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Abstract
The virtual element method (VEM) is a new family of numerical methods for the approxi-
mation of partial differential equations, where the geometry of the polytopal mesh elements
can be very general. The aim of this article is to extend the balancing domain decomposition
by constraints preconditioner to the solution of the saddle-point linear system arising from
a VEM discretization of the two-dimensional Stokes equations. Under suitable hypotesis
on the choice of the primal unknowns, the preconditioned linear system results symmetric
and positive definite, thus the preconditioned conjugate gradient method can be used for its
solution. We provide a theoretical convergence analysis estimating the condition number of
the preconditioned linear system. Several numerical experiments validate the theoretical esti-
mates, showing the scalability and quasi-optimality of the method proposed. Moreover, the
solver exhibits a robust behavior with respect to the shape of the polygonal mesh elements.
We also show that a faster convergence could be achieved with an easy to implement coarse
space, slightly larger than the minimal one covered by the theory.

Keywords Virtual element method · Divergence free discretization · Saddle-point linear
system · Domain decomposition preconditioner

1 Introduction

The balancing domain decomposition by constraints (BDDC) preconditioner is an iterative
substructuring method for the solution of partial differential equations (PDEs), that belongs
to the class of nonoverlapping domain decomposition algorithms [22, 23]. BDDC, first
introduced in [12] for elliptic problems, represents an evolution of the balancing Neumann–
Neumann preconditioner [23]. We also remark that BDDC presents several features in
common with the dual-primal finite element tearing and interconnecting (FETI-DP) algo-
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rithm. In particular, the BDDC and FETI-DP operators share almost the same eigenvalues
[6, 20], thus they exhibit analogous convergence properties. Both BDDC and FETI-DP have
been successfully developed for finite and spectral element discretizations of several physi-
cal problems governed by PDEs, see e.g. [13, 17, 21, 28]. In particular, regarding the Stokes
equations, they have been studied in [18, 19]. In recent years, BDDCand FETI-DP algorithms
have been also extended to various innovative discretizations techniques for PDEs, such as
Mortar discretizations [16], discontinuous Galerkin methods [9, 14], isogeometric analysis
[15, 27], weak Galerkin methods [24] and virtual element methods [2, 3].

The virtual element method (VEM), introduced in the pioneering paper [25], represents
a generalization of the finite element method (FEM), that can easily handle general poly-
topal meshes. The core idea behind VEM is to use approximated discrete bilinear forms,
whose computation requires only the integration of polynomials on the element boundary
and interior. The resulting discrete solution is conforming and the accuracy guaranteed by
such discrete bilinear forms turns to be sufficient to achieve the correct order of convergence.
The advantage of these methods is that they can be applied on a wide choice of general
polygonal meshes without the need to integrate complex non-polynomial functions on the
elements, keeping an high degree of accuracy.

In the VEM literature only a few studies have focused on the construction and analysis
of preconditioners for VEM approximations of PDEs; see [1, 7, 8, 10]). BDDC for VEM
discretizations of scalar elliptic problemshave beenfirst introduced in [2, 3] and then extended
to mixed formulations of scalar elliptic equations in [11]. To our knowledge, the development
of effective non-overlapping domain decomposition preconditioners for VEMdiscretizations
of the Stokes equations is still an open problem.

The novelty of the present study is to develop a BDDC preconditioner for the divergence
free VEM discretization of the two-dimensional Stokes equations introduced in [26]. Our
algorithm represents an extension to VEM of the BDDC preconditioner proposed in [19]
for FEM discretizations of the Stokes equations with discontinuous pressure spaces. We
prove a convergence rate estimate of the preconditioned system, independent of the number
of subdomains and polylogarithmic with respect to the ratio H/h, where H denotes the
subdomain size and h the mesh size. Such an estimate yields the scalability and quasi-
optimality of the resulting algorithm. Several numerical tests confirm the theoretical estimate
and show the robustness of the solver with respect to different polygonal meshes.

The paper is organized as follows: in Sect. 2 we introduce the continuous problem and
its variational formulation; in Sect. 3 we describe the VEM discretization; in Sect. 4 we
introduce the domain decomposition tecnique and the BDDC preconditioner; in Sects. 5 and
6 we describe the theoretical aspects, while in Sect. 7 we report several numerical results;
finally in Sect. 8 we draw the conclusions.

2 Continuous Problem

Let Ω ⊆ R
2, with Γ = ∂Ω , and consider the stationary Stokes problem on Ω with homo-

geneous Dirichet boundary conditions:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find (u, p) such that

−ν�u − ∇ p = f in Ω

div u = 0 in Ω

u = 0 on Γ ,

(2.1)

where u and p are the velocity and the pressure fields, respectively. Furthermore�, div and∇
denote the vector Laplacian, the divergence and the gradient operators. Finally, f represents
the external force, while ν > 0 is the viscosity.

Let us consider the spaces:

V := [H1
0 (Ω)]2, Q := L2

0(Ω) =
{

q ∈ L2(Ω) s.t .
∫

Ω

q dΩ = 0

}

(2.2)

with norms:

‖v‖1 := ‖v‖[H1(Ω)]2 , ‖q‖Q := ‖q‖L2(Ω). (2.3)

We assume f ∈ [H−1(Ω)]2, and ν ∈ L∞(Ω) uniformly positive in Ω . Let the bilinear
forms a(·, ·) : V × V → R and b : V × Q → R be defined as:

a(u, v) :=
∫

Ω

ν∇u : ∇v dΩ for all u, v ∈ V (2.4)

b(v, q) :=
∫

Ω

div vq dΩ for all u ∈ V, q ∈ Q. (2.5)

Then a standard variational formulation of problem (2.1) reads:
⎧
⎪⎨

⎪⎩

find (u, p) ∈ V × Q such that

a(u, v) + b(v, p) = (f, v) for all v ∈ V,

b(u, q) = 0 for all q ∈ Q,

(2.6)

where

(f, v) :=
∫

Ω

f · v dΩ.

It is well-known that:

– a(·, ·) and b(·, ·) are continuous, i.e.
|a(u, v)| ≤ ‖a‖‖u‖1‖v‖1 for all u, v ∈ V,

|b(v, q)| ≤ ‖b‖‖v‖1‖q‖Q for all v ∈ Vand q ∈ Q,

where ‖a‖ and ‖b‖ are the usual norm of the two bilinear forms;
– a(·, ·) is coercive i.e., there exists a positive constant α such that

|a(v, v)| ≥ α‖v‖21 for all v ∈ V;
– the bilinear form b(·, ·) satisfies the inf-sup condition [4], i.e.

∃β > 0 such that sup
v∈V,v �=0

|b(v, q)|
‖v‖1 ≥ β‖q‖Q for all q ∈ Q. (2.7)

Therefore, problem (2.6) has a unique solution (u, p) ∈ V × Q such that

||u||1 + ||p||Q ≤ C ||f||H−1(Ω), (2.8)

where the constant C depends only on Ω and ν; see [4].
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3 Virtual Element Discretization

We present here the discretization of problem (2.1), based on the virtual element space
introduced in [26], that is designed to solve a Stokes-like problem element-wise. In particular
we will use the reduced space presented in section 5 of [26], that, exploiting the divergence
free property of the solution, allows to save a lot of degrees of freedom especially when the
polynomial degree k is large. We recall here the definition of the local spaces. Let {Th}h be
a sequence of triangulations of Ω into general polygonal elements K with

hK := diameter(K ), h := sup
K∈Th

hK .

We suppose that, for all h, each element K ∈ Th satisfies the following assumptions:

– (A1) K is star-shaped with respect to a ball of radius ≥ γ hk ,
– (A2) the distance between any two vertices of K is ≥ chK ,
– (A3) the triangulation Th is quasi-uniform, i.e. there exist positive constants c0, c1 such

that for any two elements K and K ′ in Th we have c0 ≤ hK /hK ′ ≤ c1.

where γ and c are positive constants.

Remark 3.1 These hypotheses could be weakened as in [25], for example assuming that
every K is a union of a finite (and uniformly bounded) number of star-shaped domains, each
satisfying (A1).

We also assume that the scalar viscosity field ν is piecewise constant with respect to the
decomposition Th , i.e. ν is constant on each polygon K ∈ Th .

For k ∈ N, let us define the spaces:

– Pk(K ) the set of polynomials on K of degree ≤ k,
– Bk(K ) := {v ∈ C0(∂K ) s.t. v|e ∈ Pk(e) ∀ edge e ∈ ∂K },
– Gk(K ) := ∇(Pk+1(K )) ⊆ [Pk(K )]2,
– Gk(K )⊥ ⊆ [Pk(K )]2 the L2-orthogonal complement to Gk(K ).

On each element K ∈ Th we define, for k ≥ 2, the following finite dimensional local virtual
element spaces:

V̂K
h :=

{

v ∈ [H1(K )]2 s.t. v|∂K ∈ Bk(∂K )]2,
{

−ν�v − ∇s ∈ Gk−2(K )⊥,

div v ∈ P0(K ),
for some s ∈ L2(K )

} (3.1)

and

QK
h := P0(K ). (3.2)

Now it is possible to introduce suitable sets of degrees of freedom for the local approxi-
mations fields.
Given a function v ∈ V̂K

h we take the following linear operators DV̂, split into three subsets:

– DV̂1: the values of v at the vertices of the polygon K ,
– DV̂2: the values of v at k−1 distinct points of every edge e ∈ ∂K (for the implementation

we will take the k − 1 internal points of the (k + 1)-Gauss–Lobatto quadrature rule in e),
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– DV̂3: the moments of the values of v
∫

K
v · g⊥

k−2 dK for all g⊥
k−2 ∈ Gk−2(K )⊥

Furthermore, for the local pressure, given q ∈ QK
h , we consider the linear operators DQ:

– DQ: the moment
∫

K
q dK .

SinceDV̂ andDQ are unisolvent respectively of V̂K
h and QK

h , we can define the global virtual
element spaces:

V̂h := {v ∈ [H1
0 (Ω)]2 s.t. v|K ∈ V̂K

h for all K ∈ Th} (3.3)

and

Qh := {q ∈ L2
0(Ω) s.t. q|K ∈ QK

h for all K ∈ Th}, (3.4)

with obvious associated sets of global degrees of freedom.

3.1 Discrete Problem

Referring to [26], we can now state the discrete virtual element problem
⎧
⎪⎨

⎪⎩

find (uh, ph) such that

ah(uh, vh) + b(vh, ph) = (fh, vh) for all vh ∈ V̂h

b(uh, qh) = 0 for all qh ∈ Qh

(3.5)

By construction the discrete bilinear form ah(·, ·) is stable (uniformly) with respect to the
V norm and also obviously the bilinear form b(·, ·). Therefore, to prove the existence and
uniqueness of the solution of the problem (3.5) is necessary only a suitable inf-sup condition.
For our work, we will only need this condition for the subdomains in whichΩ will be divided
into. In this way the local subdomains problem, as weel as the global one, will be well posed.
The proof of the following inf-sup condition could be found in [26].

Proposition 3.1 Given the discrete spaces V̂h and Qh defined in (3.3) and (3.4), there exists
a positive β̃, independent of h, such that:

sup
vh∈V̂h ,vh �=0

|b(vh, qh)|
‖vh‖1 ≥ β̃‖qh‖Q for all qh ∈ Qh . (3.6)

A consequence of the previous proposition is the following statement.

Theorem 3.1 Problem (3.5) has a unique solution (uh, ph) ∈ V̂h×Qh, verifying the estimate

‖uh‖1 + ‖ph‖Q ≤ C‖f‖0. (3.7)

We have also a convergence result

Theorem 3.2 Let (u, p) ∈ V × Q be the solution of problem (2.6) and (uh, ph) ∈ V̂h × Qh

be the solution of problem (3.5). Then it holds

‖u − uh‖1 ≤ Chk(|f|k−1 + |u|k+1) (3.8)
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and

‖p − ph‖Q ≤ Chk(|f|k−1 + |u|k+1 + |p|k). (3.9)

4 Construction of the BDDC Preconditioner

In this section, we first divide the domain Ω into subdomains and introduce appropriate
function spaces, paragraph 4.1. Then, in paragraph 4.2, we show how the global interface
saddle-point problem takes form and then in 4.3 we define the BDDC preconditioner that
allows us to use a preconditioned conjugate gradient method (PCG) for its solution.

4.1 Domain Decomposition

We decompose the domain Ω into N non-overlapping subdomains Ωi , i = 1, 2, ...N , of
characteristic diameter H . Each subdomain is a union of shape regular elements and the nodes
on the boundaries of neighboring subdomain match across the interface Γ = (∪∂Ωi )\∂Ω;
we define also Γi = ∂Ωi ∩ Γ as the interface of an individual subdomain Ωi . According
to [5], where more details could be found, we recall two requirements on the subdomain
partition:

– (S1) Each subdomain Ωi is the union of polygonal elements of the triangulation Th and
the number of polygons forming an individual subdomain is uniformly bounded;

– (S2) If a face of a subdomain intersects ∂Ω , then the measure of this set is comparable
to that of ∂Ωi . Similarly, if an edge of a subdomain intersects ∂Ω , the length of this
intersection is bounded from below in terms of the diameter of ∂Ωi .

Restricting to the two-dimensional case, although the theory of iterative substructuring
([23] Sect. 4.2) does not cover the general cases where the boundary of a subdomain is not
a straight line (as we have in our implementation, since we use general polygonal meshes),
we can anyway define vertices and interface relatively easily. We say that a node x belongs
to the interface of a subdomain if it belongs to at least two subdomains, while a node x is a
vertex of a subdomain if it belongs to more than two subdomains (Fig. 1). This is the rule
that we used in the implementation to split our mesh in the different subdomains.

4.2 Decomposition of the Virtual Element Spaces

The discrete variational problem (3.5) can be written, in matrix form, as the following saddle-
point linear system:

[
A BT

B 0

] [
u
p

]

=
[
f
0

]

(4.1)

where the matrices A and B are associated with the discrete bilinear forms ah(·, ·) and b(·, ·).
In the remainder of the paper, we omit the underscore h since wewill always refer to the finite
dimensional space and so we write V̂× Q instead of V̂h × Qh , only for sake of simplifying
the notation. Referring to the notations of the previous section, we naturally split the degrees
of freedom (dofs) of the velocity components into boundary dofs (DV1 andDV2) and interior
dofs (DV3 and DV4). Following the notations introduced in [19], we decompose the discrete
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Fig. 1 Interface of the
subdomains (excluding the nodes
on the boundary): red circles
indicate the vertices of the
subdomains, whereas black
circles indicate the remainder
interface nodes (Color figure
online)

velocity and pressure space V̂ and Q into:

V̂ = VI

⊕
V̂Γ , Q = QI

⊕
Q0. (4.2)

VI and QI are direct sums of subdomain interior velocity spacesV(i)
I , and subdomain interior

pressure spaces Q(i)
I , respectively, i.e.,

VI =
N⊕

i=1

V(i)
I , QI =

N⊕

i=1

Q(i)
I . (4.3)

The elements of V(i)
I have support in the subdomain Ωi and vanish on its interface Γi , while

the elements of Q(i)
I are restrictions of elements in Q to Ωi . V̂Γ is the space of the traces on

Γ of functions in V̂ and Q0 is the subspace of Q with constant values q(i)
0 in the subdomain

Ωi . We denote the space of interface velocity variables of the subdomain Ωi byV
(i)
Γ , and the

associated product space by VΓ = ∏N
i=1 V

(i)
Γ ; generally functions in VΓ are discontinuous

across the interface. R(i)
Γ : V̂Γ → V(i)

Γ is the operator whichmaps functions in the continuous

interface velocity space V̂Γ to their subdomain components in the space V(i)
Γ . We denote the

direct sum of the R(i)
Γ with RΓ .

With the decomposition of the solution space given in (4.2), the global saddle-point problem
(4.1) can be written as: find (uI , pI ,uΓ , p0) ∈ (VI , QI , V̂Γ , Q0), such that:

⎡

⎢
⎢
⎢
⎣

AI I BT
I I ÂT

Γ I 0

BI I 0 B̂IΓ 0

ÂΓ I B̂T
IΓ ÂΓ Γ B̂T

0Γ

0 0 B̂T
0Γ 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

uI

pI
uΓ

p0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

fI
0
fΓ
0

⎤

⎥
⎥
⎦ . (4.4)

Remark 4.1 Here the lower left block of (4.4) is zero because the bilinear form b(uI , q0)
vanishes for any vI ∈ VI and q0 ∈ Q0. To keep this property, when the change of basis
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for the pressure space is applied, it is important to take care of the fact that the shape and
dimension of the elements is different.

The blocks related to the continuous interface velocity are assembled from the correspond-

ing subdomain submatrices, e.g., ÂΓ Γ = ∑N
i=1 R

(i)
Γ

T
Â(i)

Γ Γ R(i)
Γ and B̂0Γ = ∑N

i=1 B̂
(i)
0Γ R(i)

Γ .

Correspondingly, the right-hand side vector fI consists of subdomain vectors f (i)I , and fΓ is

assembled from the subdomain components f (i)Γ ; we denote the spaces of the right-hand side
vectors fI and fΓ by FI and FΓ respectively.

By employing a symmetric permutation, the leading two by two blocks in the coefficient
matrix can be rewritten as a block diagonal matrix with blocks corresponding to independent
subdomain problems. We show here how such a matrix takes form in the simplest case of
two subdomains:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A(1)
I I B(1)

I I

T
0 0 A(1)

Γ I

T
0

B(1)
I I 0 0 0 B(1)

IΓ 0

0 0 A(2)
I I B(2)

I I

T
A(2)

Γ I

T
0

0 0 B(2)
I I 0 B(2)

IΓ 0

A(1)
Γ I B(1)

IΓ

T
A(2)

Γ I B(2)
IΓ

T
ÂΓ Γ B̂T

0Γ

0 0 0 0 B̂0Γ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u(1)
I

p(1)
I

u(2)
I

p(2)
I

uΓ

p0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (1)I

0

f (2)I

0

fΓ
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.5)

In the rest of this section the computations are always performed in the case of two sub-
domains. The extension to the general case with more subdomains is natural, but the
computations are clearly more involved.
We proceed eliminating, by static condensation, the independent subdomain variables
(u(1)

I , p(1)
I ) and (u(2)

I , p(2)
I ) in the system (4.5). To do so, we solve two independent Dirichlet

problems:
[
A(1)
I I B(1)

I I

T

B(1)
I I 0

][
u(1)
I

p(1)
I

]

+
[
A(1)

Γ I

T
0

B(1)
IΓ 0

][
uΓ

p0

]

=
[
F(1)
I

0

]

, (4.6)

[
A(2)
I I B(2)

I I

T

B(2)
I I 0

][
u(2)
I

p(2)
I

]

+
[
A(2)

Γ I

T
0

B(2)
IΓ 0

][
uΓ

p0

]

=
[
F(2)
I

0

]

, (4.7)

thus
[
u(1)
I

p(1)
I

]

=
[
A(1)
I I B(1)

I I

T

B(1)
I I 0

]−1 ([
F(1)
I
0

]

−
[
A(1)

Γ I

T
0

B(1)
IΓ 0

][
uΓ

p0

])

, (4.8)

[
u(2)
I

p(2)
I

]

=
[
A(2)
I I B(2)

I I

T

B(2)
I I 0

]−1 ([
F(2)
I

0

]

−
[
A(2)

Γ I

T
0

B(2)
IΓ 0

][
uΓ

p0

])

, (4.9)

Then, substituting the solutions of (4.8) and (4.9) in
[
A(1)

Γ I B(1)
IΓ

T

0 0

][
u(1)
I

p(1)
I

]

+
[
A(2)

Γ I B(2)
IΓ

T

0 0

][
u(2)
I

p(2)
I

]

+
[
ÂΓ Γ B̂T

0Γ

B̂0Γ 0

][
uΓ

p0

]

=
[
FΓ

0

]

(4.10)
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we obtain the global interface saddle-point problem:

Ŝ û =
[

ŜΓ B̂T
0Γ

B̂0Γ 0

][
uΓ

p0

]

=
[
gΓ

0

]

= ĝ, (4.11)

where the right-hand side ĝ ∈ FΓ × F0 is given by

ĝ =
2∑

i=1

R(i)
Γ

T

⎧
⎨

⎩

[
f (i)Γ

0

]

−
[
A(i)

Γ I B(i)
IΓ

T

0 0

][
A(i)
I I B(i)

I I

T

B(i)
I I 0

]−1 [
f (i)I
0

]
⎫
⎬

⎭
. (4.12)

We note that Ŝ is assembled from the subdomain Stokes Schur complements S(i), which are
defined by: given w(i) = w(i)

Γ × q(i)
0 ∈ V(i)

Γ × Q(i)
0 , determine S(i)w(i) ∈ F(i)

Γ × F (i)
0 such

that
⎡

⎢
⎢
⎢
⎢
⎢
⎣

A(i)
I I B(i)

I I

T
A(i)

Γ I

T
0

B(i)
I I 0 B(i)

IΓ 0

A(i)
Γ I B(i)

IΓ

T
A(i)

Γ Γ B(i)
0Γ

T

0 0 B(i)
0Γ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

w(i)
I

q(i)
I

w(i)
Γ

q(i)
0

⎤

⎥
⎥
⎥
⎦

=
⎡

⎣
0
0

S(i)w(i)

⎤

⎦ . (4.13)

Denoting by SΓ the direct sum of the S(i)
Γ , then ŜΓ is given by

ŜΓ = RT
Γ SΓ RΓ =

2∑

i=1

R(i)
Γ

T
S(i)
Γ R(i)

Γ , (4.14)

and then we set

R =
[
RΓ 0
0 I

]

, R(i) =
[
R(i)

Γ 0
0 I

]

. (4.15)

Finally we see from (4.13), that the action of S(i) on a vector can be evaluated by solving a
Dirichlet problem on the subdomainΩi as in (4.8) and (4.9), so it is not necessary to assemble
the matrix Ŝ because only its action is required.
In the next section we introduce a BDDC preconditioner for problem (4.11), where the
operator of the preconditioned problem is symmetric and positive definite, so we will use the
PCG method to solve it.

4.3 BDDC Preconditioner

We now present the BDDC preconditioner, first designed in [19] for finite element discretiza-
tions of the Stokes equations, that we will extend to the VEM discretization introduced in
the previous sections. This preconditioner is very similar to FETI-DP, but there is a main
difference between them: while in a FETI-DP algorithm the continuity of the solution will
not be fully satisfied until the algorithm has converged, in the BDDC one full continuity is
restored at the end of each iteration step, by using an average operator.
Before entering into the definition of the function space used to construct the BDDC precon-
ditioner, we briefly justify the choice of our notation. The subscript Γ indicates dofs living
on the interface, Π and Δ are instead used to distinguish dofs of Γ that belong to the primal
and dual spaces, respectively, defined here below. Two other subscripts are used: C indicates
an operator referred to the coarse space and D is instead used to highlight that an operator
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has been rescaled by suitable scaling functions, defined later. The hat ·̂ refers to a continuous
space, the ·̃ means that the space is continuous on primal interface dofs and discontinuous on
the dual ones and finally no hat is used for the product of local spaces, which is discontinuous
at all interface dofs.
As a first step, we introduce a partially assembled interface velocity space ṼΓ ,

ṼΓ = V̂Π

⊕
VΔ = V̂Π

⊕
(

N∏

i=1

V(i)
Δ

)

. (4.16)

V̂Π is the continuous coarse level primal interface velocity space which typically is spanned
by subdomain vertex nodal basis functions, and/or by interface edge basis functions with
constant values, or with values of weight functions, on these edge. These basis functions
correspond to the primal interface velocity continuity constraints, which will be discussed
later.Wewill always assume that the basis has been changed so that each primal basis function
corresponds to an explicit degree of freedom. In other words, we will have explicit primal
unknowns corresponding to the primal continuity constraints on edges. The primal degrees of
freedom are shared by neighboring subdomains. The complimentary space VΔ is the direct
sum of the subdomain dual interface velocity spacesV(i)

Δ , which correspond to the remaining
interface velocity degrees of freedom and are spanned by basis functions which vanish at
the primal degrees of freedom. Thus, an element in the space ṼΓ has a continuous primal
velocity and typically a discontinuous dual velocity component.
We now introduce several restriction, extension, and scaling operators between a variety of
spaces. As in [19], R(i)

Γ is the operatorwhichmaps a function in the space V̂Γ to its component

in V(i)
Γ . We define R(i)

Δ as the operator which maps the space V̂Γ to its dual component in

the space V(i)
Δ . RΓ Π is the restriction operator from the space V̂Γ to its subspace V̂Π ; R(i)

Π

is the operator which maps V̂Π into its Γi -component. R̃Γ is the direct sum of RΓ Π and the
R(i)

Δ , and it is a map from V̂Γ into ṼΓ .
The relationships among the previous spaces and operators are summarized in the following
diagram:

ṼΓ

V(i)
Γ V̂Γ V(i)

Δ

V̂Π V̂(i)
Π

R(i)
Γ R(i)

Δ

RΠΓ

R̃Γ

R(i)
Π

In order to define certain scaling operators, which will be used in the definition of the
BDDC preconditioner, see (4.22) , we introduce a positive scaling factor δ

†
i (x) for the nodes

on the interface Γi of each subdomain Ωi . For the type of problem we will use in the
numerical experiment (incompressible Stokes problems), we simply define the δ

†
i (x) as the

pseudoinverse counting functions, so:

δ
†
i (x) := 1/card(Ix ), x ∈ Γi (4.17)

where Ix is the set of indices of subdomains which have x on their boundaries and card(Ix )
is the number of these subdomains. Nowwe can define the scaled restriction operators R(i)

D,Δ,
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simply multiplying each non-zero element of R(i)
Δ , only one for row, by the corresponding

scaling factor δ
†
i (x). We construct also the scaled operator R̃D,Γ as the direct sum of RΓ ,Π

and R(i)
D,Δ. After the change of basis, the interface velocity Schur complement S̃Γ is defined

on the partially assembled interface velocity space ṼΓ by: given vΓ ∈ ṼΓ , S̃Γ vΓ ∈ F̃Γ

satisfies
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A(i)
I I B(i)T

I I A(i)T

ΔI Ã(i)T

Π I

B(i)
I I 0 B(i)

IΔ B̃(i)
IΠ

A(i)
ΔI B(i)T

IΔ A(i)
ΔΔ Ã(i)T

ΠΔ

. . .
...

Ã(i)
Π I B̃(i)T

IΠ Ã(i)
ΠΔ . . . ÃΠΠ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v(i)
I

p(i)
I

v(i)
Δ

...

v(i)
Π

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0

(S̃Γ vΓ )
(i)
Δ

...

(S̃Γ vΓ )
(i)
Π

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.18)

Here ÃΠΠ = ∑N
i=1 R

(i)
Π

T
A(i)

ΠΠ R(i)
Π , Ã(i)

Π I = R(i)
Π

T
A(i)

Π I , Ã
(i)
ΠΔ = R(i)

Π

T
A(i)

ΠΔ and B̃(i)
IΠ =

B(i)
IΠ R(i)

Π .
Defining by RΓ the operator that maps the space ṼΓ into the product spaceVΓ associated

with the set of subdomains, we observe that S̃Γ can be obtained from the Schur complements
S(i)
Γ by assembling only the primal interface velocity part, i.e. as

S̃Γ = RΓ
T
SΓ RΓ . (4.19)

Aswe sawbefore (4.13) the global interfaceSchur operator ŜΓ is obtanied by fully assembling
the S(i)

Γ across the subdomain interface, therefore it can be also obtained from S̃Γ by further
assembling the dual interface velocity part, ŜΓ = R̃T

Γ S̃Γ R̃Γ . Sowe need to define an operator
B̃0Γ , which maps the partially assembled interface velocity space ṼΓ into F0, the space of
right hand sides corresponding to Q0, and it is obtained from B̃0Γ by assembling the dual
interface velocity part on the subdomain interfaces, i.e. B̂Γ = B̃Γ R̃Γ .
Introducing

R̃ =
[
R̃Γ 0

0 I

]

, S̃ =
[

S̃Γ B̃T
0Γ

B̃0Γ 0

]

, (4.20)

we can write Ŝ, the operator of the global interface problem (4.11), as

Ŝ =
[

ŜΓ B̂T
0Γ

B̂0Γ 0

]

=
[
R̃T

Γ S̃Γ R̃Γ R̃T
Γ B̃T

0Γ

B̃0Γ R̃Γ 0

]

= R̃T S̃ R̃. (4.21)

The preconditioner for solving the global saddle-point problem (4.11) is

M−1 = R̃T
D S̃

−1 R̃D, (4.22)

where we have defined

R̃D :=
[
R̃D,Γ 0
0 I

]

, (4.23)

and so we have the BDDC preconditioned problem: find (u, p0) ∈ V̂Γ × Q0, such that

R̃T
D S̃

−1 R̃D Ŝ

[
uΓ

p0

]

= R̃T
D S̃

−1 R̃D

[
gΓ

0

]

. (4.24)
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What we need in our implementation is to determine the action S̃−1q for any given q =
(q, q0) ∈ F̃Γ × F0, so we have to solve the linear system

[
S̃Γ B̃T

0Γ

B̃0Γ 0

][
uΓ

p0

]

=
[
qΓ

q0

]

. (4.25)

Given the definition of S̃Γ in (5.3), we have that solving (5.10) is equivalent to solve
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A(i)
I I B(i)T

I I A(i)T

ΔI Ã(i)T

Π I 0

B(i)
I I 0 B(i)

IΔ B̃(i)
IΠ 0

A(i)
ΔI B(i)T

IΔ A(i)
ΔΔ Ã(i)T

ΠΔ B(i)T

0Δ

. . .
...

Ã(i)
Π I B̃(i)T

IΠ Ã(i)
ΠΔ . . . ÃΠΠ B̃T

0Π

0 0 B(i)
0Δ B̃0Π 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u(i)
I

p(i)
I

u(i)
Δ

...

uΠ

p0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
q(i)

Δ

...

qΠ

q0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.26)

where B̃0Π = ∑N
i=1 B

(i)
0Π R(i)

Π . Now using a block factorization we obtain

S̃−1 =
N∑

i=1

[
0 0 RT

Δ,i

]

⎡

⎢
⎢
⎣

A(i)
I I B(i)T

I I A(i)T

ΔI

B(i)
I I 0 B(i)

IΔ

A(i)
ΔI B(i)T

IΔ A(i)
ΔΔ

⎤

⎥
⎥
⎦

−1
⎡

⎣
0
0

RΔ,i

⎤

⎦ + ΦS−1
CCΦT , (4.27)

where RΔ,i maps F̃Γ × F0 into F(i)
Δ , the set of right hand sides corresponding to V(i)

Δ . The
matrix SCC , relatively to the primal constraints, has to be completely assembled in this way

SCC =
N∑

i=1

R(i)T

C

{[
A(i)

ΠΠ B(i)T

0Π

B(i)
0Π 0

]

−
[
A(i)

Π I B(i)T

IΠ A(i)
ΠΔ

0 0 B(i)
0Δ

]

⎡

⎢
⎢
⎣

A(i)
I I B(i)T

I I A(i)T

ΔI

B(i)
I I 0 B(i)

IΔ

A(i)
ΔI B(i)T

IΔ A(i)
ΔΔ

⎤

⎥
⎥
⎦

−1 ⎡

⎢
⎢
⎣

A(i)T

Π I 0

B(i)
IΠ 0

A(i)T

ΠΔ B(i)T

0Δ

⎤

⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

R(i)
C ,

(4.28)

where we have defined

R(i)
C :=

[
R(i)

Π 0

0 I

]

, (4.29)

the maps from V̂Π × Q0 to V(i)
Π × Q0. Finally we define the matrix

Φ = RT
Π0 −

N∑

i=1

[
0 0 RT

Δ,i

]

⎡

⎢
⎢
⎣

A(i)
I I B(i)T

I I A(i)T

ΔI

B(i)
I I 0 B(i)

IΔ

A(i)
ΔI B(i)T

IΔ A(i)
ΔΔ

⎤

⎥
⎥
⎦

−1 ⎡

⎢
⎢
⎣

A(i)T

Π I 0

B(i)
IΠ 0

A(i)T

ΠΔ B(i)T

0Δ

⎤

⎥
⎥
⎦ R(i)

C , (4.30)

where RΠ0 is the map between the space F̃Γ × F0 and F̂Π × F0.
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5 Theoretical Estimates

We now present an estimate for the eigenvalues of the preconditioned operator M−1 Ŝ, fol-
lowing the theory developed in [19] and adapting it to our VEM formulation. We can do so
because the space VΓ coincides with the analogous space that would be obtained applying
the same procedure with the FEM. This substantially allow us to carry over the theory for-
mulated for the FEM to the VEM, except for the second assumption we will see later. For
this result, a different proof is necessary and we follow [2], where a proof independent of the
tassellation is given.

We have, as a consequence of a result on the inertia of Schur complements, the following:

Lemma 5.1 The subdomain Schur complements S(i)
Γ , defined in (4.11), are symmetric and

positive definite.

Proof We know from (4.13) that the Schur complement related to the velocity is defined by:
given w(i)

Γ ∈ V(i)
Γ , determine S(i)

Γ wΓ
(i) ∈ F(i)

Γ such that
⎡

⎢
⎢
⎣

A(i)
I I B(i)

I I

T
A(i)

Γ I

T

B(i)
I I 0 B(i)

IΓ

A(i)
Γ I B(i)

IΓ

T
A(i)

Γ Γ

⎤

⎥
⎥
⎦

⎡

⎢
⎣

w(i)
I

q(i)
I

w(i)
Γ

⎤

⎥
⎦ =

⎡

⎣
0
0

S(i)
Γ wΓ

(i)

⎤

⎦ . (5.1)

By the coercivity of a(·, ·) we know that the matrices
⎡

⎣
A(i)
I I A(i)

Γ I

T

A(i)
Γ I A(i)

Γ Γ

⎤

⎦

are symmetric and positive definite and so the left two by two upper block of the left-hand-side
of (5.1) has the same number of negative eigenvalues of the all matrix. Now, the left-hand-side
matrices of (5.1) are congruent to:

⎡

⎢
⎢
⎣

A(i)
I I B(i)

I I

T
0

B(i)
I I 0 0

0 0 S(i)
Γ

⎤

⎥
⎥
⎦

and so, by the Sylvester’s law of inertia the velocity Schur complements are positive definite.
��

In the following, we denote by a(i), a(i)
h and b(i) the restrictions to subdomain Ωi of the

bilinear forms a, ah and b, respectively. Then, we introduce the |.|
S(i)
Γ

and |.|SΓ seminorms

defined by

|v(i)
Γ |2

S(i)
Γ

= v(i)
Γ

T
S(i)
Γ v(i)

Γ , |vΓ |2SΓ
= vΓ

T SΓ vΓ =
N∑

i=1

|v(i)
Γ |2

S(i)
Γ

, (5.2)

and a norm and a seminorm on the space V(i)
Γ

‖v(i)
Γ ‖21/2,Γi

= ‖v(i)
Γ ‖2[H1/2(∂Ωi )]2 , |v(i)

Γ |21/2,Γi
= |v(i)

Γ |2[H1/2(∂Ωi )]2 , (5.3)

with consequently the norm ‖.‖1/2,Γ and seminorm |.|1/2,Γ defined on the space VΓ by

‖vΓ ‖21/2,Γ = ∑N
i=1 ‖v(i)

Γ ‖21/2,Γi
and |vΓ |21/2,Γ = ∑N

i=1 |v(i)
Γ |21/2,Γi

.
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Lemma 5.2 There exist positive constant c1 and c2, independent of H, h and the shape of
subdomains, such that

c1β̃
2|vΓ |2SΓ

≤ |vΓ |21/2,Γ ≤ c2|vΓ |2SΓ
∀vΓ ∈ VΓ ,

where β̃ is the inf-sup stability constant defined in (3.6).

Proof This proof follows substantially the result presented in Bramble and Pasciak ([5]
Theorem 4.1) where a proof for FEM is provided. Given vΓ ∈ VΓ , we define the operators
T : VΓ → V̂ and S : VΓ → Q satisfying ∀i = 1, ..., N :

(1) S(vΓ )|Ωi ∈ Q(i)
I ,

(2) T (vΓ )|Γ = vΓ ,

(3) a(i)
h (T (vΓ ), v) + b(i)(v, S(vΓ ) = 0 for all v ∈ V(i)

I ,

(4) b(i)(T (vΓ ), q) = 0 for all q ∈ Q(i)
I .

(5.4)

The above condition uniquely defines S and T . Now given vΓ ∈ VΓ , let vHΓ ∈ V̂ be the
discrete harmonic extension of vΓ , i.e. the unique function in V̂ which equals vΓ on Γ and
satisfies ∀i = 1, ..., N :

a(i)
(
vHΓ , v

)
= 0 for all v ∈ V(i)

I . (5.5)

By the stability of the discrete harmonic extension and the stability of the discrete bilinear
form ah [26], we have on each subdomain:

a(i)
h

(
vHΓ , vHΓ

)
≤ c3a

(i)
(
vHΓ , vHΓ

)
≤ c3|v(i)

Γ |21/2,Γi
, (5.6)

where c3 is a positive constant independent of h, H and the number of subdomains N . Now,
by definition of S and T , and since b(i)(T (vΓ ), S(vΓ )) = 0, we have:

a(i)
h (T (vΓ ), T (vΓ )) = a(i)

h

(
T (vΓ ), vHΓ

)
+ b(i)

(
vHΓ , S(vΓ )

)
. (5.7)

Applying (3.6) on the subdomains, we have, for some c > 0:

||S(vΓ )||2Qi
≤ β̃−2 sup

w∈V(i)
I

b(i)(w, S(vΓ ))2

‖w‖21
≤ cβ̃−2 sup

w∈V(i)
I

b(i)(w, S(vΓ ))2

a(i)
h (w,w)

= cβ̃−2 sup
w∈V(i)

I

a(i)
h (T (vΓ ),w)2

a(i)
h (w,w)

≤ cβ̃−2a(i)
h (T (vΓ ), T (vΓ )),

(5.8)

Applying Cauchy–Schwarz to the first term in (5.7) and using (5.8), we have:

|v(i)
Γ |2

S(i)
Γ

= a(i)
h (T (vΓ ), T (vΓ )) ≤ a(i)

h (T (vΓ ), T (vΓ ))1/2a(i)
h (vHΓ , vHΓ )1/2

+ c|vHΓ |H1(Ωi )
||S(vΓ )||Qi

≤ ah(T (vΓ ), T (vΓ ))1/2ah(vHΓ , vHΓ )1/2

+ cβ̃−1ah(vHΓ , vHΓ )1/2a(i)
h (T (vΓ ), T (vΓ ))1/2

and then:

cβ̃2|v(i)
Γ |2

S(i)
Γ

= cβ̃2a(i)
h (T (vΓ ), T (vΓ )) ≤ a(i)

h

(
vHΓ , vHΓ

)
. (5.9)
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Finally, from (5.6) and summing on the subdomains

cβ̃2|vΓ |2SΓ
= cβ̃2ah(T (vΓ ), T (vΓ )) ≤ ah

(
vHΓ , vHΓ

)
≤ c3|vΓ |21/2,Γ ,

which yields the first inequality of the thesis with c1 = c/c3.
For the second inequality we have, by definition of the discrete harmonic extension and

again the stability of the discrete bilinear form ah :

|vΓ |21/2,Γi
≤ a(i)(vHΓ , vHΓ ) ≤ a(i)(T (vΓ ), T (vΓ )) ≤ c2a

(i)
h (T (vΓ ), T (vΓ )) (5.10)

and then:

|vΓ |21/2,Γ ≤ c2|vΓ |2SΓ
. (5.11)

��
The operators ŜΓ and S̃Γ , given in (4.14) and (4.19), are both symmetric and positive

definite, because of the Dirichlet boundary conditions on ∂Ω and provided that sufficiently
many primal constraints are chosen. We can then define the ŜΓ and S̃Γ norms on the spaces
V̂Γ and ṼΓ by

‖vΓ ‖2
ŜΓ

= vTΓ RT
Γ SΓ RΓ vΓ = |RΓ vΓ |2SΓ

∀vΓ ∈ V̂Γ ,

‖vΓ ‖2
S̃Γ

= vTΓ R
T
Γ SΓ RΓ vΓ = |RΓ vΓ |2SΓ

∀vΓ ∈ ṼΓ .

We then define two spaces, whose utility is that, restricted to such spaces, the interface
problem operators Ŝ of (4.11) and S̃ of (4.25) are positive semi-definite. As in [19], we give
the following:

Definition 5.1 Given the discrete spaces V̂Γ and ṼΓ , we define the two subspaces

V̂Γ ,B = {vΓ ∈ V̂Γ |B̂0Γ vΓ = 0},
ṼΓ ,B = {vΓ ∈ ṼΓ |B̃0Γ vΓ = 0}.

We call V̂Γ ,B × Q0 and ṼΓ ,B × Q0 the benign subspaces of V̂Γ × Q0 and ṼΓ × Q0.

Lemma 5.3 The interface operator Ŝ of (4.11), restricted to the subspace V̂Γ ,B × Q0 is
positive semi-definite. The same is true for S̃ of (4.19) restricted to ṼΓ ,B × Q0.

We define the Ŝ and S̃ seminorms on the benign subspaces

|v|2
Ŝ

= vT Ŝv = ‖vΓ ‖ŜΓ
∀v = (vΓ , q0) ∈ V̂Γ ,B × Q0,

|v|2
S̃

= vT S̃v = ‖vΓ ‖S̃Γ
∀v = (vΓ , q0) ∈ ṼΓ ,B × Q0.

Now we define an average operator ED = R̃ R̃T
D , which maps ṼΓ × Q0, with generally

discontinuous interface velocities, to elements with continuous interface velocities in the
same space. For any v = (vΓ , q0) ∈ ṼΓ ,B × Q0,

ED =
[
vΓ

q0

]

=
[
R̃Γ 0
0 I

] [
R̃D,Γ 0
0 I

] [
vΓ

q0

]

=
[
ED,Γ vΓ

q0

]

(5.12)

where ED = R̃ R̃T
D,Γ , provides the average of the interface velocities across the interface Γ .

Recalling that we can split v = vΠ ⊕ vΔ, we have EDv = vΠ ⊕ ED,ΔvΔ, where ED,ΔvΔ is
the dual part of the averaged vector. As in the FEM case (see [19]) we need two assumptions
to proceed in the discussion, these will be satisfied when a reasonable choice of the primal
constraints will be done.
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Assumption 1 For any vΔ ∈ VΔ,
∫

∂Ωi
v(i)
Δ · n = 0 and

∫

∂Ωi
(ED,ΔvΔ)(i) · n = 0, where n is

the outward normal of ∂Ωi .We can equivalentlywrite B(i)
0Δv

(i)
Δ = 0 and B(i)

0Δ(ED,ΔvΔ)(i) = 0

Assumption 2 There exists a positive constant C, which is independent of H , h and the
number of subdomains, such that

|R̄Γ (ED,Γ vΓ )|1/2,Γ ≤ C

(

1 + log

(
Hk2

h

))

|R̄Γ vΓ |1/2,Γ , ∀vΓ ∈ VΓ .

With these two assumptions, we have the following results (Proof of 5.4 in [19]):

Lemma 5.4 Let Assumption 1 hold. Then R̃T
Dv ∈ V̂Γ ,B × Q0, for any v ∈ ṼΓ ,B × Q0.

Lemma 5.5 Let Assumptions 1 and 2 hold. Then there exists a positive constant C, which is
independent of H, h and the number of subdomains, such that

|EDv|S̃ ≤ C
1

β̃

(

1 + log

(
Hk2

h

))

|v|S̃, ∀v = (vΓ , q0) ∈ ṼΓ ,B × Q0,

where β̃ is the inf-sup stability constant of (3.6).

Proof Given any v = (vΓ , q0) ∈ ṼΓ ,B × Q0, we know, from Lemma 5.4, that R̃T
Dv ∈

V̂Γ ,B × Q0. Therefore, EDv = R̃ R̃T
Dv ∈ ṼΓ ,B × Q0. We have from the definition of the

S̃-seminorm, that

|EDv|2S̃ = ‖ED,Γ vΓ ‖2
S̃Γ

= |R̄Γ (ED,Γ vΓ )|2SΓ
≤ C

1

β̃2
|R̄Γ (ED,Γ vΓ )|21/2,Γ , (5.13)

where the last inequality follows from Lemma 5.2. We have, from Assumption 2 and Lemma
5.2

|R̄Γ (ED,Γ vΓ )|21/2,Γ ≤ C

(

1 + log

(
Hk2

h

))2

|R̄Γ vΓ |21/2,Γ

≤ C

(

1 + log

(
Hk2

h

))2

|R̄Γ vΓ |2SΓ

≤ C

(

1 + log

(
Hk2

h

))2

‖vΓ ‖2
S̃Γ
.

(5.14)

Consequently we have

|EDv|2S̃ ≤ C
1

β̃2

(

1 + log

(
Hk2

h

))2

‖vΓ ‖2
S̃Γ

= C
1

β̃2

(

1 + log

(
Hk2

h

))2

|v|2
S̃
. (5.15)

��
We have the following lemma (proof in [19]):

Lemma 5.6 Any vector of the form u = (0, p0) ∈ V̂Γ ,B × Q0 is an eigenvector of the
preconditioner operator M−1 Ŝ with eigenvalue equal to 1.

Theorem 5.1 Let Assumptions 1 and 2 hold. The preconditioned operator M−1 Ŝ is then
symmetric, positive definite with respect to the bilinear form 〈·, ·〉Ŝ on the benign space
V̂Γ ,B × Q0. Its minimum eigenvalue is 1 and its maximum eigenvalue is bounded by

C
1

β̃2

(

1 + log

(
Hk2

h

))2

. (5.16)
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Here, C is a constant which is independent of H, h and the number of subdomains, and β̃ is
the inf-sup stability constant defined in (3.6).

Proof We know from Lemma 5.6, that any vector of the form u = (0, p0) ∈ V̂Γ ,B × Q0

is an eigenvector of the preconditioned operator M−1 Ŝ with an eigenvalue equal to 1. It
is sufficient to find lower and upper bounds of the quotient

〈
M−1 Ŝu,u

〉

Ŝ/〈u,u〉Ŝ , for any
u = (uΓ , p0) ∈ V̂Γ ,B × Q0, where uΓ is non zero and therefore 〈u,u〉Ŝ > 0.
Lower bound: Given u ∈ V̂Γ ,B × Q0, let

v = S̃−1 R̃D S̃u ∈ ṼΓ ,B × Q0. (5.17)

We have from the fact that R̃T R̃D = R̃T
D R̃ = I ,

〈u,u〉Ŝ = uT Ŝ R̃T
D R̃u = uT Ŝ R̃T

D S̃
−1 S̃ R̃u = 〈v, R̃u〉S̃ . (5.18)

From the Cauchy–Schwartz inequality and the fact that Ŝ = R̃T S̃ R̃, we find that

〈v, R̃u〉S̃ ≤ 〈v, v〉1/2
S̃

〈R̃u, R̃u〉1/2
S̃

= 〈v, v〉1/2
S̃

〈u,u〉1/2
S̃

. (5.19)

Therefore from (5.18) and (5.19),

〈u,u〉S̃ ≤ 〈v, v〉S̃ . (5.20)

Since,

〈v, v〉S̃ = uT Ŝ R̃T
D S̃

−1 S̃ S̃−1 R̃D Ŝu = 〈
u, R̃T

D S̃
−1 R̃D Ŝu〉Ŝ = 〈

u, M−1 Ŝu
〉

Ŝ , (5.21)

we obtain, from Eqs. (5.20) and (5.21), that 〈u,u〉S̃ ≤ 〈
u, M−1 Ŝu

〉

Ŝ , which gives a lower
bound of 1 for the eigenvalues. Then from Lemma 5.6, we know that 1 is the minimum
eigenvalue of the preconditioned operator.
Upper bound: Given u ∈ V̂Γ ,B × Q0, take v ∈ ṼΓ ,B × Q0 as in (5.17). We have, R̃T

Dv =
M−1 Ŝu. Since Ŝ = R̃T S̃ R̃ and by using Lemma 5.5, we have

〈M−1 Ŝu, M−1 Ŝu〉Ŝ = 〈R̃T
Dv, R̃

T
Dv〉Ŝ = 〈R̃ R̃T

Dv, R̃ R̃
T
Dv〉S̃

= |EDv|2S̃ ≤ C2 1

β̃2

(

1 + log

(
Hk2

h

))2

|v|2
S̃
.

(5.22)

Therefore from Eq. (5.21), we have

〈M−1 Ŝu, M−1 Ŝu〉Ŝ ≤ C2 1

β̃2

(

1 + log

(
Hk2

h

))2

〈u, M−1 Ŝu〉Ŝ . (5.23)

Using the Cauchy–Schwarz inequality and Eq. (5.23), we have

〈u, M−1 Ŝu〉Ŝ ≤ 〈M−1 Ŝu, M−1 Ŝu〉1/2
Ŝ

〈u,u〉1/2
Ŝ

≤ C
1

β̃

(

1 + log

(
Hk2

h

))

〈u,u〉1/2
Ŝ

〈u, M−1 Ŝu〉1/2
Ŝ

.
(5.24)

This gives

〈u, M−1 Ŝu〉Ŝ ≤ C
1

β̃2

(

1 + log

(
Hk2

h

))2

〈u,u〉Ŝ , (5.25)

and the upper bound of the theorem. ��
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(a) QUAD mesh. (b) HEXA mesh.

(c) TRI mesh. (d) CVT mesh.

Fig. 2 Examples of the different type of meshes we consider in our numerical experiments

6 Satisfying the Assumptions

To satisfy the Assumptions 1 and 2 in of the previous section we have to choose properly
the primal constraints for the interface velocity space. In particular to satisfy the Assumption
1, it is not sufficient to choose as primal constraints the subdomain vertices, i.e. make both
components of the velocity continuous at those nodes, but some extra edge constraints are
necessary. To do so, for each interface edge Γi j , which is shared by a pair of subdomains Ωi

and Ω j , we impose
∫

Γi j
v(i)
Γ · ni j =

∫

Γi j
v( j)
Γ · ni j (6.1)

for a fixed selection of the normal ni j of Γi,h . Proceeding the discussion with this first
choice, after changing the variables, the dual interface velocity component will vanish at the

123



Journal of Scientific Computing (2022) 92 :63 Page 19 of 27 63

Table 1 GMRES iteration counts
to solve the interface saddle-point
problem without preconditioner
varying the mesh size h and the
number of subdomains
N = 1/H2

1/H 1/h
8 16 32 64 128
it it it it it

(a) QUAD meshes.

2 7 13 18 27 40

4 x 40 57 79 99

8 x x 140 203 282

16 x x x 295 437

32 x x x x 605

(b) HEXA meshes.

2 18 23 31 42 56

4 x 91 131 163 199

8 x x 221 295 434

16 x x x 486 583

16 x x x x 976

(c) TRI meshes.

2 12 17 25 38 52

4 x 42 63 82 105

8 x x 127 190 286

16 x x x 380 569

32 x x x x 1130

(d) CVT meshes.

2 31 44 55 79 101

4 x 89 104 134 172

8 x x 267 307 336

16 x x x 885 924

32 x x x x 2522

subdomain vertices and its normal component will have a weighted zero average over each
Γi j , i.e.

∫

Γi

v(i) · ni j =
∫

Γ j

v( j) · ni j = 0.

By the definition of the average operator ED,Δ we have that the average interface velocity is

ED,ΔvΔ = 1
2 (v

(i)
Δ + v( j)

Δ ) on each edge and hence
∫

Γi j
(ED,ΔvΔ)(i) · ni j = 0. (6.2)

In our codes we also choose a strong condition, we decide to require that the integral of both
velocity components have common values across each interface edge

∫

Γi j
v(i)
Γ

∣
∣
x =

∫

Γ j

v( j)
Γ

∣
∣
x ,

∫

Γi j
v(i)
Γ

∣
∣
y =

∫

Γ j

v( j)
Γ

∣
∣
y . (6.3)

In this way, we clearly satisfy Assumption 1. The advantage of this condition is that it is
easiest to implement and, enlarging a little the coarse space, it yields a faster convergence.
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Table 2 PCG iteration counts to
solve the interface saddle-point
problem with BDDC
preconditioner, varying the mesh
size h and the number of
subdomains N = 1/H2

1/H 1/h
8 16 32 64 128
it it it it it

(a) QUAD meshes.

2 7 7 7 7 8

4 x 12 13 15 17

8 x x 22 23 29

16 x x x 22 26

32 x x x x 22

(b) HEXA meshes.

2 8 9 9 9 9

4 x 18 19 21 22

8 x x 26 30 33

16 x x x 28 30

32 x x x x 29

(c) TRI meshes.

2 8 8 8 9 9

4 x 15 17 19 20

8 x x 18 24 27

16 x x x 20 25

32 x x x x 20

(d) CVT meshes.

2 16 17 17 17 17

4 x 26 30 32 33

8 x x 36 41 41

16 x x x 50 50

32 x x x x 51

The primal coarse space is spanned only by the subdomain vertices

Assumption 2 is also satisfied, requiring only vertices as primal constraints, and it derives
directly from the following lemma, proved in [2]:

Lemma 6.1 For all vΓ ∈ ṼΓ we have:

|ED,Γ vΓ |1/2,Γ ≤ C

(

1 + log

(
Hk2

h

))

|vΓ |1/2,Γ (6.4)

with C positive constant independent of H, h and the number of subdomains.

7 Numerical Results

In this section, we provide some numerical tests to study the behavior of the BDDC pre-
conditioner with respect to the mesh size h, the number of subdomains N and the shape
of the polygonal mesh elements. We solve the Stokes equations on the unit square domain
Ω = [0, 1]×[0, 1], applying homogeneous Dirichlet boundary conditions on the whole ∂Ω .
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Table 3 PCG iteration counts to solve the interface problem with BDDC preconditioner, varying the mesh
size h and the number of subdomains N = 1/H2

1/H 1/h
8 16 32 64 128

κ2 it κ2 it κ2 it κ2 it κ2 it

(a) QUAD meshes.

2 1,82 7 2,11 7 2,37 7 2,80 7 3,24 8

4 x x 4,40 9 5,75 10 7,20 11 8,76 12

8 x x x x 5,78 13 7,81 15 10,09 16

16 x x x x x x 6,16 16 8,46 19

32 x x x x x x x x 6,29 16

(b) HEXA meshes.

2 3,35 9 4,45 9 5,49 9 6,64 9 6,95 9

4 x x 5,32 13 6,86 14 8,45 15 10,17 16

8 x x x x 7,34 17 10,12 19 12,37 20

16 x x x x x x 7,97 18 11,07 22

32 x x x x x x x x 8,20 18

(c) TRI meshes.

2 2,73 8 3,51 8 4,28 8 5,12 9 6,32 9

4 x x 4,01 11 5,20 12 6,54 13 7,98 14

8 x x x x 5,01 15 6,83 16 8,93 18

16 x x x x x x 5,25 15 7,28 17

32 x x x x x x x x 5,32 15

(d) CVT meshes.

2 5,82 14 6,97 15 8,16 16 9,32 16 10,23 16

4 x x 10,20 20 13,87 21 15,98 22 17,22 23

8 x x x x 22,24 27 21,43 28 23,13 28

16 x x x x x x 30,12 34 28,34 33

32 x x x x x x x x 30,28 35

The primal coarse space is spanned by the subdomain vertices and only one basis function per subdomain
edge

We choose the load term f by imposing that the analytical solution is

u(x, y) =
(− sin(πx) sin(πx) sin(2π y)

sin(π y) sin(π y) sin(2πx)

)

, p(x, y) = sin(πx) − sin(π y).

In the following tables, we report the number of iterations to solve the global inter-
face saddle-point problem (4.11) with the non-preconditioned GMRES method or the PCG
method, accelerated by BDDC. Where possible, we estimate the extreme eigenvalues using
the Lanczos trick. Both in case of PCG and GMRES, we set the tolerance for the relative
residual error to 10−6. Note that in the tables we marked with an "x" the numerical tests that
we do not have performed because they are not significant.
Our tests have been executed on different types of polygonal meshes and using the VEM
discretization with degree k = 2 with the divergence free approach, that means having
polynomials of degree 2 on the boundary of each element for the velocity and piecewise
constant functions for the pressure. We underline the fact that we would have obtained the
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Table 4 PCG iteration counts to
solve the interface saddle-point
problem with BDDC
preconditioner, varying the mesh
size h and the number of
subdomains N = 1/H2

1/H 1/h
8 16 32 64 128

κ2 it κ2 it κ2 it κ2 it κ2 it

(a) QUAD meshes.

2 1,48 7 1,68 7 1,90 7 2,18 8 2,51 7

4 x x 2,80 9 3,73 10 4,78 10 5,93 11

8 x x x x 2,99 10 4,05 11 5,20 13

16 x x x x x x 2,72 9 3,67 10

32 x x x x x x x x 2,64 8

(b) HEXA meshes.

2 3,33 9 4,29 10 5,36 10 6,68 10 8.08 11

4 x x 4,21 12 5,29 13 6,58 15 7,90 15

8 x x x x 4,59 13 5,90 14 6,65 15

16 x x x x x x 4,79 14 5,12 13

32 x x x x x x x x 4,35 12

(c) TRI meshes.

2 2,49 9 3,41 9 4,38 10 5,40 10 6,55 10

4 x x 2,96 10 3,85 11 5,17 12 6,36 14

8 x x x x 3,26 10 4,26 12 5,33 13

16 x x x x x x 3,44 9 4,42 11

32 x x x x x x x x 3,49 8

(d) CVT meshes.

2 4,35 13 5,27 14 6,63 15 7,31 16 8,28 16

4 x x 5,20 15 10,22 18 13,00 19 15,63 20

8 x x x x 9,03 20 17,52 23 18,41 22

16 x x x x x x 12,29 21 19,21 24

32 x x x x x x x x 14,43 23

The primal coarse space is spanned by the subdomain vertices and two
basis functions per subdomain edge

same behavior, both in terms of number of iterations and spectral condition number number,
also in the case of neglecting the divergence free property, because the interface problem and
the preconditioner are exactly the same due to the decomposition technique used in (4.2) and
(4.3).

The polygonal meshes considered are quadrilateral (QUAD), hexagonal (HEXA), trian-
gular (TRI) and Voronoi (CVT) (Fig. 2).

Table 1 reports the number of iterations to solve the interface saddle-point problem with
the non-preconditioned GMRES. As expected, we observe that the iteration counts grow
when the number of subdomains increases and the mesh size decreases.

Table 2 reports the number of iterations to solve the interface saddle-point problem with
PCG, preconditioned by BDDC, considering as primal constraints only the subdomain ver-
tices. In this case the solver appears to be scalable, since, moving along the diagonals of the
table, the iterations remain bounded when the number of subdomains increase, and quasi-
optimal, since, moving along the rows of the table, the growth of iterations seems logarithmic.
The results also show that the solver suffers more on the Voronoi meshes than on the others.
We recall that with this choice of primal constraints the Assumption 1 is not satisfied, there-
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(a) The primal space consists of the subdo-
main vertices and two basis functions per
subdomain edge. The number of subdomains
is fixed to N = 16.
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(b) The primal space consists of the subdo-
main vertices and two basis functions per
subdomain edge. The ratio H/h is fixed to
4.
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(c) The primal space consists of the sub-
domain vertices and one basis function per
subdomain edge. The number of subdomains
is fixed to N = 16.
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(d) The primal space consists of the sub-
domain vertices and one basis function per
subdomain edge. The ratio H/h is fixed to
4.

Fig. 3 Plots of the spectral condition number (κ2) of the BDDC preconditioned linear system as a function of
the ratio H/h (left) and of the number of subdomains N (right) for different types of mesh and choices of the
primal space

fore the preconditioned system is not positive definite and we are not able to give an estimate
on the eigenvalues.

Table 3 reports the spectral condition number of the preconditioned systemand the iteration
counts to solve the interface problemwith the PCGmethod, preconditioned by BDDC, where
the primal constraints are the subdomain vertices and one basis function for each subdomain
edge. In this case both the assumptions are satisfied, therefore the system is symmetric and
positive definite and we are able to give an estimate of the eigenvalues. The results confirm
the theoretical estimates, since both the condition number and the number of iterations are
independent of number of subdomains (scalability) and exhibit a logarithmic growth with
respect to the ratio H/h (quasi-optimality).

Table 4 reports the spectral condition number of the preconditioned systemand the iteration
counts to solve the interface problemwith the PCGmethod, preconditioned by BDDC, where
the primal constraints are the subdomain vertices and two basis functions for each subdomain
edge. In this case the system is again symmetric and positive definite, thus we are able to give
an estimate of the eigenvalues. Both the condition number and the iteration counts exhibit a
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(a) QUAD meshes, 16 subdomains.
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(b) QUADmeshes, fixed local size (H/h=4).
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(c) HEXA meshes, 16 subdomains.
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(d) HEXA meshes, fixed local size (H/h=4).

Fig. 4 Plots of the PCG iteration counts of the BDDC preconditioner for different choices of primal space on
quadrilateral (QUAD) and hexagonal (HEXA) meshes

scalable and quasi-optimal behavior as before, but in this case the convergence is faster since
the coarse problem is slightly larger.

We recall that our code is implemented in Matlab and the tests were performed in serial,
therefore we do not provide an analysis on the time of computations.

In Fig. 3, we plot the spectral condition number of the BDDC preconditioner with the two
different choices of primal constraints that satisfy the assumptions. The left column displays
an optimality test, fixing at 16 the number of subdomains and increasing the ratio H/h. We
observe the logarithmic growth of the condition number. The right column displays a weak
scalability test, fixing the ratio H/h = 4 and increasing the number of subdomains. In this
case we see that the condition number remains bounded when the number of subdomains
increases. We observe a worse behavior for the Voronoi meshes due to the fact that the
boundary of the subdomains are quite irregular.

Finally, in Figs. 4 and 5, we plot the PCG iteration counts of the BDDC preconditioner
for different choices of primal constraints and meshes. The left column reports an optimality
test with 16 subdomains and we observe that the logarithmic growth is respected, with a
smaller number of iterations when the coarse space is enriched. The right column displays
the number of PCG iterations for a fixed local problem size (H/h = 4) and we observe that
the number of iterations remains bounded when the number of subdomains increase, again
with a smaller number of iterations for richer primal spaces.
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(a) TRI meshes, 16 subdomains.
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(b) TRI meshes, fixed local size (H/h=4).
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(c) CVT meshes, 16 subdomains.
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(d) CVT meshes, fixed local size (H/h=4).

Fig. 5 Plots of the PCG iteration counts of the BDDC preconditioner for different choices of primal space on
triangular (TRI) and Voronoi (CVT) meshes

8 Conclusions

In this work, we have analyzed BDDC preconditioners to solve the saddle-point linear system
deriving from a divergence free VEM discretization of the steady two-dimensional Stokes
equations. The numerical tests have validated the convergence estimates, showing the scala-
bility and quasi-optimality of the algorithm, under appropriate choices of the primal coarse
space. We have also obtained a better behavior and a faster convergence of the method for
an enriched primal space, easy to implement.
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