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The maximum entropy principle is widely used to determine non-committal 
probabilities on a finite domain, subject to a set of constraints, but its application to 
continuous domains is notoriously problematic. This paper concerns an intermediate 
case, where the domain is a first-order predicate language. Two strategies have been 
put forward for applying the maximum entropy principle on such a domain: (i) 
applying it to finite sublanguages and taking the pointwise limit of the resulting 
probabilities as the size n of the sublanguage increases; (ii) selecting a probability 
function on the language as a whole whose entropy on finite sublanguages of size n is 
not dominated by that of any other probability function for sufficiently large n. The 
entropy-limit conjecture says that, where these two approaches yield determinate 
probabilities, the two methods yield the same probabilities. If this conjecture is 
found to be true, it would provide a boost to the project of seeking a single canonical 
inductive logic—a project which faltered when Carnap’s attempts in this direction 
succeeded only in determining a continuum of inductive methods. The truth of the 
conjecture would also boost the project of providing a canonical characterisation of 
normal or default models of first-order theories.
Hitherto, the entropy-limit conjecture has been verified for languages which contain 
only unary predicate symbols and also for the case in which the constraints can 
be captured by a categorical statement of Σ1 quantifier complexity. This paper 
shows that the entropy-limit conjecture also holds for categorical statements of 
Π1 complexity, for various non-categorical constraints, and in certain other general 
situations.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Inductive logic seeks to determine how much certainty to attach to a conclusion proposition ψ, given 
premiss propositions ϕ1, . . . , ϕk to which attach measures of certainty X1, . . . , Xk respectively. That is, the 
main task is to find Y such that
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ϕX1
1 , . . . , ϕXk

k |≈ ψY ,

where |≈ signifies the inductive entailment relation. Often, X1, . . . , Xk, Y are probabilities or sets of proba-
bilities. There are many possible semantics for inductive logic [21]. One key approach stems from the work 
of Carnap, who provided a continuum of inductive entailment relations [9–11,37]. An alternative approach, 
which is the focus of this paper, is to apply the maximum entropy principle of Jaynes [24,25]. According to 
this approach one should consider, from all the probability functions that satisfy the premisses, those with 
maximum entropy, and let Y be the set of probability values that these functions give to the conclusion ψ.

If the underlying logical language is a finite propositional language, then this latter proposal is rather 
straightforward to implement and has many nice properties [38].1 However, if the language is a first-order 
predicate language L with infinitely many constant symbols, certain intriguing questions arise. In particular, 
there are two main ways to implement the proposal in the predicate-language case, and it is not entirely 
clear as to whether the resulting inductive logics agree.

One approach, due to Barnett and Paris [7], proceeds as follows: (i) reinterpret the premisses as con-
straints on the probabilities of sentences of a finite predicate language Ln that has n constant symbols; 
(ii) determine the function Pn that maximises entropy on this finite language, subject to constraints im-
posed by the reinterpreted premisses; (iii) draw inductive inferences using the function P∞ defined by 
P∞(θ) df= limn→∞ Pn(θ) for any sentence θ of L. (The technical details will be explained below.)

A second approach, explored by Williamson [47,48], proceeds as follows: (i) consider probability functions 
defined on the language L as a whole; (ii) deem one probability function P to have greater entropy than 
another function Q if Hn(P ), where Hn is the entropy function on the finite sublanguage Ln, dominates 
Hn(Q) for sufficiently large n; (iii) draw inductive inferences using those functions P †, from all the probabil-
ity functions on L that satisfy the premisses, that have maximal entropy (i.e., no other function satisfying 
the premisses has greater entropy). Again, see below for details.

The first approach, which we shall call the entropy-limit approach, has the advantage that it is more 
constructive, so it can be easier to calculate the probabilities required for inductive inference. The second 
approach, which we shall call the maximal-entropy approach, has the advantage that it yields determinate 
results in certain cases where the entropy-limit approach does not. This is because the entropy-limit ap-
proach faces what is known as the finite model problem: contingent premisses can become inconsistent when 
reinterpreted as applying to a finite domain.

These approaches to inductive logic would be strengthened if it could be shown that they give the same 
results where they are both applicable. Then one could use the maximal-entropy approach to provide a 
general semantics for inductive logic, but use the entropy-limit approach where a more constructive approach 
is helpful.

Following some results of Rafiee Rad [41], discussed in the next section, Williamson [48, p. 191] articulated 
the following conjecture:

Entropy-limit Conjecture. Where P∞ exists and satisfies the constraints imposed by the premisses, it is 
the unique function with maximal entropy from all those that satisfy the premisses, i.e., P † = P∞.

If the entropy-limit conjecture is true, this would lend support to the claim that maximising entropy leads 
to a canonical inductive logic—a goal that has hitherto proved very elusive [48]. In this paper, we provide 
new evidence for the entropy-limit conjecture. We show that the entropy-limit conjecture is true for a single 
premiss that takes the form of a categorical Π1 sentence ∀�xθ(�x) where θ(�x) is quantifier-free (Section 3); 
for various scenarios in which there are multiple non-categorical premisses, ϕX1

1 , . . . , ϕXk

k where Xi is a 

1 Maximum entropy probability functions are of interest in numerous applications, including the statistical analysis of multiple 
data-sets (meta analysis) [2,3,36], information geometry [1], multi-expert reasoning [4], logical frameworks in artificial intelligence 
[31,32] and quantum mechanics [12], among others [8,15,26–30,49].
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probability or set of probabilities that attaches to the sentence ϕi (Section 4); and for certain general cases 
in which convergence of the n-entropy maximiser Pn to the entropy limit P∞ is sufficiently fast (Section 5). 
While the general status of the entropy-limit conjecture remains open, these new results verify important 
consequences of the conjecture. Thus, when taken together with previous results (outlined in Section 2), 
these new results provide inductive support for the general entropy-limit conjecture.

Normal models While the quest for a viable inductive logic provides key motivation for this research, the 
results of this paper are also relevant to a rather different problem: the characterisation of the most normal 
model of a first-order theory.

Consider a first-order language L. Let T be a finite consistent set of first-order axioms in L. There 
have been different approaches to defining the default or most normal model for T , depending on how one 
would interpret the default model. One can, for example, consider the prime models (the smallest canonical 
models) as default models (see Chang and Keisler [14, p. 96] and Hodges [22, p. 336] for instance). Another 
approach would be to interpret normality in terms of closure properties and require default models to be, for 
example, existentially closed. Other approaches have considered the default model as the ‘average’ model 
and try to characterise this in terms of the distribution of models (see for example [5,6,18–20]). Another 
way that this question can be interpreted was posed in [39], and studied further in [40,42,43], as:

Given a finite (consistent) set T of first-order axioms, from a language L and a structure M with domain 
{t1, t2, . . .} over L, which we only know to be a model of T , what probability should we assign to a 
sentence θ(t1, . . . , tn) being true in M?

Then any set of first-order axioms can be seen as imposing a probability function over the sentences of 
the language, in which the probability assigned to a sentence θ is interpreted as the probability that it will 
hold in a random model of T . The question is, how can a set of first-order axioms determine a probability 
function in the most natural way [44]?

The constraint that M is a model for T requires the probability assignment to give probability 1 to all 
sentences in T and consequently to all sentences logically implied by them. There is, however, a large set 
of probability functions that will satisfy this constraint but which will differ on the probability that they 
will assign to other sentences in L. One can further trim this set by imposing extra conditions on the way 
that these probabilities are to be assigned. And, by doing so specify what it means for M to be the default 
model.

One example is to make this assignment of probabilities in such a way that captures the notion of 
averageness or typicality. In the literature, this is referred to as the limiting centre of mass assignment (see 
for example [34,38,39]). Another approach, followed in [40,42,43], and with which we will be concerned here, 
characterises a default model as being maximally uninformative with respect to the sentences of the language 
not implied by T . These maximally uninformative probability assignments are taken to be maximum entropy 
probability functions.

If the entropy-limit conjecture is true, this would lend support to the claim that maximising entropy leads 
to a canonical model characterisation for first-order theories. Thus, the results of this paper are relevant to 
the characterisation of normal models.

2. The formal framework

In this section we set out the rudiments of the formal framework and some notational conventions, and 
we survey previous work relevant to the entropy-limit conjecture.
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The predicate languages Throughout this paper we consider a first-order predicate language L, with count-
ably many constant symbols t1, t2, . . . and finitely many relation symbols, U1, . . . , Un. The atomic sentences, 
i.e., sentences of the form Uiti1 · · · tik where k is the arity of the relation Ui, will be denoted by a1, a2, . . ., 
ordered in such a way that atomic sentences involving only constants among t1, . . . , tn occur before those 
atomic sentences that also involve tn+1. We denote the sentences of L by SL and the set of quantifier-free 
sentences by QFSL.

We will also consider the finite sublanguages Ln of L, where Ln has only the first n constant symbols 
t1, . . . , tn but the same relation symbols as L. Ln has finitely many atomic sentences a1, . . . , arn . We call 
the state descriptions of Ln (i.e., the sentences of the form ±a1 ∧ · · · ∧±arn), n-states. We let Ωn be the set 
of n-states for each n. Note that |Ωn| = 2rn , and every n-state ωn ∈ Ωn has |Ωn+1|/|Ωn| = 2rn+1−rn many 
n + 1-states, ωn+1 which extend it (i.e., ωn+1 � ωn). We denote the sentences of Ln by SLn.

We use Nϕ (or, when ϕ is clear from the context, simply N) to refer to the largest number n such that 
tn appears in ϕ ∈ SL.

For a sentence ϕ ∈ SL and fixed n ≥Nϕ, we can reinterpret ϕ as a sentence of Ln, by interpreting ∃xθ(x)
as θ(t1) ∨ · · · ∨ θ(tn) and ∀xθ(x) as θ(t1) ∧ · · · ∧ θ(tn). We use the notation (ϕ)n, or if there is no ambiguity, 
simply ϕn, to denote this reinterpretation of ϕ in Ln. For any sentence ϕ we denote by [ϕ]n the set of 
n-states that satisfy ϕ. We denote the number of n-states in [ϕ]n by |ϕ|n.

Example 1. If ϕ is ∀xθ(x), then [ϕn]n = {ω ∈ Ωn : ω |=
∧n

i=1 θ(ti)}. For quantification over l variables we 
have (∀�xθ(�x))n =

∧
ti1 ,...,tik∈{t1,...,tn} θ(ti1 , . . . , tik) and (∃�xθ(�x))n =

∨
ti1 ,...,tik∈{t1,...,tn} θ(ti1 , . . . , tik).

Example 2. The 1-state ω1 := Ut1t1 is a member of [(∀x∃yUxy)1]1 but the 2-state ω2 := Ut1t1 ∧ Ut1t2 ∧
¬Ut2t1 ∧¬Ut2t2 that extends ω1 is not in [(∀x∃yUxy)2]2, even though ω2 � ω1. The 1-state ν1 := ¬Ut1t1 is 
not in [(∀x∃yUxy)1]1; however, the extending 2-state ν2 := ¬Ut1t1∧Ut1t2∧Ut2t1∧Ut2t2 is in [(∀x∃yUxy)2]2.

Probability A probability function P on L is a function P : SL −→ R≥0 such that:

P1: If τ is a tautology, i.e., |= τ , then P (τ) = 1.
P2: If θ and ϕ are mutually exclusive, i.e., |= ¬(θ ∧ ϕ), then P (θ ∨ ϕ) = P (θ) + P (ϕ).
P3: P (∃xθ(x)) = supm P (

∨m
i=1 θ(ti)).

A probability function on Ln is defined similarly. We shall use the notation P and Pn to denote the 
set of all probability functions on L and Ln respectively. Conditional probability is defined here in terms 
of unconditional probabilities: P (θ|ϕ) := P (θ ∧ ϕ)/P (ϕ) if P (ϕ) > 0. The following result is central to 
probability as defined on a predicate language:

Theorem 3 (Gaifman’s Theorem [17]). Every probability function is determined by the values it gives to the 
quantifier-free sentences.

Since the probability of a quantifier-free sentence ϕ is determined by the probability of the n-states, for 
any n ≥ Nϕ, every probability function is determined by the values it gives to the n-states.

Example 4 (Equivocator function). The equivocator function P= is defined by:

P=(ωn) df= 1
|Ωn|

= 1
2rn for each n-state ωn ∈ Ωn and each n = 1, 2, . . . .

The equivocator function is a probability function on L. It is called the equivocator function because it 
equivocates between n-states: it is the only probability function that gives each n-state the same probability, 
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for each n. The restriction P=�Ln
of P= to Ln is a probability function on Ln, for any n. To simplify notation, 

we will use P= to refer to these restrictions, as well as to the function on L itself. In addition, we will say that 
a sentence θ has measure x if x is the probability that the equivocator function attaches to θ, P=(θ) = x.

Entropy The n-entropy of a probability function P (which is defined on either L or Ln) is defined as:

Hn(P ) df= −
∑
ω∈Ωn

P (ω) logP (ω).

We follow the usual conventions in taking 0 log 0 = 0 and the logarithm to be the natural logarithm.

We now turn to entailment relationships in inductive logic of the form

ϕX1
1 , . . . , ϕXk

k |≈ ψY ,

where ϕ1, . . . , ϕk, ψ ∈ SL and each Xi is a member or subset of the unit interval. In the case in which 
Xi = 1, the premiss ϕi is certain, the superscript Xi may be omitted, and ϕi is called categorical.

We next introduce the two key approaches to making sense of such a relationship, the entropy-limit 
approach and the maximal-entropy approach.

The entropy-limit approach Suppose X1, . . . , Xn are probabilities or closed intervals of probabilities. Let 
N = max{Nϕ1 , . . . , Nϕk

}, so that tN is the constant symbol, of all those occurring in ϕ1, . . . , ϕk, with the 
largest index. For fixed n ≥N , reinterpret ϕ1, . . . , ϕk as statements of Ln. Let En be the set of probability 
functions on Ln that satisfy (ϕ1)X1

n , . . . , (ϕk)Xk
n . If En 
= ∅ consider the n-entropy maximiser:

Pn df= arg max
P∈En

Hn(P ).

Since X1, . . . , Xn are probabilities or closed intervals of probabilities, En is closed and convex and Pn is 
uniquely determined. Several considerations point to Pn as the most appropriate probability function for 
drawing inferences from premisses on Ln [38]. When characterising normal models of a set of first order 
axioms, i.e., when X1, . . . , Xn = 1, Pn can be regarded as the normal probabilistic characterisation of a 
random model of {ϕ1, . . . , ϕn} with respect to Ln, where the normality is understood in terms of being 
minimally constrained [44].

However, the premisses are intended as statements on L, not Ln, and the question arises as to what would 
be the most appropriate probability function for drawing inferences from these premisses when they are 
interpreted as statements about an infinite domain, or what the default characterisation of random model 
of the premisses would be with respect to the full language L. If it exists, one can consider the function P∞

defined on L as a pointwise limit of maximum entropy functions [7]2:

P∞(θ) df= lim
n→∞

Pn(θ).

The entropy-limit approach takes P∞ for inference, attaching probability Y = P∞(ψ) to sentence ψ.
There is one complication about the definition of P∞ which we need to address. While Barnett and Paris 

[7] define P∞ in terms of a pointwise limit where the limit is taken independently for each sentence of L, 

2 Note that the following do not depend on the order of the constants t1, t2, ....: (i) whether the entropy limit limn→∞ Pn(ϕ)
for ϕ ∈ QFSL exists or not, and (ii) its value in case the limit does exist. To see this, consider a bijective map f : N → N, i.e., a 
permutation of possibly infinitely many constants. If the entropy limit exists, then there are only finitely many sublanguages Lk

for which Pk(ϕ) is not close (within ε) to the limit. Since f is a bijection, this also holds after shuffling the constants. Hence, after 
shuffling, the limit exists and is unchanged. If the entropy limit does not exist, then there are infinitely many sublanguages Lk for 
which the Pk(ϕ) are not close. This remains true after shuffling and thus the limit does not exist after shuffling.
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Paris and Rafiee Rad [40,41,43] define P∞ in a slightly different way: take the pointwise limit on quantifier-
free sentences and extend this to the (unique) probability function on L as a whole which agrees with the 
values obtained on the quantifier-free sentences, assuming that the pointwise limit exists and satisfies the 
axioms of probability on quantifier-free sentences of L [17]. The Rad-Paris definition circumvents a problem 
that can arise with the Barnett-Paris definition, namely that the pointwise limit on L as whole may exist 
but may fail to be a probability function (see Appendix A.1 for a discussion of this point). Since the entropy-
limit conjecture with respect to the Rad-Paris definition implies the entropy-limit conjecture with respect 
to the Barnett-Paris definition, we consider the Rad-Paris definition of P∞ in this paper, with the aim of 
proving stronger results.

Note that Pn and En are defined on Ln not L. To simplify notation, when P is defined on L, we will say 
P ∈ En to mean that the restriction of P to Ln is in En, P�Ln

∈ En.

The maximal-entropy approach This alternative approach avoids appealing to the finite sublanguages Ln. 
Instead, consider E, the set of probability functions on L that satisfy the premisses ϕX1

1 , . . . , ϕXk

k . For 
probability functions P and Q defined on L, P is deemed to have greater entropy than function Q if it has 
greater n-entropy for sufficiently large n, i.e., if there is some natural number N such that for all n ≥N , 
Hn(P ) > Hn(Q). Then we can consider the set of probability functions in E with maximal entropy:

maxentE df= {P ∈ E : there is no Q ∈ E that has greater entropy than P}.

If maxentE 
= ∅, one can draw inferences using the maximal entropy functions P †. Thus, the maximal-
entropy approach attaches the set of probabilities Y = {P †(ψ) : P † ∈ maxentE} to ψ. Alternatively, if the 
premisses are categorical one can take P † as the default probabilistic description of a random model of the 
premisses.

See [35] and [48, Chapter 9] for one kind of justification of this approach.

What is known so far The entropy-limit conjecture says that if P∞ exists and is in E, then maxentE =
{P∞}. The majority of work in the literature concerning the conjecture deals with the special case of 
categorical premisses and concerns the probabilistic characterisation of models of a set of first order axioms. 
Barnett and Paris study monadic first order languages and show that the limit entropy approach is well 
defined, i.e., P∞ exists, for a generalised set of linear constraints (i.e., categorical and non-categorical 
premisses) on such languages [7]. Rafiee Rad considers the special case of a set of first order axioms on 
monadic languages, derives the exact form of P∞ and shows that the entropy-limit conjecture holds for 
these languages—see [41, Theorem 29], and [44] for a more general case. Similarly, he derives the exact form 
of P∞ and shows that the conjecture is true in the categorical Σ1 case, i.e., the case in which the premiss 
propositions ϕ1, . . . , ϕk are all Σ1 statements [43, Corollary 1].

He also shows that there exist cases in which maxentE = ∅: for any probability function satisfying the 
premiss ∃x∀yRxy there is another probability function with greater entropy that also satisfies that premiss 
[42]. This involves considering sets of axioms with quantifier complexity of Σ2. Landes shows that the 
entropy limit also fails to be well-defined for this and other premisses in Σ2 [33]. Similarly, [41, Section 3.2]
provides cases, with premisses of Π2 quantifier complexity, in which P∞ is not well defined. (It is not yet 
known whether or not the maximal entropy approach can yield an answer for those cases.) See also [44] for 
a more general case. On the other hand, [41, §4.1] shows that there are cases in which P∞ does not exist 
but P † does.

This leaves open the case concerning sets of axioms with quantifier complexity Π1 as well as non-
categorical premisses for polyadic languages. Paris and Rafiee Rad investigate the existence of P∞ for sets 
of Π1 sentences and show that for a special case, which they call the slow Π1 sentences, the entropy-limit 
approach is well defined [40].
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Table 1
Summary of what is known so far with respect to entropy maximisers for cate-
gorical premisses.

Premisses P † P∞ P † = P∞?
Δ0 exists and unique exists and unique �
Σ1 exists and unique exists and unique �
Π1 ? ? ?
Σ2 not always well-defined not always well-defined ?
Π2 ? not always well-defined ?

Table 2
Key notation.

rn number of atomic sentences of Ln

Ωn set of n-states. N.b., |Ωn| = 2rn

Nϕ or N maximum n such that tn appears in ϕ
(ϕ)n or ϕn reinterpretation of ϕ in Ln

[ϕ]n set of n-states satisfying ϕ
|ϕ|n number of n-states satisfying ϕ
P= equivocator function
P∞ entropy-limit function
P † maximal-entropy function
χ set of constraints under investigation

Table 1 provides a summary of what is known so far.

Plan of the paper In Section 3 we show that the entropy-limit conjecture holds in cases involving categorical 
premisses (i.e., premisses that take the form of sentences of the predicate language L without probabilities 
attached) of Π1 quantifier complexity. In Section 4 we extend these cases to ones in which the premiss 
sentences do have probabilities attached. In Section 5 we provide a general result which shows that the 
entropy-limit conjecture holds in certain general cases in which the Pn converge fast enough to P∞. We 
sum up in Section 6.

Summary of key notation Key notation is summarised in Table 2. Note that we use χ to denote the set of 
constraints (premisses) currently under investigation. In cases where the constraints vary, we subscript P∞

or P † with the constraint currently operating.

3. The categorical Π1 constraint

In this section we show that the entropy-limit conjecture holds in the case in which there is a single 
categorical constraint ϕ which takes the form of a satisfiable Π1 sentence ∀�xθ(�x). As we shall now explain, 
this situation splits naturally into two cases: that in which ϕ has non-zero measure, P=(∀�xθ(�x)) > 0, 
explored in §3.1, and that in which ϕ has zero measure, P=(∀�xθ(�x)) = 0, explored in §3.2.

For all satisfiable ∃�xθ(�x) ∈ Σ1 it is known that for N = N∃�xθ(�x) ([43, Theorem 4] and [43, Corollary 1]):

P∞
∃�xθ(�x)(·) = P=(·|

∨
ωN∈ΩN

ωN∧∃�xθ(�x) is consistent

ωN ) = P=(·|∃�xθ(�x)) = P †
∃�xθ(�x)(·) .

Intuitively, since Σ1 and Π1 are natural duals, one suspects that something similar is true for all satisfiable 
∀�xθ(�x) ∈ Π1 and N = N∀�xθ(�x):

P∞
∀�xθ(�x)(·) = P=(·|

∨
ωN∈ΩN

ωN�∀�xθ(�x)

ωN ) = P=(·|∀�xθ(�x)) = P †
∃�xθ(�x)(·) .
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Unfortunately, this intuition only gets us so far, because there are no ωN to include in the disjunction iff 
∀�xθ(�x) has measure zero (Proposition 9). In this case, the intuition breaks down because conditioning on a 
zero-probability sentence is not defined. On the other hand, the intuition is correct as long as at least one 
such ωN exists (Corollary 10). The set of such Π1-sentences is characterised in Proposition 9.

The case of satisfiable ∀�xθ(�x) ∈ Π1 with measure zero is much harder, since P=(·|∀�xθ(�x)) is simply not 
defined. Nevertheless, in Theorem 15 we prove that Entropy Limit Conjecture does also hold for all measure 
zero ∀�xθ(�x) ∈ Π1. The technical difficulty is precisely that of defining a ‘conditional probability’ conditional 
on a sentence that has measure zero.

The following proposition plays a key part in many of our later proofs.

Proposition 5. For all ∅ 
= S and all x > 0 it holds that

arg sup
f :S→[0,x] :

∑
y∈S f(y)=x

−
∑
y∈S

f(y) log(f(y))

= 1
x

arg sup
g:S→[0,1] :

∑
y∈S g(y)=1

−
∑
y∈S

g(y) log(g(y)) .

This proposition implies that entropy maximisation over a subset S of n-states under a linear constraint 
can be achieved by maximising the n-entropy of probability functions assigning S joint probability one and 
pointwise re-scaling the maximal n-entropy function.

Proof. It suffices to note that the n-entropy of g/x over S is an affine-linear transformation of the n-entropy 
of the probability function g over S:

−
∑
y∈S

g(y)
x

log(g(y)
x

) = − 1
x

∑
y∈S

g(y)(log(g(y)) − log(x))

=log(x)
x

+ Hn(g)
x

. �

We use this proposition to show that distributing probability mass more uniformly increases n-entropy 
in the following sense. Consider two probability functions P, Q ∈ P which disagree on the non-empty subset 
S of n-states such that a :=

∑
ωn∈S P (ωn) =

∑
ωn∈S Q(ωn) where P is uniform on S (P (ωn) = a/|S|) and 

Q is not. Then P has greater n-entropy than Q, Hn(P ) > Hn(Q).
The following lemma will be important in the remainder of this section. Recall that P= is used to refer 

to the equivocator function both on L and its finite sublanguages Ln:

Lemma 6 (Local Entropy Maximisation). For all γ ∈ SL with E = {P ∈ P : P (γ) = 1}, all n ∈ N and all 
ψ ∈ SLn, if γn is satisfiable, then

Pn(·) = P=(·|γn) .

Proof. By definition of Pn, Pn can only assign non-zero probability to those n-states which are in [γn]n. 
Since entropy is maximal if the probabilities are uniform (Proposition 5), it follows that Pn has to assign 
equal probability to all n-states in [γn]n—if [γn]n 
= ∅. By assumption we have that [γn]n 
= ∅, and thus 
all n-states in [γn]n are assigned the same probability by Pn and these probabilities sum to one. Hence, 
Pn(ψ) = P=(ψ|γn) for all n ∈ N and all ψ ∈ SLn. �

First we consider the case in which ∀�xθ(�x) has positive measure.



J. Landes et al. / Annals of Pure and Applied Logic 172 (2021) 102870 9
3.1. Non-zero measure, P=(∀�xθ(�x)) > 0

Remark 7. Using Lemma 6 it is easy to see that for all sentences γ ∈ SL with positive measure, if for all 
χ ∈ QFSL limn→∞ P=(χ|γn) exists, then

P∞
γ (χ) = lim

n→∞
P=(χ|γn) . (1)

In other words, P∞ is obtained by considering the limit of equivocators conditionalised on the premiss 
reinterpreted on Ln. The above lemma tells us what these probability functions—the Pn—look like.

Theorem 8. For all γ ∈ Π1 ∪ Σ1, if one of the following two conditions hold

1. limn→∞ P=(γn) ∈ (0, 1) and for all χ ∈ QFSL, limn→∞ P=(χ|γn) exists,
2. limn→∞ P=(γn) = 0,

then

P∞
¬γ =

P= − P=(γ) · P∞
γ

P=(¬γ) . (2)

Proof. For all χ ∈ QFSL and all large enough n such that P=(¬(γn)) > 0, we have, by the law of total 
probability, that3

P=(χ) = P=(γn)P=(χ|γn) + P=(¬γn)P=(χ|¬γn). (3)

Then notice that by assumption limn→∞ P=(γn) ∈ [0, 1) exists and limn→∞ P=(¬γn) = limn→∞ 1 −
P=(γn) = 1 −limn→∞ P=(γn) ∈ (0, 1]. Then since the limits exist, it must be the case that limn→∞ P=(γn) =
P=(γ), by axiom P3.4 Then limn→∞ P=(¬γn) = 1 − P=(γ) = P=(¬γ).

Assume that P=(γ) > 0 and thus for large enough n: P=(γn) > 0 and P (·|γn) is well-defined. By 
Remark 7, limn→∞ P=(χ|γn) = P∞

γ (χ). Taking the limit of (3) we obtain

P=(χ) = P=(γ) · P∞
γ (χ) + P=(¬γ) · lim

n→∞
P=(χ|¬γn)

= P=(γ) · P∞
γ (χ) + P=(¬γ) · P∞

¬γ(χ)

where the last equality follows from Remark 7, if the limit exists. But notice that

lim
n→∞

P=(χ|¬(γn)) =
P=(χ) − P=(γ)P∞

γ (χ)
P=(¬γ) .

3 If P=(γn) = 0, then put for sake of simplicity P=(γn) · P=(χ|γn) := 0. In actual fact, P=(χ|γn) is undefined.
4 Note that for quantifier free γ(�x), we have Q�xγ(�x) ∈ Π1 ∪Σ1 for Q ∈ {∀, ∃}. The equality P (Q�xγ(�x)) = limn→∞ P (γn) ∈ [0, 1]

for all probability functions P is a (repeated) application of P3. In particular, these limits always exist.
It is, however, not always the case that P (δ) = limn→∞ P (δn). Consider the contingent sentence δ ∈ Π2, which only has infinite 

models:

δ = ∀xzw∃y(U1xy ∧ [(U1xw ∧ U1wz) → U1xz] ∧ ¬U1xx) .

It is easy to check that open orders satisfy δ. On the other hand, δ does not have a finite model: for every element in the support 
a of a model of δ there has to exist some other element b which is greater than a, U1ab. Note that a 
= b (U1 is irreflexive). If U1
were cyclic, then transitivity entails U1dd for some d which contradicts δ. Hence, for every element in the finite model there must 
be some other element which is greater. Contradiction. So, δ only has infinite models. It holds for all probability functions P ∈ P
that P (δn) = 0, since there are no finite models of δ. Since, δ is satisfiable, there exist probability functions P ′ ∈ P such that 
P ′(δ) > 0 ([37, p. 189]). And thus P ′(δn) = 0 < P ′(δ) for such a probability function P ′.
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Thus, the limit exists as the right hand side is well defined. Then (2) holds for all quantifier-free sentences 
and thus by Gaifman’s Theorem it holds for all sentences in SL.

Next assume that P=(γ) = 0. Taking the limit of (3) we obtain

P=(χ) =P=(γ) · P∞
γ (χ) + P=(¬γ) · lim

n→∞
P=(χ|¬γn)

=P=(¬γ) · lim
n→∞

P=(χ|¬γn) = lim
n→∞

P=(χ|¬γn) .

So, the limit on the right hand side exists and is equal to P=. Now conclude as above that P= = P∞
¬γ . �

While Theorem 8 is informative about the entropy limit, it leaves open certain questions. When is it the 
case that ∀�xθ(�x) ∈ Π1 has positive measure? What exactly does the entropy limit look like? And does the 
entropy-limit conjecture hold in that case? We shall address these questions in turn.

Proposition 9. For all ϕ = ∀�xθ(�x) ∈ Π1 the following are equivalent

1. P=(ϕ) > 0.
2. Let ∀�x

∧
i∈I

∨
j∈Ji

λij(�x, �t) be the conjunctive normal form of ϕ. Then for all i ∈ I there exists a j∗i such 
that λij∗i (�x, �t) does not mention a variable and 

∧
i∈I λij∗i (�t) is consistent.

3. � ϕ ←→ (
∧

i∈I λij∗i (�t) ∨ ϕ), where λij∗i (�t) is as in 2.
4. There exists an ωNϕ

∈ ΩNϕ
such that ωNϕ

� ϕ.

For example, P=(∀x(Ux → Ut1)) = P=(Ut1 ∨ ∀x¬Ux) = 0.5 > 0 but P=(∀x((U1x ∨ U2t1) ∧
(U3x ∨ ¬U2t1))) = 0. In the latter example, there is no n-state entailing ∀x((U1x ∨ U2t1) ∧ (U3x ∨ ¬U2t1))
because the conjunction of the two literals not mentioning a variable, U2t1 ∧ ¬U2t1, is inconsistent.

Proof. To simplify notation we let N := Nϕ.
2 ⇒ 1: If ϕ ∈ Π1 is of this form, then

P=(ϕ) =P=(∀�x
∧
i∈I

∨
j∈Ji

λij(�x,�t)) ≥ P=(∀�x
∧
i∈I

λij∗i (�x,�t))

=P=(
∧
i∈I

λij∗i (�t)) = 1
2|I|

> 0.

1 ⇒ 2. We show that the negation of 2 entails the negation of 1, P=(ϕ) = 0. We now assume that ϕ ∈ Π1

is not of this form, and denote by ∅ ⊆ I∗ ⊆ I those indices for which every λiji contains a variable. We 
consider two cases: first suppose that I∗ is not empty and let i ∈ I∗.

Note that P=(∀�x
∨

j∈Ji
λij(�x, �t)) 

P3= limn→∞ P=((∀�x
∨

j∈Ji
λij(�x, �t))n). Let us suppose for the mo-

ment that ϕ contains only a single variable, say x. Let n > N and let ωn be an n-state which 
satisfies (∀x 

∨
j∈Ji

λij(x, �t))n. We now count the number n + 1-states which extend ωn and satisfy 
(∀x 

∨
j∈Ji

λij(x, �t))n+1. Notice that ωn has 2rn+1−rn extensions to Ln+1. Those that satisfy
(∀x 

∨
j∈Ji

λij(x, �t))n+1 are precisely those n +1-states which satisfy (∀x 
∨

j∈Ji
λij(x, �t))n∧

∨
j∈Ji

λij(tn+1, �t). 
There are

2|Ji| − 1
2Ji

· 2rn+1−rn

such n + 1-states. So,
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P=((∀x
∨
j∈Ji

λij(x,�t))n+1) = 2|Ji| − 1
2|Ji|

P=((∀x
∨
j∈Ji

λij(x,�t))n) .

Thus,

lim
n→∞

P=((∀x
∨
j∈Ji

λij(x,�t))n) ≤ lim
n→∞

(2|Ji| − 1
2|Ji|

)n−N

= 0 .

If ϕ contains two or more variables, then the ()n-operation leads to more conjunctions than in the single-
variable case. Hence, when counting the n + 1-states which satisfy (∀�x

∨
j∈Ji

λij(�x, �a))n+1 there is an even 
greater number which we subtract from 2|Ji|. The limit is hence equal to zero, too. And so

P=(ϕ) = P=(∀�x
∧
i∈I

∨
j∈Ji

λij(�x,�t)) ≤ P=(∀�x
∧
i∈I∗

∨
j∈Ji

λij(�x,�t))

≤ sup
i∈I∗

P=(∀�x
∨
j∈Ji

λij(�x,�t)) = sup
i∈I∗

lim
n→∞

P=(∀�x(
∨
j∈Ji

λij(�x,�t))n) = 0.

For the second case, suppose that I∗ is empty. Then for every i ∈ I there exists at least one λiji which does 
not contain a variable. Furthermore, since we are assuming that ϕ is not of the form given in (2), for every 
such choice of ji, 

∧
i∈I λiji is inconsistent.

So, if the n-state ωn is such that ωn � ϕn = (∀�x
∧

i∈I

∨
j∈Ji

λij(�x, �t))n (n ≥ N), ωn cannot satisfy ϕn

by only satisfying a variable-free literal from each conjunct (since, as mentioned above, they are jointly 
inconsistent). Then there has to exist an i0 ∈ I such that ωn is inconsistent with all variable-free literals in ∨

ji0
λi0ji0

(�t). Thus, ωn and all its extensions ωm which satisfy ϕ must satisfy literals in 
∨

ji0
λi0ji0

, which 
contain a variable. For the purposes of counting extensions, we might as well ignore the variable-free literals 
of 

∨
ji0∈Ji0

λi0ji0
. We may now proceed as if I∗ is not empty.

3 ⇒ 1. Since 
∧

i∈I λij∗i (�t) is consistent, this easily follows:

P=(ϕ) = P=(
∧
i∈I

λij∗i (�t) ∨ ϕ) ≥ P=(
∧
i∈I

λij∗i (�t)) > 0 .

2 ⇒ 3. � ϕ → (
∧

i∈I λij∗i (�t) ∨ ϕ) is trivially true.
For the direction from right to left it suffices to notice that by 2, �

∧
i∈I λij∗i (�t) → ϕ.

3 ⇒ 4. Notice that 
∧

i∈I λij∗i (�t) ∈ QFSLN since each conjunct only involves constants, and N is the 
largest constant appearing in θ(�x). And that it is consistent by assumption since we have shown that 3 
implies 1 and 1 implies 2. Hence, the conjunction is entailed by some N -state ωN ∈ ΩN . Then ωN entails 
the logically weaker 

∧
i∈I λij∗i (�t) ∨ ϕ.

4 ⇒ 1. P=(ϕ) ≥ P=(ωN ) > 0, where the strict inequality follows from the definition of P=. �

Corollary 10. For all ϕ = ∀�xθ(�x) ∈ Π1 such that P=(ϕ) > 0 it holds that

P∞
ϕ (·) = P=(·|

∨
ωN∈ΩN
ωN�ϕ

ωN ) ,

where N = Nϕ, i.e., the maximum n such that tn appears in ϕ.

Proof. Since ϕ ∈ Π1, if P=(ϕ) = 1 then ϕ is a tautology, as is ϕN , so {ωN ∈ ΩN : ωN � ϕ} = ΩN . Hence, 
P= ∈ En for all n ≥ N and so for all n > N , Pn

ϕ = P= and thus P∞
ϕ = P= = P=(· |ΩN ).
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If P=(ϕ) < 1 then, first, by [43, Theorem 4]:

P∞
∃�x¬θ(�x)(·) = P=(·|

∨
ωN∈ΩN

ωN∧∃�x¬θ(�x) is consistent

ωN )

and notice that limn→∞ P=�n((∃�x¬θ(�x))n) = 1 − P=(ϕ) [37, Lemma 3.8]. The limit is hence well-defined 
and in [0, 1). Thus we can use Theorem 8 to obtain

P∞
ϕ (·) = P=(·) − P=(∃�x¬θ(�x)) · P=(·|∃�x¬θ(�x))

P=(ϕ) . (4)

Next, applying [43, Lemma 5], we have

P=(∃�x¬θ(�x)) = P=(
∨

ωN∈ΩN
ωN∧∃�x¬θ(�x) is consistent

ωN ).

So,

P=(ϕ) = 1 − P=(
∨

ωN∈ΩN
ωN∧∃�x¬θ(�x) is consistent

ωN ) .

Inserting this back into (4) gives

P∞
ϕ (·)[1 − P=(

∨
ωN∈ΩN

ωN∧∃�x¬θ(�x) is consistent

ωN )]

= P=(¬
∨

ωN∈ΩN
ωN∧∃�x¬θ(�x) is consistent

ωN ) · P∞
ϕ (·)

= P=(·) − P=(
∨

ωN∈ΩN
ωN∧∃�x¬θ(�x) is consistent

ωN ) · P=(·|
∨

ωN∈ΩN
ωN∧∃�x¬θ(�x) is consistent

ωN ) .

Applying the Theorem of Total Probability to P=(·) on the right hand side and simplifying the equation, 
we obtain

P∞
ϕ (·) =P=(·|¬(

∨
ωN∈ΩN

ωN∧∃�x¬θ(�x) is consistent

ωN ))

=P=(·|
∨

ωN∈ΩN
ωN�∀�xθ(�x)

ωN ) . �

Lemma 11. Suppose ϕ ∈ Π1 is such that P=(ϕ) > 0 and N = Nϕ. Then for all N -states ωN such that 
ωN ∈ [ϕN ]N and ωN � ϕ it holds that

|{ωn ∈ Ωn : ωn � ωN &ωn ∈ [ϕn]n}| ·
|ΩN |
|Ωn|

.

converges exponentially (or faster) to zero in n > N .
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This lemma says that N -states compatible with the constraint on LN which do not entail ϕ have only 
very few extensions which satisfy the constraints on more expressive languages.

Proof. As above, write ϕ in conjunctive normal form, say 
∧

i∈I

∨
ji∈Ji

λiji(�x, �t), with the standard convention 
that λiji(�x, �t) means that λiji(�x, �t) mentions at most the variables in �x and at most the constant symbols 
in �t but not necessarily all of them.

First notice that for ωN ∈ [ϕN ]N such that ωN � ϕ, there has to exist at least one disjunction, say ∨
ji∈Ji

λiji(�x, �t), such that ωN fails to entail all literals in λiji(�x, �t) that do not mention a variable. To see 
this, notice that if ωN entails one such literal in every disjunction then ωN entails the whole disjunction and 
thus ϕ. That contradicts our assumption. Notice that if the literal does mention a variable then ωN cannot 
entail it, since ωN only mentions constants t1, . . . , tN but no variable. We now let Δ(�x, �t) :=

∨
ji∈Ji

λiji(�x, �t)
be one such disjunction.

Next notice that this also holds for any ωn extending ωN . That is every ωn which extends ωN fails to 
satisfy all literals in Δ(�x, �t) which do not mention a variable. To see this notice that all literals in Δ(�x, �t)
only mention constants t1, . . . , tN , and since ωn agrees with ωN on Ln, if it satisfies any such literal, that 
literal is satisfied by ωN , which cannot be the case, as just discussed above.

Now consider an n-state ωn ∈ [ϕn]n which is logically equivalent to (
∧

i∈I

∨
ji∈Ji

λiji(�x, �t))n. Since ωn

does not satisfy a single literal λiji(�x, �t) of Δ(�x, �t) which does not mention a variable, ωn must satisfy the 
interpretation of at least one of its literals, say λiji(�x, �t), mentioning a variable in Ln. In λiji(�x, �t) a variable 
has been replaced by a constant by the ()n-operation.

Let us consider ωn+1 that extends ωn and ωn+1 � (∀�xΔ(�x, �t))n+1. Since ωn mentions all constants in 
Δ (n ≥ N), its extension, ωn+1 cannot satisfy a literal in (Δ(�x, �t))n+1 with no variable replaced by a 
constant. This is so because by the discussion above ωn does not satisfy any such literal in Δ(�x, �t). But 
since ωn+1 � (∀�xΔ(�x, �t))n+1 it has to satisfy, in Ln+1, the interpretation of one literal in Δ(�x, �t) with 
variables. That is, it has to satisfy some literal, with variables, of Δ(�x, �t) in which the variable is replaced 
by a constant.

Since ϕ ∈ Π1, for all variables there is at least one ∀-quantifier in front of the Δ(�x, �t) which binds them. 
Since ωn+1 � (∀�xΔ(�x, �t))n+1, we have ωn+1 � Δ(tn+1, . . . , tn+1, �t) (we have instantiated all the universally 
quantified variables with tn+1). And so

{ωn+1 ∈ Ωn+1|ωn+1 � ωn ∧ ϕn+1}
⊆{ωn+1 ∈ Ωn+1|ωn+1 � ωn &ωn+1 � Δ(tn+1, . . . , tn+1,�t)}
={ωn+1 ∈ Ωn+1|ωn+1 � ωn &ωn+1 � ¬Δ(tn+1, . . . , tn+1,�t)}

={ωn+1 ∈ Ωn+1|ωn+1 � ωn &ωn+1 �

∧
ji

¬λiji(tn+1, . . . , tn+1,�t)} .

Let d be the maximal number of literals in any disjunction in the CNF of ϕ. In particular, ∧
ji
¬λiji(tn+1, . . . , tn+1, �t) has no more than d literals — which is independent of n. And thus

|{ωn+1 ∈ Ωn+1|ωn+1 � ωn ∧ ϕn+1}| ≤
|Ωn+1|
|Ωn|

2d − 1
2d .

And thus for all n > N

|{ωn ∈ Ωn : ωn � ωN &ωn ∈ [ϕn]n}| ·
|ΩN |
|Ωn|

≤|ΩN |
|Ωn|

|Ωn|
|ΩN | (

2d − 1
2d )n−N

≤(2d − 1)n−N . �
2d
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Theorem 12. For all ϕ = ∀�xθ(�x) ∈ Π1 with positive measure,

maxentE = {P †
ϕ} = {P∞

ϕ } = {P=(·|
∨

ωN∈ΩN
ωN�ϕ

ωN )} ,

where N = Nϕ, i.e., the maximum n such that tn appears in ϕ.

Proof. If ϕ is a tautology, then P †
ϕ = P∞

ϕ = P= = P=(·|Ωn).
Otherwise let ∀�x

∧
i

∨
ji
λiji(�x, �t) be the conjunctive normal form of ϕ. Then from Proposition 9 every 

ωN ∈ ΩN such that ωN � ϕ entails at least one λij∗i (�t) (i.e., literal with no variable) for each i. Hence, every 
extension ωn of ωN also entails ϕ and thus ϕn. To see this notice that such literals only mention constants 
and will thus be quantifier free sentences in LN , and every extension of ωN agrees with ωN on LN . Also 
note that if ω′

N /∈ [ϕN ]N then for all n > N and all its extensions ω′
n it holds that ω′

n /∈ [ϕn]n. And so we 
find for all n ≥ N that Pn

ϕ (ω′
N ) = 0 = Pn

ϕ (ω′
n).

Now consider an N -state ωN ∈ [ϕN ]N which does not entail ϕ. By Lemma 11, the ratio of its extensions 
that satisfy ϕn decreases at least exponentially quickly in n. Since Pn equivocates on those n-states which 
are models of ϕn (Lemma 6), it follows that

P∞
ϕ (ωn) =

{
1

|{ωn∈Ωn|ωn�ϕ}| = 1
|ϕN |N · |ΩN |

|Ωn| if ωn � ϕ

0 otherwise .

To complete the proof we need to show that P∞
ϕ = P †

ϕ. To show this we show that P∞
ϕ defined above 

has greater entropy than every probability function P ′ ∈ E in the sense required by the maximal entropy 
approach.

Use S to denote the set of N -states which entail ϕ. First notice that P∞
ϕ defined above has greater 

entropy than any probability function P ′ which assigns probability one jointly to the N -states in S. To see 
this notice that for each n > N , P ′ assigns non-zero probability only to extensions of state descriptions in 
S but so does P∞

ϕ and P∞
ϕ does so in a completely equivocal way, dividing the probability equally between 

them. So for each n > N , P∞
ϕ has strictly greater n-entropy than P ′ for all n such that P and P ′ disagree 

on Ln.
Next we calculate the n-entropy of P∞

ϕ :

Hn(P∞
ϕ ) = −

∑
ωn∈Ωn
ωn�N ∈S

P∞
ϕ (ωn) log(P∞

ϕ (ωn))

= −
∑

ωn∈Ωn
ωn�N ∈S

|ΩN |
|S| · |Ωn|

log
( |ΩN |
|S| · |Ωn|

)

= − log
( |ΩN |
|S| · |Ωn|

)
= log(|Ωn|) − log

( |ΩN |
|S|

)
,

where ωn�N is the restriction of ωn to the first N constants.
If P ′ is a probability function in E which assigns joint probability 1 − k < 1 to the N -states in S, then 

it must assign joint probability k > 0 to the N -states not in S. To maximise n-entropy, P ′ equivocates on 
the n-states extending those N -states not in S – as much as possible. We find

Hn(P ′) = −
∑

ωn∈Ωn
ωn�N ∈S

P ′(ωn) log(P ′(ωn)) −
∑

ωn∈Ωn
ωn�N /∈S

P ′(ωn) log(P ′(ωn)) (5)
ωn�ϕn
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To calculate this we first notice a couple of things: first that each ωN ∈ ΩN has the same number of 
extensions to Ln for n > N , which is |Ωn|

|ΩN | . So, the number of ωn in the first sum is |S|. |Ωn|
|ΩN | and the 

probability mass 1 − k is divided equally between them to maximise n-entropy, assigning each such ωn

measure (1−k)·|ΩN |
|S|·|Ωn| . Second, the number of ωn in the second sum is M = |{ωn ∈ Ωn|(ωn)�N /∈ S, ωn � ϕn}|

and these are jointly assigned probability mass k, so the entropy on this set is maximal, if this probability 
is divided equally between them. Then for (5) we have

Hn(P ′) ≤−
∑

ωn∈Ωn
ωn�N ∈S

(1 − k) · |ΩN |
|S| · |Ωn|

log
( (1 − k) · |ΩN |

|S| · |Ωn|
)
−

∑
ωn∈Ωn
ωn�N /∈S

ωn�ϕn

k

M
· log

( k

M

)

= − (1 − k) · log
( (1 − k) · |ΩN |

|S| · |Ωn|
)
− k · log

( k

M

)

=(1 − k) log(|Ωn|) − (1 − k) · log
( (1 − k) · |ΩN |

|S|
)

+ k log(M) − k log(k) .

By Lemma 11, for large n, M � |Ω|n. Thus, for large n

(1 − k) log(|Ωn|) − (1 − k) · log
( (1 − k) · |ΩN |

|S|
)

+ k log(M) − k log(k)

� log(|Ωn|) − log
( |ΩN |

|S|
)

.

So, P∞
ϕ has greater entropy than P ′. And so, P∞

ϕ has greater entropy than all other P ′ ∈ E. Hence, we 
have P †

ϕ = P∞
ϕ . �

3.2. Zero measure, P=(∀�xθ(�x)) = 0

If ϕ = ∀�xθ(�x) has measure zero, then another strategy is required, as explained at the start of the section. 
We can, however, solve one case easily (Proposition 13). We then show why this solution strategy does not 
work in the general measure-zero case.

Proposition 13. For all conjunctions of literals θ(�x, �t) it holds for consistent ϕ = ∀�xθ(�x, �t) ∈ Π1 with 
P=(ϕ) = 0 that

maxentE = {P †
ϕ} = {P∞

ϕ } .

Proof. Let n ≥ N and ϕ = ∀�x
∧I

i=1 λi(�x, �t) where all λi are literals. Note that for all ωn ∈ Ωn it holds that 
ωn ∈ [ϕn]n, if and only if [ϕn]n is a sub-formula of ωn. Hence, all ωn ∈ [ϕn]n have equally many k+n-states 
extending them which are in [ϕn+k]n+k. Since the entropy maximisers on finite languages Lm assign all 
those states which do not satisfy ϕm probability zero for large enough m, all probability mass is assigned 
to those states in [ϕn]n.

First, note that P=(·|ϕn) has maximum n-entropy among all probability functions with P (ϕn) = 1. Thus, 
Pn
ϕ = P=(·|ϕn).
Second, observe that P=(·|ϕn+1) agrees with P=(·|ϕn) on Ωn since θ(�x) is a contingent conjunction of 

literals. To see this notice that P=(·|ϕn+1) divides the probability mass equally between the n + 1-states 
that satisfy ϕn+1 but these are all extensions of n-states that satisfy ϕn and all of these have an equal 
number of extensions to n + 1-states that satisfy ϕn+1.
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We hence find for all m ≥ N and all m-states ωm that P∞
ϕ (ωm) = limn→∞ Pn

ϕ (ωm) = limn→∞ P=(ωm|ϕn)
= P=(ωm|ϕm). This shows that P∞

ϕ is well defined on all m-states for all m > N and it satisfies P1 and P2 
since it is a limit of probability functions. Thus, by Gaifman’s Theorem it can be uniquely extended to L.

Also, limn→∞ P=(·|ϕn) eventually dominates all other probability functions in E in entropy, by the first 
observation. So, P †(·) = limn→∞ P=(·|ϕn). �

As soon as there are disjunctions in ∀�xθ(�x) ∈ Π1, matters are more involved, because different disjuncts 
in θ(�x) may have different consequences:

Example 14. For ϕ = ∀xy((U2t1 ∧ U1x) ∨ ¬U2y) ∈ Π1 and the language containing only the two unary 
relation symbols U1, U2, we have P=(∀xy((U2t1 ∧ U1x) ∨ ¬U2y)) = 0.

There are two sorts of n-states which entail ϕn. Those which entail U2t1 ∧
∧n

i=1 U1ti and those which 
entail 

∧n
i=1 ¬U2ti. No state can entail both sentences. At every level n ≥ 2, exactly half of all extensions 

satisfying ϕn are extensions satisfying ϕn+1. Furthermore, at every level there are twice as many n-states 
which entail 

∧n+1
i=1 ¬U2ti than those which entail U2t1 ∧

∧n+1
i=1 U1ti.

Hence, Pn
ϕ ((∀x¬U2x)n) = 2Pn

ϕ ((∀x(U2t1 ∧ U1x))n). The disjuncts in ϕ (U2t1 ∧ U1x and ¬U2y) are thus 
treated differently in the entropy maximising process.

Theorem 15. If χ = {∀�xθ(�x)} where ∀�xθ(�x) ∈ Π1, and P∞ exists, then

maxentE = {P∞} = {P †} .

Proof. Let ϕ be ∀�xθ(�x), N = Nϕ and t > N . Let’s first observe that, then for all t ≥ N and all t-states 
ωt ∈ Ωt using Lemma 6

P∞(ωt) = lim
n→∞

Pn(ωt) = lim
n→∞

∑
ωn∈[ϕn]n
ωn�ωt

Pn(ωn)

= lim
n→∞

|{ωn ∈ [(∀�xθ(�x))n]n | ωn � ωt}|
|ϕn|n

.

Since P∞ exists by assumption, this limit is well-defined, i.e., it takes a definite value for all ωt ∈ Ωt.
This, then, defines P∞ on all t-states, for all t ≥ N . But this means that P∞ is uniquely determined. 

By the fact that P∞ is a unique probability function, it must be the case that P2 holds, in particular, for 
all t-states ωt ∈ Ωt it holds that P∞(ωt) =

∑
ωt+1�ωt

P∞(ωt+1). Since 1 = limn→∞ Pn(ϕn) = P∞(ϕ) it 
follows that P∞ ∈ E.

Next, we show that P∞ = P †. To show this we will show that P∞ has greater entropy than every other 
probability function in E. So let Q ∈ E \ {P∞}. If t ≥ N , then for every t-state ωt that is inconsistent with 
ϕt, it holds that ωt is inconsistent with ϕ. Hence, Q(ωt) = 0. We consider two cases: first we look at those 
Q that assign non-zero probability to some t-state, t > N with vanishingly few extensions that satisfy ϕn

for large n, and next those Q that assign zero probability to all such t-states.
Case 1. Suppose that there is some t-state ωt that satisfies ϕt and Q(ωt) > 0 such that there exists some 

other t-state μt that satisfies ϕt with many more extensions compatible with ϕ than ωt. Then the limit 
of |{ωn∈[ϕn]n | ωn�ωt}|

|{νn∈[ϕn]n | νn�νt}| is zero. Suppose that t ≥ N is minimal with this property. Now define a probability 
function P ∈ E which agrees with Q everywhere except for ωt, νt and (at least some of) their extensions. Let 
P (ωt) := 0 and P (νt) := Q(νt) +Q(ωt) > Q(νt). Note that this forces P (ωn) = 0 for all extensions ωn of ωt. 
For the extensions νn of νt we define a real number α > 0 by the unique solution of α·P∞(νt) = Q(ωt) +Q(νt). 
Then simply put P (νn) := α ·P∞(νn) for all extensions νn of νt. We need to show is that this is a probability 
function. For this is it is enough to observe that for all k ≥ 0 and all νn+k that satisfy ϕn+k extending νn,
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P (νn+k) =αP∞(νn+k) = α
∑

νn+k+1�νn+k

νn+k+1∈[ϕn+k+1]n+k+1

P∞(νn+k+1)

=α
∑

νn+k+1�νn+k

P∞(νn+k+1)

=
∑

νn+k+1�νn+k

P (νn+k+1) .

Next, note that for all large enough n ≥ t it holds that (Proposition 5)

−
∑

λn∈Ωn
λn�(ωt∨νt)

Q(λn) · log(Q(λn)) < −
∑

λn∈Ωn
λn�(ωt∨νt)

P (λn) · log(P (λn)) .

Since Q and P only disagree on ωt, μt and (at least some of) their extensions, this means that Hn(Q) <
Hn(P ) for all large enough n. This entails that Q /∈ maxentE.

Case 2. Consider a Q ∈ E which assigns zero probability to all ωt which have vanishingly few extensions 
satisfying ϕn for large n. Suppose furthermore that Q does not always assign probabilities according to 
asymptotic ratios of the number of extensions, i.e., there exists a minimal t ≥ N and two t-states ωt, νt ∈ [ϕt]t
with P∞(ωt), P∞(νt) > 0 such that

Q(ωt)
Q(νt)

> lim
n→∞

|{ωn ∈ [ϕn]n|ωn � ωt}|
|{νn ∈ [ϕn]n|νn � νt}|

= P∞(ωt)
P∞(νt)

.

Define a function P ∈ E which agrees with Q except for ωt, νt and (at least some of) their extensions. Put 
for all n ≥ t

P (ωn) := Q(ωt) + Q(νt)
P∞(ωt) + P∞(νt)

P∞(ωn) for ωn that extend ωt

P (νn) := Q(ωt) + Q(νt)
P∞(ωt) + P∞(νt)

P∞(νn) for νn that extend νt .

So, P assigns the same joint probability mass to ωt, νt and its extensions as Q. However, P does so by 
adhering to the same ratios as P∞. By Proposition 5 it holds for all large enough n ≥ t:

−
∑

λn∈Ωn
λn�(ωt∨νt)

Q(λn) · log(Q(λn)) < −
∑

λn∈Ωn
λn�(ωt∨νt)

P (λn) · log(P (λn)) .

Since Q and P only disagree on ωt, νt and (at least some of) their extensions, this means that Hn(Q) <
Hn(P ) for all large enough n. This entails that Q /∈ maxentE.

This means, that we can always improve in the entropy ordering by assigning probability zero to t-states 
with vanishingly few extensions compatible with ϕ (case 1). We can also improve in the entropy ordering by 
assigning probabilities according to the same ratios as P∞. There is however only one probability function 
that satisfies both these conditions, which is P∞. Hence, P∞ has greater entropy than every other function 
Q ∈ E \ {P∞}. And so P † = P∞. �

This proof leaves two open questions. (1) What is the concrete form of P∞, assuming it exists for ϕ ∈ Π1? 
(2) Does the existence of a unique maximal entropy function, maxentE = {P †}, entail that the entropy 
limit exists and that they are equal, P † = P∞, for all ϕ ∈ Π1?

While we do not know the answers to these questions, we do know that there are premiss sentences 
ϕ = ∀�xθ(�x) ∈ Π1 of which Theorem 15 holds nontrivially.
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Definition 16 (Slow Premisses, [40], p. 346). A premiss sentence ϕ ∈ SL is called slow, if and only if |ϕn|n
is polynomially bounded in n.

Proposition 17 (Entropy Limit of Slow Premiss Sentences, [40], Theorem 3). For all consistent and slow 
ϕ ∈ Π1 the entropy limit exists and assigns probability one to the premiss ϕ, P∞ ∈ E.

Remark 18. Theorem 15 requires that the consistent premiss ϕ = ∀�xθ(�x) ∈ Π1 has a well-defined entropy 
limit. Slow sentences do have such a well-defined entropy limit. Hence, the entropy-limit conjecture holds 
non-trivially for every consistent slow premiss ϕ = ∀�xθ(�x) ∈ Π1.

Furthermore, for all consistent premiss sentences ϕ = ∀�xθ(�x) ∈ Π1 in which θ(�x) is a conjunction of 
literals, the entropy limit is well-defined (Proposition 13) and thus the entropy-limit conjecture holds non-
trivially for all these sentences too.

4. Non-categorical premisses and Jeffrey updating

In Section 3, we saw that entropy maximisation on predicate languages for categorical Π1 (and also 
Σ1) premisses amounts to updating the equivocator (the prior probability function in a state of maximal 
uncertainty, i.e., no evidence is available at all) by conditionalisation. This mirrors the finite case in which 
entropy maximisation agrees with conditionalisation in case of categorical evidence [46]. We now turn to 
non-categorical premisses of the form ϕX , X ∈ (0, 1) and show that, for Π1 and for Σ1 premiss propositions, 
the entropy-limit conjecture holds and entropy maximisation amounts to Jeffrey updating (Theorem 22). 
Again, this mirrors the finite case in which entropy maximisation agrees with Jeffrey updating in case of 
non-categorical premisses of the form ϕX [46]. Our result is also in line with the literature that shows that 
MaxEnt updating agrees with Jeffrey updating on infinite domains [13].

4.1. Point probabilities

While Πk and Σk categorical constraints require different approaches to maximise entropy, this is no longer 
so for non-categorical constraints. Every non-categorical Πk constraint is equivalent to a non-categorical Σk

constraint, since χ = {ϕX} is equivalent to {¬ϕ1−X}.

Lemma 19. For all contingent ϕ ∈ SL such that P∞
ϕ and P∞

¬ϕ both exist and all X ∈ (0, 1) it holds that

P∞
ϕX = X · P∞

ϕ + (1 −X) · P∞
¬ϕ .

Furthermore, if P∞
ϕ (ϕ) = 1 and P∞

¬ϕ(¬ϕ) = 1, then P∞
ϕX (ϕ) = X.

So, if the entropy limit exists for both categorical premisses ϕ, ¬ϕ, then the entropy limit for the non-
categorical premiss(es) ϕX (and ¬ϕ1−X) exists and is obtained by a weighted average inspired by Jeffrey 
updating. If P∞

¬ϕ = P=(·|¬ϕ) and if P∞
ϕ = P=(·|ϕ), then the entropy limit for the non-categorical premiss(es) 

ϕX (and ¬ϕ1−X) is indeed given by Jeffrey updating of the equivocator. In many cases where the premisses 
only involve one type of quantifier (either ∀ or ∃ but not both), this is indeed the case, as we showed in 
Section 3.

Proof. First, note that E = {P ∈ P : P (ϕ) = X andP (¬ϕ) = 1 − X}. Next, we observe that Qn :=
X · Pn

ϕ + (1 −X) · Pn
¬ϕ satisfies all the constraints on Ln, Qn(ϕn) = X and Qn(¬ϕn) = 1 −X.
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We now see that for all n ∈ N that X · Pn
ϕ maximises entropy over the set

{P : Ωn → [0, 1] :
∑

ωn∈Ωn
ωn�ϕn

P (ωn) = X
∑

ωn∈Ωn
ωn�¬ϕn

P (ωn) = 0} ,

and that (1 −X) · Pn
¬ϕ maximises entropy over the set

{P : Ωn → [0, 1] :
∑

ωn∈Ωn
ωn�ϕn

P (ωn) = 0
∑

ωn∈Ωn
ωn�¬ϕn

P (ωn) = 1 −X} .

We see this by recalling Proposition 5. For all functions f : {1, . . . , N} → R≥0 it holds that

arg sup
f :
∑N

i=1 f(i)=X

−
N∑
i=1

f(i) log(f(i)) =
arg supf :

∑N
i=1 f(i)=1 −

∑N
i=1 f(i) log(f(i))

X
.

Finally, observe that the objective function is additive with respect to n-states in the following sense:

Hn(P ) = −
∑

ωn∈Ωn

( ∑
ωn�ϕn

P (ωn) log(P (ωn)) +
∑

ωn�¬ϕn

P (ωn) log(P (ωn))
)
.

Hence, if there exist two sets of n-states (here: [ϕn]n and [¬ϕn]n) such that every constraint applies to 
exactly one of these sets of n-states, then the maximum entropy function can be found by maximising 
entropy separately over these two sets. Hence, this shows that Pn

ϕX = Qn = X · Pn
ϕ + (1 −X) · Pn

¬ϕ.
By the assumption that P∞

ϕ , P∞
¬ϕ are well-defined, we get that P∞

ϕX := limn→∞ X ·Pn
ϕ + (1 −X) ·Pn

¬ϕ =
X ·P∞

ϕ +(1 −X) ·P∞
¬ϕ satisfies P1 and P2 on QFSL. By Gaifman’s Theorem [17], P∞

ϕX is (uniquely extendible 
to) a probability function on SL.

Furthermore, if P∞
ϕ (ϕ) = 1 and P∞

¬ϕ(¬ϕ) = 1, then it is obvious that P∞
ϕX (ϕ) = X and so P∞

ϕX ∈ E. �

Lemma 20. Under the assumption of Lemma 19, if maxentEϕ = {P †
ϕ} = {P∞

ϕ } and maxentE¬ϕ = {P †
¬ϕ} =

{P∞
¬ϕ}, then

maxentEϕX = {P †
ϕX} = {P∞

ϕX} = {X · P∞
ϕ + (1 −X) · P∞

¬ϕ} .

Proof. By the above, P∞
ϕX ∈ EϕX . Denote by Hn�S(P ) the n-entropy of P evaluated on all n-states in 

S ⊆ Ωn. So,

Hn�[ϕn]n(P ) := −
∑

ωn∈Ωn
ωn�ϕn

P (ωn) log(P (ωn)) .

By assumption P †
ϕ exists and is unique, it must hence be in Eϕ. Since maxentEϕ = {P †

ϕ}, and since 
P †
ϕ it has greater entropy than every other probability function R with R(ϕ) = 1, we have that X · P †

ϕ

will dominate any probability function Q with Q(ϕ) = X in entropy. In the same way (1 − X)P †
¬ϕ will 

dominate any probability function Q with Q(¬ϕ) = 1 − X in entropy. Then by Proposition 5 and the 
discussion immediately after that, X · P †

ϕ + (1 −X) · P †
¬ϕ will dominate every probability function in EϕX . 

By assumption, however, X · P †
ϕ + (1 −X) · P †

¬ϕ = X · P∞
ϕ + (1 −X) · P∞

¬ϕ = P∞
ϕX . �

It is worth noting two points here. First, an application of Lemma 20 requires that P∞ and P † are defined 
for both ϕ and ¬ϕ. (It is not sufficient that P∞

ϕ and P †
ϕ are well defined.) For example, if ϕ is a slow Π1
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sentence, then ¬ϕ ∈ Σ1 and we know that P∞ and P † are well-defined for both ϕ and ¬ϕ. Lemma 20 also 
applies non-trivially to consistent ϕ = ∀�xθ(�x) ∈ Π1 in which θ(�x) is a conjunction of literals (Remark 18).

Second, we note that nothing in the proof of Lemma 20 hinges on working with a single non-categorical 
premiss. Indeed, all that was needed for that result was that for any satisfiable sentence ϕ, the pair {ϕn, ¬ϕn}
give a partition of n-states for all n. The result can thus be generalised in a straightforward way to any set 
of premisses that satisfy this condition.

Definition 21. A non-empty set of sentences ϕ1, . . . , ϕk ∈ SL is called a partition on the large Ln, if and 
only if there exists a J ∈ N such that for all n ≥ J ,

• the (ϕi)n are satisfiable, (ϕi)n � ⊥ for all 1 ≤ i ≤ k,
• the (ϕi)n are mutually exclusive, � ((ϕi)n ∧ (ϕj)n) → ⊥ for i 
= j,
• the (ϕi)n exhaust the n-universe, �

∨k
i=1(ϕi)n ↔ �.

Notice that a set of sentences will trivially fail to satisfy this condition if at least one sentence does 
not have finite models of size n for all sufficiently large n, even if it does have an infinite model. Consider 
for example the sentence ϕ = ∀xzw∃y(U1xy ∧ [(U1xw ∧ U1wz) → U1xz] ∧ ¬U1xx) which only has infinite 
models. One may think of {ϕ, ¬ϕ} as partitioning the full language by partitioning the class of models of 
the language L. Since P (ϕn) = 0 = 1 − P (¬ϕn) holds for all n ∈ N and all probability functions P ∈ P , 
P (ϕn) = X for all X ∈ (0, 1) is unsatisfiable and hence En = ∅ for all n. We hence require partitions on 
finite sublanguages.

Vice versa, not every partition on the large Ln partitions the class of models of L. ψ1 := ϕ ∨ U2t1 and 
ψ2 := ¬U2t1 form a partition of all finite sublanguages but ψ1 ∧ ψ2 has infinite models characterised by 
ϕ ∧ ¬U2t1. So, {ψ1, ψ2} does not partition the class of models of L.

Theorem 22 (Entropy Maximisation and Jeffrey Updating). If χ = {ϕX1
1 , . . . , ϕXk

k } where ϕ1, . . . , ϕk is a 
partition on the large Ln and X1, . . . , Xk ≥ 0 such that 

∑k
i=1 Xi = 1, and if for all 1 ≤ i ≤ k such that 

Xi > 0 it holds that maxentEϕi
= {P †

ϕi
} = {P∞

ϕi
}, then

maxentE = {P †
χ} = {P∞

χ } = {
k∑

i=1
Xi>0

Xi · P∞
ϕi
} .

Proof. The proof follows immediately by applying the argument in the proof of Lemma 20 a finite number 
of times. �

4.2. Generalisation to probability intervals

We now show how to use the above results to prove that the entropy-limit conjecture holds for certain 
non-categorical premisses ϕX where X is a set of probabilities.

Proposition 23. Suppose X ⊆ [0, 1] is a compact interval, χ = {∀�xθ(�x)X} where ϕ = ∀�xθ(�x) ∈ Π1 and 
P=(ϕ) = 0. If the entropy limits exist for the categorical constraint χ1 := {∀�xθ(�x)1}, then

P∞
ϕX = P∞

ϕinf X = P †
ϕX = P †

ϕinf X .

Proof. First note that it follows from Lemma 19 that the entropy limits exist for the non-categorical 
constraint χx := {∀�xθ(�x)x} for all x ∈ [0, 1]. We use Pn

x to denote the unique probability function on Ln

with maximal n-entropy subject to the constraint χx = {ϕx}.
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It is easy to check that for all x ≥ ε > 0 there exists some M ∈ N such that for all n ≥ M , Hn(Pn
x ) <

Hn(Pn
x−ε). It follows that Pn

ϕX = Pn
ϕinf X . Hence, P∞

ϕX = P∞
ϕinf X .

Applying Theorem 15 we note that P †
ϕ1 = P∞

ϕ1 . In particular, P †
ϕ1 exists, is unique and it satisfies the 

constraint χ1. Applying Theorem 22 we obtain P †
ϕx = P∞

ϕx for all x ∈ X.
Using the proof technique from Lemma 20 we see that for all y ∈ X \ {inf X} there exists some M ∈ N

such that for all n ≥ M it holds that Hn(P †
ϕy ) < Hn(P †

ϕinf X ). Hence, P †
ϕinf X has greater entropy than every 

other probability function in E and hence P †
ϕX = P †

ϕinf X . �

Proposition 24. Suppose X ⊆ [0, 1] is a compact interval, χ = {∀�xθ(�x)X} where ϕ = ∀�xθ(�x) ∈ Π1, P=(ϕ) >
0 and λ := arg infx∈X |P=(ϕ) − x|. It holds that

P∞
ϕX = P∞

ϕλ = P †
ϕX = P †

ϕλ .

Proof. The proof is an easy adaptation of the proof of the previous proposition replacing inf X by λ.
It is easy to check that for all x ∈ X \ {λ} there exists some M ∈ N such that for all n ≥ M it holds 

that Hn(Pn
x ) < Hn(Pn

λ ). It follows that for all large enough k that Pn
ϕX and Pn

ϕλ are arbitrarily close on all 
k-states. Hence, P∞

ϕX = P∞
ϕλ .

Note first that by Theorem 12 the entropy limit exists and is equal to the maximum entropy function for 
the categorical constraint χ1, P †

ϕ1 = P∞
ϕ1 . In particular, P †

ϕ1 exists, is unique and it satisfies the constraint 
χ1. Applying Theorem 22 we obtain P †

ϕx = P∞
ϕx for all x ∈ X.

Using the proof technique from Lemma 20 we see that for all y ∈ X \ {λ} there exists some M ∈ N

such that for all n ≥ M , Hn(P †
ϕy ) < Hn(P †

ϕλ). Hence, P †
ϕλ has greater entropy than every other probability 

function in E and hence P †
ϕX = P †

ϕλ . �

Theorem 25. Suppose X ⊆ [0, 1] is a compact interval, χ = {∀�xθ(�x)X} where ϕ = ∀�xθ(�x) ∈ Π1.

• If λ := P=(ϕ) = 0 and the entropy limits exists for the categorical constraint χ1 := {∀�xθ(�x)1}, then

P∞
ϕX = P∞

ϕinf X = P †
ϕX = P †

ϕinf X .

• If P=(ϕ) > 0 and λ := arg infx∈X |P=(ϕ) − x|, then

P∞
ϕX =P∞

ϕλ = P †
ϕX = P †

ϕλ

=λ · P=(·|
∨

ωN∈ΩN
ωN�ϕ

ωN ) + (1 − λ) · P=(·|
∨

ωN∈ΩN
ωN∧¬ϕ is consistent

ωN ) ,

where N = Nϕ.

Proof. The only thing left to prove is the last equality which follows from Theorems 12, 15 and 22. �

5. Convergence in entropy

In this section we show that there are some rather general conditions under which the entropy-limit 
conjecture is true. We suppose only that E, E1, E2, . . . are convex sets of probability functions generated by 
some consistent set χ of constraints on probabilities of sentences of L and that the Pn df= arg maxP∈En

Hn(P )
exist for sufficiently large n. For example, if χ = {ϕX1

1 , . . . , ϕXk

k } and the X1, . . . , Xk are probabilities or 
closed intervals of probabilities, then the En are closed and this guarantees the existence of the Pn for 
non-empty En.
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The main condition required for the general result is that Pn converges to P∞ in entropy. Thus, we 
first introduce this kind of convergence and compare it to L1 convergence, which also plays a role in what 
follows:

Definition 26 (Convergence in Entropy). Suppose P and Qn, for n = 1, 2, . . ., are probability functions on 
L. The (Qn)n≥1 converge in entropy to P if |Hn(Qn) −Hn(P )| −→ 0 as n −→ ∞.5

We define L1 distance as follows,

‖ P −Q‖n df=
∑

ωn∈Ωn

|P (ωn) −Q(ωn)| = 2 max
ϕ∈SLn

(P (ϕ) −Q(ϕ)) . (6)

The latter equality follows as per [16, Equation 11.137].

Definition 27 (Convergence in L1). Suppose P and Qn, for n = 1, 2, . . ., are probability functions on L. The 
(Qn)n≥1 converge in L1 to P if ‖Qn − P‖n −→ 0 as n −→ ∞.

The entropy function Hn is not 1-1. Therefore, that the Qn converge to P in entropy does not imply 
that they converge in L1 to P , nor that, if they do additionally converge in L1 to P , then P is the unique 
function to which they converge in entropy.

Example 28. Suppose L is a language with a single predicate U which is unary. Define P by P (Ut1 ∧Ut2 ∧
· · · ∧Utn) = 1 for all n and R by R(¬Ut1 ∧¬Ut2 ∧ · · · ∧ ¬Utn) = 1 for all n. For k = 0, 1, 2, . . . let Q2k = P

and Q2k+1 = R. Since Hn(P ) = Hn(R) = 0 for all n, the Qn converge in entropy to both P and R but 
converge in L1 to neither function.

Example 29. Proceed as in the previous example, except let Qn = P for all n. Now the Qn converge in L1
to P , but converge in entropy to both P and R, among other functions.

However, it turns out that, under certain conditions, if the n-entropy maximisers Pn converge in entropy 
to P ∈ E then they converge in L1 to P . To show this we need two lemmas.

First, a Pythagorean theorem holds for what we call the n-divergence dn [16, Theorem 11.6.1]:

Definition 30 (n-divergence). The n-divergence of two probability functions P and Q is defined as the 
Kullback-Leibler divergence of P from Q on Ln:

dn(P,Q) df=
∑
ω∈Ωn

P (ω) log P (ω)
Q(ω) .

Lemma 31 (Pythagorean theorem). For any convex F ⊆ P , if P ∈ F and Q /∈ F , then

dn(P,Q) ≥ dn(P,Rn) + dn(Rn, Q) ,

where Rn = arg infS∈F dn(S, Q).

Corollary 32. For any convex F ⊆ P , if P ∈ F and Rn = arg supS∈F Hn(S), then

Hn(Rn) −Hn(P ) ≥ dn(P,Rn) .

5 This notion of convergence invokes a kind of diagonalisation: in the matrix of values (Hi(Qj) −Hi(P ))i,j , the focus is on whether 
there is convergence to zero along the diagonal, where i = j. A similar point can be made about the definition of convergence in 
L1, Definition 27.
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Proof. If the equivocator function P= /∈ F , then we can apply the Pythagorean theorem to Q = P= and 
simplify.

Otherwise, Rn = P=�Ln
and the inequality holds with equality:

dn(P, P=) =
∑
ω∈Ωn

P (ω) log P (ω)
1/2rn

=
∑
ω∈Ωn

P (ω) logP (ω) +
∑
ω∈Ωn

P (ω) log 2rn

= −Hn(P ) + rn log 2

= −Hn(P ) + Hn(P=) . �

The second lemma connects the L1 distance to n-divergence [see, e.g., 16, Lemma 11.6.1]:

Lemma 33 (Pinsker’s Inequality). dn(P, Q) ≥ 1
2 ‖P −Q‖2

n.

Apart from convergence in entropy, the other key condition invoked by our general entropy-limit theorem 
is regularity:

Definition 34 (Regularity). The set χ of constraints that generate E, E1, E2, . . . is regular if, for sufficiently 
large n, the Pn df= arg maxQ∈En

Hn(Q) dominate members of E in n-entropy, in the sense that Pn =
arg maxQ∈Fn

Hn(Q), where Fn
df= 〈Pn, E�Ln

〉, the convex hull of Pn and E�Ln

df= {P�Ln
: P ∈ E}.

Example 35. If θ = ∀�xθ(�x) ∈ Π1 and χ = {θ}, then E = {P ∈ P : P (∀�xθ(�x)) = 1} and En = {P ∈ Pn :
P ((∀�xθ(�x))n) = 1} for all n. If ∀�xθ(�x) ∈ Π1, then χ is regular. This is because En ⊇ En+1�Ln

⊇ · · · ⊇ E�Ln
, 

so Fn ⊆ En for all n.

Proposition 36. Suppose χ is regular. If the Pn converge in entropy to P ∈ E, then they converge in L1
to P .

Proof. By regularity, Pn = arg maxQ∈Fn
Hn(Q) for sufficiently large n and convex Fn. So by Corollary 32, 

for sufficiently large n,

Hn(Pn) −Hn(P ) ≥ dn(P, Pn)

≥ 1
2 ‖P − Pn‖2

n

by Pinsker’s inequality. Hence, that the Pn converge in entropy to P implies that ‖P − Pn‖2
n converges to 

zero, which in turn implies that the Pn converge in L1 to P . �

Note that the regularity condition can be dropped if P is the equivocator function P=:

Proposition 37. If the Pn converge in entropy to P=, then they converge in L1 to P=.

Proof. As we saw in the proof of Corollary 32,

dn(Pn, P=) = Hn(P=) −Hn(Pn) .

So,
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Hn(P=) −Hn(Pn) = dn(Pn, P=)

≥ 1
2 ‖P= − Pn‖2

n

by Pinsker’s inequality. Hence, that the Pn converge in entropy to P= implies that ‖P= − Pn‖2
n converges 

to zero, which in turn implies that the Pn converge in L1 to P=. �

Importantly for our purposes, convergence in entropy guarantees the existence of the pointwise entropy 
limit P∞ in these cases:

Proposition 38. Suppose χ is regular or P is the equivocator function. If the Pn converge in entropy to 
P ∈ E, then P∞ exists and P = P∞.

Proof. Applying Proposition 36 if χ is regular, or Proposition 37 if P is the equivocator, together with 
Equation (6), we see that if the Pn converge in entropy to P , then P (ψ) = limn→∞ Pn(ψ) for every 
quantifier-free sentence ψ. P is the unique such limit of the Pn because it is in E and so a probability 
function, and hence determined by its values on the quantifier-free sentences of L [17].

Now, P∞ is defined as the unique extension to L of pointwise limit of Pn on quantifier-free sentences, 
assuming that this pointwise limit exists and satisfies the axioms of probability on quantifier-free sentences 
of L. This latter assumption holds because, as we have seen, limn→∞ Pn(ψ) = P (ψ) for quantifier-free ψ, 
where P is a probability function. Since P∞ is the unique extension to L, it must agree with P on L as a 
whole. Therefore P∞ exists and P = P∞. �

We can now progress to the main result of this section:

Theorem 39 (Entropy-Limit Theorem under convergence in entropy). Suppose χ is regular or P is the 
equivocator function. If the Pn converge in entropy to P ∈ E, then P∞ exists and

maxentE = {P} = {P∞} .

Proof. The existence of P∞ and the fact that P = P∞ is an application of Proposition 38. So it remains 
to show that maxentE = {P∞}.

If P is the equivocator function, this fact follows straightforwardly. P = P∞ = P= ∈ E and for any other 
function Q in E, P and Q must differ on some n-states for large enough n. P= has greater n-entropy than 
Q for all such n; this holds for any other Q ∈ E, so P= is the unique member of maxentE.

We turn next to the case in which P is not the equivocator function—this is the case in which χ is regular. 
First we shall show that P∞ ∈ maxentE; later we shall see that there is no other member of maxentE.

First, then, assume for contradiction that P∞ /∈ maxentE. Then there is some Q ∈ E such that Q has 
greater entropy than P∞. I.e., for sufficiently large n, Hn(Pn) ≥ Hn(Q) > Hn(P∞). N.b., Q 
= P∞. Hence, 
for sufficiently large n,

Hn(Pn) −Hn(P∞) > Hn(Pn) −Hn(Q)

≥ dn(Q,Pn)

≥ 1
2 ‖Q− Pn‖2

n ,

where the latter two inequalities hold by Corollary 32 (given regularity) and Pinsker’s inequality. Hence, 
since the Pn converge in entropy to P∞, they converge pointwise to Q. By the uniqueness of pointwise 
limits, Q = P∞: a contradiction. Hence, P∞ ∈ maxentE, as required.
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Next we shall see that P∞ is the unique member of maxentE. Suppose for contradiction that there is 
some P † ∈ maxentE such that P † 
= P∞. Then P∞ cannot eventually dominate P † in n-entropy—i.e., 
there is some infinite set J ⊆ N such that for n ∈ J ,

Hn(P †) ≥ Hn(P∞) .

Let R df= λP † + (1 −λ)P∞ for some λ ∈ (0, 1). Now by the log-sum inequality [16, Theorem 2.7.1], for all 
n ∈ J large enough that P †(ωn) 
= P∞(ωn) for some ωn ∈ Ωn,

Hn(R) > λHn(P †) + (1 − λ)Hn(P∞)

≥ λHn(P∞) + (1 − λ)Hn(P∞)

= Hn(P∞) .

Hence,

Hn(Pn) −Hn(P∞) > Hn(Pn) −Hn(R)

≥ dn(R,Pn) ,

for large enough n ∈ J , by Corollary 32 and regularity.
Now by Pinsker’s inequality (Lemma 33) and the definition of R,

dn(R,Pn) ≥ 1
2 ‖R− Pn‖2

n

= 1
2
∥∥P∞ − Pn + λ(P † − P∞)

∥∥2
n

= 1
2

( ∑
ωn∈Ωn

∣∣P∞(ωn) − Pn(ωn) + λ(P †(ωn) − P∞(ωn))
∣∣)2

.

Let fn(ϕ) df= P∞(ϕ) − Pn(ϕ) + λ(P †(ϕ) − P∞(ϕ)) and ρn
df=
∨

fn(ωn)>0 ωn. Then,

∑
ωn∈Ωn

|fn(ωn)| =
∑

ωn:fn(ωn)>0

fn(ωn) −
∑

ωn:fn(ωn)≤0

fn(ωn)

=
∑

ωn:fn(ωn)>0

fn(ωn) −
∑

ωn:fn(ωn)≯0

fn(ωn)

= fn(ρn) − fn(¬ρn)

= 2fn(ρn)

after substituting P∞(¬ρn) = 1 − P∞(ρn) etc.
Let us consider the behaviour of

fn(ρn) = P∞(ρn) − Pn(ρn) + λ(P †(ρn) − P∞(ρn))

as n −→ ∞. Now, P∞(ρn) −Pn(ρn) −→ 0 as n −→ ∞, because Pn converges in L1 to P∞ (Proposition 36). 
However, λ(P †(ρn) − P∞(ρn)) 
−→ 0 as n −→ ∞, as we shall now see. P † 
= P∞ by assumption, so they 
must differ on some quantifier-free sentence ψ, a sentence of Lm, say. Suppose without loss of generality 
that P †(ψ) > P∞(ψ) (otherwise take ¬ψ instead) and let δ = P †(ψ) − P∞(ψ) > 0. Now for n ≥m,
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fn(ρn) =
∑

ωn:fn(ωn)>0

fn(ωn) ≥
∑

ωn|=ψ

fn(ωn) = fn(ψ) .

Since Pn converges in L1 to P∞ we can consider n > m large enough that (see equation (6)):

‖Pn − P∞‖n = 2 max
ϕ∈SLn

(Pn(ϕ) − P∞(ϕ)) < λδ .

In particular, since ψ is quantifier-free, Pn(ψ) − P∞(ψ) ≤ maxϕ∈SLn
(Pn(ϕ) − P∞(ϕ)) < λδ/2. For any 

such n,

fn(ρn) ≥ fn(ψ)

= P∞(ψ) − Pn(ψ) + λ(P †(ψ) − P∞(ψ))

> −λδ

2 + λδ

= λδ

2 .

Putting the above parts together, we have that for sufficiently large n ∈ J ,

Hn(Pn) −Hn(P∞) > dn(R,Pn) ≥ (2fn(ρn))2

2 >
λ2δ2

2 > 0 .

However, that these Hn(Pn) − Hn(P∞) are bounded away from zero contradicts the assumption that 
the Pn converge in entropy to P∞. Hence, P∞ is the unique member of maxentE, as required. �

One can use this result to test whether some hypothesised function P ∈ E is both the entropy limit P∞

and maximal entropy function P †, via the following procedure:

1. Determine Pn as a function of n.
2. Determine whether Pn converges in entropy to P .
3. Determine whether χ is regular or P is the equivocator function.
4. If these last two conditions hold, then P = P † = P∞.

With regard to step 2, a rapid form of convergence in L1 is sufficient (but not necessary) for convergence 
in entropy. Recall that rn is the number of atomic sentences in Ln:

Lemma 40. If rn ‖Qn − P‖n −→ 0 as n −→ ∞, then the Qn converge in entropy to P .

Proof. By [16, Theorem 17.3.3], for sufficiently large n we have that:

Hn(Qn) −Hn(P ) ≤ −‖Qn − P‖n log
‖Qn − P‖n

2rn
= rn ‖Qn − P‖n log 2 − ‖Qn − P‖n log ‖Qn − P‖n .

Both these latter terms tend to zero with n, by the fact that rn ‖Qn − P‖n tends to zero together with (in 
the case of the second term) the fact that x log x −→ 0 as x −→ 0. �

In the remainder of this section we provide a range of examples to illustrate the usage of the above 
algorithm.
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Example 41. Suppose χ = {∃xUx}, where L has a single unary predicate U . Letting ϕ be ∃xUx, ϕn is 
defined as Ut1 ∨ · · · ∨ Utn. We have that E = {P ∈ P : P (ϕ) = 1} and En = {P ∈ Pn : P (ϕn) = 1}. The 
n-entropy maximiser gives probability 0 to the n-state ¬Ut1∧ · · ·∧¬Utn and divides probability 1 amongst 
the 2n − 1 other n-states:

Pn(ωn) =
{

1
2n−1 : ωn |= ϕn

0 : ωn 
|= ϕn
.

We shall use Lemma 40 to show that the Pn converge in entropy to the equivocator function P=:

rn ‖Pn − P=‖n = n
∑

ωn∈Ωn

|Pn(ωn) − P=(ωn)|

= n

[
(2n − 1)

(
1

2n − 1 − 1
2n

)
+
(

1
2n − 0

)]

= n

[
1 − 2n − 1

2n + 1
2n

]

= 2n
2n −→ 0 as n −→ ∞ .

Note that P= ∈ E:

P=(∃xUx) = lim
n→∞

P=(
n∨

i=1
Uti) = lim

n→∞
(1 − P=(

n∧
i=1

¬Uti)) = 1 − lim
n→∞

1
2n = 1 .

Now χ is not regular. This is because E�n = Pn, so Fn = 〈Pn, Pn〉 and arg maxQ∈Fn
Hn(Q) is P= rather 

than Pn. However, because the Pn converge in entropy to the equivocator function, the Entropy-Limit 
Theorem (Theorem 39) nevertheless implies that maxentE = {P∞} = {P=}.

Example 42. Suppose χ = {∀xUxX}, where L has a single unary predicate U and X ∈ [0, 1]. Letting ϕ be 
∀xUx, ϕn is Ut1 ∧ . . . ∧ Utn. We have that E = {P ∈ P : P (ϕ) = X} and En = {P ∈ Pn : P (ϕn) = X}. 
Then the n-entropy maximiser gives probability X to the n-state ϕn and divides probability 1 −X amongst 
all other n-states:

Pn(ωn) =
{

X : ωn = ϕn
1−X
2n−1 : ωn |= ¬ϕn

.

Let us consider whether the Pn might converge in entropy to the following function:

P (ωn) =
{

X + xn : ωn = ϕn
1−X−xn

2n−1 : ωn |= ¬ϕn

where xn = 1−X
2n . Now,

|Pn(ωn) − P (ωn)| =
{

xn : ωn = ϕn
xn

2n−1 : ωn |= ¬ϕn

and,
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rn ‖Pn − P‖n = rn
∑

ωn∈Ωn

|Pn(ωn) − P (ωn)|

= 2rnxn

= 2(1 −X) n

2n
−→ 0 as n −→ ∞ .

Hence the Pn do indeed converge in entropy to P . Moreover, P ∈ P because 
∑

ωn∈Ωn
P (ωn) = 1 and for 

ωn = ϕn,

∑
ωn+1|=ωn

P (ωn+1) = X + 1 −X

2n+1 + 1
2n+1 − 1

(
1 −X − 1 −X

2n+1

)
= X + 1 −X

2n = P (ωn)

and for ωn 
= ϕn,

∑
ωn+1|=ωn

P (ωn+1) = 2 1
2n+1 − 1

(
1 −X − 1 −X

2n+1

)
= 1 −X

2n = P (ωn) .

Moreover, P ∈ E:

P (∀xUx) = lim
n→∞

n∧
i=1

P (Uti) = lim
n→∞

X + xn = X .

In addition, if X > 0 then χ is regular. To see this, observe that for any Q ∈ E, X = Q(ϕ) ≤ Q(ϕn) because 
ϕ |= ϕn. Therefore, when n is large enough that X > 1

2n we have that P=(ϕ) = 1
2n < X = Pn(ϕn) ≤

Q(ϕn) and so, since Pn spreads the remaining probability 1 − X evenly across the remaining n-states, 
Hn(Pn) ≥ Hn(Q). On the other hand, if X = 0 then P is the equivocator function. Either way, we can 
apply Theorem 39 to conclude that P = P∞ = P † in this example.

Example 43. Suppose χ = {∀x(Ux → Ut3)X}, where L is a unary language with a single unary predicate 
U and X ∈ [0, 1]. Let ϕ be ∀x(Ux → Ut3). Note that ϕ ≡ Ut3 ∨ ∀x¬Ux. Now,

[ϕn] = {±Ut1 ∧ ±Ut2 ∧ Ut3 ∧ ±Ut4 ∧ · · · ∧ ±Utn,¬Ut1 ∧ ¬Ut2 ∧ ¬Ut3 ∧ · · · ∧ ¬Utn}

and

|ϕn|n = 2n−1 + 1 .

The n-entropy maximiser will give these n-states the same probability:

Pn(ωn) =
{

X
2n−1+1 : ωn |= ϕn
1−X

2n−1−1 : ωn 
|= ϕn
.

Let us consider

P (ωn) =
{

X
2n−1 : ωn |= Ut3
1−X
2n−1 : ωn 
|= Ut3

and ask whether the Pn converge to P ∈ E in entropy:
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rn ‖Pn − P‖n = n
∑

ωn∈Ωn

|Pn(ωn) − P (ωn)|

= n

⎛
⎝∣∣∣∣ X

2n−1 + 1 − 1 −X

2n−1

∣∣∣∣ +
∑

ω|=Ut3

∣∣∣∣ X

2n−1 + 1 − X

2n−1

∣∣∣∣ +
∑

ω|=¬ϕn

∣∣∣∣ 1 −X

2n−1 − 1 − 1 −X

2n−1

∣∣∣∣
⎞
⎠

= n

2n−1 + 1

∣∣∣∣2X − 1 − 1 −X

2n−1

∣∣∣∣ + n2n−1
∣∣∣∣ −X

2n−1(2n−1 + 1)

∣∣∣∣ + n(2n−1 − 1)
∣∣∣∣ 1 −X

2n−1(2n−1 − 1)

∣∣∣∣
= n

2n−1 + 1

∣∣∣∣2X − 1 − 1 −X

2n−1

∣∣∣∣ + nX

2n−1 + 1 + n(1 −X)
2n−1

−→ 0 as n −→ ∞ ,

because each of the three terms tends to zero with n. χ is regular as long as X > 1/2, for otherwise P
has greater n-entropy than Pn for sufficiently large n. Hence, we can invoke Theorem 39 to conclude that 
P = P∞ = P † when X > 1/2.

In cases where the condition of Lemma 40 does not hold, the following lemma can come in useful:

Lemma 44. Probability functions (Qn)n≥1 converge in entropy to P if and only if

∑
ω∈Ωn:P (ω)>0

(P (ω) −Qn(ω))

⎡
⎣1 + logP (ω) −

∞∑
j=1

1
j(j + 1)

(
1 − Qn(ω)

P (ω)

)j
⎤
⎦

−
∑

ω∈Ωn:P (ω)=0

Qn(ω) logQn(ω)

−→ 0 as n −→ ∞ .

Note that if Qn(ω) is zero whenever P (ω) is zero then the second term, − 
∑

ω∈Ωn:P (ω)=0 Qn(ω) logQn(ω), 
vanishes.

Proof. Let x = xω = Qn(ω) and a = aω = P (ω) > 0 and consider the Taylor series expansion of x log x
at a:

x log x = a log a + (1 + log a)(x− a) + (x− a)2

2!a − (x− a)3

3!a2 + 2(x− a)4

4!a3 − · · ·

= a log a + (1 + log a)(x− a) +
∞∑
j=2

(−1)j(j − 2)!(x− a)j

j!aj−1

= a log a + (1 + log a)(x− a) +
∞∑
j=2

(a− x)j

j(j − 1)aj−1

= a log a + (1 + log a)(x− a) + (a− x)
∞∑
j=1

(a− x)j

j(j + 1)aj

= a log a + (x− a)

⎡
⎣1 + log a−

∞∑
j=1

1
j(j + 1)

(
1 − x

a

)j

⎤
⎦ .

So,
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Hn(Qn) −Hn(P ) =
∑
ω∈Ωn

−xω log xω + aω log aω

=
∑

ω∈Ωn:aω>0
(aω − xω)

⎡
⎣1 + log aω −

∞∑
j=1

1
j(j + 1)

(
1 − xω

aω

)j
⎤
⎦

−
∑

ω∈Ωn:aω=0
xω log xω .

The left-hand side converges to zero just when the right-hand side converges to zero. �

Example 45. Let us return to the case of χ = {∀x(Ux → Ut3)X}. Recall from Example 43 that:

Pn(ω) =
{

X
2n−1+1 : ω |= ϕn
1−X

2n−1−1 : ω 
|= ϕn

and

P (ω) =
{

X
2n−1 : ω |= Ut3
1−X
2n−1 : ω 
|= Ut3

We shall apply Lemma 44 to see that the Pn converge in entropy to P . Let Δn
df= Hn(Pn) − Hn(P ). If 

X = 1 then Pn and P are not zero on the same n-states and the second term in Lemma 44 does not vanish. 
Suppose first, then, that X < 1:

Δn =
∑
ω∈Ωn

(P (ω) − Pn(ω))

⎡
⎣1 + logP (ω) −

∞∑
j=1

1
j(j + 1)

(
1 − Pn(ω)

P (ω)

)j
⎤
⎦

=
∑

ω|=Ut3

(
X

2n−1 − X

2n−1 + 1

)⎡
⎣1 + log X

2n−1 −
∞∑
j=1

1
j(j + 1)

(
1 − X

2n−1 + 1
2n−1

X

)j
⎤
⎦

+
∑

ω|=
∧n

i=1 ¬Uti

(
1 −X

2n−1 − X

2n−1 + 1

)⎡
⎣1 + log 1 −X

2n−1 −
∞∑
j=1

1
j(j + 1)

(
1 − X

2n−1 + 1
2n−1

1 −X

)j
⎤
⎦

+
∑

ω 
|=ϕn

(
1 −X

2n−1 − 1 −X

2n−1 − 1

)⎡
⎣1 + log 1 −X

2n−1 −
∞∑
j=1

1
j(j + 1)

(
1 − 1 −X

2n−1 − 1
2n−1

1 −X

)j
⎤
⎦

=2n−1
(

X

2n−1(2n−1 + 1)

)(
1 + log X

2n−1

)
− 2n−1

∞∑
j=2

X

2n−1(2n−1 + 1)jj(j − 1)

+
(

1 − 2X + 1−X
2n−1

2n−1 + 1

)(
1 + log 1 −X

2n−1

)
−

∞∑
j=2

(
1−2c
1−X + 1

2n−1

)j

(1 −X)

2n−1
(
1 + 1

2n−1

)j
j(j − 1)

+ (2n−1 − 1)
(

X − 1
2n−1(2n−1 − 1)

)(
1 + log 1 −X

2n−1

)
− (2n−1 − 1)

∞∑
j=2

(−1)j(1 −X)
2n−1(2n−1 − 1)jj(j − 1)

=X(1 + logX − (n− 1) log 2)
2n−1 + 1 −

∞∑ X

(2n−1 + 1)jj(j − 1)

j=2
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+
(1 + log(1 −X) − (n− 1) log 2)

(
1 − 2X + 1−X

2n−1

)
2n−1 + 1 −

∞∑
j=2

(
1−2X
1−X + 1

2n−1

)j

(1 −X)

2n−1
(
1 + 1

2n−1

)j
j(j − 1)

+ (X − 1)(1 + log(1 −X) − (n− 1) log 2)
2n−1 −

∞∑
j=2

(−1)j(1 −X)
2n−1(2n−1 − 1)j−1j(j − 1)

−→ 0 as n −→ ∞,

because each of the component terms individually tend to zero with n. Hence we do have convergence in 
entropy for X < 1. If X = 1, the third line in the above sum disappears and we have to rewrite the second 
line, which corresponds to the n-states 

∧n
i=1 ¬Uti on which Pn is positive but P is zero:

Δn = 1 − (n− 1) log 2
2n−1 + 1 −

∞∑
j=2

1
(2n−1 + 1)jj(j − 1) + 1

2n−1 + 1 log 1
2n−1 + 1 .

The first line of the sum tends to zero as before; the second line is approximately −(n−1) log 2
2n−1 which also 

tends to zero. Hence, we also have convergence in entropy when X = 1. Recall that χ is regular as long as 
X > 1/2. Hence, we can again invoke Theorem 39 to conclude that P coincides with the maximal entropy 
function P † when X > 1/2.

Finally, here is an example involving a Π2 constraint, which shows that the entropy-limit conjecture holds 
in cases other than those covered by previous sections of the paper.

Example 46. χ = {∀x∃yUxy}. Let ϕ be ∀x∃yUxy. Here rn = n2, ϕn =
∧n

i=1
∨n

j=1 Utitj , |ϕn|n = (2n − 1)n
and for all ω ∈ Ωn

Pn(ω) =
{

1
|ϕn|n : ω |= ϕn

0 : ω 
|= ϕn

.

Now Pn converges in entropy to the equivocator P=:

Hn(P=) −Hn(Pn) = −
∑
ω∈Ωn

1
2n2 log 1

2n2 +
∑

ω|=ϕn

1
(2n − 1)n log 1

(2n − 1)n

= 2n
2 1
2n2 log 2n

2 − (2n − 1)n 1
(2n − 1)n log(2n − 1)n

= −n log 2n − 1
2n

= − log
(

1 − 1
2n

)n

.

So

lim
n→∞

Hn(P=) −Hn(Pn) = lim
n→∞

− log
(

1 − 1
2n

)n

= − log lim
n→∞

(
1 − 1

2n

)n

= − log 1 = 0 .

To verify the penultimate identity above, consider that:

lim
(

1 − 1
n

)2n

= lim
(

1 − 1
)n

= 1
,

n→∞ 2 n→∞ n e
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so

lim
n→∞

(
1 − 1

2n

)n

= lim
n→∞

[(
1 − 1

2n

)2n]n/2n

=
[

lim
n→∞

(
1 − 1

2n

)2n]limn→∞ n/2n

=
[
1
e

]0

= 1.

This follows because:

log lim
n→∞

[(
1 − 1

2n

)2n]n/2n

= lim
n→∞

log
[(

1 − 1
2n

)2n]n/2n

= lim
n→∞

n

2n log
(

1 − 1
2n

)2n

=
(

lim
n→∞

n

2n
)(

lim
n→∞

log
(

1 − 1
2n

)2n)

=
(

lim
n→∞

n

2n
)(

log lim
n→∞

(
1 − 1

2n

)2n)

= 0 × log 1
e

= 0,

so

lim
n→∞

[(
1 − 1

2n

)2n]n/2n

= e0 = 1.

Moreover, the equivocator is in E:

P=(∀x∃yUxy) = lim
n→∞

P=(
n∧

i=1
∃yUtiy)

≥ lim
n→∞

(1 −
n∑

i=1
P=(¬∃yUtiy)

= lim
n→∞

(1 −
n∑

i=1
P=(∀y¬Utiy)

= lim
n→∞

(1 −
n∑

i=1
0) = 1 .

Theorem 39 then implies that maxentE = {P=} = {P∞}.

6. Conclusions

We have shown that the entropy-limit conjecture holds in the following scenarios:

Categorical Π1. χ = {∀�xθ(�x)} and ∀�xθ(�x) ∈ Π1 (Theorem 12 and Theorem 15).

Non-categorical partition. χ = {ϕX1
1 , . . . , ϕXk

k } where ϕ1, . . . , ϕk is a partition on the large Ln and 
X1, . . . , Xk ≥ 0 such that 

∑k
i=1 Xi = 1, and for all 1 ≤ i ≤ k such that Xi > 0 it holds that 

maxentEϕi
= {P †

ϕi
} = {P∞

ϕi
} (Theorem 22).
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Convergence in Entropy. The Pn converge in entropy to P ∈ E and either χ is regular or P is the equivo-
cator function (Theorem 39).

Taking into account previous work (see Section 2), the entropy-limit conjecture has now been verified in 
quite a broad range of different scenarios. Future work might proceed in one of two directions. The first is 
to further extend the range of scenarios in which the conjecture is tested—e.g., to categorical constraints of 
greater quantifier complexity or to a broader range of non-categorical constraints. The second is to consider 
inference processes other than the maximum entropy principle, which might be relevant to questions other 
than the search for a canonical inductive logic or a canonical characterisation of normal models. There 
are several examples of such inference processes that have been proposed and studied in the literature, for 
example Centre of Mass, Minimum Distance and the spectrum of inference processes based on generalised 
Rényi entropies [45]. These inference processes differ in the structural properties that they impose on the 
probability function that they pick for inference. There are, however, several such properties that are in 
common between them that allow for a generalisation of some of our results—see [38] for a detailed analysis 
of these structural properties for different inference processes. Of particular interest is a symmetry property 
called the Renaming Principle.

The Renaming Principle (RP) is a symmetry axiom that ensures that the choice of the probability 
function is invariant under a uniform renaming of the set of state descriptions of finite sublanguages.

An inference process ι, defined on the finite languages Ln, satisfies Renaming Principle if for two sets of 
linear constraints χ and χ′ of the form

χ ={
rn∑
j=1

ajiP (ωj) = bi | i = 1, . . .m}

χ′ ={
rn∑
j=1

ajiP (ω′
j) = bi | i = 1, . . .m} ,

where the ω′
1, . . . , ω

′
rn are a permutation of the n-states ω1, . . . , ωrn of Ln, it holds that:

ιχ(ωj) = ιχ′(ω′
j).

What is special about RP in our context is that many of the results we have provided (as well as those 
given in [40–42]) hold for any inference process that satisfies RP. This is a rather large class of inference 
processes that includes not only the Maximum Entropy but also the examples given above (Center of Mass, 
Minimum Distance and those based on generalised Rényi entropies). For a detailed discussion on this point 
see [44].

We give another symmetry result that follows from RP in Appendix A.2. An immediate question, which 
we hope to study further in future work, is whether or not the conjecture and the results thereof can be 
generalised if we take an approach analogous to the maximal-entropy approach for defining these other 
inference processes on first order languages.

Another promising avenue for further research is the introduction of functions to the underlying language, 
as recently studied by Howarth and Paris [23].
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Appendix A. Appendices

A.1. Defining the entropy limit

As pointed out in the Section 2 there are two ways to define the entropy-limit approach on first order 
languages. One, the Barnett-Paris definition, is to define the entropy-limit function as the limit of local 
entropy maximisers directly on all sentences of L. That is to take

P∞(ψ) = lim
r→∞

P r(ψr)

if the limit exists for all ψ ∈ SL, and to take P∞ as undefined otherwise. The second approach, the Rad-
Paris definition, is to define P∞ on quantifier free sentences as the limit of local entropy maximisers and 
then take its unique extension (by Gaifman’s Theorem) to the whole of SL.

If the pointwise limit given by the first approach exists and is a probability function, then it agrees with 
the one obtained from the second approach. To see this let the probability function W be given by the 
pointwise limit and let P∞ be the one obtained from the Rad-Paris definition. Then for all n and n-states 
ωn

W (ωn) = lim
r→∞

P r((ωn)r) = lim
r→∞

P r(ωn) = P∞(ωn) .

Thus, W agrees with P∞ on all n-states and so on all quantifier free sentences and hence, by the uniqueness 
criteria in Gaifman’s Theorem they agree on all SL.

The main issue with the Barnett-Paris approach is that the pointwise limit on the whole of SL might 
exist but not be a probability function. This is obviously circumvented by the second approach: defining P∞

on quantifier free sentences as the above limit ensures that axioms P1 and P2 are satisfied, and Gaifman’s 
Theorem guarantees a unique extension of P∞ to be a probability function over all SL. To see how the first 
approach can fail in this respect, consider the following example. Let L be language with equality and a single 
binary relation U , and consider the following set of sentences: ϕ1 = ∀x¬Uxx, ϕ2 = ∀x, y, z((Uxy ∧Uyz) →
Uxz), ϕ3 = ∀x, y(¬(x = y) → (Uxy ∨ Uyx)) and ϕ4 = ∀x∃yUxy. Note that ϕ1, ϕ2 and ϕ3 are the axioms 
for a linear strict order and adding ϕ4 ensures that there are no end points. As noted above, these sentences 
together have no finite model. Let

ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3.

First consider P∞ as defined by the Rad-Paris definition. For each n and n-state ωn

P∞
ϕ (ωn) = lim

r→∞
P r
ϕ(ωn) = lim

r→∞

∑
ωr�ωn

P r
ϕ(ωr) .

As we have observed already, P r assigns the full probability mass equally among those r-states that are 
consistent with ϕ, i.e., those r-states that characterise a strict linear order over t1, . . . , tr. There are r! many 
such r-states. If ωn is inconsistent with ϕ, then all its r-state extensions are inconsistent with it and we have 
P r
ϕ(ωn) = 0 for all r > n. If, on the other hand, ωn does characterise a strict linear order over t1, . . . , tn, 
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then it can be extended to a strict linear order over t1, . . . , tr in Πr−n
i=1 (n + i) = r!

n! many ways each receiving 
the same probability of 1/r! under P r

ϕ, thus

P∞
ϕ (ωn) = lim

r→∞

∑
ωr�ωn

P r
ϕ(ωr) =

{
(r!/n!)

r! = 1/n! if ωn is consistent with ϕ

0 otherwise .

Then P∞
ϕ (ϕ4) = 1. To see this first notice that by P3,

P∞
ϕ (ϕ4) = lim

m→∞
P∞
ϕ (

m∧
i=1

∃yUtiy) (A.1)

Second notice that by our result for the Σ1 sentences,

P∞
ϕ (∃yUtiy) = lim

n→∞
P∞
ϕ (

n∨
k=1

Utitk) = lim
n→∞

lim
r→∞

P r
ϕ(

n∨
k=1

Utitk).

Let n > i. Then since 
∨n

k=1 Utitk ∈ SLn there are n-states ω1, . . . , ωs such that �
∨n

k=1 Utitk ↔
∨s

i=1 ωi. 
Thus

P∞
ϕ (∃yUtiy) = lim

n→∞
lim
r→∞

P r
ϕ(

n∨
k=1

Utitk) = lim
n→∞

lim
r→∞

s∑
i=1

P r
ϕ(ωi) .

The local entropy maximiser P r
ϕ assigns probability zero to those n-states that do not correspond to a 

strict linear ordering of t1, . . . , tn and assigns probability of 1/n! to each of the rest. Of these, only one does 
not appear among {ω1, . . . , ωs}, namely the one which puts ti as the final element in the ranking. Hence,

P∞
ϕ (∃yUtiy) = lim

n→∞
lim
r→∞

s∑
i=1

P r
ϕ(ωi) = lim

n→∞
lim
r→∞

n! − 1
n! = 1 .

Then P∞
ϕ assigns probability 1 to each conjunct in (A.1) and hence will give probability 1 to the whole 

conjunction, P∞
ϕ (

∧m
i=1 ∃yUtiy) = 1, and we have

P∞
ϕ (ϕ4) = lim

m→∞
P∞
ϕ (

m∧
i=1

∃yUtiy) = lim
m→∞

1 = 1 .

Now for all ψ ∈ SL let W (ψ) = limr→∞ P r
ϕ(ψr) as given by the Barnett-Paris definition and assume the 

limit is well defined for all ψ and that W is a probability function on SL. Then by the discussion above W
agrees with P∞

ϕ on all SL but then

1 = P∞
ϕ (ϕ4) = W (ϕ4) = lim

r→∞
P r
ϕ((ϕ4)r) = lim

r→∞
0 = 0,

a contradiction. Notice that the penultimate equality follows from the fact that ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 has no 
finite models. Thus, if W is well defined on all SL, it cannot be a probability function.

We have shown two things: (i) The Barnett-Paris approach might fail to produce a probability function 
(violating P3); (ii) The Rad-Paris approach does produce a probability function in all cases in which the 
Barnett-Paris entropy-limit is well-defined on QFSL. Note finally that the Rad-Paris entropy-limit function 
may fail to satisfy the constraints χ. The maximal entropy function, if unique, always satisfies the constraints 
since it is by definition a member of E, the set of probability functions satisfying χ.
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A.2. Symmetries

We show here that symmetries are deeply engrained in the entropy-limit approach.

Definition 47 (Symmetrical Treatment, adapted from [48], p. 160). For ϕ1, . . . , ϕk ∈ SL and Xi ∈ [0, 1] for 
all 1 ≤ i ≤ k, we say that for n ≥ N two n-states ωn, ω′

n ∈ Ωn are treated symmetrically by the premisses
ϕX1

1 , . . . , ϕXk

k , if and only if for all m ≥ n there exists a bijection fm : {ωm ∈ Ωm : ωm � ωn} → {ω′
m ∈ Ωm :

ω′
m � ω′

n} such that for all 1 ≤ i ≤ k it holds that ωm ∈ [(ϕi)m]m ←→ fm(ωm) ∈ [(ϕi)m]m.6

Proposition 48. If two n-states ωn, ω′
n ∈ Ω are treated symmetrically by the premisses and if P∞ exists, 

then P∞(ωn) = P∞(ω′
n).

Proof. Suppose not and let ωn, ω′
n ∈ Ωn be treated symmetrically by the premisses such that P∞(ωn) 
=

P∞(ω′
n). We now derive a contradiction.

Since P∞ is a limit of probability functions Pn which, eventually, all assign a definite probability to 
ωn and ω′

n, there has to exist some m ≥ n such that, say, Pm(ωn) > Pm(ω′
n) and so 

∑
ωm�ωn

Pm(ωm) >∑
ω′

m�ω′
n
Pm(ω′

m).
Let us now define a probability function Qm on SLm which agrees with Pm on all m-states which are 

neither an extension of ωn nor of ω′
n. For those extensions we let

Qm(ωm) := Pm(fm(ωm))

Qm(ω′
m) := Pm(f−1

m (ω′
m)) .

Note that Qm disagrees with Pm on some m-states.
We now show that Qm satisfies the constraints reinterpreted on Lm by showing that Qm((ϕi)m) =

Pm((ϕi)m). Consider an arbitrary 1 ≤ i ≤ k and observe that

Qm((ϕi)m) =
∑

νm∈[(ϕi)m]m
νm�¬(ωn∨ω′

n)

Pm(νm))

+
∑

νm∈[(ϕi)m]m
νm�ωn

Pm(fm(νm)) +
∑

νm∈[(ϕi)m]m
νm�ω′

n

Pm(f−1
m (νm))

= Pm((ϕi)m) .

So, Qm and Pm both satisfy the linear constraints on Lm. Since the constraints are all linear, the set of 
probability functions satisfying the constraints is convex and hence 0.5(Qm + Pm) satisfies the constraints 
on Lm and is different from Qm and Pm. Applying Proposition 5 we note that 0.5(Qm + Pm) has strictly 
greater m-entropy than Pm which is a contradiction to Pm being the unique m-entropy maximiser satisfying 
the constraints on Lm. �

Hence, all states which are treated symmetrically by the premisses have the same probability under P∞, 
if P∞ exists.

6 It is worth noting that the notion of symmetrical treatment by the evidence used here is an strengthening of the one introduced 
by Williamson in [48]. The notion as introduced by Williamson requires the existence of a bijection f from the extensions of ωn

to extensions of ω′
n but the one used here requires a (possibly different) bijection fm between these extensions at every Lm for 

m > n.
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