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Abstract. We show that free objects on sets do not exist in the category ba` of bounded

archimedean `-algebras. On the other hand, we introduce the category of weighted sets and

prove that free objects on weighted sets do exist in ba`. We conclude by discussing several

consequences of this result.

1. Introduction

The category ba` of bounded archimedean `-algebras plays an important role in the study

of Gelfand duality as algebraic counterparts of compact Hausdorff spaces live in ba`. Indeed,

for each compact Hausdorff space X, the `-algebra C(X) of continuous real-valued functions

on X is an object of ba`, and these algebras can be characterized as uniformly complete

objects of ba` (see Section 2 for details). This yields a contravariant functor C from the

category KHaus of compact Hausdorff spaces to ba`. The functor C has a contravariant

adjoint Y : ba`→ KHaus sending each A ∈ ba` to the Yosida space YA of maximal `-ideals

of A (more details are given in Section 2). This yields a contravariant adjunction between ba`

and KHaus that restricts to a dual equivalence between KHaus and the reflective subcategory

uba` of ba` consisting of uniformly complete objects of ba`. The reflector ba`→ uba` is

the uniform completion functor. We thus arrive at the following commutative diagram.

uba` ba`

KHaus
YC

Gelfand duality can be thought of as a generalization to KHaus of Stone duality between the

categories BA of boolean algebras and Stone of Stone spaces. By Tarski duality, the category

CABA of complete and atomic boolean algebras and complete boolean homomorphisms is

dually equivalent to the category Set of sets and functions (see, e.g., [15, VI.4.6(a)]). A

version of Tarski duality was established in [8] between Set and a (non-full) subcategory

balg of ba` whose objects are Dedekind complete objects of ba` whose boolean algebra

of idempotents is atomic (see Section 4 for details). As we will see in Section 4, balg is a

reflective subcategory of ba`, and the reflector is the canonical extension functor developed

in [7].

In this article we study free objects in ba` as well as in uba` and balg . We first show that

the forgetful functor ba` → Set does not have a left adjoint, and hence free objects do not
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exist in ba` in the usual sense. We next introduce the category WSet of weighted sets and

prove that the forgetful functor ba`→ WSet does indeed have a left adjoint F : WSet→ ba`,

thus showing that free objects do exist in ba` in this modified sense. As a consequence, we

obtain that F composed with the uniform completion functor is left adjoint to the forgetful

functor uba` → WSet, and that F composed with the canonical extension functor is left

adjoint to the forgetful functor balg → WSet. Thus, free objects also exist in uba` and

balg in this modified sense.

2. Preliminaries

We start by recalling some basic facts about lattice-ordered rings and algebras. We use

Birkhoff’s book [9, Ch. XIII and onwards] as our main reference. All rings we consider are

assumed to be commutative and unital.

Definition 2.1. A ring A with a partial order ≤ is a lattice-ordered ring, or an `-ring for

short, provided

• (A,≤) is a lattice;

• a ≤ b implies a+ c ≤ b+ c for each c;

• 0 ≤ a, b implies 0 ≤ ab.

An `-ring A is an `-algebra if it is an R-algebra and for each 0 ≤ a ∈ A and 0 ≤ r ∈ R we

have 0 ≤ r · a.

It is well known and easy to see that the conditions defining `-algebras are equational,

and hence `-algebras form a variety. We denote this variety and the corresponding category

of `-algebras and unital `-algebra homomorphisms by `alg .

Definition 2.2. Let A be an `-ring.

• A is bounded if for each a ∈ A there is n ∈ N such that a ≤ n ·1 (that is, 1 is a strong

order unit).

• A is archimedean if for each a, b ∈ A, whenever n · a ≤ b for each n ∈ N, then a ≤ 0.

Let ba` be the full subcategory of `alg consisting of bounded archimedean `-algebras. It

is easy to see that ba` is not a variety (it is closed under neither products nor homomorphic

images).

Definition 2.3. Let A ∈ `alg . For a ∈ A, define the absolute value of a by

|a| = a ∨ (−a).

If in addition A ∈ ba`, define the norm of a by

||a|| = inf{r ∈ R | |a| ≤ r · 1}.

Then A is uniformly complete if the norm is complete.

Remark 2.4. Since A ∈ ba` is bounded, ‖·‖ is well defined, and ‖·‖ is a norm since A is

archimedean.

Let uba` be the full subcategory of ba` consisting of uniformly complete `-algebras.
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Theorem 2.5 (Gelfand duality). There is a dual adjunction between ba` and KHaus which

restricts to a dual equivalence between KHaus and uba`.

Remark 2.6. Gelfand duality is also known as Gelfand-Naimark-Stone duality (see, e.g.,

[6]). This duality was established by Gelfand and Naimark [13] between KHaus and the

category of commutative C∗-algebras. Gelfand and Naimark worked with complex-valued

functions and associated with each X ∈ KHaus the C∗-algebra of all continuous complex-

valued functions on X. On the other hand, Stone [20] worked with real-valued functions

and associated with each X ∈ KHaus the `-algebra of all continuous real-valued functions on

X. In this respect, Theorem 2.5 is more closely related to Stone’s work. Nevertheless, we

follow Johnstone [15, Sec. IV.4] in calling this result Gelfand duality. The Gelfand-Naimark

and Stone approaches are equivalent in that the complexification functor establishes an

equivalence between uba` and the category of commutative C∗-algebras (see [6, Sec. 7] for

details).

We briefly describe the functors C : KHaus → ba` and Y : ba` → KHaus establishing

the dual adjunction of Theorem 2.5; for details see [6, Sec. 3] and the references therein.

For a compact Hausdorff space X let C(X) be the ring of (necessarily bounded) continuous

real-valued functions on X. For a continuous map ϕ : X → Y let C(ϕ) : C(Y )→ C(X) be

defined by C(ϕ)(f) = f ◦ ϕ for each f ∈ C(Y ). Then C : KHaus → ba` is a well-defined

contravariant functor.

For A ∈ `alg , we recall that an ideal I of A is an `-ideal if |a| ≤ |b| and b ∈ I imply a ∈ I,

and that `-ideals are exactly the kernels of `-algebra homomorphisms. If A ∈ ba`, then we

can associate to A a compact Hausdorff space as follows. Let YA be the space of maximal

`-ideals of A, whose closed sets are exactly sets of the form

Z`(I) = {M ∈ YA | I ⊆M},

where I is an `-ideal of A. As follows from the work of Yosida [21], YA ∈ KHaus. The space

YA is often referred to as the Yosida space of A. We set Y (A) = YA, and for a morphism α

in ba` we let Y (α) = α−1. Then Y : ba` → KHaus is a well-defined contravariant functor,

and the functors C and Y yield a contravariant adjunction between ba` and KHaus.

Moreover, for X ∈ KHaus we have that εX : X → YC(X) is a homeomorphism where

εX(x) = {f ∈ C(X) | f(x) = 0}.

Furthermore, for A ∈ ba` define ζA : A→ C(YA) by ζA(a)(M) = r where r is the unique real

number satisfying a+M = r+M . Then ζA is a monomorphism in ba` separating points of

YA. Therefore, by the Stone-Weierstrass theorem, ζA : A→ C(YA) is the uniform completion

of A. Thus, if A is uniformly complete, then ζA is an isomorphism. Consequently, the

contravariant adjunction restricts to a dual equivalence between uba` and KHaus, yielding

Gelfand duality. Another consequence of these considerations is the following well-known

result.

Proposition 2.7. uba` is a full reflective subcategory of ba`, and the reflector assigns to

each A ∈ ba` its uniform completion C(YA) ∈ uba`.
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3. Free Objects in ba`

As we pointed out in Section 2, `alg is a variety, hence has free algebras by Birkhoff’s

theorem (see, e.g., [11, Thm. 10.12]). Since ba` is not a subvariety of `alg , it does not follow

immediately that ba` has free algebras. In fact, we show that free algebras on sets do not

exist in ba`. In other words, we show that the forgetful functor U : ba` → Set does not

have a left adjoint.

Let A ∈ `alg . If A 6= 0, then sending r ∈ R to r · 1 ∈ A embeds R into A, and we

identify R with a subalgebra of A. By this identification, if A,B 6= 0 and α : A → B is a

`alg -morphism, then α(r) = r for each r ∈ R.

Lemma 3.1. Let A,B ∈ ba` and α : A→ B be a ba`-morphism. Then for each a ∈ A we

have α(|a|) = |α(a)| and ‖α(a)‖ ≤ ‖a‖.

Proof. Let a ∈ A. Then α(|a|) = α(a ∨ −a) = α(a) ∨ −α(a) = |α(a)|. For the second

statement it is sufficient to assume A,B 6= 0. Since |a| ≤ ‖a‖, we have α(|a|) ≤ α(‖a‖) =

‖a‖. Therefore, |α(a)| = α(|a|) ≤ ‖a‖ and hence ‖α(a)‖ ≤ ‖a‖. �

Theorem 3.2. The forgetful functor U : ba`→ Set does not have a left adjoint.

Proof. If U has a left adjoint, then for each X ∈ Set, there is F (X) ∈ ba` and a function

f : X → F (X) such that for each A ∈ ba` and each function g : X → A there is a unique

ba`-morphism α : F (X)→ A satisfying α ◦ f = g.

X F (X)

A

f

g
α

Let X be a nonempty set. Pick x ∈ X, choose r ∈ R with r > ‖f(x)‖, and define g : X → R
by setting g(y) = r for each y ∈ X. There is a (unique) ba`-morphism α : F (X)→ R with

α ◦ f = g, so α(f(x)) = r. But if a ∈ F (X), then ‖α(a)‖ ≤ ‖a‖ by Lemma 3.1. Therefore,

r = ‖α(f(x))‖ ≤ ‖f(x)‖ < r.

The obtained contradiction proves that F (X) does not exist. Thus, U does not have a left

adjoint. �

The key reason for nonexistence of a left adjoint to the forgetful functor U : ba` → Set

can be explained as follows. The norm on A provides a weight function on the set A, and

each ba`-morphism α respects this weight function due to the inequality ‖α(a)‖ ≤ ‖a‖. The

forgetful functor U : ba` → Set forgets this, which is the obstruction to the existence of a

left adjoint as seen in the proof of Theorem 3.2. We repair this by working with weighted

sets.

Definition 3.3.

• A weight function on a set X is a function w from X into the nonnegative real

numbers.

• A weighted set is a pair (X,w) where X is a set and w is a weight function on X.
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• Let WSet be the category whose objects are weighted sets and whose morphisms are

functions f : (X1, w1)→ (X2, w2) satisfying w2(f(x)) ≤ w1(x) for each x ∈ X.

Lemma 3.4. There is a forgetful functor U : ba`→ WSet.

Proof. If A ∈ ba`, then (A, ‖ ·‖) ∈ WSet. Moreover, if α : A → B is a ba`-morphism,

then ‖α(a)‖ ≤ ‖a‖ by Lemma 3.1. Therefore, α is a WSet-morphism. Thus, the assignment

A 7→ (A, ‖·‖) defines a forgetful functor U : ba`→ WSet. �

Definition 3.5. Let A ∈ `alg . Call a ∈ A bounded if there is n ∈ N with −n · 1 ≤ a ≤ n · 1.

Let A∗ be the set of bounded elements of A.

Let A ∈ `alg . If a, b ∈ A∗, then there are n,m ∈ N with −n · 1 ≤ a ≤ n · 1 and

−m · 1 ≤ b ≤ m · 1. Therefore, −(n + m) · 1 ≤ a ± b ≤ (n + m) · 1. Similar facts hold for

join, meet, and multiplication. Thus, we have the following:

Lemma 3.6. Let A ∈ `alg . Then A∗ is a subalgebra of A, and hence A∗ is a bounded

`-algebra. Therefore, if A is archimedean, then A∗ ∈ ba`.

Let A ∈ `alg . As we pointed out in Section 2, `-ideals are kernels of `-algebra homomor-

phisms. However, if I is an `-ideal of A, then the quotient A/I may not be archimedean

even if A is archimedean.

Definition 3.7. We call an `-ideal I of A ∈ `alg archimedean if A/I is archimedean.

Remark 3.8. Archimedean `-ideals were studied by Banaschewski (see [3, App. 2], [4]) in

the category of archimedean f -rings.

It is easy to see that the intersection of archimedean `-ideals is archimedean. Therefore,

we may talk about the archimedean `-ideal of A generated by S ⊆ A.

Theorem 3.9 (Main result). The forgetful functor U : ba`→ WSet has a left adjoint.

Proof. It is enough to show that there is a free object in ba` on each (X,w) ∈ WSet (see,

e.g., [1, Ex. 18.2(2)]). Let G(X) be the free object in `alg on X and let g : X → G(X)

be the corresponding map. We next quotient G(X) by an archimedean `-ideal I so that

−w(x) ≤ g(x) + I ≤ w(x) for each x ∈ X. Let I be the archimedean `-ideal of G(X)

generated by

{g(x)− ((g(x) ∨ −w(x)) ∧ w(x)) | x ∈ X},
and set F (X,w) = G(X)/I. Let π : G(X)→ F (X,w) be the canonical projection. Clearly

F (X,w) is an archimedean `-algebra. We show that F (X,w) is bounded, and hence that

F (X,w) ∈ ba`. Let G(X)∗ be the bounded subalgebra of G(X) (see Lemma 3.6). Since

G(X) is generated by {g(x) | x ∈ X}, we have that G(X)/I is generated by {πg(x) | x ∈ X}.
Now,

πg(x) = π((g(x) ∨ −w(x)) ∧ w(x))

since g(x)−((g(x)∨−w(x))∧w(x)) ∈ I. We have −w(x) ≤ (g(x)∨−w(x))∧w(x) ≤ w(x), so

(g(x)∨−w(x))∧w(x) ∈ G(X)∗. This shows that the generators of F (X,w) lie in π[G(X)∗],

so F (X,w) ∼= G(X)∗/(I ∩G(X)∗) is a quotient of G(X)∗. Thus, F (X,w) is bounded.
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Let f : X → F (X,w) be given by f(x) = πg(x). Since f(x) = π((g(x) ∨ −w(x)) ∧ w(x)),

we have −w(x) ≤ f(x) ≤ w(x), so ‖f(x)‖ ≤ w(x). Therefore, f is a WSet-morphism.

Let A ∈ ba` and h : X → A be a WSet-morphism, so ‖h(x)‖ ≤ w(x) for each x ∈
X. There is an `-algebra homomorphism α : G(X) → A with α ◦ g = h. Because A is

archimedean, G(X)/ ker(α) is archimedean, so ker(α) is an archimedean `-ideal of G(X).

We show that I ⊆ ker(α). It suffices to show that g(x)− ((g(x) ∨ −w(x)) ∧ w(x)) ∈ ker(α)

for each x ∈ X since ker(α) is an archimedean `-ideal. Because ‖h(x)‖ ≤ w(x), we have

−w(x) ≤ h(x) ≤ w(x). Therefore,

α((g(x) ∨ −w(x)) ∧ w(x)) = (αg(x) ∨ −w(x)) ∧ w(x)

= (h(x) ∨ −w(x)) ∧ w(x)

= h(x)

= αg(x),

and hence α(g(x) − ((g(x) ∨ −w(x)) ∧ w(x))) = 0. Thus, I ⊆ ker(α), so there is a well-

defined `-algebra homomorphism α : F (X,w) → A satisfying α ◦ π = α. Consequently,

α ◦ f = α ◦ π ◦ g = α ◦ g = h.

X F (X,w)

G(X)

A

f

g

h α

π

α

It is left to show uniqueness of α. Let γ : F (X,w) → A be a ba`-morphism satisfying

γ ◦ f = h. If α′ = γ ◦ π, then α′ : G(X)→ A is an `alg -morphism and α′ ◦ g = γ ◦ π ◦ g =

γ ◦f = h. Since G(X) is a free object in `alg and α′ ◦g = h = α◦g, uniqueness implies that

α′ = α. From this we get γ ◦ π = α = α ◦ π. Because π is onto, we conclude that γ = α. �

Remark 3.10. If (X,w) ∈ WSet, then ‖f(x)‖ = w(x). To see this, since w : (X,w) →
(R, |·|) is a WSet-morphism, by Theorem 3.9, there is a ba`-morphism α : F (X,w) → R
with α ◦ f = w. Because f is a weighted set morphism, by Lemma 3.1 we have w(x) =

‖α(f(x))‖ ≤ ‖f(x)‖ ≤ w(x). Thus, ‖f(x)‖ = w(x).

We next show that the Yosida space YF (X,w) of F (X,w) is homeomorphic to a power

of [0, 1], and that F (X,w) embeds into the `-algebra of piecewise polynomial functions on

YF (X,w). For a set Z we let PP ([0, 1]Z) be the `-algebra of piecewise polynomial functions on

[0, 1]Z . If Z is finite, then the definition of PP ([0, 1]Z) is standard (see, e.g., [12, p. 651]). If Z

is infinite, we define PP ([0, 1]Z) as the direct limit of {PP ([0, 1]Y ) | Y a finite subset of Z}.
It is straightforward to see that PP ([0, 1]Z) ∈ ba`.

For each A ∈ ba` and M ∈ YA it is well known that A/M ∼= R (see, e.g., [14, Cor. 2.7]).

This allows us to identify the Yosida space YA with the space homba`(A,R) of ba`-morphisms

from A to R, by sending α : A → R to ker(α) and M ∈ YA to the natural homomorphism
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A→ R. The topology on homba`(A,R) is the subspace topology of the product topology on

RA.

Theorem 3.11. Let (X,w) ∈ WSet and let X ′ = {x ∈ X | w(x) > 0}.
(1) The Yosida space of F (X,w) is homeomorphic to [0, 1]X

′
.

(2) F (X,w) embeds into PP ([0, 1]X
′
).

Proof. (1). We identify YF (X,w) with homba`(F (X,w),R) as in the paragraph before the

theorem. From the universal mapping property, we see that there is a homeomorphism be-

tween homba`(F (X,w),R) and homWSet((X,w), (R, |·|)). If g : X → R is a WSet-morphism,

then |g(x)| ≤ w(x), so −w(x) ≤ g(x) ≤ w(x). Therefore, homWSet((X,w), (R, |·|)) =

Πx∈X [−w(x), w(x)]. If x ∈ X ′, then [−w(x), w(x)] is homeomorphic to [0, 1], and if x /∈ X ′,
then [−w(x), w(x)] = {0}. Thus, Πx∈X [−w(x), w(x)] is homeomorphic to [0, 1]X

′
, and hence

YF (X,w) is homeomorphic to [0, 1]X
′
.

(2). Let ϕ : YF (X,w) → Πx∈X′ [−w(x), w(x)] be the homeomorphism from the proof of (1)

and let τx : [0, 1]→ [−w(x), w(x)] be the homeomorphism given by τx(a) = 2w(x)a−w(x). If

τ is the product of the τx, then τ : [0, 1]X
′ → Πx∈X′ [−w(x), w(x)] is a homeomorphism, and

so ρ := τ−1 ◦ϕ is a homeomorphism from YF (X,w) to [0, 1]X
′
. Therefore, C(ρ) : C(YF (X,w))→

C([0, 1]X
′
) is a ba`-isomorphism. Since F (X,w) is generated by f [X], it is sufficient to show

that C(ρ)(f(x)) ∈ PP ([0, 1]X
′
). Let x ∈ X. If w(x) = 0, then since ‖f(x)‖ = w(x) (see

Remark 3.10), f(x) = 0, so C(ρ)(f(x)) = 0 ∈ PP ([0, 1]X
′
). Suppose that w(x) > 0. Then

C(ρ)(f(x)) = 2w(x)px − w(x) ∈ PP ([0, 1]X
′
), completing the proof. �

Remark 3.12. We compare our results with those in the vector lattice literature. Recall

(see, e.g., [16, p. 48]) that the definition of a vector lattice, or Riesz space, is the same as that

of an `-algebra except that multiplication is not present in the signature, and so in vector

lattices there is no analogue of the multiplicative identity.

(1) Let VL be the category of vector lattices and vector lattice homomorphisms. Then

VL is a variety, so free vector lattices exist by Birkhoff’s theorem. Therefore, the

forgetful functor U : VL→ Set has a left adjoint.

(2) Let a pointed vector lattice be a vector lattice with a prescribed element, and a

pointed vector lattice homomorphism a vector lattice homomorphism preserving the

prescribed element. The associated category pVL is a variety, so the forgetful functor

U : pVL→ Set has a left adjoint.

(3) If we consider the full subcategory uVL of pVL consisting of pointed vector lattices

whose prescribed element is a strong order-unit, then Birkhoff’s theorem does not

apply since uVL is not a variety. In fact, an argument similar to the proof of Theo-

rem 3.2 shows that the forgetful functor U : uVL→ Set does not have a left adjoint.

However, a small modification of the proof of Theorem 3.9 yields that the forgetful

functor U : uVL→ WSet does have a left adjoint.

(4) Baker [2, Thm. 2.4] showed that the free vector lattice F (X) on a set X embeds in the

vector lattice PL(RX) of piecewise linear functions on RX . In fact, Baker shows that

F (X) is isomorphic to the vector sublattice of PL(RX) generated by the projection

functions. Theorem 3.11(2) is an analogue of Baker’s result since the proof shows that
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F (X,w) is isomorphic to the subalgebra of PP ([0, 1]X
′
) generated by the projection

functions. Beynon [5, Thm. 1] showed that if X is finite, then F (X) = PL(RX). The

analogue of Beynon’s result for `-algebras is related to the famous Pierce-Birkhoff

conjecture [10, p. 68] (see also [19, 18]).

4. Some Consequences

The proof of Theorem 3.2 also yields that the forgetful functor uba`→ Set does not have

a left adjoint. On the other hand, since the forgetful functor ba`→ WSet has a left adjoint,

if C is a reflective subcategory of ba`, then the forgetful functor C → WSet also has a left

adjoint (because the composition of adjoints is an adjoint). Consequently, since uba` is a

reflective subcategory of ba`, we obtain:

Proposition 4.1. The forgetful functor U : uba`→ WSet has a left adjoint.

Since taking uniform completion is the reflector ba`→ uba`, the left adjoint of Proposi-

tion 4.1 is obtained as the uniform completion of F (X,w) for each (X,w) ∈ WSet.

We next turn to describing a left adjoint to the forgetful functor balg → WSet. We recall

that an `-algebra A is Dedekind complete if each subset of A that is bounded above has a

least upper bound (and hence each subset bounded below has a greatest lower bound) in A.

We also recall that if A is a commutative ring with 1, then the set Id(A) of idempotents of

A is a boolean algebra under the operations

e ∨ f = e+ f − ef, e ∧ f = ef, ¬e = 1− e.

Definition 4.2. [8, Def. 3.6] We call A ∈ ba` a basic algebra if A is Dedekind complete and

the boolean algebra Id(A) is atomic.

Let A,B be basic algebras. Following [16, Def. 18.12], we call a ba`-morphism α : A→ B

a normal homomorphism if it preserves all existing joins and meets. Let balg be the category

of basic algebras and normal homomorphisms. Then balg is a non-full subcategory of ba`.

The category balg was introduced in [8] where it was shown that balg is dually equivalent

to Set, hence providing a ring-theoretic version of Tarski duality. Thus, balg plays a similar

role in ba` to that of CABA in BA.

The functors B : Set → balg and X : balg → Set establishing the dual equivalence

between Set and balg are defined as follows. For a set X let B(X) be the `-algebra of all

bounded real-valued functions, and for a map ϕ : X → Y let B(ϕ) : B(Y )→ B(X) be given

by B(ϕ)(f) = f ◦ ϕ for f ∈ B(Y ). Then B : Set → balg is a well-defined contravariant

functor.

For A ∈ balg let XA be the set of atoms of Id(A). We then set X(A) = XA, and for a

balg -morphism α : A→ B we let X(α) : XB → XA be given by

X(α)(x) =
∧
{a ∈ Id(A) | x ≤ α(a)}

for x ∈ XA. Then X : balg → Set is a well-defined contravariant functor, and the functors B

and X yield a dual equivalence of balg and Set. The natural isomorphisms η : 1Set → X ◦B
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and ϑ : 1balg → B ◦X are defined by letting ηX(x) be the characteristic function of {x} for

each x ∈ X, and

ϑA(a)(x) = ζA(a)((1− x)A) for each a ∈ A and x ∈ XA,

where (1 − x)A is the `-ideal of A generated by 1 − x (it is maximal since x is an atom of

Id(A)).

As was shown in [7], for A ∈ ba`, the `-algebra B(YA) together with ζA : A → B(YA) is

the (unique up to isomorphism) canonical extension of A, where we recall that a canonical

extension of A is Aσ ∈ balg together with a ba`-monomorphism e : A→ Aσ satisfying:

(1) (Density) Each x ∈ Aσ is a join of meets of elements of e[A].

(2) (Compactness) For S, T ⊆ A and 0 < ε ∈ R, from
∧
e[S] + ε ≤

∨
e[T ] it follows that∧

e[S ′] ≤
∨
e[T ′] for some finite S ′ ⊆ S and T ′ ⊆ T .

Theorem 4.3. (·)σ : ba`→ balg is a reflector, so balg is a (non-full) reflective subcategory

of ba`.

Proof. Let A ∈ ba`, C ∈ balg and α : A → C be a ba`-morphism. By [17, p. 89], it

suffices to show that there is a unique balg -morphism γ : Aσ → C with γ ◦ e = α. Since

α is a ba`-morphism, Y (α) : YC → YA is a continuous map. Let f : XC → YA be given by

f(x) = Y (α)((1− x)C) for each x ∈ XC . In other words, if we identify XC with a subset of

YC (by sending x to (1− x)C), then f is the restriction of Y (α) to XC . This induces a ba`-

morphism B(f) from Aσ = B(YA) to B(XC). Since ϑC : C → B(XC) is an isomorphism, we

have a balg -morphism γ := ϑ−1C ◦B(f) : B(YA)→ C.

A B(YA)

C B(XC)

e

α B(f)
γ

ϑC

We show that γ ◦ e = α. For this it suffices to show that B(f) ◦ e = ϑC ◦α. Let x ∈ XC and

a ∈ C. Then B(f)(e(a)) = e(a) ◦ f sends x to ζA(a)(α−1((1 − x)C)), which is equal to the

unique r ∈ R satisfying a+ α−1((1− x)C) = r + α−1((1− x)C). On the other hand,

(ϑC ◦ α)(a)(x) = ϑC(α(a))(x) = ζC(α(a))((1− x)C),

which is the unique s ∈ R satisfying α(a)+(1−x)C = s+(1−x)C. Since a−r ∈ α−1((1−x)C),

we have α(a−r) ∈ (1−x)C. Therefore, α(a)−r ∈ (1−x)C, so α(a)+(1−x)C = r+(1−x)C.

Thus, r = s, and hence B(f) ◦ e(a) and (ϑC ◦ α)(a) agree for each x ∈ XC . Since a ∈ C was

arbitrary, we conclude that B(f) ◦ e = ϑC ◦ α.

For uniqueness, suppose that γ′ : Aσ → C satisfies γ′ ◦ e = α. Then γ′|e[A] = γ|e[A]. Since

γ and γ′ are balg -morphisms and e[A] is dense in Aσ, we conclude that γ′ = γ. �

The following is now an immediate consequence of Theorems 3.9 and 4.3.

Proposition 4.4. The forgetful functor U : balg → WSet has a left adjoint.
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This left adjoint is obtained as the canonical extension of F (X,w) for each (X,w) ∈ WSet.

On the other hand, the proof of Theorem 3.2 shows that the forgetful functor balg → Set

does not have a left adjoint.
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