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Abstract

Purpose

To assess a new optical coherence tomography angiography (OCTA) technology and its

contribution to retinal vascularization and choriocapillaris (CC) exploration.

Methods

A new module, named “Beam expander” (BE), which increases the lateral resolution of

OCTA, was used in combination with a prototype software in the PLEX® Elite 9000 Swept-

Source OCT instrument (ZEISS, Dublin, CA). This prospective study involved 22 healthy

subjects imaged with and without BE. Qualitative analysis of superficial capillary plexus

(SCP), deep capillary complex (DCC) retinal and CC angiograms were performed. Perfu-

sion density (PD), vessel density (VD), and foveal avascular zone (FAZ) measurements

were also compared.

Results

Qualitative analysis of single SCP and DCC retinal angiograms acquired with BE showed

significantly better vessel sharpness (respectively, p = 0.0002, and p<0.0001), and greater

peripheral image quality (p = 0.028 and p = 0.007) compared to standard OCTA images.

Mean VD of whole retina single scans was significantly higher for BE angiograms compared

to classic angiograms (28.16 ±1.29 mm-1 and 23.36 ±0.92 mm-1, respectively, p<0.0001).

Repeatability of VD, PD and FAZ raw size were found to be similar between the two meth-

ods (intraclass correlation coefficient: 0.671, 0.604 and 0.994 with BE versus 0.764, 0.638
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and 0.990 without BE). CC image quality was found to be significantly superior with BE, and

flow deficits were more visible in all BE scans compared to standard scans.

Conclusions

An increase in lateral resolution of the OCT beam resulted in higher quality of retinal and

choriocapillaris OCTA images in healthy subjects. These results provide significant insights

into the future OCTA imaging enhancements.

Introduction

Optical coherence tomography angiography (OCTA) allows detecting non-invasively the reti-

nal blood flow and obtaining its 3D representation, by analyzing differences within a repeat-

edly scanned transverse cross-sectional area of tissue [1]. Two of the current methods used for

motion detection are amplitude decorrelation and phase variance. Amplitude decorrelation

detects the difference in amplitude between the OCT B-scans while phase variance compares

the changes in emitted light wave properties when it intercepts moving objects [1–3]. Both

methods are based on the concept that a non-mobile tissue will remain identical while moving

erythrocytes will cause changes in consecutive OCT scans. Both spectral-domain OCT

(SD-OCT; wavelengths near 840 nm) and swept-source OCT (SS-OCT; wavelengths near

1,050 nm) use the same principles. The method used in PlexElite device for calculating the

OCTA volume is OMAG [4], which uses eigen decomposition of a matrix composed of

repeated complex OCT B-scans to isolate the varying components, assumed to be due to mov-

ing blood cells, from the signal from static tissue. This phase sensitive method is sensitive to

movements that may not be detectable with phase insensitive OCTA algorithms.

The clinical significance of OCTA continues to mature as the use of the technology grows.

The management of retinal diseases such as diabetic retinopathy or age-related macular

degeneration is facilitated by the use of OCTA [5, 6]. But there are some limitations, including

the fact that the size of the blood vessels on OCTA is overestimated compared to histology,

due to a widening of the apparent diameter of retinal vessels. This effect is evident when com-

paring OCTA and adaptive optics scanning light ophthalmoscope fluorescein angiography

scans [7]. Image averaging, that has been introduced more recently, enhances image quality by

improving the signal-to-noise ratio [8, 9], resulting in an enhanced visualization of the retina

and choriocapillaris in the OCTA scans.

Engineers continue to develop solutions to improve OCTA scan quality and facilitate the

diagnostic process: the “Beam Expander” (BE) module was developed to be installed on the

PlexElite machine. It consists of a pair of lenses that magnify the beam size at the pupil plane,

hence the name of “Beam expander”, while increasing the lateral optical resolution of the

beam at the retina and the choroid.

The aim of this study was to assess the qualitative and quantitative effects of an increase in

lateral resolution of the OCT beam on the retinal and choriocapillaris en face images from

both single and average OCTA scans in a cohort of healthy subjects.

Material and methods

The study was conducted in compliance with the tenets of the Declaration of Helsinki. The col-

lection of all study-related data was approved by the Institutional Review Board (CEERB d’Ile

de France, Paris, France). Subjects provided their written informed consent.
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This prospective study was conducted in Lariboisière Hospital, Paris, France, between July

1, 2019 and January 30, 2020. Twenty-two healthy volunteers without ocular disease and with

normal (i.e., 20/20) best-corrected visual acuity were included. Ocular fundus examination

was normal in all eyes, and their refraction ranged between −4 and +2 diopters. All eyes were

imaged with SS-OCTA using the PLEX1 Elite 9000 Swept-Source OCTA device (Carl Zeiss

Meditec Inc., Dublin, CA, USA). Scans were analyzed using a modified 2.1 prototype software

version of the instrument.

For each subject, the right eye was included in the study.

Optical coherence tomography angiography (OCTA) device and beam

expander module

Study eyes were imaged using the SS-OCTA PlexElite 9000 device that uses a swept-source,

tunable laser operating at a center wavelength of 1,060 nm and at the dual-speed of 100,000 A-

scans per second with an A-scan depth of 3 mm or 6 mm in tissue, an axial optical resolution

of about 6.3 μm and a transverse resolution of about 25 μm at the retina.

A prototype software was used on the OCT instrument in combination with the BE module

in the OCT path: it included required changes to handle the module and control new function-

alities offered by it. Without the BE module, the beam at the pupil plane has a 0.86 mm diame-

ter, which translates to a beam diameter of about 25 μm at the retina. In order to verify our

model of the system, the beam was measured at the pupil plane using a Charge-Coupled

Device. Agreement within about 1% was obtained between the measured beam diameter and

that from the model. The measured profile was used to determine the beam diameter, and this

was used via Fourier transform to estimate the spot size at the retina, assuming a diffraction

limited optical system. This result was found to be in close agreement with the Zemax optical

model. The BE module, consisting of a matched negative and positive lens in the configuration

of a Galilean telescope with magnification 2.2x, is placed in the optical system in advance of

the scanning galvanometer, which limits the beam size, acting as an aperture in the system.

The introduction of the BE module results in an increased beam size at the ocular pupil plane.

The BE module magnifies the beam by a 2.2 factor resulting in a beam diameter of 1.9 mm at

the pupil plane. This beam size, in combination with the effects of the effective aperture at the

galvanometers, produces a beam diameter estimated to be about 14 μm at the retinal plane. As

a consequence, with the beam expander in place, the depth of focus at the retina is reduced.

The Rayleigh range of the OCT beam, which corresponds to the tolerance on the position of

the beam waist at the retina, is about 105 μm in the system with the BE in place. This may be

compared to about 510 μm for the system without the BE.

For this study, each eye was therefore imaged with 3×3-mm (standard scan) and

2.25x2.25-mm (BE scan) OCTA scans. Acquisitions for both the standard and BE scan were

repeated three times per eye for the purpose of analyzing image repeatibility. Of note, data

analysis (qualitative and quantitative) was performed on single scans, as regularly done in clin-

ical practice. Both scans consisted of 300 B-scans of 300 A-scans. All scans were captured

using the FastTrack eye motion correction software (Carl Zeiss Meditec, Inc, USA). The scan

pattern for the configuration with the BE consists of 300x300 samples over a 2.25x2.25 mm

field of view i.e. 7.5 μm sampling resolution. The scan pattern for the configuration without

the beam expander consists of 300x300 samples over a 3 mm x 3mm field of view or a 10 μm

sampling resolution. The quality of all OCTA scans was verified in the quality check screen

after completion of the scan. Scans were not included in this analysis if a signal strength lower

than 7, significant motion artifacts or evidence of defocus or blur were present on more than

10% of the image.
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Exported OCTA volumes were uploaded to the ARI Network platform (https://

arinetworkhub.com), a cloud-based collaborative and processing solution provided by Zeiss

and available to clinical and research institutions who are part of the A R I network. The three

repeated standard and BE scans were processed off-line on Matlab (The MathWorks, Inc.,

Natick, Massachusetts, USA) using an algorithm (created by Carl Zeiss Meditec) that registers

the cube scans relative to each other and then averages them. The layer segmentation algo-

rithm is a proprietary algorithm that outlines the location of the retinal layers within the OCT

data. This algorithm is provided by the device manufacturer and part of the review software

available in the device. The algorithm selects a reference retinal slab and calculates the trans-

formation vectors to correctly register the slabs from the other repeated scans relative to the

reference slab. The transformation vectors are applied along all A-scan vectors to produce reg-

istered angio cubes. The registered cubes are then averaged.

Qualitative analysis of OCTA images

The BE and standard OCTA scans were aligned using ImageJ software (National Institutes of

Health, Bethesda, MD): the large vessels in the superficial capillary plexus (SCP) scans were

used as a reference for the alignment of all the corresponding scans (i.e. the deep capillary

complex [DCC], and choriocapillaris scans). The standard scans were cropped to obtain the

same size as that of the BE scans, so that they were undistinguishable for grading purposes of

the qualitative criteria.

Eight quality criteria were assessed for the standard and BE scans (in both single and aver-

age images), for the analysis of the SCP and DCC scans (Fig 1). Comparisons were made

between single standard versus BE scans, and between average standard versus BE scans.

The eight SCP and DCC image quality criteria were: 1) vessel sharpness (i.e., the presence

of a clear distinction between the flow and no-flow areas detected by the machine within the

whole scan); 2) foveal avascular zone (FAZ) visibility (i.e., the ability to clearly see and follow

the course of capillaries surrounding the FAZ); 3) artery-vein distinction (i.e., the visibility of

larger avascular areas around pre-capillary arterioles compared to post-capillary venules

within the whole scan); 4) vortex visibility (i.e., the ability to identify capillaries with a specific

vortex pattern, as previously described [5]); 5) comparison of the scan quality in the periphery

versus center (i.e., the uniformity of image quality, including vessel sharpness); 6) presence of

segmentation errors (i.e., the presence of any segmentation error<10% of the total scan area;

in presence of segmentation errors, a grade 0 was assigned); 7) background noise (i.e., the pres-

ence of a false flow signal in no-flow areas, particularly visible within the FAZ); 8) presence of

motion artifacts (i.e., the presence of any misalignment visible as a discontinuity in the vessel

course <10% of the total scan area) (Fig 1).

Criteria 1, 5, 6, 7 and 8 were assessed on both the SCP and DCC slabs. Criterion 2 was

assessed on the full-retina slab. Criterion 3 was assessed on the SCP slab. Criterion 4 was

assessed on the DCC slab.

The grading process was set up by three OCT masked experts (SB, CL, MN) and reference

images were used for comparisons for the entire grading process. Two experts graded the retinal

criteria (SB, CL) and two experts graded the choriocapillaris criteria (CL, MN). Data from quali-

tative analysis obtained from the two graders were averaged to perform statistical analysis.

All criteria except the vortex visibility were graded from 0 to 2 (0: poor; 1: medium; 2:

good).

Vortex visibility was compared between the 2 acquisition methods and was graded 1, 0 or

-1 (-1 corresponding to a better quality for the BE image; 0 corresponding to no difference,

and 1 corresponding to better quality in the standard scan).
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For the choriocapillaris analysis, single scans were compared. The high-density characteris-

tics of the choriocapillaris in comparison with other slab makes the choriocapillaris slab more

susceptible to registration error and more challenging to obtain good quality averaged image.

Two quality criteria were assessed: 1) overall image quality (i.e., an overall assessment of capil-

lary sharpness, image quality and uniformity), and 2) visualization of flow voids (i.e., the ability

to clearly delineate flow voids, based on the contrast between the flow and no-flow areas). Both

criteria were graded with a score from 0 to 2 (0: poor; 1: medium; 2: good) (Fig 2).

Quantitative analysis of OCTA images

Standard and BE single scans were processed using the ‘Density Quantification v0.3.5’ algorithm

available on the ARI network portal that uses a multilayer segmentation and calculates vessel met-

rics for the SCP, the DCC and the whole retina. Quantitative comparisons between standard and

BE scans involved the same area (a 1-2-mm diameter annulus centered on the fovea).

Perfusion density (PD) is defined as the area of detected flow per unit area, given in %. PD

is calculated by thresholding the en-face OCTA images, resulting in a binary image where each

Fig 1. Retinal image quality criteria (3x3-mm angiograms) in the superficial capillary plexus (SCP) and deep capillary complex (DCC). A.B. Vessel

sharpness, SCP (A: 0 = poor; B: 2 = good); C.D. FAZ visibility, SCP (C: 0 = poor; D: 2 = good); E.F. Artery-vein distinction, SCP (E: 0 = poor; F: 2 = good); G.H.

Vortex visibility, DCC (G: poor; H: 2 = good); I.J. Peripheral image quality, SCP (I: poor; J: 2 = good); K.L. Segmentation errors, DCC (K: poor; L: 2 = good); M.

N. Background noise, SCP (M: poor; N: 2 = good); O.P. Motion artifacts, SCP (G: poor; H: 2 = good). The orange arrow on image O is showing the

discontinuity of vessel course (motion artifact).

https://doi.org/10.1371/journal.pone.0287783.g001
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pixel corresponds to a perfused or non-perfused area (Fig 3). The vessels are first enhanced

using a Hessian filter based on Franji method [10] and then thresholding is performed based

on the noise level. The noise is determined from the scan volume by identifying areas with no

structure present and measuring the average levels there. This value is then used to threshold

the en-face projections.

Vessel density (VD) is defined as the total vessel length per unit area in a measurement

area. It is measured in units of inverse millimeters (mm-1). The binarized images correspond-

ing to the PD are skeletonized to represent the vessels by their centerlines (traces with 1-pixel

width) (Fig 3). The algorithm of skeletonization is a proprietary algorithm that 1. applies a

Frangi vesselness filter to the angio en face, 2. thresholds the image, 3. performs a number of

binary operations to remove features unlikely to correspond to actual vascular structure to

obtain the perfusion binary image, then skeletonizes this perfusion image using an erosion

technique to reduce the vessel widths to 1 pixel. The main difference between the VD and the

PD is that all vessels are considered equal regardless of the size in the VD while in the PD,

Fig 2. Choriocapillaris image quality assessment (3x3-mm angiograms). The overall image quality seems greater in B compared to A with higher uniformity

and capillary sharpness, and fewer artifacts (for example, one projection artifact is showed by the white circle) (A: medium overall image quality; B: good

overall image quality). The visualization of flow voids is enhanced in D compared to C with a better contrast in flow and no-flow areas (C: medium

visualization of flow voids; D: good visualization of flow voids).

https://doi.org/10.1371/journal.pone.0287783.g002
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larger vessels influence the measurement more than smaller capillaries and therefore, can mask

the loss of individual capillaries. The PD and the VD are unique to the PlexElite software and

are commonly referred, respectively, as vessel density and vessel length density in the literature.

The FAZ was assessed by measuring its size (mm2) and circularity (relative to a circle of the

same size, dimensionless). Circularity is defined to be (4*pi*FAZarea/FAZperimeter^2). In the

present study, quantitative parameters were analyzed for the SCP and whole retina slabs.

Statistics

The comparisons of both qualitative and quantitative criteria were performed using the Wil-

coxon signed-rank test. The repeatability of the quantitative measurements was assessed using

the intraclass correlation coefficient (ICC) with its 95% confidence interval, based on an abso-

lute agreement, two-way mixed-effect model. P values<0.05 were considered significant. All

statistical analyzes were performed using GraphPad Prism 9.0 (GraphPad Software, Inc., San

Diego, CA).

Results

26 eyes of healthy subjects were imaged with the BE module; 4 eyes were excluded due to the

presence of image artifacts, preventing the analysis of the images. Finally, a total of 22 eyes of

22 healthy subjects (13 women and 9 men) were included. The mean ± standard deviation age

of the subjects was 31.5 ± 5.6 years (23–44 years).

Qualitative analysis

The SCP and DCC scans acquired with the BE showed thinner capillaries, a longer intercapil-

lary distance (Fig 4A–4C), enhanced vortex visualization (Fig 4D–4F) and FAZ visibility com-

pared to the standard scans.

Fig 3. Comparison of quantitative measurements in 3x3-mm angiograms (A, B, C, D) and 2.25x2.25-mm angiograms (D, F, G, H). A and E: Superficial

capillary plexus angiograms. B and F: Perfusion trace allowing measuring perfusion density, and showing the inner ring used to compare the measurements.

This inner ring is delimited by a 2-mm diameter circle, and a 1-mm diameter circle (in red). C and G: Vessel trace allowing measuring perfusion density. D and

H: The foveal avascular zone is delineated in red.

https://doi.org/10.1371/journal.pone.0287783.g003
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The qualitative analysis of the single scans showed significantly higher vessel sharpness

scores (in both the SCP and the DCC; p = 0.0002 and p<0.0001, respectively) and peripheral

image quality scores (in both the SCP and the DCC; p = 0.002 and p<0.012, respectively) for

the BE scans compared to the standard scans (Table 1). The vortexes were more easily identi-

fied in 68% of BE scans, while in the remaining 32%, their visualization was comparable

between the BE and standard scans. Regarding the other image quality criteria (Table 1), no

significant difference was found between both acquisition methods.

The qualitative analysis of the average scans showed significantly higher vessel sharpness

scores (in both the SCP and the DCC; p = 0.0001 and p<0.0001, respectively), peripheral

image quality scores (in both the SCP and the DCC; p = 0.028 and p = 0.007, respectively),

FAZ delineation scores (p = 0.002) and artery-vein distinction scores (p = 0.03) for the BE

scans compared to the standard scans. No significant difference was found between both

acquisition methods, regarding the assessment of segmentation errors and motion artifacts.

Vortex visibility was enhanced in all scans acquired with the BE (Table 2).

The single choriocapillaris slabs acquired with the BE module showed significantly

higher overall image quality scores (1.43 ± 0.49 versus 1.07 ± 0.32, p = 0.014) and flow void

Fig 4. Comparison between 3x3-mm standard angiograms (A, D), the same 3x3 mm angiograms cropped to a 2.25x2.25 mm field of view (B, E) and

2.25x2.25-mm angiograms (C, F) acquired with the Beam Expander (BE). A, B and C: Superficial capillary plexus; D, E and F: Deep capillary complex (DCC).

The vessels are more continuous (as circled on the images A, B and C) in the BE scans, resulting in a higher uniformity of image quality. Some vessels are more

visible (white arrow), contributing to improve the visualization of the foveal avascular zone. The radial organization of the vortex in the DCC is better defined

in F than in E (white asterisk).

https://doi.org/10.1371/journal.pone.0287783.g004
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Table 1. Comparison of the qualitative criteria used for the single scans acquired with and without the beam expander (BE) module.

Single scans

SCP DCC

Scores 3x3 mm 2.25x2.25 mm (BE) P value 3x3 mm 2.25x2.25 mm (BE) P value
Vessel sharpness 1.05 (±0.38) 1.46 (±0.43) 0.0002 0.95 (±0.34) 1.48 (±0.36) <0.0001

Mean (±SD)

FAZ delineation 1.23 (±0.43) 1.43 (±0.42) 0.18 N/A N/A

Mean (±SD)*
Artery-Vein distinction 1.55 (±0.34) 1.5 (±0.38) 0.77 N/A N/A

Mean (±SD)

Periphery/center 1.27 (±0.46) 1.57 (±0.42) 0.002 1.21 (±0.43) 1.5 (±0.38) 0.012

Mean (±SD)

Segmentation errors 1.68 (±0.42) 1.55 (±0.49) 0.27 1.43 (±0.42) 1.18 (±0.48) 0.65

Mean (±SD)

Background noise 1.46 (±0.43) 1.32 (±0.36) 0.33 1.32 (±0.36) 1.32 (±0.33) >0.9999

Mean (±SD)

Motion artifacts 1.23 (±0.48) 1.16 (±0.39) 0.68 1.3 (±0.45) 1.3 (±0.37) >0.9999

Mean (±SD)

Vortex visibility N/A N/A -0.64 (±0.47)

Mean (±SD)

SCP: Superficial Capillary Plexus; DCC: Deep Capillary Complex; FAZ: foveal avascular zone; SD: Standard Deviation; N/A: non applicable.

*: FAZ evaluation was performed on the full retina slab.

https://doi.org/10.1371/journal.pone.0287783.t001

Table 2. Comparison of the qualitative criteria used for the average scans acquired with and without the beam expander (BE) module.

Average scans

SCP DCC

Scores 3x3 mm 2.25x2.25 mm (BE) P value 3x3 mm 2.25x2.25 mm

(BE)

P value

Vessel sharpness 1.3 (±0.43) 1.86 (±0.38) 0.0001 1.23 (±0.40) 1.91 (±0.33) <0.0001

Mean (±SD)

FAZ delineation 1.5 (±0.44) 1.86 (±0.32) 0.002 N/A N/A

Mean (±SD)*
Artery-Vein distinction 1.66 (±0.47) 1.96 (±0.2132) 0.031 N/A N/A

Mean (±SD)

Periphery/center 1.48 (±0.36) 1.75 (±0.51) 0.028 1.46 (±0.41) 1.8 (±0.37) 0.007

Mean (±SD)

Segmentation errors 1.93 (±0.18) 1.86 (±0.47) 0.81 1.46 (±0.49) 1.39 (±0.46) 0.27

Mean (±SD)

Background noise 1.89 (±0.34) 1.96 (±0.11) 0.5 1.66 (±0.42) 1.91 (±0.2) 0.028

Mean (±SD)

Motion artifacts 1.8 (±0.37) 1.75 (±0.34) 0.75 1.8 (±0.3671) 1.84 (±0.28) 0.79

Mean (±SD)

Vortex visibility N/A N/A -0.77 (±0.48)

Mean (±SD)

Abbreviations. SCP: Superficial Capillary Plexus; DCC: Deep Capillary Complex; FAZ: foveal avascular zone; SD: Standard deviation; N/A: non applicable.

*: FAZ evaluation was performed on the full retina slab.

https://doi.org/10.1371/journal.pone.0287783.t002
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visualization scores (1.84 ± 0.32 versus 1.14 ± 0.23, p <0.0001) compared to the standard

scans (Fig 5).

Quantitative analysis

The mean VD in the whole retina, in the 1-2-mm diameter annulus, was significantly higher

in the BE scans compared to the standard scans (28.16 ±1.29 mm-1 and 23.36 ±0.92 mm-1,

respectively, p<0.0001) and the mean PD in the whole retina in the same area was significantly

lower in the BE scans compared to the standard scans (0.43 ± 0.02 for the BE scans versus
0.44 ± 0.01 for the standard scans, p = 0.003).

The mean FAZ circularity was significantly lower in the BE scans compared to the standard

scans (0.67 ± 0.09 mm-1 versus 0.7 ± 0.07 mm-1, p = 0.03), whereas the mean FAZ area was not

significantly different between both acquisition methods (Table 3). Of note, automatic seg-

mentation failed in two cases (one BE and one standard scan) and data from the second of the

three scans acquired was used.

VD, PD and FAZ raw size measurement repeatability was slightly lower in the BE scans

compared to the standard scans (ICC: 0.671 (0.457–0.833), 0.604 (0.367–0.764) and 0.994

Fig 5. Comparison of choriocapillaris images from the same healthy subject. A. 3x3-mm standard angiogram. B. Same 3x3-mm angiogram cropped to

match the scan area of the corresponding 2.25x2.25-mm angiogram. C. 2.25x2.25-mm angiogram acquired with the Beam Expander and registered using the

superficial slab of the to the 3x3 mm angiogram for comparison. The flow voids are more distinct in C and the capillary structures are better defined.

https://doi.org/10.1371/journal.pone.0287783.g005

Table 3. Comparison of the quantitative criteria used for the single whole retina scans acquired with and without

the beam expander (BE) module.

3x3 mm 2.25x2.25 mm (BE) P value
Vessel density (mm-1) 23.36 (±0.92) 28.16 (±1.29) <0.0001

Mean (±SD)

Perfusion density (%) 0.44 (±0.01) 0.43 (±0.02) 0.0031

Mean (±SD)

FAZ circularity (mm-1) 0.7(±0.07) 0.67 (±0.09) 0.03

Mean (±SD)

FAZ raw size (mm2) 0.18 (±0.07) 0.18 (±0.07) 0.41

Mean (±SD)

Abbreviations. FAZ: foveal avascular zone; SD: Standard deviation

https://doi.org/10.1371/journal.pone.0287783.t003
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(0.987–0.997) for BE scans versus 0.764 (0.589–0.884), 0.638 (0.409–0.814) and 0.990 (0.980–

0.996) for the standard scans).

Discussion

This analysis showed the benefit of an increased lateral resolution and sampling density on the

quality of the retinal and choriocapillaris OCT angiograms in a cohort of healthy subjects. The

qualitative analysis of the retinal OCTA single scans showed enhanced vessel sharpness and

image quality uniformity in the BE scans compared to the standard scans. The enhanced visi-

bility and sharpness of the retinal capillaries, arterioles and venules could more efficiently

reveal subtle and preclinical pathological findings that could be difficult to detect with a quan-

titative assessment if they are localized. Moreover, an increased lateral resolution and sampling

density in the deeper slabs could improve the visibility of nascent retinal or choroidal vessels

in macular neovascular diseases.

In the choriocapillaris slabs, reliable images of the choriocapillaris lobular pattern as

reported in histological studies are usually difficult to obtain, partly because of a problem of

image resolution associated with the current OCT devices, resulting in an overestimation of

the caliber of retinal and choriocapillaris vessels [11, 12]. The choriocapillaris flow signal is

weak as it is attenuated by neuronal and pigmented (i.e., retinal pigment epithelium) struc-

tures. It remains challenging to image the choriocapillaris in vivo [13, 14]. Recently, SS-OCTA

has been shown to enhance choriocapillaris images, and the quantification of flow voids has

become a key quantification criteria [15].

The greater tissue penetration of SS-OCTA combined with the increased lateral and sam-

pling resolution of the BE scans allowed obtaining spectacular images of the choriocapillaris

meshwork and flow voids (Fig 5). Qualitatively, the flow voids were more clearly visible in the

BE scans than in the standard scans.

The qualitative analysis performed in this study included both “anatomical” (e.g. artery-vein

distinction or vortex visualization) and “structural” (e.g. segmentation errors, vessel sharpness)

criteria, previously used in other studies [16–18]. The qualitative analysis of OCT and OCTA

images is usually based on software-derived image quality scores (e.g. signal strength index),

based on pixel intensity, without considering other aspects that could significantly influence the

understanding of the acquired data, such as vortex visibility or segmentation errors. Shahlaee

et al. [16] have suggested criteria to be used to qualitatively assess the macular VD on OCTA,

and recommended to exclude scans with motion or blink artifacts, signs of media opacities and

incorrect vascular network segmentation. More recently, Fenner et al. [17] have assessed several

image quality parameters, including the automatically generated “TopQ score”, and reported

that the repeatability of retinal capillary plexus density measurements was affected by the pres-

ence of motion artifacts in the SCP and by the low visibility of fine vessels, the presence of

motion artifacts and B-scan quality in the DCC. The Peak signal-to-noise ratio is also an inter-

esting index for quantitative comparison of the image quality [19].

Our assessment of artery-vein distinction in the SCP and capillary vortex visibility in the

DCC was based on OCTA anatomical findings [5, 18]. The capillary-free zone along the retinal

arteries allowed distinguishing arteries and veins in the SCP [20].

Our qualitative analysis showed that an increased lateral resolution and sampling resolution

affected more significantly anatomical rather than structural criteria. This finding could be

explained by the sample examined, composed of healthy subjects with no media opacity and

good fixation.

Image averaging further improved the qualitative assessment of retinal slabs. Vessel sharp-

ness, image quality in the periphery versus center, FAZ visibility, artery-vein distinction and
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vortex visibility were enhanced in the averaged scans compared to the single scans (Fig 6).

And averaged BE scans in the SCP and DCP presented greater vessel sharpness and peripheral

versus central image quality compared to averaged 3x3 mm standard scans (Table 2).

Fig 6. Comparison between single (A, C, E) and average (B, D, E) 2.25x2.25-mm angiograms (performed with Beam

Expander). A and B: Superficial capillary plexus (SCP); C and D: Deep capillary complex; E and F: Choriocapillaris.

https://doi.org/10.1371/journal.pone.0287783.g006
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The comparison between average 3x3 mm and single BE scans showed significant differ-

ence in the visualization of the DCP while no significant difference was observed for the

remaining anatomical criteria (Table 4).

The benefit of averaging OCTA images has been previously shown in the assessment of ana-

tomical structures [21, 22]. Previous studies have shown that multiple image averaging

improves en face OCTA image quality by reducing the background noise and enhancing the

image contrast [9, 19, 23]. However, image averaging is not always practical due to prolonged

acquisition times, the need for image post-processing and the risk of losing some image details

as previously reported. In our study, the qualitative and quantitative differences observed

between the standard and BE scans persisted after image averaging.

Regarding the quantitative analysis, our results showed a significantly higher mean VD in

the BE scans compared to the standard scans. This could be explained by the enhanced lateral

and sampling resolution of the BE scans, that presented lower number of discontinuous

capillaries and missed capillary segments specially if they are narrow, which could be helpful

in the evaluation of healthy and diseased eyes.

The significant lower FAZ circularity found in the BE scans is likely the result of improved

vessel continuity from the increased lateral and sampling resolution. We found also that the

FAZ circularity was significantly lower in the BE scans by using only the superficial slabs

(p = 0.005) (Table 5). FAZ measurement is critical in clinical practice since previous studies

have shown that the FAZ allows predicting DR progression [24].

The main limitation of our study is the small size of the sample composed of young healthy

subjects. Future studies in larger cohorts, focused on retinal and choroidal diseases are needed

to confirm the usefulness of the BE. The increased optical resolution provided by the BE is

counterbalanced by a reduced depth of focus, resulting in a higher sensitivity to defocus. In

these young subjects with good fixation, this reduced depth of focus was not an issue, but the

enhanced quality has to be confirmed in macular diseases. The excellent image quality of the

scans obtained in this study of healthy subjects allowed the regularity of the retinal layers, and

Table 4. Qualitative criteria: comparison between single BE and averaged 3x3 mm scans.

Single 2.25x2.25 scans vs Average 3x3 scans

SCP DCC

Scores Average 3x3 mm Single 2.25x2.25 mm (BE) P value Average 3x3 mm Single 2.25x2.25 mm (BE) P value
Vessel sharpness 1.3 (±0.43) 1.46 (±0.43) 0.14 1.23 (±0.40) 1.48 (±0.36) 0.02

Mean (±SD)

FAZ delineation 1.5 (±0.44) 1.43 (±0.42) 0.67 N/A N/A

Mean (±SD)

Artery-Vein distinction 1.66 (±0.47) 1.5 (±0.38) 0.25 N/A N/A

Mean (±SD)

Periphery/center 1.48 (±0.36) 1.57 (±0.42) 0.42 1.46 (±0.41) 1.5 (±0.38) 0.71

Mean (±SD)

Segmentation errors 1.93 (±0.18) 1.55 (±0.49) 0.0049 1.46 (±0.49) 1.18 (±0.48) 0.06

Mean (±SD)

Background noise 1.89 (±0.34) 1.32 (±0.36) 0.0002 1.66 (±0.42) 1.32 (±0.33) 0.017

Mean (±SD)

Motion artifacts 1.8 (±0.37) 1.16 (±0.39) <0.0001 1.84 (±0.28) 1.3 (±0.37) 0.0009

Mean (±SD)

Abbreviations. SCP: Superficial Capillary Plexus; DCC: Deep Capillary Complex; FAZ: foveal avascular zone; SD: Standard deviation; N/A: non applicable

https://doi.org/10.1371/journal.pone.0287783.t004
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insured against significant projection artifacts. But we paid attention to retinal segmentation

by scrolling all the B-scans and we carefully examined all the en-face scans to highlight any sus-

pected projection artifact. Another limitation of this technology is the absence of wider-field

images available, at this time. However, this pilot study aimed to investigate the repeatability

and the potential usefulness of the BE and it was necessary to perform the examinations under

the best conditions of fixation and media transparency before assessing diseased eyes. Sec-

ondly, a quantitative analysis of the choriocapillaris slabs was not performed. Due to the lack

of consensus on choriocapillaris flow void quantification [12], we preferred not to perform

any image post-processing and to limit our analysis to a qualitative assessment. Even consider-

ing its subjectivity, BE images seemed closer to histological images of the choriocapillaris than

standard images.

In conclusion, this study showed that by increasing the lateral and sampling resolution, the

OCTA image quality could be improved and that, as a consequence, a more reliable flow quan-

tification could be achieved. Further analyzes of eyes with retinal and choroidal disorders are

needed to assess BE usefulness in macular diseases. Moreover, if the BE could be used in larger

scans, it could provide useful insights into the assessment of the perifoveal retinal vasculariza-

tion in retinal vascular diseases.
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