
J. Math. Pures Appl. 187 (2024) 138–170
Contents lists available at ScienceDirect

Journal de Mathématiques Pures et Appliquées

journal homepage: www.elsevier.com/locate/matpur

Symmetry breaking and instability for semilinear elliptic 

equations in spherical sectors and cones

Giulio Ciraolo a, Filomena Pacella b,∗, Camilla Chiara Polvara a

a Dipartimento di Matematica “Federigo Enriques”, Università degli Studi di Milano, Via Cesare Saldini 
50, Milano, 20133, Italy
b Dipartimento di Matematica, Sapienza Università di Roma, P.le Aldo Moro 2, Roma, 00185, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 June 2023
Available online 28 May 2024

MSC:
35N25
35J61
35B06
35B33

Keywords:
Semilinear elliptic problem
Morse index of positive solutions
Spherical sectors and cones
Symmetry breaking

We consider semilinear elliptic equations with mixed boundary conditions in 
spherical sectors inside a cone. The aim of the paper is to show that a radial 
symmetry result of Gidas-Ni-Nirenberg type for positive solutions does not hold 
in general nonconvex cones. This symmetry breaking result is achieved by studying 
the Morse index of radial positive solutions and analyzing how it depends on the 
domain D on the unit sphere which spans the cone. In particular it is proved that 
the Neumann eigenvalues of the Laplace Beltrami operator on D play a role in 
computing the Morse index. A similar breaking of symmetry result is obtained for 
the positive solutions of the critical Neumann problem in the whole unbounded 
cone. In this case it is proved that the standard bubbles, which are the only radial 
solutions, become unstable for a class of nonconvex cones.
© 2024 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

r é s u m é

Nous considérons des équations elliptiques semi linéaires avec conditions au bord 
mixtes dans des secteurs sphériques contenus dans un cône. Le but du papier est de 
montrer qu’ un résultat de symétrie radiale pour solutions positives type Gidas-Ni-
Nirenberg ne vaut pas en général si le cône n’est pas convexe. Ce résultat de rupture 
de symétrie est obtenu en étudiant la dépendance de l’index de Morse des solutions 
positives radiales du domaine D sur la sphère unitaire qui engendre le cône. Nous 
prouvons que les valeurs propres de l’opérateur de Laplace-Beltrami sur D jouent un 
rôle important pour calculer l’index de Morse. Un résultat similaire est obtenu pour 
le solutions positives du problème de Neumann avec l’exposant critique dans le cône 
non borné. Dans ce cas, nous prouvons que les “bubble” standard, qui sont les seules 
solutions radiales, deviennent instables pour une classe de cônes non convexes.
© 2024 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

Let D be a smooth domain on the unit sphere SN−1, with N � 3, and let ΣD ⊂ RN be the cone spanned 
by D, namely

ΣD := {x ∈ RN ; x = sq, q ∈ D, s ∈ (0,+∞)}. (1.1)

Let us consider the spherical sector SD obtained by intersecting ΣD with the unit ball B1

SD := {x ∈ RN ; x = sq, q ∈ D, s ∈ (0, 1)}. (1.2)

Then the relative boundary of SD (i.e. the part of ∂SD which lies inside the cone) is just D, while the 
remaining part of ∂SD will be denoted by Γ1 and it is:

Γ1 := ∂ΣD ∩ ∂SD . (1.3)

In the spherical sector SD we consider the following mixed boundary value problem:
⎧⎪⎪⎨
⎪⎪⎩
−Δu = f(u) in SD

∂u
∂ν = 0 on Γ1

u = 0 on D

(1.4)

where f : R → R is a locally Lipschitz continuous function and ν denotes the exterior unit normal vector.
We study positive weak solutions u of (1.4) which are functions in the Sobolev space H1

0 (SD ∪Γ1) which 
satisfy:

∫
SD

(∇u · ∇ϕ− f(u)ϕ)dx = 0

for any test function ϕ ∈ H1
0 (SD ∪Γ1). Here, H1

0 (SD ∪Γ1) is defined as the completion of C1
c (SD ∪Γ1) with 

respect to the H1 norm.
It is not difficult to see that, under suitable assumptions on the nonlinearity f , positive weak solutions 

of (1.4) exist. They can be easily obtained by adapting standard variational methods to the case of the 
spherical sector SD. In particular by considering the subspace H1

0,rad(SD ∪ Γ1) of the radial functions in 
H1

0 (SD ∪ Γ1) we can obtain positive radial weak solutions of (1.4).
The question we address in the present paper is whether or not all positive solutions of (1.4) are radial.
It is well known that if SD is the unit ball B1, i.e. if D = SN−1, then all positive classical solutions 

of (1.4) are radial by the famous theorem of Gidas-Ni-Nirenberg [18]. This result was later extended to 
solutions in W 2,N

loc (B1) ∩ C(B̄1) in the paper [4] and to weak solutions in H1
0 (B1) ∩ L∞(B1) in [12].

The method for proving symmetry of solutions used in these papers is the famous moving planes method 
which relies on different forms of maximum principles. It goes back to the classic paper of Serrin, [30], and 
Alexandrov [2], where it was introduced to get the radial symmetry of constant mean curvature surfaces 
and of domains admitting solutions of overdeterminated problems.

In the case of problem (1.4) the method of moving planes does not seem easily applicable due to the 
fact that a sector SD is not, in general, symmetric with respect to a suitable family of hyperplanes. A quite 
involved modification of the moving planes method was used in [5] to get the radial symmetry of classical 
C2-solutions of (1.4) only in dimensions 2 and for spherical sectors with angle α ∈ (0, π), see also [13] for 
the case of the unbounded cone. An extension of that proof to higher dimensions does not seem possible.
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On the other side results analogous to Serrin and Alexandrov’s ones have been recently obtained in the 
relative setting of cones, in all dimension N � 3 under the hypothesis that ΣD is a convex cone and for 
positive nonlinearities [26] (see also [7] and [8]). The fact that the convexity of the cone implies symmetry 
results has its origin in the first result of this kind obtained in [23] for the isoperimetric inequality (see also 
[29,17,6] for different proofs and generalized versions).

In analogy with the result of [26] it is natural to expect that radial symmetry for the positive solution 
of (1.4) should hold in any dimension N � 3 whenever the cone is convex. Recently this has been proved 
in [16] but only when the nonlinearity f is nonnegative. The proof in [16] is based on integral identities as 
the one in [22] and [21] and holds for equations involving more general operators.

Giving the fact that all these symmetry results require the convexity of the cone it is interesting to 
understand what happens when the cone is not convex, in particular for what cones symmetry breaking 
occurs.

In the case of constant mean curvature and of overdeterminated problems, symmetry breaking results 
have been proved in [20] for cones spanned by domains D ⊂ SN−1, for which the first nontrivial Neumann 
eigenvalue λ1(D) of the Laplace-Beltrami operator −ΔSN−1 on D is less than N − 1.

One of the main purposes of our paper is to analyze classes of nonlinearities and related classes of spherical 
sectors SD for which there exist nonradial positive weak solutions of (1.4). We will show that the break of 
symmetry is related to a bound on the Neumann eigenvalue λ1(D).

A similar result will be established also for a critical Neumann problem in the whole unbounded cone 
ΣD.

The strategy to get symmetry breaking is to study the Morse index of radial solutions of (1.4) (see 
Definition 3.3) to show that their instability increases in dependence of the eigenvalue λ1(D). This allows 
to deduce that, for some nonlinearities, radial solutions cannot be least-energy solutions of (1.4), proving 
so the existence of nonradial positive solutions. Since SD is a radial domain, to compute the Morse index 
of a radial solution ũ of (1.4), we decompose the spectrum of the linearized operator Lũ = −Δ − f ′(ũ) as 
the sum of radial eigenvalues of a singular one-dimensional operator and of Neumann eigenvalues of the 
Laplace-Beltrami operator −ΔSN−1 on D. In this way we get precise formulas for the Morse index of radial 
solutions (Proposition 3.4) which are interesting in themselves. Then a crucial role to detect a possible 
symmetry breaking is played by the first eigenvalue Λ̂rad

1 of the following singular eigenvalue problem in the 
interval (0, 1):

{
−ψ′′ − N−1

r ψ′ − f ′(ũ)ψ = − μ
r2ψ in (0, 1)

ψ(1) = 0
(1.5)

where, with abuse of notation, ũ(r) = ũ(|x|).
As explained in Section 2 and Section 3 the number of the negative eigenvalues of (1.5) corresponds to 

the radial Morse index of ũ, which we denote by mrad(ũ), i.e. to the number of negative eigenvalues of the 
linearized operator Lũ in the space of radial functions H1

0,rad(SD ∪ Γ1) ⊂ H1
0 (SD ∪ Γ1).

Remark 1.1. It is important to stress that the eigenvalues of (1.5) do not depend on the domain D ⊂ SN−1

which spans the cone but only on the nonlinearity f and on the radial solution ũ considered. Another way of 
seeing this is by observing that a weak radial solution of (1.4) is indeed a radial solution of the corresponding 
Dirichlet problem in the unit ball B1, i.e. it satisfies:

{
−Δũ = f(ũ) in B1

ũ = 0 on ∂B1.
(1.6)

Therefore the radial Morse index mrad(ũ) is the same as the one of ũ in the space H1
0 (B1).
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Our main result about the break of symmetry in the spherical sector SD is the following.

Theorem 1.2. Let us assume that the nonlinearity f is such that:

1. there exists a unique positive bounded radial solution ũ of (1.4),
2. there exists a weak positive solution ū of (1.4) with Morse index one, in the space H1

0 (SD ∪ Γ1).

Then if

either Λ̂rad
1 � 0 or λ1(D) < −Λ̂rad

1 (1.7)

then the solution ū is not radial. Here λ1(D) is the first nontrivial Neumann eigenvalue of −ΔSN−1 on D
and Λ̂rad

1 is the first eigenvalue of problem (1.5) corresponding to ũ.

Assumptions 1) and 2) are satisfied by many types of nonlinearities, in particular by the Lane-Emden 
nonlinearity f(s) = sp, 1 < p < N+2

N−2 (see Section 3). Actually, considering f(s) = sp and studying the 

behavior of Λ̂rad
1 as p → N+2

N−2 we obtain:

Theorem 1.3. Let SD be a spherical sector spanned by a domain D ⊂ SN−1 for which λ1(D) < N − 1. Then 

there exists p0 ∈
(

1, N+2
N−2

)
such that for every p ∈

(
p0, N+2

N−2

)
there exists a nonradial positive solution of 

(1.4) for f(u) = up.

Theorem 1.3 implies that a radial symmetry result as the one of Gidas-Ni-Nirenberg cannot hold in a 
sector SD for which λ1(D) < N − 1.

It is interesting to observe that the bound λ1(D) < N −1 implying the break of symmetry is the same as 
the one for the constant mean curvature and the overdetermined problems obtained in [20]. Some examples 
of domains D ⊂ SN−1 for which λ1(D) < N − 1 are described in [20].

Finally we also study the question of symmetry of positive solutions to the critical Laplace equation in 
the unbounded cone ΣD. Namely we consider the problem:

⎧⎪⎪⎨
⎪⎪⎩
−Δu = ups in ΣD

u > 0 in ΣD

∂u
∂ν = 0 on ∂ΣD

(1.8)

where pS = N+2
N−2 = 2∗ − 1.

If the cone is the whole RN , i.e. D = SN−1, it is well known that all positive solutions of (1.8) are given 
by the radial function

U(x) = αN

(
1

1 + |x|2
)N−2

2

, αN = (N(N − 2))
N−2

4 , (1.9)

as well as by any rescaling or translation of it. These functions are usually called standard bubbles. They 
are also the functions which, up to a constant, achieve the best Sobolev constant for the embedding of the 
space D1,2(RN ) = {u ∈ L2∗(RN ) : |∇u| ∈ L2(RN )} into L2∗(RN ).

In the case of convex cones it has been proved in [24] that the standard bubbles are the only positive 
solutions of (1.8). This result has been extended to critical equations for more general operators in [9]. Thus 
the question is whether nonradial solutions of (1.8) exist in nonconvex cones.
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A first result in this direction has been obtained in [10] where the existence of a positive nonradial solution 
of (1.8) is established under some conditions involving the local convexity of ΣD at a boundary point and 
the measure of D [10, Corollary 3.5, Theorem 3.6].

Here we obtain a more precise characterization of a class of nonconvex cones for which (1.8) admits a 
nonradial positive solution. Our result is the following:

Theorem 1.4. Let ΣD be a cone spanned by a domain D ⊂ SN−1 such that

D̄ ⊂ S+
N−1 and λ1(D) < N − 1 (1.10)

where S+
N−1 is the half-sphere. Then there exists a positive solution w of (1.8) which is nonradial and fast 

decaying, i.e. w(x) = O(|x|2−N ) as |x| → +∞.

Note again the similarity of the bound on λ1(D) in (1.10), Theorem 1.3 and the results in [20].
The proof of Theorem 1.4 relies on a careful analysis of the Morse index of the standard bubble U to 

show that it becomes more unstable as soon as λ1(D) crosses the value N − 1 (see Theorem 4.3). This, in 
turn, allows to prove that the standard bubbles cannot be minimizers for the Sobolev quotient QΣD

defined 
in (4.2). On the other side, if D̄ ⊂ S+

N−1 then a minimizer for QΣD
should exist by a result of [10, Theorem 

3.3] so it gives a positive nonradial solution of (1.8).
The paper is organized as follows. In Section 2 we describe some preliminary results needed to study 

the eigenvalues of the linearized operator Lũ = −Δ − f ′(ũ) at a radial solution ũ of (1.4). In Section 3 we 
study the Morse index of a radial solution of (1.4) by using a spectral decomposition. Then we consider 
some classes of nonlinearities for which least energy positive solutions exist and prove Theorem 1.2. In the 
same section we analyze the case of Lane-Emden nonlinearities f(u) = up obtaining Theorem 1.3. Finally 
in Section 4 we compute the Morse index of the standard bubble in the unbounded cone ΣD and prove 
Theorem 1.4.

Acknowledgments

Research partially supported by Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro 
Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

2. Preliminary results

To compute the Morse index of a radial solution ũ of (1.4) we need to analyze the spectrum of the 
linearized operator at ũ in the space H1

0 (SD ∪ Γ1). Therefore in this section we consider a general linear 
operator La of the type −Δ − a and we study its eigenvalues.

Let a(x) be a radial function in L∞(SD) and, for any v ∈ H1
0 (SD ∪ Γ1), we consider the linear operator 

La(v) : H1
0 (SD ∪ Γ1) → R defined by

La(v)ϕ :=
∫
SD

(∇v · ∇ϕ− a(x)vϕ) dx, ϕ ∈ H1
0 (SD ∪ Γ1) (2.1)

and we let Qa : H1
0 (SD ∪ Γ1) → R be the quadratic form associated to La, i.e.

Qa(v) :=
∫ (

|∇v|2 − a(x)v2) dx. (2.2)

SD
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We recall that the first eigenvalue Λ1 of La, is defined by

Λ1 := min
v∈H1

0 (SD∪Γ1),v �=0

Qa(v)∫
SD

v2(x)dx
, (2.3)

and it is attained at a corresponding eigenfunction ψ1 ∈ H1
0 (SD ∪ Γ1) satisfying

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δψ1 − a(x)ψ1 = Λ1ψ1 in SD

∂ψ1
∂ν = 0 on Γ1

ψ1 = 0 on D

ψ1 > 0 in SD.

(2.4)

Then, iteratively for i ≥ 2, we can define the eigenvalues Λi by using their min-max characterization

Λi := min
v∈H1

0 (SD∪Γ1),
v �=0,

v⊥{ψ1,...,ψi−1}

Qa(v)∫
SD

v2(x)dx
= min

W⊂H1
0 (SD∪Γ1),

dimW=i

max
v∈W,
v �=0,

Qa(v)∫
SD

v2(x)dx
, (2.5)

where the condition v ⊥ ψj stands for the orthogonality in L2(SD) and ψj is a function that attains Λj

for j = 1, ..., i − 1. Again the infimum in (2.5) is attained at a function ψi ∈ H1
0 (SD ∪ Γ1) which is a weak 

solution to (2.4), with Λi in place of Λ1.
Before introducing a singular eigenvalue problem associated to La, it is useful to give a Hardy inequality 

in a sector. This inequality is probably well-known, but we couldn’t find a reference in the literature and 
we give a proof for the sake of completeness.

Proposition 2.1 (Hardy inequality). Let N ≥ 3 and let SD be given by (1.2). For any v ∈ H1
0 (SD ∪ Γ1), it 

holds

(N − 2)2

4

∫
SD

v2

|x|2 dx �
∫
SD

|∇v|2dx. (2.6)

Proof. A classical way to prove Hardy type inequalities is to use superharmonic functions. Indeed, if we 
assume that there exists G : SD → R and k > 0 such that

⎧⎪⎪⎨
⎪⎪⎩
−ΔG � 0 in SD

∂νG = 0 on Γ1

G ≥ k in SD

then an integration by parts implies that

0 � −
∫
SD

ΔGϕdx =
∫
SD

∇G · ∇ϕdx

for any ϕ ∈ C1
c (SD ∪Γ1) with ϕ � 0. Given v ∈ H1

0 (SD ∪Γ1), by density we can choose ϕ = v2

G and we have

0 �
∫

2v∇G · ∇v

G
dx−

∫
v2 |∇G|2

G2 dx.
SD SD
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Let δ > 0, Young inequality yields

∫
SD

v2 |∇G|2
G2 dx � δ

∫
SD

v2 |∇G|2
G2 dx + 1

δ

∫
SD

|∇v|2dx,

that is

δ(1 − δ)
∫
SD

v2 |∇G|2
G2 dx �

∫
SD

|∇v|2dx. (2.7)

Now we notice that, if 2 −N � α � 0 then we can take G = |x|α. Indeed

−ΔG = α(2 −N − α)|x|α−2 � 0 for 2 −N � α � 0

and we also have that ∂νG = 0 on Γ1 and G ≥ 1 in SD. Thus from (2.7) we obtain

δ(1 − δ)α2
∫
SD

v2

|x|2 dx �
∫
SD

|∇v|2dx.

Since

δ(1 − δ)α2 � (N − 2)2

4

and it is achieved for α = 2 −N and δ = 1
2 , then we obtain (2.6). �

Now we introduce the following singular eigenvalue problem which will be crucial to prove our main 
results:

⎧⎪⎪⎨
⎪⎪⎩
−Δψ̂ − a(x)ψ̂ = Λ̂

|x|2 ψ̂ in SD

∂νψ̂ = 0 on Γ1

ψ̂ = 0 on D.

(2.8)

We notice that problem (2.8) is well defined in H1
0 (SD ∪ Γ1) thanks to Hardy inequality (2.6), and hence 

by a weak solution to (2.8) we mean ψ̂ ∈ H1
0 (SD ∪ Γ1) such that

∫
SD

∇ψ̂ · ∇ϕdx−
∫
SD

aψ̂ϕdx = Λ̂
∫
SD

ψ̂ϕ

|x|2 dx

for every ϕ ∈ H1
0 (SD ∪ Γ1).

We start by defining the singular eigenvalues, as follows. Let

Λ̂1 := inf
v∈H1

0 (SD∪Γ1),v �=0

Qa(v)∫
SD

|x|−2v2(x)dx
, (2.9)

where Qa is given by (2.2). Here we stress that the infimum is taken in H1
0 (SD ∪ Γ1) so that the Hardy 

inequality assures that the denominator on the right-hand side of (2.9) is finite. Further properties related 
to (2.9) are described in the following proposition.
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Proposition 2.2. Let Λ̂1 be given by (2.9), and assume that Λ̂1 < 0. Then Λ̂1 is attained at a function 
ψ̂1 ∈ H1

0 (SD∪Γ1) which is a positive weak solution to (2.8). Moreover, if a ∈ C0,β(SD) for some 0 < β < 1, 
then ψ̂1 ∈ C2,γ

loc (S̄D \ {0}) for some 0 < γ < 1 and ψ̂1 is a classical solution to (2.8) in SD \ {0} for Λ̂ = Λ̂1.

Proof. We follow the proof of [3, Proposition 3.1]. Let vn ∈ H1
0 (SD∪Γ1) be a minimizing sequence for (2.9), 

and assume that it is such that ∫
SD

v2
ndx = 1.

By definition
∫
SD

(|∇vn|2 − av2
n)dx = β̂n

∫
SD

|x|−2v2
ndx (2.10)

with β̂n ↘ Λ̂1 as n → ∞. We first notice that
∫
SD

|∇vn|2dx � ‖a‖∞. (2.11)

Indeed, since Λ̂i < 0, we can assume that β̂n � 0 and from (2.10) and (2.11) we get
∫
SD

|∇vn|2dx �
∫
SD

av2
ndx � ‖a‖∞ .

Hence, up to a subsequence, vn ⇀ v̄ weakly in H1
0 (SD ∪ Γ1) and strongly in L2(SD), and in particular

lim
n→∞

∫
SD

av2
ndx =

∫
SD

av̄2dx.

Moreover from (2.6) and (2.11) we have
∫
SD

|x|−2v2
ndx � 4

(n− 2)2 ‖a‖∞ .

Now we check that v minimizes the quotient in (2.9), namely we prove that
∫
SD

(
|∇v̄|2 − av̄2

)
dx− Λ̂1

∫
SD

|x|−2v̄2(x)dx � 0.

Indeed, since vn → v̄ a.e. in SD, Fatou’s Lemma yields
∫
SD

(
|∇v̄|2 − av̄2

)
dx− Λ̂1

∫
SD

|x|−2v̄2dx � lim inf
n→∞

( ∫
SD

(|∇vn|2 − βn|x|−2v2
n)dx

)
−

∫
SD

av̄2dx

and (2.10) implies
∫ (

|∇v̄|2 − av̄2
)
dx− Λ̂1

∫
|x|−2v̄2(x)dx � lim inf

n→∞

∫
av2

ndx−
∫

av̄2dx = 0 ,

SD SD SD SD
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where the last inequality follows from the strong convergence vn → v̄ in L2(SD).
Now, since v̄ minimizes the right-hand side of (2.9), we have that v̄ is a weak solution to (2.8) for Λ̂ = Λ̂1

and then the assertion of the proposition follows by taking ψ1 = v̄. The regularity properties of ψ1 follow 
from standard elliptic estimates in [19]. �

Arguing as in Section 3 of [3] we have that Proposition 2.2 implies that if Λ̂1 < 0 then we can start 
an iterative procedure and define the subsequent singular eigenvalues Λ̂2, Λ̂3, . . . at least until they remain 
negative. Indeed, when Λ̂1 is negative and it is attained at a function ψ̂1 ∈ H1

0 (SD ∪ Γ1), we can define

Λ̂2 := inf
v∈H1

0 (SD∪Γ1),v �=0,v⊥ψ̂1

Qa(v)∫
SD

|x|−2v2(x)dx
.

Iteratively if Λ̂j < 0 and it is attained at a function ψ̂j , j = 1, . . . , i − 1, we can define

Λ̂i := inf
v∈H1

0 (SD∪Γ1),v �=0,v⊥{ψ̂1,...,ψ̂i−1}

Qa(v)∫
SD

|x|−2v2(x)dx
. (2.12)

We also notice that if ψ̂i, is a function in H1
0 (SD ∪ Γ1) for which Λ̂i is attained then it satisfies (2.8) for 

Λ̂ = Λ̂i.
We will say that Λ̂i < 0 is a singular eigenvalue and the corresponding nontrivial function ψ̂i satisfying 

(2.8) will be called singular eigenfunction.
Now we prove that the numbers Λ̂i defined iteratively by (2.12) are indeed achieved, whenever they are 

negative.

Proposition 2.3. Let Λ̂i be given by (2.12) for some i ∈ N and assume that Λ̂i < 0. Then there exists a 
function ψ̂i ∈ H1

0 (SD∪Γ1) such that (2.12) is attained at ψ̂i, which is a weak solution to (2.8) with eigenvalue 
Λ̂i. Moreover, if a ∈ C0,β(SD) for some 0 < β < 1, then ψ̂i ∈ C2,γ

loc (S̄D \ {0}) for some 0 < γ < 1 and ψ̂i is 
a classical solution to (2.8) in SD \ {0}.

Proof. The proof is analogous to the one of Proposition 2.2, and for this reason we only give a sketch of 
the proof enlightening the main differences. Let vn be a minimizing sequence for (2.12) such that∫

SD

v2
ndx = 1

and with vn ⊥ ψj , for any n ∈ N and j = 1, ..., i − 1. Hence, vn converges to a function v̄ weakly in 
H1

0 (SD ∪ Γ1), strongly in L2(SD) and pointwise a.e. in SD.
From Hardy inequality (2.6) and since Λ̂i < 0, we have that∫

SD

|x|−2v2
ndx � 4

(n− 2)2 ‖a‖∞,

which implies that there exists a subsequence of vn, that we denote vnk
, such that

0 = lim
k→∞

∫
SD

|x|−2vnk
ψjdx =

∫
SD

|x|−2v̄ψjdx

for j = 1, ..., i − 1, meaning that v̄ ⊥ {ψ1, ..., ψi−1}. Then as before it follows that Λ̂i is attained and v̄ = ψi

is a weak solution to (2.8) corresponding to Λ̂i. The rest of the proof is completely analogous to the one of 
Proposition 2.2 and for this reason is omitted. �
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Up to now we have introduced two different families of eigenvalues Λi and Λ̂i, where the last ones are in 
some sense easier to be studied as we are going to see in the next sections. The crucial point here is that 
the number of negative eigenvalues Λ̂i coincides with the number of negative eigenvalues Λi.

Proposition 2.4. Let ka and k̂a be defined as:

ka := #{i ∈ N : Λi < 0}

and

k̂a := #{i ∈ N : Λ̂i < 0} ,

respectively. Then we have that ka = k̂a.

Proof. Let ψ̂ ∈ H1
0 (SD ∪ Γ1) be an eigenfunction for problem (2.8) corresponding to a singular negative 

eigenvalue Λ̂, i.e.
⎧⎪⎪⎨
⎪⎪⎩
−Δψ̂ − aψ̂ = Λ̂

|x|2 ψ̂ in SD

∂ψ̂
∂ν = 0 on Γ1

ψ̂ = 0 on D

(2.13)

with Λ̂ < 0. Multiplying by ψ̂ and integrating by parts we get

∫
SD

(|∇ψ̂|2 − aψ̂2)dx = Λ̂
∫
SD

ψ̂2

|x|2 dx < 0

which means that any eigenfunction of (2.8) corresponding to a negative eigenvalue makes negative the 
quadratic form Qa. Hence

k̂a � ka

In order to show the reverse inequality let us suppose by contradiction that

k̂a < ka (2.14)

and denote by W the ka-dimensional space spanned by the eigenfunction of La corresponding to the negative 
eigenvalue Λi. By definition we get

Λ̂i � max
v∈W,v �=0

Qa(v)∫
SD

|x|−2v2(x)dx
< 0

since any v ∈ W satisfies Qa(v) < 0. This shows that (2.14) is not possible. �
Thanks to the geometry of SD and since the function a is radial we can use separation of variable to 

study the singular eigenvalue problem (2.8). Let H1
0,rad(SD ∪ Γ1) be the subspace of H1

0 (SD ∪ Γ1) given by 
radial functions and we define

Λ̂rad
1 := inf

{
Qa(v)∫

|x|−2v2(x)dx
: v ∈ H1

0,rad(SD ∪ Γ1)
}
, (2.15)
SD
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and, for i � 2,

Λ̂rad
i := inf

{
Qa(v)∫

SD
|x|−2v2(x)dx

: v ∈ H1
0,rad(SD ∪ Γ1) and v ⊥ ψ1, ..., ψi−1

}
. (2.16)

As for the numbers Λ̂i, previously defined we can prove the following result.

Proposition 2.5. Let Λ̂rad
i be defined by (2.18) and assume that Λ̂rad

i < 0. Then there exist radial functions 
ψrad
i ∈ H1,rad

0 (SD ∪Γ1) which achieve (2.18). Moreover, using polar coordinates, ψrad
i are weak solutions of

{
−(ψrad

i )′′ − N−1
2 ψrad′

i − a(r)ψrad
i = Λ̂rad

i

r2 ψrad
i for r ∈ (0, 1)

ψ(1) = 0
(2.17)

where a(r) = a(x) with r = |x|and ′ denotes the derivative with respect to r.

Note that the eigenvalue problem (2.17) can be written as the following Sturm Liouville problem

{
−(rN−1(ψrad

i )′)′ − rN−1a(r)ψrad
i = rN−3Λrad

i ψrad
i

ψrad
i (1) = 0

r ∈ (0, 1), (2.18)

where ψrad
i ∈ H1,rad

0 (SD ∪ Γ1).
Regarding the angular component on D, we denote by ΔSN−1 the Neumann Laplace-Beltrami operator on 

SN−1 and consider the Neumann eigenvalues of −ΔSN−1 on the domain D. It is well-known that (−ΔSN−1)−1

is compact and selfadjoint in L2(D) and admits a sequence of eigenvalues

0 = λ1 < λ2 � . . . λj ≤ . . . (2.19)

and corresponding eigenfunctions Yj(θ) ∈ L2(D) (where θ is the system of coordinates on D induced by the 
spherical coordinates in RN ) which form a Hilbert basis for L2(D) and such that

−ΔSN−1Yj(θ) = λjYj(θ) θ ∈ D (2.20)

and ∫
SD

∇θYj(θ) · ∇θYi(θ)dσ(θ) = 0 for i �= j ,

where we denote by ∇θ the gradient with respect to θ ∈ D.
Since a is a radial function, the singular eigenvalue Λ̂i can be decomposed as follows.

Proposition 2.6. Let Λ̂i and λj be given by (2.12) and (2.19), respectively. If Λ̂i < 0 for some i ∈ N then 
there exist k � 1 and j � 0 such that

Λ̂i = Λ̂rad
k + λj . (2.21)

Viceversa, let us assume that there exist k ≥ 1 such that Λ̂rad
k < −λj for some j � 0, then Λ̂i given by 

(2.21) is a negative singular eigenvalue for (2.8).
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Proof. Let Λ̂ < 0 and let ψ̂ ∈ H1
0 (SD∪Γ1) be an eigenfunction associated to Λ̂, i.e. ψ̂ is a solution to (2.13). 

Since {Yj} are an orthonormal base on L2(D), we can write

ψ̂(r, θ) =
∞∑
j=0

ψ̂j(r)Yj(θ)

for r ∈ (0, 1] and θ ∈ D ⊂ SN−1, where

ψ̂j(r) :=
∫
D

ψ̂(r, θ)Yj(θ)dσ(θ) . (2.22)

We first notice that, since ψ̂ ∈ H1
0 (SD ∪ Γ1), from Parseval identity and Hardy inequality we have that

(n− 2)2

4

∞∑
j=0

1∫
0

rN−3ψ̂2
jdr ≤

∞∑
j=0

1∫
0

rN−1(ψ̂′
j)2dr < +∞. (2.23)

Since ψ̂ �≡ 0, there exists j ≥ 0 such that ψ̂j(r) �≡ 0 and we can write

1∫
0

rN−1ψ̂′
jϕ

′dr =
1∫

0

∫
D

rN−1ψ̂′Yj(θ)ϕ′drdσ(θ) =
1∫

0

∫
D

rN−1ψ̂′
(
Yj(θ)ϕ

)′
drdσ(θ)

for every ϕ ∈ H1
0 (SD ∪Γ1). We recall that ∇ψ̂ = (ψ̂′, r−2∇θψ̂); since ψ̂ is a solution to (2.8) and a is radial, 

we have

1∫
0

rN−1ψ̂′
jϕ

′dr = −
1∫

0

∫
D

rN−3∇θψ̂ · ∇θ(Yj(θ)ϕ)drdσ(θ)

+
1∫

0

∫
D

rN−1aψ̂Yj(θ)ϕdrdσ(θ) + Λ̂
1∫

0

∫
D

rN−3ψ̂Yj(θ)ϕdrdσ(θ) .

From (2.22), (2.20) and by using integration by parts, we obtain

1∫
0

rN−1ψ̂′
jϕ

′dr = −
1∫

0

rN−3dr

∫
D

∇θ(ψ̂ϕ) · ∇θYj(θ)dσ(θ)

+
1∫

0

rN−1a(r)ψ̂jϕdr + Λ̂
1∫

0

rN−3ψ̂jϕdr

= − λj

1∫
0

rN−3ψ̂jϕdr +
1∫

0

rN−1a(r)ψ̂jϕdr + Λ̂
1∫

0

rN−3ψ̂jϕdr

=
1∫

0

rN−1a(r)ψ̂jϕdr + (Λ̂ − λj)
1∫

0

rN−3ψ̂jϕdr .

Hence we have proved that ψ̂j is a weak solution to
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{
−(rn−1(ψ̂j)′)′ − rn−1aψ̂j = rN−3Λ̂rad

j ψ̂j for r ∈ (0, 1)
ψ̂j ∈ H1,rad

0 (D)
(2.24)

i.e. ψ̂j is an eigenfunction of (2.8) corresponding to the eigenvalue (Λ̂ − λj).
Since Λ̂−λj < 0, from (2.24) and [3, Proposition 3.10] we have that Λ̂−λj is a radial singular eigenvalue 

for La given by (2.1).
The reverse implication holds as well, namely if Λ̂rad

k + λj < 0 for some radial singular eigenvalue Λ̂rad
k

with associated eigenfunction ψ̂rad
k ∈ H1,rad

0 (SD ∪ Γ1) and for some λj , then the function

Ψ := ψ̂rad
k (r)Yj(θ)

is such that Ψ ∈ H1
0 (SD ∪Γ1). Moreover Ψ weakly solves (2.8) corresponding to Λ̂ = Λ̂rad

k + λj < 0. Indeed 
for any ϕ ∈ H1

0 (SD ∪ Γ1) we have

∫
SD

∇Ψ · ∇ϕdx =
∫
SD

Ψ′ϕ′ + 1
r2∇θΨ · ∇θϕdx =

=
∫
D

Yj(θ)dσ(θ)
1∫

0

rN−1(ψrad
k )′ϕ′dr +

1∫
0

rN−3ψrad
k dr

∫
D

∇θYj · ∇θϕdσ(θ)

and from (2.24) and (2.20) it follows

∫
SD

∇Ψ · ∇ϕdx =
∫
D

Yj(θ)dσ(θ)
1∫

0

rN−1(a + Λ̂rad
k

r2 )ψrad
k ϕdr

+
1∫

0

rN−3ψrad
k drλj

∫
D

Yj(θ)ϕdσ(θ) =
∫
SD

aΨϕ + Λ̂rad
k + λj

|x|2 Ψϕdx,

and then Ψ weakly solves (2.8) corresponding to Λ̂ = Λ̂rad
k + λj < 0, which completes the proof. �

Remark 2.7. The results of this section, obtained for negative eigenvalues, also hold for positive eigenvalues 
which are smaller than (N − 2)2/4 (see [3]). Since we are interested in negative eigenvalues to study the 
Morse index of solutions we have preferred to avoid further technicalities.

3. Application to semilinear elliptic problems

In this section we study the semilinear elliptic problem (1.4) to the aim of proving the symmetry breaking 
result in Theorems 1.3 and 1.4. We start by showing that weak solutions of (1.4) are bounded.

The following theorem is a classical result on interior boundedness of solutions to elliptic PDEs, which 
was proved by Serrin in [30]. This result can be extended up to the boundary, whenever the boundary fulfills 
some suitable regularity. We will need this result at some points in the paper, and in particular it is needed 
to show boundedness of solutions in a neighborhood of the vertex. Since we were not able to find a reference 
for this case, we prefer to give a sketch of the proof below.
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Proposition 3.1. Let u ∈ H1
0 (SD ∪ Γ) be a weak solution of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu = g(x, u) in SD

∂νu = 0 on Γ
u = 0 on D

u > 0 in SD

where g : SD ×R → R is such that

|g(x, u)| ≤ c1(x)|u| + c2(x) , (3.1)

with c1, c2 ∈ L
N

2−ε (SD), for some ε > 0 small enough. Then u is bounded in SD and we have

‖u‖L∞(SD) ≤ C{‖u‖L2(SD) + ‖c2‖L∞(SD)} , (3.2)

with C = C(N, ε, M), where M = ‖c1‖
L

N
2−ε (SD)

.
In particular, if u ∈ H1

0 (SD ∪ Γ) is a weak solution of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu = f(u) in SD

∂νu = 0 on Γ
u = 0 on D

u > 0 in SD

(3.3)

with |f(s)| � c|s|p + b(x), p < N+2
N−2 , b(x) ∈ L

N
2−ε , N � 3 then u is bounded in SD.

Proof. As already mentioned, this proof strictly follows the lines of [30, Theorem 1]. Here, we just want to 
emphasize that, thanks to the Neumann boundary on Γ, all the argument can be easily adapted.

We notice that the boundedness of the solution at interior points follows directly from [30, Theorem 1]. 
Boundedness at points on ∂SD \ {O} can be obtained by applying standard reflection methods and again 
using [30, Theorem 1]. For this reason in the following we prove the assertion only in a neighborhood of the 
vertex O.

In order to lighten the notation, we set

‖u‖p,R := ‖u‖Lp(ΣD∩BR)

for p ∈ [1, ∞].
Let 0 < R < 1/4 and set

ū = u + ‖c2‖∞,2R.

For fixed numbers q � 1 and l > ‖c2‖∞,2R, we define F (ū) ∈ C1(R)

F (ū) =
{
ūq for ‖c2‖∞,2R � ū � l

qlq−1ū− (q − 1)lq for l � ū,

and

G(ū) = F (ū)F ′(ū) − q‖c2‖2q−1
∞,2R.
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Notice that

G′ =
{
q−1(2q − 1)(F ′)2 ū < l − ‖c2‖∞,2R

(F ′)2 ū > l − ‖c2‖∞,2R .

Let η ∈ C∞
c (B2R(O)) be such that η ≥ 0, and let

φ = η2G(ū).

We notice that we have

∇φ = 2η∇ηG + η2G′∇ū at points where {ū �= l − ‖c2‖∞,2R}

and then, by using |G| � FF ′, one has

∇φ · ∇ū− φ|g| = η2G′|∇ū|2 + 2ηG∇η · ∇ū− η2G|g|
� η2(F ′)2|∇ū|2 − 2ηFF ′|∇η||∇ū| − (|c1| + 1)ūη2FF ′ .

Let

v := F (ū) .

Since ūF ′ = qF then we can write

∇φ · ∇ū− φ|g| � η2|∇v|2 − 2ηv|∇η||∇v| − q(|c1| + 1)(ηv)2. (3.4)

In the set where ū = l we have ∇φ = 2η∇ηG and ∇ū ≡ 0, a.e. so that (3.4) holds also on this set a.e. We 
may integrate (3.4) over ΣD ∩B2R and get

‖η∇v‖2
2,2R � 2

∫
ΣD∩B2R

ηv|∇η||∇v| dx + q

∫
ΣD∩B2R

(|c1| + 1)(ηv)2 dx. (3.5)

We apply Hölder inequality on the r.h.s. and we get
∫

ΣD∩B2R

ηv|∇η||∇v| dx � ‖v∇η‖2,2R‖η∇v‖2,2R (3.6)

∫
ΣD∩B2R

(|c1| + 1)(ηv)2 dx =
∫

ΣD∩B2R

(|c1| + 1)(ηv)ε(ηv)2−ε dx

� ‖|c1| + 1‖N/(2−ε),2R‖ηv‖ε2,2R‖ηv‖2−ε
2∗,2R.

Then, since c1 ∈ L
N

2−ε (SD) and SD is bounded, we have:

‖|c1| + 1‖N/(2−ε),2R � C(M,N, ε),

which implies
∫

(|c1| + 1)(ηv)2 dx � C‖ηv‖ε2,2R{‖∇ηv‖2−ε
2,2R + ‖η∇v‖2−ε

2,2R} (3.7)

ΣD∩B2R
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and from (3.5)-(3.7) we get

‖η∇v‖2
2,2R � 2‖v∇η‖2,2R‖η∇v‖2,2R + qC‖ηv‖ε2,2R{‖∇ηv‖2−ε

2,2R + ‖η∇v‖2−ε
2,2R} . (3.8)

We divide by ‖v∇η‖2
2,2R and call

z = ‖η∇v‖2,2R/‖v∇η‖2,2R ξ = ‖ηv‖2,2R/‖v∇η‖2,2R ;

hence (3.8) can be written as

z2 � 2z + qCξε + qCξεz2−ε.

Lemma 2 in [30] yields

z � C[2 + (Cqξε)1/2 + (Cqξε)1/ε] � Cq2/ε(1 + ξ),

i.e.

‖η∇v‖2,2R � Cq2/ε(‖ηv‖2,2R + ‖∇ηv‖2,2R). (3.9)

By using Sobolev inequality (see [1]) we obtain

‖ηv‖2∗,2R � Cq2/ε(‖ηv‖2,2R + ‖∇ηv‖2,2R). (3.10)

Equations (3.9) and (3.10) permit to start a Moser iteration and get the assertion. Indeed, let h, h′ ∈ R be 
such that h < h′ � 2R. We choose η such that η = 1 in Bh′ , 0 � η � 1 in Bh, η identically zero outside Bh, 
and such that |∇η| ≤ 2(h − h′)−1. By using η in (3.9) and (3.10) yields

‖∇v‖2,h′ � Cq2/ε(h− h′)−1‖v‖2,h , (3.11)

‖v‖2∗,h′ � Cq2/ε(h− h′)−1‖v‖2,h . (3.12)

Let l → ∞ in (3.12). Since v → ūq, Lebesgue’s monotone convergence theorem yields

‖ūq‖2∗,h′ � Cq2/ε(h− h′)−1‖ūq‖2,h , (3.13)

i.e.

‖ū‖2∗q,h′ � [Cq2/ε(h− h′)−1]1/q‖ū‖2q,h. (3.14)

Now we call

t := 2∗/2 pν := 2tν ν = 0, 1, 2, ...

and hν = R(1 + 2−ν), h′
ν = hν+1 whence (3.14) becomes

‖ū‖pν+1,hν+1
� [C(2t)2ν/ε]1/x

ν‖ū‖pν ,hν
.

Iteration yields

‖ū‖pν+1,h � C

ν∑
t=1

1/tν
(2t)

(2/ε)(
ν∑

t=1
ν/tν)

‖ū‖2,2R � C‖ū‖2,2R,
ν+1
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since both series appearing in the last display are convergent. Letting ν → ∞ and observing that ‖ū‖∞,R �
lim ‖ū‖pν ,hν

, we find

‖ū‖∞,R � C‖ū‖2,2R,

and from

ū = u + ‖c2‖∞,2R

we obtain

‖u‖∞,R � C{‖u‖2,2R + ‖c2‖∞,2R}.

This proves (3.2) and the first part of the theorem.
In order to prove the latter part of the assertion, we notice that if u is a solution to (3.3) then u satisfies

−Δu = c(x)(1 + u) ,

with

c(x) = f(u(x))
1 + u

with c(x) satisfying

|c(x)| � |f(u(x))| � c|u|p−1|u| + |b(x)| .

Since u ∈ W 1,2 then u ∈ L2∗ and if we consider ε < N−2
2 (ps − p) it holds

(p− 1) N

2 − ε
< 2∗

namely c|u|p−1 ∈ L
N

2−ε . Since b(x) ∈ L
N

2−ε then we can apply the first part of the theorem and conclude. �
Remark 3.2. Theorem 3.1 still holds when g(x, u) � c(1 + |u|p) with 1 < p � pS . The critical case p = pS
requires a modification of the proof which can be found in [27, Appendix D].

The extension to a convex cone can be found in [9, Lemma 2.1]. We mention that the convexity of the 
cone is not needed in the proof.

Since the nonlinearity f in (1.4) is locally Lipschitz continuous, and if we have that the solution u is 
bounded, then we have that the function a(x) = f ′(u(x)) belongs to L∞(SD) and we can apply the results 
of Section 2 to the linearized operator at u:

Lu(v) := −Δv − f ′(u)v, v ∈ H1
0 (SD ∪ Γ1) (3.15)

defined as in (2.1).
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3.1. Morse index of radial solutions

To define the Morse index of a solution u to (1.4) we consider the quadratic form associated to Lu:

Qu(v) :=
∫
SD

(
|∇v|2 − f ′(u)v2

)
dx , v ∈ H1

0 (SD ∪ Γ1) (3.16)

Definition 3.3. Let u ∈ H1
0 (SD ∪ Γ1) be a solution of (1.4). We say that:

i) u is stable (or u has zero Morse index) if Qu(w) � 0 for any w ∈ C1
c (SD ∪ Γ1);

ii) u has Morse index equal to the integer m(u) � 1 if m(u) is the maximal dimension of a subspace of 
C1

c (SD ∪ Γ1) where the quadratic form Qu is negative definite;
iii) u has infinite Morse index if, for any integer k � 1, there exists a k-dimensional subspace of C1

c (SD∪Γ1)
where Qu is negative definite.

Since Lu is a linear compact operator, the maximal dimension of a subspace of H1
0 (SD ∪ Γ1) in which 

Qu is negative defined is equivalent to the number of negative eigenvalues of Lu in H1
0 (SD ∪ Γ1), counted 

with their multiplicity.
From Proposition 2.4 it follows that the number of negative eigenvalue, counted with their multiplicity, 

is equal to the number of negative singular eigenvalues Λ̂i of the associated singular problem. Hence, if 
ũ ∈ H1,rad

0 (SD ∪ Γ1) is a solution to (1.4), then we have

m(ũ) = #{i � 1|Λ̂i < 0} .

We remember that Proposition 2.6 yields

Λ̂i = Λ̂rad
k + λj ,

for some k � 1, j � 0, so that

m(ũ) = #{j � 0, k � 1|Λ̂rad
k + λj < 0}. (3.17)

For a radial solution ũ of (1.4), we denote by mrad(ũ) the Morse index of ũ in the space H1
0,rad(SD∪Γ1), i.e. 

mrad(ũ) is the number of the negative eigenvalues of Lu to which there corresponds a radial eigenfunction.
To show the break of symmetry results it is important to understand how Morse index of ũ changes 

passing from the space H1
0,rad(SD ∪ Γ1) to the space H1

0 (SD ∪ Γ1). Next theorem provides precise formulas 
to get m(ũ), depending on the eigenvalues λj of the Laplace Beltrami operator −ΔSN−1 on D.

Proposition 3.4. Let ũ be a bounded weak radial solution of (1.4) and Λ̂rad
k the singular eigenvalue defined 

in (2.15) and (2.16) for the linearized operator Lũ, i.e. considering a(x) = f ′(ũ(x)). Then

i) if mrad(ũ) = 0 then m(ũ) = 0,
ii) if mrad(ũ) = 1 then

m(ũ) = #{j � 1 : λj < −Λ̂rad
1 } + 1. (3.18)

More generally it holds
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iii) if mrad(ũ) = d then

m(ũ) =
d∑

k=1

k · #{j � 1 : −Λ̂rad
k+1 � λj < −Λ̂rad

k } + d.

Proof.

i) The proof is an immediate consequence of Proposition 2.6. Indeed, since λj � 0 for any j � 0, then 
Λ̂rad
k � 0 for any k � 1 and we have

Λ̂i = Λ̂rad
k + λj � 0

for any i � 1, which implies that the Morse index of ũ is zero.
ii) Since ũ is a solution with mrad(ũ) = 1 we have

Λ̂rad
1 < 0 and Λ̂rad

i � 0 ∀i � 2 .

Since λ0 = 0 then we have

m(ũ) = #{i � 1 : Λ̂i < 0} = #{j � 0 : λj < −Λ̂rad
1 } = #{j � 1 : λj < −Λ̂rad

1 } + 1 � 1 ,

which is (3.18).
iii) We notice that

m(ũ) = #{i � 1 : Λ̂i < 0} = #{k � 1, j � 0 : λj < −Λ̂rad
k }

=
d∑

k=1

#{j � 0 : λj < −Λ̂rad
k } .

Since λ0 = 0 we have

d∑
k=1

#{j � 0 : λj < −Λ̂rad
k } =

d∑
k=1

#{j � 1 : λj < −Λ̂rad
k } + d ,

and from λ0 � λ1 � λ2 � · · · , we obtain

d∑
k=1

#{j � 1 : λj < −Λ̂rad
k } + d =

d∑
k=1

k · #{j � 1 : −Λ̂rad
k+1 � λj < −Λ̂rad

k } + d,

which ends the proof. �
In the following proposition we give an estimate of the first singular radial eigenvalue Λ̂rad

1 .

Proposition 3.5. If ũ is a bounded positive radial weak solution of (1.4), then

Λ̂rad
1 > −(N − 1).

Proof. Let ũ ∈ H1,rad
0 (SD∪Γ1) be a radial solution to (1.4), with an abuse of notation we write ũ(r) = ũ(|x|)

and define η(r) := ∂ũ′(r). Notice that η(r) < 0 for r > 0. Since



G. Ciraolo et al. / J. Math. Pures Appl. 187 (2024) 138–170 157
−ũ′′ − N − 1
r

ũ′ = f(ũ)

then it follows that η satisfies

−η′′ + N − 1
r2 η − N − 1

r
η′ = f ′(ũ)η ,

i.e. η(r) < 0 for r ∈ (0, 1) and

{
(rn−1η′)′ + rn−1f ′(ũ)η = rn−3(N − 1)η for r ∈ (0, 1)
η(0) = 0 .

Let v be an eigenfunction associated to the eigenvalue Λ̂rad
1 for the following problem

⎧⎪⎪⎨
⎪⎪⎩

(rn−1(v)′)′ + rn−1f ′(ũ)v = −rn−3Λ̂rad
1 v for r ∈ (0, 1)

v(0) = v(1) = 0
v > 0

Assume that Λ̂rad
1 � −(N − 1). If Λ̂rad

1 = −(N − 1), then η and v are two solutions of the same Sturm-
Liouville problem and they are linearly independent, because η(1) �= 0 = v(1). As a consequence of the 
Sturm separation theorem [31], the zeros of η and v must alternate. But this leads to a contradiction, since 
η should be zero at a point r̄ ∈ (0, 1), which contradicts η < 0. If Λ̂rad

1 < −(N−1), then by the Sturm-Picone 
comparison theorem [28], η must have a zero between any two consecutive zeroes of v. This leads again to 
the same contradiction as before. �
3.2. Solutions of Morse index one and proof of Theorem 1.2

Before proving Theorem 1.2 which concerns solutions of Morse index one let us consider a class of 
nonlinearities for which such solution exists. We assume that f = f(s) satisfies the following conditions:

(F1) f(s) : R → R belongs to C1(R);
(F2) there exists a1 ∈ L

2N
N+2 (SD) and a2 > 0 such that

|f(s)| � a1(x) + a2|s|p ∀s ∈ R

for 1 < p < pS , pS = N+2
N−2 if N � 3;

(F3) f(s) = o(|s|) as s → 0;
(F4) ∃α > 2, r � 0 such that for |s| � r

0 < αF (s) � sf(s)

where F is the primitive of f ;
(F5)

∂f (s) > f(s) ∀s ∈ R \ {0} .

∂s s



158 G. Ciraolo et al. / J. Math. Pures Appl. 187 (2024) 138–170
We denote by JSD
the functional

JSD
[u] = 1

2

∫
SD

|∇u|2dx− 1
2∗

∫
SD

|u|2∗
dx, u ∈ H1

0 (SD ∪ Γ1)

and define the associated Nehari manifold N as follows

N :=
{
v ∈ H1

0 (SD ∪ Γ1) : 〈J ′(v), v〉 =
∫
SD

|∇v|2dx−
∫
SD

f(v)v dx = 0
}
.

We have the following result [11, Proposition 3.5].

Proposition 3.6. Let f satisfy (F1) − (F5). Then N is a C1-Hilbert manifold of codimension one and:

(i) there exists r > 0 such that Br ∩N = ∅;
(ii) any critical point of J|N is a critical point of J on H1,rad

0 (SD ∪ Γ1);
(iii) for any u ∈ H1,rad

0 (SD ∪ Γ1) \ {0} there exists t(u) > 0 such that t(u)u ∈ N .

Using the properties of the Nehari manifold and Proposition 3.1, we also get (we refer to [11, Theorem 
3.7]):

Theorem 3.7. Let f satisfy (F1)-(F5) with a1 ∈ L
N

2−ε for ε > 0 small enough in (F2) and assume that

1
2f(s)s− F (s) � c ∀s ∈ R

for some constant c ∈ R. Then there exists ū ∈ H1
0 (SD ∪Γ1) which is a nontrivial classical positive solution 

in (1.4) with Morse index equal to one.

Remark 3.8. An example of a function f that satisfies the assumptions of Theorem 3.7 is given by

f(u) = up 1 < p < pS .

Remark 3.9. We can obtain the same result by applying a mountain pass argument ([11], Theorem 3.4).

Remark 3.10. It is clear that the same argument can be applied to

Nrad :=
{
v ∈ H1,rad

0 (SD ∪ Γ1) : 〈J ′(v), v〉 =
∫
SD

|∇v|2dx−
∫
SD

f(x, v)vdx = 0
}
,

and then we obtain a solution ũ ∈ H1,rad
0 (SD∪Γ1), obtained by minimization on Nrad, such that mrad(ũ) =

1.

We conclude by proving Theorem 1.2.

Proof of Theorem 1.2. Let ũ be the unique radial solution of (1.4) and let Λ̂rad
1 be the singular eigenvalue 

related to the linear operator Lũ.
If Λ̂rad

1 � 0 then mrad(ũ) = 0, i.e. ũ is stable in the space H1,rad
0 (D ∪ Γ1). Then by i) of Proposition 3.4

the Morse index m(ũ) in H1
0 (D ∪ Γ1) is also zero and hence ũ cannot coincide with ū which, therefore, is 

nonradial.
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If Λ̂rad
1 < 0 and λ1(D) < −Λ̂rad

1 , then by ii) of Proposition 3.4 we deduce that m(ũ) � 2 so that ũ �= ū

and this implies the assertion, since ũ is the only radial solution of (1.4). �
Remark 3.11. By Remark 3.10 we know that a radial solution ũ for which Λ̂rad

1 < 0 exists, under conditions 
(F1) −(F5). On the other side uniqueness of the positive radial solution holds for several type of nonlinearities 
(see [25]). In particular if f(u) = up 1 < p < pS , then there exists a unique positive radial solution ũ for 
which mrad(ũ) = 1.

3.3. Lane Emden

Here we consider the Lane-Emden problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu = up in SD

∂u
∂ν = 0 on Γ1

u = 0 on D

u > 0 in SD

(3.19)

with 1 < p < pS , pS = N+2
N−2N � 3.

By Remarks 3.8, 3.10 and 3.11, we have that (3.19) admits a unique positive radial solution with Morse 
index one in the space H1,rad

0 (SD ∪ Γ1) which is also bounded thanks to Proposition 3.1. We denote it by 
ũp to emphasize the dependence on the exponent p.

If λ1(D) > N − 1, from Proposition 3.5 and ii) of Proposition 3.4 we get that m(ũp) = mrad(ũp) = 1. 
Indeed

m(ũp) = #{j � 1 : λj < −Λ̂rad
1 } + 1 � {j � 1 : λj < N − 1} + 1 = 1 .

Thinking about the proof of Theorem 1.2 this sems to indicate that there is no breaking of symmetry 
whenever λ1(D) > N − 1.

To prove instead that breaking of symmetry occurs whenever λ1(D) < N − 1, we need a refined estimate 
on the eigenvalue Λrad

1 related to the linearized operator Lũp
. To stress the dependence on p we denote by 

Λ̂rad
1 (p) the singular radial eigenvalue.
We have

Theorem 3.12. Let u ∈ H1,rad
0 (SD ∪Γ1) be a radial solution to (3.19) and Λ̂rad

1 (p) be the first radial singular 
eigenvalue and ψ1 an associated eigenfunction, i.e.

⎧⎪⎪⎨
⎪⎪⎩
−Δψ1 − pup−1ψ1 = Λ̂rad

1 (p)
|x|2 ψ1 in SD \ {0}

∂ψ1
∂ν = 0 on Γ1

ψ1 = 0 on D.

(3.20)

Then it holds

lim
p→pS

Λ̂rad
1 (p) = −(N − 1). (3.21)

Before proving Theorem 3.12, we introduce a limit eigenvalue problem (see also [14, Section 5.1]). Let 
D1,2(RN ) be the space defined as

D1,2(RN ) = {u ∈ L2∗
(RN ) : |∇u| ∈ L2(RN )}
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and let D1,2
rad(RN ) be its subspace given by radial function. We define

Λ∗ := inf
v∈D1,2

rad(RN ),v �=0

∫
RN

(
|∇v|2 − pSU

pS−1v2
)
dx∫

RN
v2

|x|2 dx
, (3.22)

where

U(x) :=
(

N(N − 2)
N(N − 2) + |x|2

)N−2
2

.

Theorem 3.13. Let Λ∗ be given by (3.22). Then Λ∗ = −(N − 1) and it is achieved by the function

η(x) = |x|(
1 + |x|2

N(N−2)

)N/2 , (3.23)

which is a solution of

−Δη − V η = Λ∗ η

|x|2

in RN \ {0}, where V = pSU
pS−1.

Proof. This theorem was proved in [15, Theorem 5.1] (see also [14, Section 5.1]) and for this reason the 
proof is omitted. �
Proof of Theorem 3.12. Let p ∈ (1, pS) be fixed and let up the radial solution to (3.19). Let φp be the 
eigenfunction associated to the first eigenvalue Λ̂rad

1 (p), namely

{
−φ′′

p − N−1
r φ′

p − p|up|p−1φp = Λ̂rad
1 (p)φp

r2 , r ∈ (0, 1)
φp(0) = φp(1) = 0 ,

and we assume that φp is normalized such that
∥∥∥∥φp

|y|

∥∥∥∥
L2(B1)

= 1.

Let

Mp := ‖up(x)‖L∞(B1) < ∞

and, by setting Rp = M
p−1
2

p , we rescale as follows

BRp
= M

p−1
2

p B1,

and

φ̂p(x) := 1
(p−1)(N−2)

4
φp

(
|x|
p−1
2

)
, x ∈ BRp

.

Mp Mp
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We have ⎧⎪⎪⎨
⎪⎪⎩
−Δφ̂p − Vp(x)φ̂p = Λ̂rad

1 (p) φ̂p

|x|2 , in BRp

φ̂p = 0 on ∂BRp

φ̂p(0) = 0 ,

(3.24)

where

Vp(x) := p

(
1
Mp

up

(
|x|

M
p−1
2

p

))p−1

,

and Rp → ∞ and Vp → V in C0
loc(RN ) as p → pS .

Now we show (3.21). We first notice that, from Proposition 3.5, we have that

Λ̂rad
1 (p) > −(N − 1)

for any 1 < p < pS , which implies

lim inf
p→ps

Λ̂rad
1 (p) � −(N − 1) . (3.25)

Now we show the reverse inequality in (3.25). More precisely, we show that for any ε > 0 there exists pε
such that for any pε ≤ p < pS we have

Λ̂rad
1 (p) � −(N − 1) + ε.

Let ε > 0 be fixed. From Theorem 3.13 we know that Λ∗ = −(N − 1) and it is achieved by η, which is given 
by (3.23), i.e.

−(N − 1) =

∫
RN

(
|∇η|2 − pSU

pS−1η2
)
dx∫

RN
η2

|x|2 dx
.

Let

η̂(x) =

⎧⎪⎪⎨
⎪⎪⎩
η(|x|) |x| ∈ [0, Rp)
η(Rp) + η′(Rp)(|x| −Rp) [Rp, R̄p)
0 [R̄p,∞) ,

with

R̄p = −η(Rp)/η′(Rp) = Rp

R2
p + N(N − 2)

(N − 1)R2
p −N(N − 2) ,

where by an abuse of notation we write η(Rp) for η(x) evaluated at x with |x| = Rp. Observe that, since η
is definitively radially monotone decreasing and convex, then there exists p0 such that η̂ � η for p � p0.

Since η̂ ∈ H1
0,rad(BRp

), then

Λ̂rad
1 (p) �

∫
BRp

(|∇η̂(x)|2 − Vp(x)η̂(x)2)dx∫
η̂2

2 dx
BRp |x|
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and hence

Λ̂rad
1 (p) � N1

D
+ N2

D
,

where we set

N1 =
∫

BRp

(|∇η̂(x)|2 − V (x)η̂(x)2)dx, N2 =
∫

BRp

(V (x) − Vp(x))η̂(x)2dx, D =
∫

BRp

η̂2

|x|2 dx .

Since η̂ � η for p � p0 we have

D =
∫

BRp

η̂2

|x|2 dx �
∫
RN

η2

|x|2 dx (3.26)

for p � p0. In order to estimate N1, we write

N1 =
∫

BRp

(|∇η̂(x)|2 − V (x)η̂(x)2)dx +
∫

BR̄p
\BRp

(|∇η̂(x)|2 − V (x)η̂(x)2)dx

=
∫

BRp

(|∇η(x)|2 − V (x)η(x)2)dx +
∫

BR̄p
\BRp

(|∇η̂(x)|2 − V (x)η̂(x)2)dx .

Since Rp → +∞ as p → pS and η ∈ H1(RN ), we have that for any ε > 0 there exists p1 such that
∫

BRp

(|∇η(x)|2 − V (x)η(x)2)dx �
∫
RN

(|∇η(x)|2 − V (x)η(x)2)dx + ε

for any p � p1. Moreover we have that

∣∣∣ ∫
BR̄p

\BRp

(|∇η̂(x)|2 − V (x)η̂(x)2)dx
∣∣∣

�
∫

BR̄p
\BRp

|∇η̂(x)|2dx + ‖V ‖∞
∫

BR̄p
\BRp

η̂(x)2dx ≤ (|η′(Rp)|2 + ‖V ‖∞η(Rp)2)|BR̄p
\BRp

| ,

and hence there exists p2 < pS such that

∣∣∣ ∫
BR̄p

\BRp

(|∇η̂(x)|2 − V (x)η̂(x)2)dx
∣∣∣ ≤ ε

for any p ∈ [p2, pS). Thus we obtain that

N1 �
∫
RN

(|∇η(x)|2 − V (x)η(x)2)dx + ε

for any p ≥ max(p0, p1, p2). Since the integral on the right hand side of the above inequality is negative, 
from (3.26) we have
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N1 �
∫
RN (|∇η(x)|2 − V (x)η(x)2)dx∫

RN
η2

|x|2 dx
+ ε = −(N − 1) + ε. (3.27)

Now we consider N2. Let

R � max
{

1, N(N − 2),
N
√

(N − 2)(N + 2)√
ε

}

be fixed. We have

N2 =
∫

BRp

[
V (x) − Vp(x)

]
η̂2(x)dx �

�
∫

BRp∩{|x|�R}

[
V (x) − Vp(x)

]
η̂2(x)dx +

∫
BRp∩{|x|>R}

V (x)η̂2(x)dx

= I + II

From

|I| ≤
∫

Bp∩{|x|�R}

∣∣V (x) − Vp(x)
∣∣|x|2 η̂2(x)

|x|2 dx � R2
(

sup
BR(0)

|Vp(x) − V (x)|
) ∫
Bp∩{|x|�R}

η̂2(x)
|x|2 ,

since R is fixed and Vp → V in C0
loc(RN ) as p → pS , it follows that

I � ε

∫
Bp∩{|x|�R}

η̂2(x)
|x|2

for p close to pS .
Now we give a bound on II. Since the function |x| �→ V (x)|x|2 is decreasing for
|x| > N(N − 2), our choice of R yields

sup
{|x|>R}

(V (x)|x|2) � V (R)R2 � N2(N + 2)(N − 2)
R2 < ε ,

and then

|II| =
∫

Bp∩{|x|>R}

V (x)|x|2 η̂(x)2

|x|2 dx � sup
{|x|>R}

(V (x)|x|2)
∫

Bp∩{|x|>R}

η̂2(x)
|x|2 dx

� ε

∫
Bp∩{|x|>R}

η̂2(x)
|x|2 dx .

Hence we have proved that

|N2| � ε

∫
Bp∩{|x|�R}

η̂2(x)
|x|2 dx + ε

∫
Bp∩{|x|>R}

η̂2(x)
|x|2 dx = ε ,

i.e.



164 G. Ciraolo et al. / J. Math. Pures Appl. 187 (2024) 138–170
|N2|
D

� ε ,

which, together (3.27), implies

Λ̂rad
1 (p) � −(N − 1) + ε . (3.28)

The assertion follows from (3.28) and (3.25). �
We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. If λ1(D) < N − 1, by Theorem 3.13 we have that there exists p0 ∈ (1, pS) such that 
for every p ∈ (p0, pS):

N − 1 > −Λ̂rad
1 (p) > λ1(D). (3.29)

Then by ii) of Proposition 3.4 we have that m(ũp) � 2 for any p ∈ (p0, pS).
On the other side by Theorem 3.7 and Remark 3.8 we know that a solution ūp with m(ūp) = 1 shall 

exist. By the uniqueness of the radial solution we get that ūp is not radial ∀p ∈ (p0, pS). �
Remark 3.14. More generally it holds that if λj(D) < N − 1 for some j � 1 then there exists p0 ∈ (1, pS)
such that for every p ∈ (p0, pS), m(ũp) � j + 1 .

4. The critical Neumann problem in the cone

In this section we prove a symmetry breaking result for the critical Laplace equation in a cone. As before, 
we denote by ΣD ⊂ RN , N ≥ 3, the cone spanned by a domain D ⊂ SN−1 and consider the problem

⎧⎪⎪⎨
⎪⎪⎩
−Δu = upS in ΣD

∂u
∂ν = 0 on ∂ΣD

u > 0 in ΣD ,

(4.1)

where we recall that pS = N+2
N−2 = 2∗ − 1. We mention that ΣD can be written in polar coordinates (r, θ) as

ΣD = (0,+∞) ×D ,

and in cartesian coordinates as

ΣD = Rk × C ,

where C ⊂ RN−k is a cone centered at O ∈ RN−k which does not contain straight lines, with k ∈
{0, 1, . . . , N}.

Let us define the space

D1,2(ΣD) = {u ∈ L2∗
: |∇u| ∈ L2(ΣD)}

and the Sobolev quotient

QΣD
(u) =

∫
ΣD

|∇u|2dx(∫
ΣD

|u|2∗dx

) 2
2∗

u ∈ D1,2(ΣD), u �= 0 . (4.2)
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The following result has been proved in [10].

Theorem 4.1. If ΣD has a point of convexity [10, Def. 2.6] then the infimum:

SΣD
= inf

u∈D1,2(ΣD)\{0}
QΣD

(u) (4.3)

is achieved. In particular, if D̄ ⊂ SN−1
+ then ΣD has a point of convexity, so that (4.3) is achieved.

From now on we consider cones satisfying the hypothesis of Theorem 4.1 and observe that, since SΣD
is 

achieved, the classical Sobolev inequality holds in D1,2(ΣD):

‖u‖L2∗ (ΣD) � (SΣD
)−1/2‖∇u‖L2(ΣD) (4.4)

and (SΣD
)−1/2 is the best constant for (4.4).

Then in D1,2(ΣD) we define the norm

‖u‖2
D1,2(ΣD) =

∫
ΣD

|∇u|2dx ,

which makes it a Hilbert space.
Next we consider the functional

JΣD
= 1

2

∫
ΣD

|∇u|2dx− 1
2∗

∫
ΣD

|u|2∗
dx, u ∈ D1,2(ΣD)

together with the associated Nehari manifold

N (ΣD) =
{
u ∈ D1,2(ΣD) : u �= 0,

∫
ΣD

|∇u|2dx =
∫

ΣD

|u|2∗
dx

}
.

Note that for u ∈ D1,2(ΣD) \ {0} there exists tu > 0 such that tuu ∈ N (u). Then

JΣD
(tuu) = 1

N

[
QΣD

(u)
]N

2

, (4.5)

and it is easy to check that

CΣD
= inf

u∈NΣD

JΣD
(u) = 1

N

[
SΣD

(u)
]N

2

. (4.6)

We observe that any solution of (4.1) belongs to NΣD
, which is a Hilbert manifold of codimension 1. In 

particular we know that the radial function

U(x) = αN

(
1

1 + |x|2
)N−2

2

, x ∈ Σ̄D (4.7)

is a solution of (4.1) with

αN = (N(N − 2))
N−2

4 ,
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as well as any its rescaling and admissible translation. We will refer to U as a standard bubble. Indeed, one 
can see that

Uλ,x0 = αN

(
λ

λ2 + |x− x0|2
)N−2

2

for λ > 0 and x0 ∈ Rk × {O}, is a solution of (4.1).
More generally, if ΣD is a convex cone, it has been proved in [24] (see also [9]) that the standard bubbles 

are the only solutions of (4.1), up to scaling and admissible translation and we have

CΣD
= JΣD

(U) = HN−1(D)
HN−1(SN−1)CRN = HN−1(D)

NHN−1(SN−1)S
N/2 ,

where S is the best Sobolev constant in D1,2(RN ). We also mention that, in the radial setting, the standard 
bubbles U restricted to the cone are the only radial minimizers of JΣD

and, actually, the only radial solutions 
of (4.1).

The goal of this section is to prove Theorem 1.4, i.e. to give a condition on D such that the standard 
bubbles are not the minimizers of JΣD

on NΣD
, which implies the existence of a non-radial least energy 

solution of (4.1). This will be proven by showing that the Morse index of a bubble is strictly greater than 
one. Indeed, if a function v ∈ D1,2(ΣD) is a minimizer of JΣD

on NΣD
then, since NΣD

is a Hilbert manifold 
of codimension 1, we have that m(v) � 1 and actually m(v) is exactly one for the equation (4.1)(see 
Remark 4.4). Therefore, if we prove that m(U) � 2 for some cone ΣD, then U cannot be a minimizer of 
JΣD

on NΣD
and symmetry breaking occurs.

Now recall the definition of Morse index of a solution v of (4.1), which is a critical point of the functional 
JΣD

. Since we are considering unbounded domains, some minor changes are needed with respect to the 
previous sections. We also notice that positive solutions in D1,2(ΣD) are boundd as already mentioned in 
Remark 3.2.

Let Qv(·) be the quadratic form corresponding to the linearization of the equation (4.1) at a solution v

Qv(ψ) =
∫

ΣD

|∇ψ|2dx− pS

∫
ΣD

|v|pS−1ψ2dx ∀ψ ∈ C1
c (Σ̄D)

and notice that Qv it the quadratic form corresponding to the second derivative of the functional JΣD
in 

D1,2(ΣD).

Definition 4.2. Let v ∈ D1,2(ΣD)be a solution of (4.1). We say that:

(i) v is stable (or has zero Morse index) if Qv(ψ) � 0 for any ψ ∈ C1
c (Σ̄D);

(ii) v has Morse index equal to the integer m(v) � 1 if m(v) is the maximal dimension of a subspace of 
C1

c (Σ̄D) where the quadratic form Qv is negative semidefinite;
(iii) v has infinite Morse index if, for any integer k � 1, there exists a k-dimensional subspace of C1

c (Σ̄D)
where Qv is negative definite.

As in Section 3 we denote by λj(D), j ∈ N, the j-nontrivial eigenvalue of the Laplace-Beltrami operator 
−ΔSN−1 on the domain D with zero Neumann boundary condition. We prove the following result:

Theorem 4.3. Let U be given by (4.7), which is a solution to (4.1). We have

m(U) = #{j � 1|λj(D) < N − 1} + 1 , (4.8)
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where m(U) is the Morse index of U . Therefore it holds

(i) if λ1(D) < N − 1 then m(U) � 2;
(ii) if λ1(D) � N − 1 then m(U) = 1.

Though quite obvious it is important to remark that the same result holds if instead of U we consider any 
rescaling of it. This can be verified by analyzing how the quadratic form changes for the rescaled bubbles. 
Hence, if a cone satisfies (i) in Theorem 4.3 then the standard bubble U cannot achieve the infimum CΣD

and then it cannot be a least-energy solution of (4.1).
We delay the proof of Theorem 4.3 and show how to deduce Theorem 1.4 from Theorem 4.3.

Proof of Theorem 1.4. From Theorem 4.3 we first deduce that the bubbles cannot minimize CΣD
whenever 

λ1(D) < N − 1. Moreover, since D̄ ⊂ SN−1
+ then Theorem 4.1 yields that CΣD

is achieved. Since the only 
radial solutions of (4.1) are the bubbles, we get the existence of a nonradial solution w of (4.1) which is 
actually a least energy solution. Moreover, by using Kelvin transform and regularity results (see [9]), we 
also deduce that w is fast decaying. �
Remark 4.4. To prove that the quadratic form QU becomes negative for two independent directions let us 
first observe that it is negative on the space spanned by U itself. Indeed, since pS = 2∗−1, from the equation 
(4.1) we get:

∫
ΣD

|∇U |2dx =
∫

ΣD

U2∗
dx

and then

QU (U) =
∫

ΣD

(U2∗ − pSU
2∗

)dx < 0

since pS > 1.

Let D1,2
rad(RN ) and D1,2

rad(ΣD) be, respectively, the subspaces of D1,2(RN ) and D1,2(ΣD) given by radial 
functions. We observe that, since N � 3, Hardy inequality in Proposition 2.1 yields that if v ∈ D1,2(RN )
and w ∈ D1,2(ΣD) then v

|x| ∈ L2(RN ) and w
|x| ∈ L2(ΣD). Hence, as observed in Section 3, the eigenvalue 

Λ∗ given by (3.22) is well defined and Theorem 3.13 holds. We conclude by proving Theorem 4.3.

Proof of Theorem 4.3. We start by proving (4.8). This will be done in two steps.
Step 1. We prove that

m(U) � #{j � 1|λj < N − 1} + 1.

Suppose that #{j � 1|λj < N − 1} = k, we want to prove that m(U) � k + 1. From Remark 4.4, we 
know that QU (U) < 0, which implies m(U) � 1. Now we want to find ψ1, ..., ψk non radial and linearly 
independent, such that QU (ψi) < 0, for i = 1, ..., k. Let i ∈ {1, ..., k} be fixed and assume that λi(D) < N−1. 
Let ϕi be an eigenfunction of −ΔSn−1 associated to λi(D). Hence ϕi is a solution of the Neumann problem

{
−ΔSn−1ϕi = λi(D)ϕi in D
∂ϕi = 0 on ∂D.
∂ν



168 G. Ciraolo et al. / J. Math. Pures Appl. 187 (2024) 138–170
Now we consider the function

ψi(x) = η(|x|)ϕi

(
x

|x|

)
x ∈ ΣD ,

where η is defined in (3.23) and notice that we have (for r = |x|)

−Δψi = (−η′′ − n− 1
r

η′1)ϕi −
η

r2 ΔSn−1ϕi =

=
[
pS |U |pS−1η + Λ∗

r2 η

]
ϕi + λi(D)

r2 ηϕi =

= pS |U |pS−1ψi + Λ∗ + λi(D)
r2 ψi

in ΣD. Hence

−Δψi − pS |U |pS−1ψi = (Λ∗ + λ1(D))ψi

r2 .

By multiplying by ψi, integrating by parts and using Neumann condition for η and ϕi, we get that

QU (ψi) < 0 .

It is clear that ψi is not radial and ψ1, ..., ψk are linearly independent because ϕ1, .., ϕk are linearly inde-
pendent.

Step 2 We prove that

m(U) � #{j � 1|λj < N − 1} + 1.

If m(U) = k there exist ϕ1, ..., ϕk ∈ C1
c (Σ̄D), linearly independent, s.t.

QU (ϕi, ϕi) < 0

for any i = 1, ..., k. We consider a ball BR centered at the origin and of radius R such that

supp{ϕ1, ..., ϕk} ⊂ BR.

Hence, for any i = 1, ..., k, we have

QU (ϕi) =
∫

ΣD

|∇ϕi|2dx− pS

∫
ΣD

|U |pS−1ϕ2
i dx =

∫
ΣD∩BR

|∇ϕi|2dx− pS

∫
ΣD∩BR

|U |pS−1ϕ2
i dx .

Let ūε,R ∈ H1,rad
0 (ΣD) be a radial solution of the subcritical problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu = upS−ε in ΣD ∩BR

u = 0 on ΣD ∩ ∂BR

∂νu = 0 on ∂Σ ∩ B̄R

u > 0 in ΣD ∩BR ,

and consider the associated quadratic form
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Qūε,R
(ϕ) =

∫
ΣD∩BR

|∇ϕ|2dx− (pS − ε)
∫

ΣD∩BR

|ūε,R|pS−ε−1ϕ2dx.

Let Mε be the maximum of ūε,R (which is known to be attained at the origin)

Mε := ūε,R(0) = ‖ūε,R‖L∞ → ∞ for ε → 0

and we define

ũε(x) := 1
Mε

ūε,R

(
x

M
pε−1

2
ε

)
.

If we call BRε
= M

p−1
2

ε B(0, R) we have that ũε satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−Δũε = ũpε
ε in BRε

ũε = 0 on ∂BRε

∂ν ũε = 0 on ∂BRε

ũε > 0 in BRε

ũε(0) = 1 .

By a standard compactness argument [14, Section 5.1] we have that

ũε → U for ε → 0 in C2
loc(RN ) (4.9)

where U is the standard bubble with U(0) = 1.
If ε is small enough we have that M

pε−1
2

ε > R. Hence, for any fixed i = 1, ..., k, from (4.9) we have that

Qũε
(ϕi) =

∫
supp(ϕi)

|∇ϕi|2dx− (pS − ε)
∫

supp(ϕi)

|ũε|pS−ε−1ϕ2
i dx → QU (ϕi) < 0 ,

as ε → 0. It follows that m(ũε) ≥ k; since ii) of Proposition 3.4 and Theorem 3.12 imply

m(ũε) = #{j � 1|λj < N − 1} + 1

we conclude the proof of Step 2. �
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