial conditions (IC) for the perturbations in Newtonian gauge we follow
closely ref. [43]. We assume radiation domination and solve for all the relevant variables by
expanding in kτ � 1. The IC for the metric perturbations and for all other species, except
the DM and the scalar field, are unchanged and reported in appendix B. In this section
we describe how to consistently set up the IC for χ and s at the lowest order in kτ . Our
implementation in CLASS includes the IC in synchronous gauge as well, which are discussed
in appendix B.

The simplest kind of IC are the so called adiabatic IC in the density perturbations,
which can be obtained by requiring that the gauge invariant relative entropy perturbations
between all species vanish:

Sij ≡ 3H
(
δρj
ρ̄′j
− δρi

ρ̄′i

)
= 0 . (4.9)

This assumption for the IC can be realized for example in models of single field inflation.
Imposing eq. (4.9) to the photon and DM fluids gives

Sχγ = −3
4δγ +

δχ

1−
∂ logmχ(s)

∂s

s̄′

3H

= 0 , (4.10)

which very deep in radiation domination reduces to δχ = 3δγ/4, since s̄′τ � 1 as shown by
eq. (3.8).

The same procedure could be repeated for the fluid perturbations of s with respect to
the photon fluid, obtaining (recall that δs ≡ δρs/ρ̄s)

Ssγ = −3
4δγ + δs/(1 + ws)

1 +
ρ̄χ(∂ logmχ(s)/∂s)s̄′

3Hρ̄s(1 + ws)

= 0 . (4.11)
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At early times we can safely assume ws = 1 and the ratio appearing in the denominator of
the second term, which was already found in eq. (3.9), is equal to −2/3. Thus δs = δγ/2 to
lowest order.8

We can then use the definition of the perturbed fluid variables in eq. (4.8), together with
the physical condition that the velocity divergence of s vanish when τ → 0 , to obtain the
IC for the field, δs = −δγ s̄′τ/4, and for the velocity, θs = −δγk(kτ)/4 = θγ . Finally, we plug
the solution for δs into the equation for θχ and obtain θχ = θγ to lowest order, once again
because the long range interactions are strongly suppressed by s̄′τ � 1.

We have seen in section 3.2 that the background dynamics of the fifth force field at early
times is fully determined by its interaction with the DM. We can then ask whether the same
is true at the level of the perturbations, and therefore if the IC for δχ and θχ fix the ones
for the scalar field. We now show that this is the case. Indeed, for adiabatic IC, imposing
eq. (4.11) is redundant and the adiabaticity of s follows from the one of χ. Deep in radiation
domination and outside the horizon, the KG equation reads

δs′′ + 2
τ
δs′ − 2s̄′

τ
(δχ + 2Ψ)− 2s̄′

τ

∂2 logmχ(s)/∂s2

∂ logmχ(s)/∂s δs = 0 , (4.12)

where in the adiabatic case δχ + 2Ψ = −δγ/4 is constant in time. As both s̄ and s̄′ are also
constant to a good approximation, the general solution to this equation is

δs ' (δs)ad + αna

(
1 + ∂2 logmχ(s)/∂s2

∂ logmχ(s)/∂s s̄′τ

)
+O(τ2) , (4.13)

where (δs)ad = −δγ s̄′τ/4 is the adiabatic piece and αna is a constant parametrizing the
deviation from adiabaticity. The adiabatic term is found by inserting the solution into
eq. (4.8) and again imposing that the velocity divergence of s goes to zero when τ → 0. It
is then trivial to check that this implies δs = δγ/2 and therefore the adiabaticity of s. This
is true only at leading order in the kτ expansion, with the subleading corrections easily
calculated following the same steps outlined above, see eq. (B.12).

It is also interesting to study non-adiabatic scalar field fluctuations. In this case the αna
term in eq. (4.13) generates an additional velocity contribution for χ, whose IC now reads

θχ = (θχ)ad + αna
2
∂ logmχ(s)

∂s
k(kτ) (4.14)

with (θχ)ad = θγ . We see that the non-adiabatic piece is proportional to ∂ logmχ(s)/∂s
and is therefore suppressed if s̄ is large, as it happens in CDE scenarios with mϕ � H0. In
addition, the initial s density perturbation is modified to

δs = (δs)ad + 2αna
∂2 logmχ(s)/∂s2

∂ logmχ(s)/∂s , (4.15)

where (δs)ad = δγ/2 . The IC for the DM density perturbation δχ is unchanged.
In the presence of a dark long range 5th force we cannot therefore a priori assume that

the velocity of DM and of all other species is the same even on super-horizon scales. A
8We notice in passing that the ratio in eq. (3.9) is precisely the “doom” factor defined in ref. [26] which, if

positive and large, could signal non-adiabatic instabilities in the cosmological fluctuations. As discussed more
extensively in appendix C, we find that in any model of scalar fifth force that admits a consistent microscopic
description the doom factor is negative and does not lead to any instability.
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non-zero αna will alter dramatically the large scale evolution of cosmological perturbations,
which in ΛCDM is based on the constancy of the comoving curvature perturbation outside
the horizon, and as we will see in section 5 it is severely constrained by current data.

4.2 The evolution of density fluctuations

As we did for the cosmological background, we have implemented to first order in perturbation
theory all the relevant equations and their IC in CLASS. As a robustness test of our code we
have checked that the Newtonian and synchronous gauges give identical results for physical
observables, such as the CMB power spectrum.

Figure 6 shows the numerical evolution of the density perturbation of χ for four different
modes, going from the largest observables scales (k = 10−3 Mpc−1, upper left panel), to small
scales (k = 1 Mpc−1, lower right panel). To produce these plots we use the same benchmark
cosmological parameters as in section 3, setting in addition αna = 0 and the same IC for
the perturbations in the baseline ΛCDM and in our models. We find that at early times,
when modes are outside of the horizon, the evolution of DM density fluctuations is almost
identical to ΛCDM, regardless of the wavelength. This indicates that the dynamics outside
the horizon is still mostly set by the IC, at least in the adiabatic case. Moreover, since at the
background level the evolution during radiation domination of DM and baryons is unchanged,
we expect little to no difference, with respect to a standard scenario, on which scales enter the
horizon before matter-radiation equality. In addition, modes that enter the horizon deep in
the radiation era will evolve like in the ΛCDM case until equality, as we can see from the lower
panels in figure 6. As soon as matter domination begins, perturbations can grow. Thanks
to the presence of a dark fifth force, the fluctuations in DM grow more rapidly than the
corresponding ones in ΛCDM. In particular we notice that, at least in the 5F scenario where
s̄ � 1 always, the excess power is much larger than the naive O(β) expectation, similarly
to what happened at the level of the background. In the CDE case the effect of long range
interaction is less dramatic, due to the extra suppression of the interaction by ∂ logmχ(s)/∂s,
as further detailed in section 4.2.1.

Finally, we note that at very late times, in either the CC or CDE dominated phase, the
growth rate of DM perturbations is reduced compared to ΛCDM. At first, this might seem to
clash with the intuition that a new attractive force should only increase the clustering of DM,
but it can be understood by considering the effect of the new interaction on the cosmological
background. In the 5F case it follows from the larger value of the CC required by the flatness
constraint, which exponentially suppresses the growth of structure. In the CDE case it is a
consequence of the faster expansion rate at very late times, see figure 5. In the CDE models,
the z = 0 amplitude of density fluctuations can even be suppressed with respect to a standard
cosmological scenario.

4.2.1 Sub-horizon solutions

While an analytical understanding of all the different stages of evolution of the DM pertur-
bations shown in figure 6 is not possible, some regimes can be investigated perturbatively
for small β. This is the case of the sub-horizon evolution in the matter dominated era. In
particular, we would like to quantitatively understand why the effect of the fifth force is much
larger than the simple O(β) counting.
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Figure 6. The time evolution of Dark Matter density perturbations in Newtonian gauge, for four
different wavelengths: k = 10−3 Mpc−1 (upper left), k = 10−2 Mpc−1 (upper right), k = 10−1 Mpc−1

(lower left) and k = 1 Mpc−1 (lower right). The light blue, light orange, and gray lines show the 5F,
CDE, and ΛCDM scenario, respectively. The solid lines correspond to β = 0.005, while the dashed
ones to β = 0.02. The constant C appearing in the IC and the initial curvature perturbation R are
related by C = R/2.

During matter domination and in the sub-horizon regime k/H � 1, we can reduce the
evolution of DM and baryons to a system of coupled second-order differential equations:

δ′′χ +
(
H+

∂ logmχ(s)
∂s

s̄′
)
δ′χ −

3
2ΩmH2

[
fχ

(
1 + β

(
∂ logmχ(s)

∂s

)2)
δχ + (1− fχ)δb

]
= 0 ,

δ′′b +Hδ′b −
3
2ΩmH2(fχδχ + (1− fχ)δb

)
= 0 , (4.16)
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where ρ̄m ≡ ρ̄χ + ρ̄b, fχ ≡ ρ̄χ/ρ̄m, and Ωm ≡ ρ̄m/ρ̄tot.9 Notice that all these quantities are
time-dependent, with Ωm ≈ 1 deep in MD. Exact analytical solutions to eqs. (4.16) are
difficult to obtain, due to the complicated time-dependence of the background. However, the
system can be solved perturbatively in β. It is convenient to take as new variables

δm ≡ fχδχ + (1− fχ)δb , δr ≡ δχ − δb , (4.17)

where the first is the total matter perturbation and the second the relative perturbation.
Expanding as δi = δ

(0)
i +O(β) (i = m, r), at leading order the total component grows with

the scale factor, δ(0)
m = Cτ2 , while we can set the relative density perturbation to zero,10

δ
(0)
r = 0. Furthermore relative velocities, if present, simply decay. Up to first order in β,
eqs. (4.16) can then be written in the form

δ′′r +Hδ′r −Hfχβ
(
∂ logmχ(s)

∂s

)2 (
δ′m + 3

2ΩmHδm
)

= 0 , (4.18)

δ′′m +Hδ′m −
3
2ΩmH2δm −Hf2

χβ

(
∂ logmχ(s)

∂s

)2 (
δ′m + 3

2ΩmHδm
)

= 0 , (4.19)

where H is expanded up to at most O(β) and reads

H = a′

a
= 2
τ

(
1− βf2

χ

∂ logmχ(s)
∂s

)
, (4.20)

as derived from eq. (3.14) for the 5F scenario. These equations are valid for modes that enter
the horizon well before matter-radiation equality. To solve for the relative perturbation it is
sufficient to retain the leading order expression of Hubble, yielding the solution

δr(τ) = 5
3βfχ

(
∂ logmχ(s)

∂s

)2 [
δ(0)
m (τ)− δ(0)

m (τeq)
]
, (4.21)

which grows linearly with the scale factor. The relative velocity between Dark Matter and
baryons also grows accordingly. On the other hand, to solve for the total matter density up
to first order we need to include the first correction to H. Plugging this into eq. (4.19) and
expanding as δm = δ

(0)
m + βδ

(1)
m , we arrive at the differential equation

δ(1)′′
m + 2

τ
δ(1)′
m − 6

τ2 δ
(1)
m − 10Cf2

χ

∂ logmχ(s)
∂s

(
∂ logmχ(s)

∂s
− 4

5

)
= 0 , (4.22)

with solution

δm(τ) = δ(0)
m (τ)

[
1 + 2βf2

χ

∂ logmχ(s)
∂s

(
∂ logmχ(s)

∂s
− 4

5

)
log τ

τeq

]
. (4.23)

This result can be expressed in terms of the scale factor as

δm(a) = δ(0)
m (a)

[
1 + βf2

χ

∂ logmχ(s)
∂s

(
∂ logmχ(s)

∂s
+ 1

5

)
log a

aeq

]
, (our result) (4.24)

9In the special case of exponential form of the field dependent mass, mχ(s) = mχe
−
√

2βs, eqs. (4.16) recover
the expressions given in ref. [36].

10This is not strictly correct because of the tight coupling of baryons with photons, see ref. [61] for a discussion.
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Figure 7. Ratio of total matter density perturbation to ΛCDM for the pure fifth force scenario (light
blue), in Newtonian gauge and for the k = 1 Mpc−1 mode, which enters the horizon much earlier
than equality. Green lines show our perturbative analytical solution eq. (4.24), whereas thin gray lines
correspond to the solution obtained by neglecting corrections to the background cosmology, eq. (4.25).

where δ(0)
m (a) = 4Ca/[H2

0 (Ω̃d + Ω0
b)]. We thus find two distinct effects are responsible for the

excess power with respect to the ΛCDM case. The first term, quadratic in ∂ logmχ(s)/∂s,
receives contributions both from the effect of the fifth force in the source term and from
Hubble, which is suppressed with respect to the standard case during MD. The second term,
linear in ∂ logmχ(s)/∂s, is solely generated by the modifications of the background. The sum
of all these effects results in a growth stronger by a factor numerically ≈ 2 compared to the
solution where background corrections are not taken into account,

δm(a) = δ(0)
m (a)

[
1 + 3

5βf
2
χ

(
∂ logmχ(s)

∂s

)2
log a

aeq

]
. (neglecting background) (4.25)

The strong impact of background corrections is further highlighted by figure 7, demonstrating
the good agreement of our analytical solution eq. (4.24) with the numerical result.

For completeness we also report the individual solutions for χ and the baryons during MD,

δχ(τ) = δ(0)
m (τ)

[
1 + 2βf2

χ

∂ logmχ(s)
∂s

(
∂ logmχ(s)

∂s
− 4

5

)
log τ

τeq

]
(4.26)

− 5
3βfχ(fχ − 1)

(
∂ logmχ(s)

∂s

)2 [
δ(0)
m (τ)− δ(0)

m (τeq)
]
,

δb(τ) = δ(0)
m (τ)

[
1 + 2βf2

χ

∂ logmχ(s)
∂s

(
∂ logmχ(s)

∂s
− 4

5

)
log τ

τeq

]
(4.27)

− 5
3βf

2
χ

(
∂ logmχ(s)

∂s

)2 [
δ(0)
m (τ)− δ(0)

m (τeq)
]
.

Thus far, in the discussion of sub-horizon solutions we have focused on the 5F scenario. For
the CDE case one can derive analogous analytical solutions, but the increase of power is far
less pronounced.

4.3 The CMB and the total matter power spectrum

The evolution of density perturbations over time and at fixed wavelength, discussed in the
previous section and shown in figure 6, is useful to understand the physical effects generated
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Figure 8. CMB power spectra: TT (top left), EE (top right), TE (bottom left) and lensing φφ
(bottom right). The light blue, light orange, and gray lines show the 5F, CDE, and ΛCDM scenario,
respectively. The solid lines correspond to β = 0.005, while the dashed ones to β = 0.02. In the first
three panels, at ` = 30 (marked by the gray dashed line) the scale on the horizontal axis switches from
logarithmic to linear. Note that for the TE power spectrum we show the difference, not the ratio,
between the models.

by the fifth force, but it is not directly observable. In particular, in this work we are interested
in constraining new long range forces with CMB and BAO data.

Figure 8 shows the CMB temperature (upper left panel), E-mode polarization (upper
right panel), cross temperature-polarization (lower left panel), and lensing (lower right panel)
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power spectra. As in previous plots, solid lines correspond to β = 0.005, while dashed lines
to β = 0.02. The color coding is also the same as before, with the prediction for the 5F
scenario in light blue, and the one for CDE in light orange. For reference the corresponding
ΛCDM prediction is shown in gray. The shape of the CMB primary power spectra is mainly
determined by the physical scales relevant for the tight coupling between baryons and photons,
and by their projection onto observed angles on the sky. As we have seen in sections 3 and 4.2,
before matter-radiation equality a Universe containing a fifth force with small β is for all
practical purposes indistinguishable from a ΛCDM one. Since last scattering happens close
enough to the onset of the new interaction, we expect small differences in the physical scales
at recombination, which are governed by the values of ωb, ωχ, and ωγ . For example, the sound
horizon changes only by O(β). On the other hand the projection on the sky depends on the
angular diameter distance between z = 0 and last scattering, and it is severely affected by
the new force, see figure 5. To first approximation we thus expect, compared to the ΛCDM
case, a shift in the location of the peaks and troughs of the CMB power spectrum. This is
indeed what we see in the bottom panels of figure 8: the residuals around the standard model
oscillate around unity. At sufficiently large multipoles we also start seeing the difference in
the angular projection of diffusion damping, and therefore an increase (decrease) of power in
the 5F (CDE) scenario.

The difference at large angular scales in the CMB power spectra is again due to projection,
more specifically to the Integrated Sachs-Wolfe effect (ISW). While the Bardeen potentials in
our model are never constant in time, even during matter domination, it is still the case that
the largest difference with respect to a ΛCDM Universe happens at low redshift, which maps
the late ISW anisotropies to large angular separation.

Finally, the lower right panel in figure 8 shows the CMB lensing power spectrum. The
amplitude of the lensing power spectrum depends on the total amount of matter in the
Universe, which is reduced compared to a standard cosmological model by the long range
force, as shown in figure 5. This will act towards decreasing the overall amplitude of the
lensing power spectrum. On the other hand, the CMB lensing kernel peaks at relatively high
redshift, at which the clustering of DM is enhanced by the new force. This effect partially
cancels the lower matter density, and it results in a relatively small difference in the lensing
power spectrum when compared to a ΛCDM one. It is also worth pointing out that different
multipoles L receive contributions from different physical scales k, e.g. larger multipoles are
mostly sourced by smaller scales, hence the scale dependence we see in the lensing power
spectrum in figure 8 is compatible with the one we observed in figure 6. It should be kept in
mind that the numerical evaluation of the lensing power spectrum requires a prescription for
the fully nonlinear matter power spectrum. This is not available for the models described in
this work, hence the precise value of the high-L lensing power spectrum should be taken with
a grain of salt. For CDE models some results have appeared in refs. [15, 58, 62], but they are
not yet at the same maturity level of the prediction in the standard model.

Figure 9 shows the linear matter power spectrum for different redshifts. While not
directly observable, the total matter power spectrum is closely related to the galaxy power
spectrum measured in redshift surveys and to the cosmic shear and galaxy-galaxy lensing
measurements of imaging surveys. Roughly speaking, we expect the difference in the matter
power spectrum between a ΛCDM model and a cosmology with dark long range force to be
twice the effect we saw in figure 6 and section 4.2. For this reason we will not repeat here the
same discussion, but rather highlight a few key features of the models described in this work.
First of all, as presented in section 4.2.1, the effect of the new force is much larger than the
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Figure 9. (Left) Total matter power spectrum for β = 0.005, at three different redshifts. (Right)
Same as in the left panels, but for β = 0.02. The light blue, light orange, and gray lines show the 5F,
CDE, and ΛCDM scenario, respectively. Solid lines show the results at z = 0, dashed lines at z = 1,
and dotted ones at z = 2.

naive O(β) counting. On the other hand, the new long range interaction primarily changes
the amplitude of the power spectrum, with only a mild scale dependence, roughly of O(β).
In comparison with a ΛCDM model, and at fixed H0, the excess power is larger at higher
redshift, and then decreases towards z = 0. As discussed in section 4.2, this is due to the
difference in the expansion rate at very low redshift between a Universe with a fifth force in
the dark sector and a standard one.

Finally, in light of the discussion in the next section on the use of BAO data, it is useful
to look at the amplitude of the relative density and velocity power spectra. Figure 10 shows,
at z = 0 and in the ΛCDM case, the matter power spectrum (gray dotted line), the cross
power spectrum between the total matter and the relative density perturbations, 〈δmδr〉 (gray
solid line), and the cross power spectrum between the total matter and the relative velocity
divergence perturbations, 〈δmθr〉 (gray dashed line).11 As it is well known, in a ΛCDM model
relative density perturbations are at most 1% of the total matter and relative velocities are
negligible. In light blue and light orange colors we show the same cross power spectra for the
5F and CDE scenarios with β = 0.02. The cross power spectrum between the total matter
and the relative density perturbations in cosmologies with a dark fifth force, solid lines, is
approximately an order of magnitude larger than the corresponding quantity in the ΛCDM
case, and it can reach 10% of the total power spectrum. The BAO oscillations are also out
of phase with those in the matter power spectrum. The cross power spectrum between the
total matter and the relative velocity divergence perturbations, dashed lines, is O(100 -1000)
times larger than in the standard cosmological model. For comparison, at z = 10 the relative
density perturbations in cosmologies with dark fifth forces are still more than two times larger

11For dimensional reasons, the relative velocity divergences are multiplied by 1/H0.
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Figure 10. Cross power spectra at z = 0 between the total matter and relative density perturbations
δr (solid lines) and between the total matter and relative velocity divergence perturbations θr (dashed
lines). The total matter power spectrum in ΛCDM is also shown for reference (dotted line). The light
blue, light orange, and gray lines show the 5F, CDE, and ΛCDM scenario, respectively.

than the corresponding quantity in a ΛCDM scenario, which becomes a factor of 30 for the
relative velocities.

5 Constraints and discussion

In this section we present our constraints on the cosmological models discussed in this
work. We employ a Markov Chain Monte Carlo approach, and in particular the Metropolis-
Hastings algorithm, to scan the parameter space of interest until the standard criteria for
the convergence of the chains are reached. Our implementation relies on the MontePython
code [63, 64]. Datasets used in this work include the most recent Planck temperature and
polarization data of the CMB [4, 65], and measurements of the Baryon Acoustic Oscillations
scale in spectroscopic galaxy surveys [5–8], to which we collectively refer as BAO. We will also
briefly comment on the possibility that long range forces in the dark sector could alleviate
the well known tension between the CMB and local determinations of H0 (see for example
refs. [66–68] for extensive reviews of the problem and of the proposed solutions to it). We will
therefore show additional constraints that include a Gaussian prior on the Hubble constant,
H0 = 74.03 ± 1.42 km/s/Mpc at 68% c.l., from ref. [69].12 We vary 5 ΛCDM parameters
{ωb, H0, ns, As, τ}, where τ is the reionization optical depth, to which we add the dark sector
parameters {Ω̃d, β}. Regardless of the combination of datasets, we find that most ΛCDM

12We note that more recent measurements of H0 from the SH0ES + Pantheon teams have been presented
in [70, 71], but they would not change quantitatively our results. As emphasized by the SH0ES team and
by others [72–74], a more robust way to implement the local distance ladder would be through a prior on
the Supernovae absolute magnitude Mb, and then to refit the Pantheon data assuming a given background
cosmological model. We will return to these issues in a future publication.
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parameters are unchanged, with the exception of the Hubble constant. We will therefore only
show the constraints for Ω̃d, β, and H0.

Due to the marked differences in the time evolution of the background and perturbations
between a 5F cosmology and a CDE one, we present the parameter constraints separately,
in sections 5.1 and 5.2 respectively. We refer the reader to sections 3 and 4 for a detailed
comparison of the two scenarios and recall here only the key distinctions.

In the 5F scenario the cosmological energy density in the scalar field is negligible at all
times. This is obtained for initial field background values s̄ini � 1, which in turn implies
that ∂ logmχ(s)/∂s ' 1. The dependence on the scalar mass mϕ is very weak provided it is
smaller than H0. It is therefore the fifth force coupling β that primarily controls the size of
the differences with respect to the ΛCDM model.

In the CDE scenario the scalar field is required to provide the accelerated expansion at
very late times. This implies a non-trivial interplay between s̄ini, mϕ and β, as picking a value
for two of them fixes the third one. At fixed β ' 10−2 and mϕ = H0, we find s̄ini ∼ O(1)
and therefore ∂ logmχ(s)/∂s < 1, as seen in section 3. If mϕ is reduced below H0, then s̄ini
increases to keep the potential energy in the scalar field the same, which in turn yields a
stronger suppression of ∂ logmχ(s)/∂s� 1. Thus, in a CDE Universe the effective strength
of the fifth force is generically reduced compared to the 5F case, hence weaker constraints on
β are expected.

In section 5.3 we present the constraints on the parameter αna, defined in section 4.1,
which quantifies departures from the adiabatic initial conditions for DM velocity perturbations.

5.1 Pure fifth force and the Hubble tension

Figure 11 shows the constraints on our model parameters in a 5F scenario with mϕ/H0 = 0.1.
Different colors display different datasets, and for comparison we plot as dashed lines and
contours the corresponding bounds in ΛCDM from CMB-only data. Notice that in the
standard model Ω̃d simply reduces to the present day value of the CDM energy density, ΩCDM.
Using Planck data alone (blue lines and contours in figure 11) the bound on the strength
of the fifth force normalized to gravity is β < 0.011 at 95% credible levels (c.l.). This is
quite a strong constraint considering that the cosmological model at recombination is mostly
unchanged with respect to the standard scenario (see sections 3 and 4), and thus most of the
constraining power comes from the geometric projection of physical scales at last scattering
onto observed angles on the sky.

Degeneracies between β and both H0 and Ω̃d are clearly visible, and can be understood
in the following way. In a flat ΛCDM model, keeping the physical density of photons, baryons
and CDM fixed, a change in the value of the Hubble constant can be compensated, to ensure
flatness, by a different value of the CC energy density ΩΛ, which in turn implies a different
value of the present day matter density and hence a strong degeneracy in the Ωm -H0 plane.
This geometric degeneracy is not exact in flat models, and it is internally broken by CMB
data, as shown by the dashed contour in figure 11. In particular one cannot take arbitrarily
low values of Ωm in a ΛCDM model and still fit the data. In the presence of a dark fifth
force, and for fixed values of the energy densities at recombination, we are now allowed to
increase the Hubble constant to keep the distance to last scattering the same as in ΛCDM,
see the light blue lines in figure 5. This explains the positive correlation between H0 and
β we observe in figure 11. The other degeneracy lines are now just consequences of this
fact, because to ensure flatness with a larger value of H0, a larger ΩΛ, i.e. a lower Ω̃d, is
needed. Percent level strengths for β correspond to very low values for Ω̃d, and the resulting
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Figure 11. Bounds on the pure 5th force scenario with mϕ/H0 = 0.1 and s̄ini = 10−4. The blue
shaded region is favored by Planck CMB data [4, 65] at 1σ and 2σ. The orange shaded region also
includes BAO measurements [5–8], while the red shaded region adds CMB lensing measurements
from Planck [75]. The green shaded contours combine Planck CMB data with a H0 prior from local
measurements [69], whereas the purple region also includes lensing. The dashed contour shows the 2σ
region favored by Planck CMB data in ΛCDM.

degeneracy between the present day DM density (approximately given by Ω̃d) and the Hubble
parameter is much larger than in the standard cosmological model. Using only CMB data,
the posterior distribution for all three parameters is quite non Gaussian, which, combined
with the larger degeneracies discussed above, results in large errorbars for the parameters
of interest. In particular we find 66.40 < H0/(km/s/Mpc) < 72.90 and 0.226 < Ω̃d < 0.277
at 95% c.l..

There are several ways to break geometric degeneracies in primary CMB data. The
most constraining one is to include BAO data. BAO measures, in units of the sound horizon
at the baryon drag epoch rd, the Hubble parameter and the angular diameter distance to
the redshift of a given galaxy sample, therefore allowing to constrain the matter density Ωm

independently from the CMB. BAO measurements are robust to changes in the background
and are pretty insensitive to the broadband shape of the galaxy power spectrum and correlation
function [76–78].

However, all BAO measurements assume that the way rd is imprinted in the distribution
of galaxies follows the distribution of the total matter overdensity δm. Equivalently, relative
density and velocity perturbations between DM and baryons are typically neglected in BAO
analyses. It was long ago realized that this approximation might lead to systematic biases in
BAO analyses [79, 80], since in ΛCDM the oscillatory features in δr and ~vr are out of phase
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with the ones in δm. Of particular concern is the fact that relative perturbations enter the
prediction of the galaxy power spectrum multiplied by unknown free parameters, which can
easily be of order one or larger [81, 82]. As said earlier in section 4, in the ΛCDM model
relative density perturbations do not grow and relative velocities decay, and recent work
in refs. [61, 83, 84] indicates that, for current surveys and in the standard model, biases to
the distances inferred via the BAO method are smaller than the typical measurement error.
However, in the presence of long range interactions acting only on one species, like the ones
we consider here, relative perturbations actually grow with time, as discussed in section 4
and shown in figure 10. As a benchmark, for β = 0.005, which is roughly the 68% c.l. bound
from Planck data, the relative densities are approximately a factor of 3 larger, on BAO scales
and at z = 0, than the corresponding fluctuations in the standard model (a factor of 10
at the turnaround of the power spectrum). The relative velocity divergence, θr, is now a
factor of 100 larger than in ΛCDM, again at z = 0. At k = 0.1Mpc/h, we find δr ∼ 0.02 δm
for β = 0.005, and the ratio increases linearly with β. For reference, the current best BAO
measurements have few percent accuracy [7].

On the other hand, these new relative fluctuations are, to first order, proportional to
δm, see eq. (4.21), and are thus not expected to produce additional phase shifts of the BAO.
They add to the off-phase piece produced at recombination, and eventually dominate over
the latter after redshift z ∼ 10 -15. Making these statements more quantitative would require
a dedicated BAO analysis framework that includes the effects of relative perturbations in
the ΛCDM model and beyond. Such pipeline is not currently available, and preparing one
certainly goes beyond the scope of this work. Given the numbers in ref. [61], we roughly
expect that β ∼ 0.01 is the ballpark value at which relative perturbations effects could become
significant at BAO scales. This corresponds to the 95% c.l. upper bound on β from CMB
data alone in the 5F scenario.

It is therefore reasonable, albeit with the caveats mentioned above, to combine Planck
data, which do not favor a percent value of β, with BAO data to further improve the bounds.
The constraints from Planck plus BAO are shown in orange in figure 11. As expected, BAO
break the degeneracy between H0 and Ω̃d , both parameters move closer to their ΛCDM
counterparts and are much more Gaussian distributed. The allowed range for the coupling
strength also shrinks, with now β < 0.0054 at 95% c.l.. To date, this is the strongest bound
on dark fifth forces from cosmological data, corresponding to gD < 2× 10−32mχ/(10−3 eV)
when expressed in terms of the coupling constant of the underlying field theory description.

Given the tail at large values of the Hubble constant in the H0 posterior from Planck
data alone, we can also ask whether a dark fifth force can provide a solution to the Hubble
tension. We therefore run the CMB likelihood including a prior on H0 from ref. [69]. The
results are shown in green in figure 11. In the Ω̃d -H0 plane the green contours occupy the
leftmost region that was allowed by the CMB-only fits, i.e., a large H0 requires small Ω̃d. The
best fit value for the Hubble constant is H0 = 72.41 ± 1.40 km/s/Mpc at 68% c.l., clearly
compatible with the local measurements. Interestingly, there is now evidence, at more than
3.5σ level, for a non-vanishing 5th force strength in the dark sector, with β = 0.0102 ± 0.0028
at 68% c.l.. Clearly, such large values of β results in very different distances to the mean
redshift of galaxy surveys and in a different matter power spectrum at late times compared to
a ΛCDM model, see for example figure 9. However, as discussed above, a rigorous analysis of
late time data, such as the BAO and the Full Shape of the galaxy power spectrum, in presence
of nonzero long range forces requires a number of new tools that are yet to be developed. For
these reasons we decided not to combine a local H0 prior with BAO data. We intend to return
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to these issues in a forthcoming publication, hoping that our results will further motivate the
community to develop more general analysis pipelines of Large Scale Structure data.

Another way to partially lift parameter degeneracies is to include CMB lensing informa-
tion. This comes with the caveats mentioned in section 4 about matter non linearities in the
presence of a fifth force. However, given the current uncertainties of the Planck lensing power
spectrum and the relatively tight constraints on β from primary CMB, we do not expect large
biases in the inferred parameters by adding Planck lensing data. This might not be the case
for ground based CMB experiments, targeting the lensing power spectrum at much smaller
scales [85]. In a ΛCDM model, CMB lensing is primarily sensitive to a combination of H0, Ωm

and σ8, the amplitude of matter fluctuations at 8 Mpc/h. A measurement of the angular size
of the sound horizon at last scattering with primary CMB data then breaks this degeneracy,
which in turn helps to break the geometric degeneracy in the primary CMB. The inclusion of
the Planck CMB lensing power spectrum data on our constraints is shown in figure 11 by
the red lines and contours, for the primary CMB plus BAO combination, and in purple for
the primary CMB plus local H0 prior case. Unfortunately, in the extended parameter space
of our models, Planck lensing information does not yet provide meaningful improvements of
the uncertainties over other datasets, as one can see from the minor difference between the
orange and red lines, or between the green and purple ones.

Finally, since we discussed a possible explanation of the Hubble tension by a dark fifth
force, a comment is warranted about the impact on σ8. As is well known, this is affected by a
moderate but persistent discrepancy between CMB and Large Scale Structure measurements,
with the latter giving smaller results [86, 87]. At face value (in particular, for fixed bias
parameters), in the 5F scenario studied here the σ8 tension is expected to worsen.

5.2 Coupled Dark Energy

Similar considerations about degeneracies between the different parameters apply to the
bounds in the CDE scenario. In this case the effective strength of the fifth force, which
contains powers of ∂ logmχ(s)/∂s, is suppressed by the fact that s̄ & O(1) in order for the
new mediator to play the role of the Dark Energy at late times. We thus expect the bound on
β to be weaker than in the 5F scenario. Figure 12 shows the constraints on our three reference
parameters in a CDE Universe with mϕ/H0 = 1. From the discussion in sections 3.2 and 4
it is clear that the bound on β weakens for smaller mass of the scalar field, hence figure 12
corresponds to the most constrained CDE scenario. The blue lines and contours show results
using only CMB data. We find that the contours are closer to their ΛCDM counterparts than
the ones for 5F. In particular, the H0 posterior does not have a tail at larger values, implying
we should not combine CMB data with a local prior on the Hubble parameter. The bound
on β is significantly weaker than in the 5F case, with β < 0.034 at 95% c.l.. Adding BAO
data does not improve the constraints as much as in the 5F case, again because the tuning of
the initial conditions to reproduce the CC at late times renders the effect of the fifth force
vanishing small, see figures 8 and 9. The upper bound on the coupling parameter becomes
β < 0.029 at 95% c.l.. We do not show results including lensing information, because this
does not add significant constraining power. A summary of the main parameter constraints,
for both the 5F and CDE scenarios, is provided in table 1.

It is worthwhile to comment on how our CDE scenario differs from previous studies
of DM-DE interactions. Formally, our setup can be described within the parametrization
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Figure 12. Bounds on the CDE scenario with mϕ/H0 = 1. The blue shaded region shows the 1σ and
2σ contours favored by CMB data from Planck [4, 65]. The orange shaded region also includes BAO
measurements [5–8]. The dashed contour shows the 2σ region favored by Planck CMB data in ΛCDM.

95% c.l. Ω̃d β H0 [km/s/Mpc]

5F, mϕ/H0 = 0.1
Planck TT, TE, EE [0.226, 0.277] < 0.0110 [66.40, 72.90]
TT, TE, EE+BAO [0.246, 0.270] < 0.0054 [67.10, 69.70]

TT,TE,EE+lens.+BAO [0.246, 0.267] < 0.0048 [67.24, 69.61]

CDE, mϕ/H0 = 1 Planck TT, TE, EE [0.253, 0.294] < 0.0345 [64.40, 68.60]
TT, TE, EE+BAO [0.260, 0.283] < 0.0287 [65.25, 67.85]

Table 1. Summary of the main constraints obtained in this work on the pure fifth force (5F) and
Coupled Dark Energy (CDE) scenarios.

developed in refs. [32, 33],13 but it is not straightforward to compare the numerical results
of those works to ours, because of the assumptions made there about the time evolution of
the cosmological parameters [33]. In particular, Hubble was taken to evolve as in wCDM
(with constant w) and the coupling βγ was taken to be time-independent, neither of which

13In the notation of refs. [32, 33], our CDE model corresponds to

Cc = m2
χ(s) , Dc = 0 , c2

sα = 2 ˙̄s2

βH2 , βγ = −
√
β
∂ logmχ(s)

∂s
,

as well as αM = αB = αT = 0, reflecting the fact that gravity per se is not modified. Furthermore, we have
the identifications π = δs/ ˙̄s and vx = −a θx/k2, and Φthere = Ψ and Ψthere = −Φ.
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Figure 13. Bounds on the pure 5th force scenario from CMB measurements and BAO. We fix
mϕ/H0 = 0.1 and include non-adiabatic initial conditions for the perturbations, as parametrized by
αna defined in eq. (4.13).

applies in our framework. In general, we emphasize that the simplest microscopic model
discussed here — just an ultralight scalar with a trilinear interaction with the DM field —
leads to a complex cosmological evolution, where the dynamics of both the background and
the fluctuations are modified.

General forms for the DM-DE interaction were also introduced in ref. [30],14 which
however limited the discussion to a qualitative illustration of the expected impact on the CMB
and matter power spectra. Notice also that the results in ref. [30] were presented assuming
an exponential form of the field dependent mass mχ(s), which is not considered in this work
and will be discussed elsewhere.

5.3 Non-adiabatic initial conditions

Finally, we can use cosmological data to constrain αna, which parametrizes possible deviations
from adiabatic initial conditions. As discussed in section 4.1, a non-zero αna sources a non
zero relative velocity between the DM and the other species on super-horizon scales. For
simplicity, we only show in figure 13 the bounds in the 5F scenario, combining CMB and
BAO data. As expected, the constraint in CDE models is weaker because the effective
non-adiabaticity turns out to be proportional to αna(∂ logmχ(s)/∂s), see eq. (4.14). For 5F

14In the notation of ref. [30], our CDE model corresponds to a Type-1 theory with α = logmχ(ϕ) and
F = Y + V (ϕ). Note that their perturbed KG and continuity equations (91) and (92) are incomplete: each of
them is missing a term ∼ αφφ , given in our eqs. (4.3) and (4.1) by the pieces proportional to ∂2 logmχ(s)/∂s2.
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we find αna = 0.0021± 0.0065 at 68% c.l., which is clearly compatible with zero. For such
small values, the constraints on the other model parameters are basically unchanged. We
can understand this by noticing that β does not modify much the evolution of super-horizon
modes, as illustrated by figure 6. The constraint on αna is quantitatively of the same order of
the ones on other kinds of non-adiabatic initial conditions [4], e.g. isocurvature perturbations.

6 Interplay with visible fifth forces

So far we assumed the long range fifth force to be entirely confined to the dark sector. However,
it is interesting to consider the possibility that the same fifth force couples to the visible
matter. In this situation, depending on the specific realization, one can study the interplay
between the new bounds on dark fifth forces derived in section 5 and the existing constraints
on visible long range forces. Since we focus on scenarios where mϕ . H0, the mediator can be
taken as effectively massless on all the scales relevant for experimental tests of gravity in the
visible sector. We assume the DM mass to satisfy the naturalness bound in eq. (2.20), which
requires it to be smaller than approximately 0.01 eV. In this regime the DM is an ultralight
boson, possibly produced in the early Universe via the misalignment mechanism [37–39].

For mϕ . H0 the effect of the visible fifth force on the interaction between two bodies
with masses mA and mB at distance r can be parametrized as

Vvisible = −GN
mAmB

r
[1 + αAαB] , (6.1)

where the Yukawa factor e−mϕr can be dropped for such a light mediator, so that no deviation
from the Newtonian potential would arise.15 The coupling αA can be related to the field
dependence of the macroscopic masses, αA = (4πGN )−1/2(∂ logmA(ϕ)/∂ϕ). In general this
coupling contains a universal part, which results in an unobservable shift of the Newton
constant, and a non-universal part which depends non-trivially on the composition of the
material and results in effective violation of the EP on macroscopic scales. The latter effect
can be measured as the difference in the acceleration of two bodies with different compositions
and has been extensively tested experimentally (see e.g. ref. [3] and references therein).

The macroscopic coupling αA can be expressed in terms of the microscopic couplings of
the light scalar with the light Standard Model (SM) fields, which can be written in general as

L =
√

4πGN ϕ
(
de
4e2FµνF

µν − dgβ3
2g3

GaµνG
µν a− dmemeēe−

∑
q=u,d

(dmq + γmqdg)mq q̄q

)
, (6.2)

where e and g3 are the electromagnetic and QCD couplings respectively, β3 = −b3g3
3/16π2

with b3 = (11 − 2Nf/3) is the beta function encoding the evolution of the QCD coupling
constant with energy, and γmq are the anomalous dimensions of the quark masses. Notice
that a non-canonical normalization has been adopted for the electromagnetic gauge field. The
analysis of refs. [88, 89] calculated the leading effects of the microscopic coefficients di on the
macroscopic parameter αA,

αA ' d∗g + (dm̂ − dg)[Q′m̂]A + de[Q′e]A , (6.3)
15The experimental tests of Newton’s inverse square law range from length scales of 10−6 m to few au and

are sensitive to mediator masses down to 10−18 eV [1]. Below this mass, deviations from the inverse square
law decouple like mϕLexp where Lexp is the size of the experimental apparatus. This would result in tiny
deviations at the 10−15 level or below for the range of mediator masses considered in this work.

– 33 –



J
C
A
P
1
0
(
2
0
2
2
)
0
7
4

where d∗g = dg + 0.093(dm̂ − dg) + 2.7× 10−4 de corresponds to the composition independent
part and we defined dm̂ = (dmumu + dmdmd)/(mu +md). The coupling of the scalar to the
electromagnetic field strength, de , is numerically suppressed in the matching to αA compared
to dg and dm̂, due to the weak dependence of nuclear binding energies on electromagnetism.
Q′m̂ ' −0.036A−1/3 − 1.4 × 10−4Z(Z − 1)A−4/3 and Q′e ' 7.7 × 10−4Z(Z − 1)A−4/3 in
eq. (6.3) are material dependent “dilaton charges” (A is the atomic mass number and Z
the atomic number) as approximately derived in refs. [88, 89]. Experimental tests of the
EP place important constraints on new long range interactions in the visible sector. The
best Earth-based limit comes from the Eöt-Wash experiment [90], which set a bound on the
parameter combination |d∗g(dm̂ − dg + 0.22 de)| < 5.1× 10−11 at 2σ level. An even stronger
limit has been obtained by the MICROSCOPE space mission [91], which found at 2σ

|d∗g (dm̂ − dg + 0.62 de) | < 7.5× 10−12 . (6.4)

This corresponds to the constraints |dg| < 2.9× 10−6, |dm̂| < 9.0× 10−6 and |de| < 2.1× 10−4

if one coupling is switched on at a time in eq. (6.2). Again we see that the electromagnetic
coupling is subject to a sizably weaker bound. One should also keep in mind that, as
pointed out in ref. [92], the constraints on EP violation can be significantly relaxed if the
microscopic couplings conspire to give macroscopic effects that resemble very much the
universality of Newtonian gravity (at least for the class of elements that have been tested
experimentally so far).

The direct couplings of ϕ to the SM in eq. (6.2) induce temporal variations of the SM
parameters. These can be tested by comparing the transition frequencies of different atomic
clocks, as explored in refs. [93–95]. Since the scalar masses considered here are much smaller
than the inverse of the typical run time of the atomic clock experiments (∼ years), the only
observable effect induced by the variation of ϕ is a steady drift in the frequency ratio between
the two clocks. For two different optical transitions, the drift rate is controlled by the change
of the fine structure constant α, while for one hyperfine microwave transition and one optical
transition there is also sensitivity to the change of µA/µB, the ratio between the nuclear
magnetic moment and the Bohr magneton, which is linearly proportional to the inverse of
µ = mp/me [96].

The drifts in the fundamental constants can be related through eq. (6.2) to the time
evolution of the scalar field,

α̇

α
=
√

4πGN deϕ̇ ,
µ̇

µ
=
√

4πGN (dg − dme −MAdm̂)ϕ̇ , (6.5)

where dm̂ is defined below eq. (6.3) and MA was estimated in ref. [96] for several nuclei. Next,
recalling eq. (3.3) we write ϕ̇ = −

√
ρ̄s(1 + ws), where the negative sign is the correct one in

our setup. This allows us to finally express the present day values of the drifts as (see also
ref. [97]) (

α̇

α

)
0

= −deH0

√
3Ω0

s(1 + w0
s)/2 , (6.6)(

µ̇

µ

)
0

= −(dg − dme −MAdm̂)H0

√
3Ω0

s(1 + w0
s)/2 . (6.7)

These equations make it apparent that the atomic clock constraints can be weakened if the
present day energy density of the scalar field is small (Ω0

s � 1), or its equation of state is
near the CC one (w0

s ≈ −1).
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The best experimental constraints on the drifts of the fine structure constant and
proton-to-electron mass ratio come from measurements with ytterbium ion clocks and caesium
clocks [98]. The resulting 2σ bounds (α̇/α)0 = (1.0 ± 2.2) × 10−18 yr−1 and (µ̇/µ)0 =
(−8± 72)× 10−18 yr−1 constitute improvements by a factor of 20 and 2, respectively, with
respect to previous measurements [99, 100]. In terms of the couplings in eq. (6.2), the 2σ
bounds read

|de| <
2.7× 10−8√
Ω0
s(1 + w0

s)
, |dg − dme −MAdm̂| <

8.8× 10−7√
Ω0
s(1 + w0

s)
, (6.8)

where the central values of the measurements were neglected for simplicity.
In the 5F scenario, w0

s is far from −1 (it is ≈ +1 if mϕ � H0) and the present day
fraction of energy density in the scalar field is approximately given by Ω0

s ' βf2
χ/3 , where

β is the coupling of the scalar to DM, see eq. (3.12). In light of the constraints on β from
CMB+BAO data presented in section 5.1, we thus expect Ω0

s . 10−3. Accounting for this
suppression, we find by comparison with the MICROSCOPE bounds reported below eq. (6.4)
that the sensitivity of atomic clocks to the scalar-photon coupling is stronger than EP tests
by at least two orders of magnitude. On the other hand, for the scalar-gluon coupling
MICROSCOPE remains the most sensitive probe. In the CDE scenario, Ω0

s ∼ O(1) and
w0
s can deviate at the 10% level from the CC equation of state, as shown in figure 5, only

leading to a mild weakening of the atomic clock constraints. In this case atomic clocks always
dominate over EP tests.

In the remainder of this section we discuss in explicit scenarios the interplay of the
MICROSCOPE and atomic clock constraints with the dark fifth force bounds presented in
section 5. This depends on how the couplings in eq. (6.2) scale with β. In section 6.1 we
discuss the most generic scenario where the fifth force coupling to the SM is only induced
through DM loops, while in section 6.2 we consider a model where the fifth force couples
directly to both DM and the SM.

6.1 Visible fifth force from Dark Matter loops

We consider a scenario where the fifth force is sequestered within the dark sector and interacts
only with DM at tree level. On the other hand, we assume that DM couples to the SM directly
and we want to estimate the size of the fifth force coupling to the visible sector induced by
DM loops, see figure 14. Specifically, having in mind QCD axion models, we consider the
simple case of pseudoscalar DM a coupled to photons and gluons at one loop and to the dark
fifth force field ϕ at tree level,

L ⊃ α

8π
E

N

a

fa
FµνF̃

µν + α3
8π

a

fa
GaµνG̃

µν a − gDmaϕa
2 . (6.9)

In this simple scenario, taking E/N ∼ O(1) a DM loop would induce a coupling between the
fifth force and the SM photons and gluons with the approximate size

de '
√
β

(
ma

4πfa

)2 α2

16π2 ' 2× 10−10

√
β

0.01

(
ma

fa

)2
, (6.10)

dg '
√
β

(
ma

4πfa

)2 α3
8πb3

' 3× 10−6

√
β

0.01

(
ma

fa

)2
, (6.11)
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Figure 14. Generic interplay between dark and visible fifth forces. According to eq. (6.9), the light
force mediator is coupled to DM at tree level, while the coupling to the SM only arises via DM loops.

where the couplings to the gauge field strengths were defined in eq. (6.2). If a nonzero value of
β were to be found by cosmological measurements, for instance β ' 0.01 as motivated by the
present Hubble tension (see section 5.1), the constraint on EP violation in the visible sector
given in eq. (6.4) would translate into bounds on the axion parameter space. The existence of a
fifth force could then have implications for the detectability of axion DM. For the axion-photon
coupling, the suppression of de given by the smallness of α and the suppressed experimental
sensitivity of fifth force constraints do not lead to any interesting bounds on ma/fa. For the
axion-gluon coupling, the strength of the visible long range force in eq. (6.11) is at the level of
the current experimental sensitivity in eq. (6.4) and eq. (6.8) only for ma/fa ∼ O(1), which
is already abundantly excluded by laboratory and astrophysical probes of light axions. Thus,
the sequestering of the fifth force within the dark sector is enough to keep the axion DM
detectable in future direct searches (see for example ref. [101] for a review).

As a final remark on the parametrics of eqs. (6.10) and (6.11), we notice that the
weakness of the loop-induced visible fifth force is essentially related to the smallness of ma/fa,
which is constrained to be less than about 10−18 if the mass of the axion is fixed on the QCD
line ma = 5.7µeV (1012 GeV/fa) [102]. This suggests that models with larger ma/fa could
realize parametrically larger visible fifth forces. As discussed in section 2.3, however, heavier
DM would require either a symmetry mechanism in the dark sector (such as supersymmetry)
to preserve the naturalness of the fifth force mass, or to accept a large amount of fine-tuning.
Under this non-minimal assumption, the implications of the existence of a dark fifth force on
the direct detection prospects for WIMP DM were previously investigated in refs. [103, 104].

6.2 Visible and dark fifth forces from the radial mode
We now consider a simple model where the fifth force couples directly to both DM and the
SM, see figure 15. The scalar DM χ is an axion, while the fifth force mediator ϕ is the radial
mode of a complex scalar field Φ with Lagrangian

LΦ = −∂µΦ∗∂µΦ +m2Φ∗Φ− λ(Φ∗Φ)2 + 1
4δm

2(Φ− Φ∗)2 , (6.12)

where the U(1) symmetry acting on the complex field (Φ → eiαΦ) is both spontaneously
broken by the Mexican-hat potential and explicitly broken by the last term controlled by
δm2. The latter preserves the Z2 symmetry Φ→ Φ∗ that stabilizes the DM χ. Parametrizing
the complex field as Φ = (f + ϕ)eiχ/f/

√
2 with the vacuum expectation value given by

f =
√
m2/λ , we obtain

LΦ = −1
2∂µϕ∂

µϕ− 1
2

(
1 + ϕ

f

)2
∂µχ∂

µχ− 1
2(2λf2)ϕ2 +O(ϕ3, ϕ4)

− 1
2δm

2
(
χ2 + 2ϕχ

2

f
+ ϕ2χ2

f2 +O(χ4) + . . .

)
. (6.13)
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Figure 15. Second scenario illustrating the interplay between dark and visible fifth forces. The light
force mediator is coupled to DM at tree level, eq. (6.13), while the coupling to the SM arises from the
effective interaction in eq. (6.15).

Matching to eq. (2.16) leads to the following parameter identifications,

δm2 = m2
χ(1 + 2s̄0) , f =

√
2
β

(1 + 2s̄0)MPl , λ = β

4(1 + 2s̄0)2
m2
ϕ

M2
Pl
, m2 =

m2
ϕ

2 , (6.14)

where from the equations above we can see that an extremely small quartic coupling and
a super Planckian decay constant are required to realize the dark fifth force mediator as
the radial mode of a vanilla axion DM model. For β ∼ 10−2 and mϕ ∼ H0 we need
λ ∼ 10−123. The trilinear coupling between the axion DM and the fifth force mediator is given
by δm2/f =

√
β/2m2

χ/MPl. Furthermore, several interactions are generated beyond those we
have considered in our cosmological analysis, including a derivative (ϕ/f)(∂χ)2 coupling as
well as a ϕ2χ2 term. However, these are unlikely to substantially change the results obtained
in section 5.

We note that, since δm2 � λf2, we cannot view the last term in eq. (6.12) as a small
perturbation to the U(1) invariant Lagrangian for Φ. Therefore, the choice to include only
the specific explicit breaking structure (Φ− Φ∗)2 appears to be rather ad-hoc. In particular,
there is no symmetry argument justifying the suppression of the explicit breaking operator
(Φ + Φ∗)2, which would induce a mass term for ϕ of order m2

χ. In this respect, the theory
discussed here should be considered as a toy model, of somewhat limited theoretical interest
but still useful to compare the parametric sensitivity of different fifth force probes.

Now assuming the presence of some electrically charged chiral fermions with Yukawa
couplings to Φ, the effective operator

δLΦ = cψ
α

4π
Φ∗Φ
f2 FµνF

µν → cψ
α

4π
ϕ

f
FµνF

µν (6.15)

is generated with cψ ∼ O(1) , together with the usual anomalous coupling of the axion
DM to photons. The corresponding value of the effective coupling in eq. (6.2) is de =
cψα
√
β/[(1 + 2s̄0)π] and the resulting 2σ bound from MICROSCOPE is β < 0.0083 (1 +

2s̄0)2/c2
ψ. Interestingly, this is comparable to our new bound from dark fifth forces. However,

atomic clocks give much more stringent constraints both in the 5F and CDE scenarios,
requiring

β < 2.0× 10−5 1
cψfχ

√
1 + w0

s

, (5F) (6.16)

β < 1.3× 10−10 (1 + 2s̄0)2

c2
ψΩ0

s(1 + w0
s)
. (CDE) (6.17)

To summarize, in this minimal model the current sensitivity of atomic clock tests in the visible
sector surpasses the bounds on dark fifth forces we have derived here. A similar result would
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hold if we considered a coupling of Φ to gluons. In passing, we note that the super Planckian
decay constants obtained in this simple model leave no hope of testing the axion directly in
ultralight DM searches.

Finally, we briefly go back to the issue of fine-tuning discussed in section 2.3. The
introduction of new couplings of the ultralight scalar field to the SM raises again the concern
of how the tinymϕ can be stabilized against quantum corrections. In the simple setup presented
here this issue can be explicitly quantified by estimating the one-loop contribution to the quartic
coupling λ induced by the non-renormalizable interaction in eq. (6.15), ∆λ ' c2

ψα
2Λ4

UV/(4πf)4.
The ultraviolet cutoff ΛUV corresponds to the masses of the new electrically charged chiral
fermions, which must be heavier than the electroweak scale forO(1) charges, thereby generating
a severe fine-tuning problem for the scalar field mass. The issue of introducing testable fifth
forces coupled to the SM without fine-tuning is a longstanding one, as reviewed e.g. in ref. [94].
At present, a convincing dynamical solution does not seem to exist, though interesting
attempts have been made [14, 49, 105, 106]. Remarkably, for a fifth force that is sequestered
within the dark sector and whose couplings to the SM arise only from DM loops, as discussed
in section 6.1, this fine-tuning issue is solved by taking the DM mass to be sufficiently light,
as quantified in eq. (2.20).

7 Outlook

This work starts a systematic investigation of the phenomenology of dark long range in-
teractions in cosmology. Here we briefly summarize our findings and present a number of
future directions.

In this first exploration we focused on scalar dark fifth forces, and derived the corre-
sponding equations for background and perturbations. We focused on the cosmology of dark
fifth forces that can be mapped to minimal microscopic theories with natural parameter
choices. The analytical results we derived in sections 3 and 4 show the build-up of the effects
of dark fifth forces over time, and clarify why cosmology is such a powerful probe of long
range dynamics in the dark sector: even a parametrically small effect can become relevant
after more than 13 billion years.

A very light scalar mediator could also account for the Dark Energy, with a very different
phenomenology compared to the case where the new degree of freedom purely mediates a new
interaction. We dub the former the Coupled Dark Energy (CDE) scenario, and the latter
the pure 5th force (5F) scenario. The fundamental parameter of the theory is β, the ratio
between the strength of the new interaction and the Newton constant. In the 5F case, we
find β < 0.0053 at 95% c.l. by combining CMB and BAO data. This bound weakens by
approximately a factor of 8 in the CDE case with mϕ = H0, due to the fine-tuning required
to match the value of the Cosmological Constant. For smaller masses of the CDE field the
bound weakens further, scaling approximately at least as mϕ/H0. These are the strongest
constraints on Equivalence Principle violation in the dark sector.

Our work opens up two sets of different but complementary questions: i) on the
phenomenological side, it would be important to explore the nonlinear cosmology of dark
fifth forces; ii) on the theoretical side, it would be interesting to explore non-minimal scalar
theories, vector mediators and the interplay with inflationary models. We now briefly present
these future directions in turn.

The rich phenomenology beyond linear theory of our models is yet to be investigated.
For example, we made the compelling case for a careful study of the mildly nonlinear regime of
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structure formation, since we have shown that dark fifth forces could alleviate the well-known
H0 tension between CMB and local measurements by simply invalidating the use of BAO
information. This was possible because the traditional BAO analyses cannot be applied to
cosmologies with large density or velocity perturbations between the different species, as
it is the case if DM violates the Equivalence Principle. The development of a dedicated
BAO analysis pipeline is therefore of the highest priority. More generally, the shape of the
power spectrum is much more affected by the presence of new dark long range interactions
than the CMB anisotropies. Analyzing galaxy clustering data however requires extending
next-to-leading order perturbative calculations of Large Scale Structure beyond the current
state of the art. For reference, a value of β = 0.005, close to the current 95% c.l. upper bound
from CMB plus BAO data, yields approximately 5% differences in the shape of the power
spectrum compared to the ΛCDM case.

Moving to smaller scales, many astrophysical systems could be affected by the presence
of a new dark long range interaction, and we list here just a few examples.

At very high redshifts, it is well known that relative velocities between DM and baryons
have an important effect on the formation of the first stars and galaxies, and can vastly modify
the shape of the 21 cm power spectrum at cosmic dawn. In our models, the relative velocities
are one order of magnitude larger than in a ΛCDM scenario, and it would be therefore
interesting to study their consequences for the high redshift Universe. Other examples concern
the collapse of DM halos and their internal structure. We expect more halos in cosmology
with a fifth force, simply because matter can accrete faster. Their internal structure could
also be different than in ΛCDM, and this may be tested for instance with strong lensing data.
The abundance and the profile of small mass halos are also related to the number of satellite
galaxies, which could be studied assuming a model for the baryonic physics in the presence
of a 5th force. Finally, the dynamics of stars and of stellar streams is sensitive to the DM
distribution inside galaxies, and could be tested with kinematics data of JWST (the former)
and of Gaia (the latter). Our modified version of CLASS provides the baseline for all the
above investigations.

The other set of questions are related to the theoretical foundations of the framework.
While we discussed initial conditions from the perspective of initializing the linear theory
equations, a period of cosmological inflation can provide a dynamical origin for the initial
conditions of the Universe. It is therefore interesting to ask how to embed a new very light
and interacting degree of freedom into inflation. Actually, a general prediction of inflation
models with light scalar spectator fields is the generation of non-adiabaticity in the initial
conditions and of Primordial non-Gaussianities, with important observational consequences.

One could also consider more general interactions with scalar fields than the ones studied
in this work. One example are dilaton-like couplings, which are interesting because they
would evade the suppression of the effective strength of the fifth force in CDE scenarios that
we discussed here.

Finally, it is tempting to look into light Abelian vector mediators, whose very small mass
can be technically natural. Abelian gauge theories are screened at large distances if there is
no net dark charge in the Universe, therefore one would expect a less rich phenomenology
than in the scalar case. However, at the level of the perturbations, light interacting vector
bosons will generate vector perturbations, which are severely constrained by data. Clearly, if
the total dark charge in the Universe is not zero we can anticipate major differences with
ΛCDM at all scales.

We hope to hit the road in all these various directions in future work.
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A Particle vs field description

Here we show an alternative method to derive the equations governing the evolution of χ,
making use of the field-theoretical viewpoint. For ease of exposition we focus on scalar DM.
The starting point is the microscopic Lagrangian, which can be written as

L = −1
2∂µχ∂

µχ− Vχ −
1

2Gs
∂µs∂

µs− Vs − Vint . (A.1)

We define the χ fluid as “containing the interaction”,

(Tχ)µν = ∂µχ∂νχ+ gµν

(
−1

2∂αχ∂
αχ− Vχ − Vint

)
, (A.2)

(Ts)µν = 1
Gs
∂µs∂νs+ gµν

(
− 1

2Gs
∂αs∂

αs− Vs
)
, (A.3)

so that the equations expressing the non-conservation of the energy-momentum tensor for
each species read

∇µ(Tχ)µ ν = −∂Vint
∂s

∂νs , ∇µ(Ts)µ ν = +∂Vint
∂s

∂νs . (A.4)

Notice that the transfer four-vector appearing on the right-hand sides is proportional to the
scalar field four-velocity, ∂νs ∝ uνs . Writing the DM stress tensor as [107]

Tµνχ = (ρRF
χ + PRF

χ )uµuν + PRF
χ gµν , uµ = γ(1, ~v/a) , (A.5)

with γ ≡ 1/
√

1− v2 (satisfying uµuνgµν = −1) and RF denoting rest-frame quantities, the
energy density and pressure are given by

−(Tχ)0
0 = ρχ = γ2ρRF

χ + (γ2 − 1)PRF
χ , (A.6)

1
3δ

i
j(Tχ)j i = Pχ = PRF

χ + 1
3γ

2v2(ρRF
χ + PRF

χ ) . (A.7)

In the rest frame we also have

ρRF
χ = −1

2∂
0χ∂0χ+ Vχ + Vint , PRF

χ = −1
2∂

0χ∂0χ− Vχ − Vint . (A.8)

Assuming χ to be pressureless in its rest frame, PRF
χ = 0 , we thus find ρRF

χ = 2(Vχ + Vint)
and finally

ρχ − 3Pχ = ρRF
χ = ∂Vint/∂s

∂ logmχ(s)/∂s , (A.9)

where the second equality can be easily verified for the class of potentials Vχ , Vint considered
in this work, which are both quadratic in χ. In the pressureless limit, the above equation
reduces to eq. (2.14).
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On the background, the time component of the first equation in (A.4) takes the form

∇µ(Tχ)µ 0 = (Ṫχ)0
0 + 3H(Tχ)0

0 −Hδi j(Tχ)j i = −∂Vint
∂s

˙̄s , (A.10)

which making use of the above results we rewrite as

˙̄ρχ + 3H(ρ̄χ + Pχ) = (ρ̄χ − 3Pχ)∂ logmχ(s)
∂s

˙̄s . (A.11)

This reduces to eq. (3.1) in the pressureless limit.
Equation (A.11) can also be derived from the particle viewpoint, by integrating the

Vlasov equation (2.6) in d3pE/(2π)3, performing integration by parts, and recalling the
definitions ρχ =

∫
d3pEfχ/(2π)3 and Pχ =

∫
d3p p2fχ/[(2π)33E] . We note that there is yet

another way to obtain the above equation from the particle perspective [22], by regarding the
DM as a collection of point particles with number density nχ related to energy density and
pressure by ρχ = γmχ(s)nχ and Pχ = γv2mχ(s)nχ/3. Therefore ρχ−3Pχ =

√
1− v2mχ(s)nχ,

which manifests the expected decoupling in the ultra-relativistic limit v → 1. The connection
with the field perspective is made through the relations nχ = γmχ(s)χ2 for real scalar DM,
nχ = 2γmχ(s)χ∗χ for complex scalar DM, and nχ = γχχ for Dirac fermion DM.

The field approach can also be extended to first order, by making use of the relation
between the perturbed fluid and field variables. In Newtonian gauge,

δρχ = −(δTχ)0
0 = ˙̄χ ˙δχ− ˙̄χ2Ψ + ∂Vχ

∂χ
δχ+ ∂Vint

∂s
δs+ ∂Vint

∂χ
δχ , (A.12)

which should be contrasted with the first of eqs. (4.8). In addition the fluid velocity is given
by (ρ̄χ +Pχ)viχ = − ˙̄χ∇iδχ/a. By employing these relations and the field equations of motion
at the background and first-order levels, in the pressureless limit the continuity and Euler
equations (4.1) and (4.2) are straightforwardly obtained.

B Perturbations in synchronous gauge

Following ref. [43] we call h, η the two synchronous gauge (SG) potentials, defined in momentum
space by

ds2 = −dt2 + a2(δij + hij)dxidxj , hij =
∫
d3k ei

~k·~x
[
kikj
k2 h+

(
kikj
k2 −

δij
3

)
6η
]
. (B.1)

The value of the SG scalar field perturbation is related to the one in Newtonian gauge (NG)
by

δsNG = δsSG + s̄′α , α ≡ 1
2k2 (h′ + 6η′). (B.2)

The continuity equation reads

δ′χ + θχ + h′

2 −
∂ logmχ(s)

∂s
δs′ − ∂2 logmχ(s)

∂s2 s̄′ δs = 0 , (B.3)

the Euler equation

θ′χ +
(
H+ ∂ logmχ(s)

∂s
s̄′
)
θχ − k2∂ logmχ(s)

∂s
δs = 0 , (B.4)
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and the perturbed KG equation is

δs′′+ 2Hδs′+k2δs+ s̄′h′

2 +a2GsVs,,sδs+a2Gsρ̄χ
∂ logmχ(s)

∂s
δχ+a2Gsρ̄χ

∂2 logmχ(s)
∂s2 δs = 0 .

(B.5)
As is well known, the above equations are obtained from those in NG by setting

Ψ→ 0 , Φ→ h/6 . (B.6)

The Einstein’s equations take the standard form [43]. It may be useful to recall the relation
between our definitions of the NG potentials and those in ref. [43]: Ψhere = ψMB and
Φhere = −φMB.

B.1 Initial conditions in synchronous gauge
The adiabatic initial conditions in SG for all fluids except χ, s, as well as for the gravitational
potentials, are found using standard methods [43]. By definition we have θc = 0 and, retaining
only the leading terms in the kτ � 1 expansion,

4
3δc = 4

3δb = δν = δγ =−2
3C(kτ)2, θb = 15+4Rν

23+4Rν
θν = θγ =− C18k(kτ)3 ,

σν = 4C
3

(kτ)2

15+4Rν
, h=C(kτ)2 , η= 2C− C6

5+4Rν
15+4Rν

(kτ)2 , (B.7)

with C a dimensionless normalization constant and Rν ≡ ρ̄ν/(ρ̄γ + ρ̄ν). The initial condition
for δχ is obtained by requiring that the gauge-invariant entropy perturbation relative to
photons vanish,

0 = Sχγ = 3H
(
δργ
ρ̄ ′γ
− δρχ

ρ̄ ′χ

)
= −3

4δγ + δχ

1− ∂ logmχ(s)
∂s

s̄′

3H

≈ −3
4δγ + δχ , (B.8)

where the last equality holds to high accuracy since s̄′τ � 1, as obtained from the RD solution
in eq. (3.8). Hence δχ = 3δγ/4 . Then, assuming RD when Vs is negligible and taking the
super-horizon limit, the KG equation (B.5) admits the solution

δs ' −C6 s̄
′k2τ3 + αna

(
1 + ∂2 logmχ(s)/∂s2

∂ logmχ(s)/∂s s̄′τ +O(s̄′ 2τ2)
)

(B.9)

where αna parametrizes the deviation from adiabaticity, and s̄′ is understood to be evaluated
at the initial time of the perturbations. This solution holds provided ∂2 logmχ(s)/∂s2 6= 0,
namely excluding the case mχ(s) ∝ e−s. Plugging eq. (B.9) into the definition of the s energy
density perturbation (in SG, the expression of the s fluid variables is given by eq. (4.8) setting
Ψ = 0) we arrive at

δs = (1 + ws)
δs′

s̄′
' 3δγ

2 + 2αna
∂2 logmχ(s)/∂s2

∂ logmχ(s)/∂s . (B.10)

Thus for αna = 0 we find δs = 3δγ/2 in SG, which differs from δs = δγ/2 found at leading
order in NG. There is, however, no inconsistency, as we now show by going to the next order.
The SG potentials read

h = C(kτ)2 + ah(kτ)4 , η = 2C − C

6
5 + 4Rν
15 + 4Rν

(kτ)2 + aη(kτ)4 , (B.11)
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where ah, aη are constants whose explicit expressions are not needed for our purposes. The
NG density perturbations are found to be

δNG
γ = − 40C

15 + 4Rν
−
(2C

3 + 8(ah + 6aη)
)

(kτ)2 ,

δNG
s = − 20C

15 + 4Rν
−
(
C + 4(ah + 6aη)

)
(kτ)2 . (B.12)

The relative entropy perturbation between the scalar field and the photons in the two gauges
is then, upon application of the background relation eq. (3.9),

Ssγ = −3
4δ

NG
γ + 3

2δ
NG
s = −C(kτ)2 = −3

4δ
SG
γ + 3

2δ
SG
s , (B.13)

neglecting O(k4τ4) terms. Thus Ssγ vanishes only at leading order, whereas it is nonzero
(and gauge invariant as it must be) at next-to-leading order. A similar observation was made
in ref. [108].

Turning to the velocity potentials, for s we find

θs = k2

s̄′
δs ' 3θγ + αnak

2

s̄′
. (B.14)

Finally, the initial condition for the χ velocity potential is obtained from the Euler equa-
tion (B.4),

θχ '
αna
2
∂ logmχ(s)

∂s
k(kτ) . (B.15)

Thus, for αna 6= 0 we find θχ ∼ O(k2τ), much larger than for the photons and baryons which
have θ ∼ O(k4τ3).

B.2 Initial conditions in Newtonian gauge, summary

The adiabatic initial conditions in NG for all fluids except χ, s, and for the gravitational
potentials, are at leading order in the kτ � 1 expansion [43]

4
3δc = 4

3δb = δν = δγ =− 40C
15+4Rν

, θc = θb = θν = θγ = 10C
15+4Rν

k(kτ) ,

σν = 4C
3

(kτ)2

15+4Rν
, Ψ = 20C

15+4Rν
, Φ =−Ψ

(
1+ 2

5Rν
)
. (B.16)

For χ and s we summarize the results of section 4.1: for the field perturbation we have found

δs ' 10C
15 + 4Rν

s̄′τ + αna

(
1 + ∂2 logmχ(s)/∂s2

∂ logmχ(s)/∂s s̄′τ +O(s̄′ 2τ2)
)

(B.17)

and for the fluids, recalling eq. (4.8),

δχ = 3
4δγ , δs = δγ

2 + 2αna
∂2 logmχ(s)/ log s
∂ logmχ(s)/∂ log s , (B.18)

θχ = θγ + αna
2
∂ logmχ(s)

∂s
k(kτ) , θs = θγ + αnak

2

s̄′
. (B.19)
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C Perturbations in the fluid description

For completeness, in this section we provide the equations of motion for the mediator written
in fluid form, in NG. By applying the relations between the field perturbations and fluid
perturbations given in eq. (4.8), we express δs, δs′ in terms of δs, θs, thus obtaining two
first-order equations in place of the perturbed KG equation (4.3).

For δs we find

δ′s + 3H(1− ws)δs + ρ̄χ
ρ̄s

∂ logmχ(s)
∂s

s̄′
(

Ψ + δχ −
ws

1 + ws
δs

)
+ 3(1 + ws)Φ′

+
[ 1− c2

ϕ

2(1 + ws)

(
6H(1 + ws) + ρ̄χ

ρ̄s

∂ logmχ(s)
∂s

s̄′
)(

3H(1 + ws) + ρ̄χ
ρ̄s

∂ logmχ(s)
∂s

s̄′
)

+ ρ̄χ
ρ̄s

∂2 logmχ(s)
∂s2 (s̄′)2 + (1 + ws)k2

]
θs
k2 = 0 , (C.1)

where the adiabatic sound speed squared is defined as

c2
ϕ ≡
P ′s
ρ̄ ′s

= 1 + 2a2GsVs,s

3Hs̄′ + a2Gs
∂ logmχ(s)

∂s ρ̄χ
. (C.2)

This should not be confused with the sound speed squared c2
sϕ ≡ (δPs/δρs)RF , which always

equals 1 for a scalar field. Instead, the adiabatic sound speed satisfies the gauge-invariant
relation

δPs = δρs + (1− c2
ϕ)
(

3Hρ̄s(1 + ws) + ρ̄χ
∂ logmχ(s)

∂s
s̄′
)
θs
k2 . (C.3)

The equation for the s velocity perturbation is found to be

θ′s − 2H
(

1 + 3
2

ρ̄χ
3Hρ̄s(1 + ws)

∂ logmχ(s)
∂s

s̄′
)
θs − k2Ψ− k2δs

1 + ws
= 0 . (C.4)

The second term in the parenthesis of the friction term contains the doom factor defined
in eq. (3.9), and we now see the reason for this terminology. If the doom factor is large
and positive, there exists, even in the absence of sources, a solution to the Euler equation
which goes as τn, where n is proportional to the doom factor. In this scenario, perturbations
become unstable at very early times [25, 26]. For the case of Yukawa interactions discussed in
this work, which rests on a microscopic Lagrangian description, the doom factor is negative
and therefore does not lead to any runaway instabilities of the perturbations (in fact, the θs
term in eq. (C.4) vanishes during early RD). We believe the same conclusion applies to any
physical model of long range forces in the dark sector.

We also rewrite the equations for χ in the same variables: eq. (4.1) as

δ′χ+θχ+3Φ′− ∂ logmχ(s)
∂s

s̄′
(

Ψ+ δs
1+ws

)
(C.5)

−
[ 1−c2

ϕ

2(1+ws)
∂ logmχ(s)

∂s
s̄′
(

3H(1+ws)+ ρ̄χ
ρ̄s

∂ logmχ(s)
∂s

s̄′
)

+ ∂2 logmχ(s)
∂s2 (s̄′)2

]
θs
k2 = 0 ,

and eq. (4.2) as

θ′χ +
(
H+ ∂ logmχ(s)

∂s
s̄′
)
θχ − k2Ψ− ∂ logmχ(s)

∂s
s̄′θs = 0 . (C.6)
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It is tedious but straightforward to check that these equations agree with refs. [25, 109],
once the appropriate identifications are made. The SG equations are simply obtained by
performing the replacements (B.6) in the above expressions.
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