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Abstract: Artificial intelligence (AI) can make intelligent decisions in a manner akin to that of the
human mind. AI has the potential to improve clinical workflow, diagnosis, and prognosis, especially
in radiology. Acute respiratory distress syndrome (ARDS) is a very diverse illness that is characterized
by interstitial opacities, mostly in the dependent areas, decreased lung aeration with alveolar collapse,
and inflammatory lung edema resulting in elevated lung weight. As a result, lung imaging is
a crucial tool for evaluating the mechanical and morphological traits of ARDS patients. Compared
to traditional chest radiography, sensitivity and specificity of lung computed tomography (CT) and
ultrasound are higher. The state of the art in the application of AI is summarized in this narrative
review which focuses on CT and ultrasound techniques in patients with ARDS. A total of eighteen
items were retrieved. The primary goals of using AI for lung imaging were to evaluate the risk of
developing ARDS, the measurement of alveolar recruitment, potential alternative diagnoses, and
outcome. While the physician must still be present to guarantee a high standard of examination, AI
could help the clinical team provide the best care possible.

Keywords: artificial intelligence; lung imaging; CT; LUS; ARDS; COVID-19; deep learning; ma-
chine learning

1. Introduction

Broadly defined, artificial intelligence (AI) is a machine or computing platform that
is capable of making intelligent decisions in a manner similar to the human mind [1].
In healthcare, AI could improve prognosis, diagnosis, treatment, and clinical workflow,
particularly in the field of radiology, cardiovascular, and pathology [1,2]. Many of these
medical tasks have been widely adopted in daily clinical practice [1]. During the last
pandemic, significant progress was made in the development of AI resulting in more than
900 articles on COVID-19 and artificial intelligence [3]. Although the presence of a physician
is still essential, AI could assist the clinical team in providing the best possible care.

During 2020, up to 30% of radiologic examinations were managed by AI with almost
20% planned for the following year [4,5], such as to detect intracranial hemorrhage, pul-
monary embolism, and to monitor mammographic abnormalities. In addition, AI can
improve scanning procedures, by reducing radiation exposure during scanning and ac-
quisition, and then can optimize the sophisticated image reconstruction across magnetic
resonance imaging, computed tomography (CT), and positron emission tomography modal-
ities [4,5]. A recent survey found that radiologists would like to see AI improve anatomical
measurements, lesion detection, and the quality of radiological imaging [4]. In particular,
acute respiratory distress syndrome (ARDS) is a rather heterogeneous syndrome charac-
terized by an inflammatory lung edema leading to an increased lung weight, decreased
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lung aeration with the presence of alveolar collapse, and interstitial opacities mainly in the
dependent areas [6]. Lung imaging is an essential tool to assess not only the morphology
but also the mechanical characteristics of ARDS patients. Lung CT and lung ultrasound
(LUS) have a higher sensitivity and specificity than conventional chest radiography.

2. Machine Learning and Deep Learning

Machine learning (ML) is a subset of AI that focuses on developing algorithms and
models that allow computers to learn from data and make predictions or decisions based on
that data. These algorithms rely on manually engineered features. Developers write explicit
instructions for the computer to follow. In ML, however, the computer learns patterns and
relationships from data to make informed decisions or predictions. The primary goal of ML
is to enable computers to improve their performance on a task over time by learning from
examples rather than being explicitly programmed. ML algorithms are primarily designed
to classify objects, detect patterns, predict outcomes, and make informed decisions [7].

In contrast, deep learning (DL) is a subfield of ML that focuses on training artificial
neural networks with multiple layers (deep architectures) to learn complex patterns from
data. In DL, models are based on deep artificial neural networks that can learn directly
from data without the need for manual extraction. These neural networks are inspired by
the structure and function of the human brain, where information is processed through
interconnected neurons. The term “deep” in DL refers to the depth of the neural network,
which consists of multiple hidden layers between the input and output layers. DL tends
to work best with large datasets, as a large amount of data is required to successfully
train deep neural networks. Certain neural network architectures such as the so-called
convolutional neural networks (CNNs) are used specifically for image recognition. The
potential applications of DL using lung CT and ultrasound may range from the early
diagnosis, detection, and segmentation of specific lung regions to the prediction of the
short- and long-term clinical outcomes [8].

3. Search Strategy

In this narrative review, we focus on the role of AI in the field of lung imaging in ARDS.
Figure 1 shows the search strategy flowchart.
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We used PubMed and Embase databases performing two separate searches. For
the first search, we used the following initial screening keywords: “lung CT scan AND
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artificial intelligence/machine learning AND ARDS/acute respiratory failure”. For the
second search, we used “lung ultrasound AND artificial intelligence/machine learning
AND ARDS/acute respiratory failure”. Then, the search was expanded using the following
keywords: “lung imaging AND artificial intelligence/machine learning AND ARDS/acute
respiratory failure”, resulting in 96 articles. After excluding duplicates, we also excluded
screened abstracts and articles that did not include artificial intelligence involving either
CT imaging or lung ultrasound imaging. Nineteen articles were identified. We excluded
articles on pediatric patients and animals, resulting in 12 papers. We included 6 articles
from the references. We included a total number of 18 studies in the review, which are
summarized in Table 1.
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Table 1. Summary of the studies.

Author, Year Study Design Aim Endpoints AI Model Results

Nishiyama, 2020 [9] single center retrospective prediction of prognosis

To evaluate the relationship
between CT volume of

well-aerated lung region and
prognosis in ARDS patients.

An automated lung
volumetry software of lung

CT scan to identify lung
region volumes by CT
attenuation densities.

Well-aerated lung regions
showed a positive correlation

with 28-day survival.
Survival outcome was better
for percentage of well-aerated
lung region/predicted total

lung capacity ≥40%
than <40%.

Gresser, 2021 [10] single center retrospective prediction of prognosis

To assess the potential of
AI-based CT assessment and
clinical score to predict the
need for ECMO therapy in

COVID-19 ARDS.

CT software provides
segmentation of lung lobes

providing a CT severity score.

AI-based assessment of lung
involvement on CT scans at
hospital admission and the
SOFA scoring, especially if

combined, can be used as risk
stratification tools for

subsequent ECMO
requirement.

Hermann, 2021 [11] multicenter retrospective alveolar recruitment

To compare the accuracy in
the computation of

recruitability on CT scan
between automatic lung

segmentation performed by a
properly trained neural

network and manual
segmentation in ARDS

and COVID-19.

A DL algorithm to
automatically segment ARDS
injured lungs to calculate the

lung recruitment.

The AI segmentation showed
the same degree of inaccuracy
of the manual segmentation.
The recruitability measured

with manual and AI
segmentation had a bias of

+0.3% and −0.5% expressed
as change in well-aerated

tissue fraction.

Kang, 2021 [12] single center retrospective differential diagnosis

To train a DL classifier model
to differentiate between
COVID-19 and bacterial

pneumonia based on
automatic segmentation of

lung and lesion regions.

A DL model with deformable
convolution neural network

architecture trained to
differentiate lesion patches of

COVID-19 from those of
bacterial pneumonia on

CT scan.

DL lung CT scan analysis
with constructed lesion

clusters achieved an accuracy
of 91.2% for classifying
COVID-19 and bacterial

pneumonia patients.



J. Clin. Med. 2024, 13, 305 5 of 20

Table 1. Cont.

Author, Year Study Design Aim Endpoints AI Model Results

Lanza, 2020 [13] single center retrospective prediction of prognosis

To test quantitative CT
analysis using a

semi-automated method as
an outcome predictor in
terms of need for oxygen

support or intubation
in COVID-19.

Quantitative CT analysis with
a semi-automated

segmentation algorithm that
divides lungs into not

aerated, poorly aerated,
normally aerated

and hyperinflated.

The amount of compromised
lung volume can predict the

need for oxygenation support
(between 6–23% of

compromised lung) and
intubation (above 23%) and is

a significant risk factor for
in-hospital death.

Liu, 2020 [14] single center retrospective prediction of prognosis

To quantify pneumonia
lesions by CT (% of

ground-glass,
semi-consolidation and

consolidation volume) in the
early days to predict

progression to severe illness
using AI algorithms

in COVID-19.

CT quantitative analysis
combines a fully

convolutional network with
adopting thresholding and

morphological operations for
segmentation of lung and

pneumonia lesions.

CT features on day 0 and 4,
and their changes from day 0
to day 4, showed predictive
capability for severe illness

within a 28-day follow up. CT
quantification of pneumonia

lesions can early and
non-invasively predict the

progression to severe illness.

Pennati, 2023 [2] single center retrospective alveolar recruitment

To develop and validate
classifier models to identify

patients with a high
percentage of potentially

recruitable lung from readily
available clinical data and

from a single CT scan
quantitative analysis at

ICU admission.

Four ML algorithms (Logistic
regression, Support Vector
Machine, Random Forest,
XGboost) to predict lung

recruitment starting from a
single CT scan obtained at

5 cmH2O at ICU admission.

The use of the four ML
algorithms based on a CT

scan at 5 cm H 2O were able
to classify lung recruiter

patients with similar AUC as
the ML algorithm, based on

the combination of lung
mechanics, gas exchange and

CT data.

Penarrubia, 2023 [15] single center retrospective alveolar recruitment

To assess both intra- and
inter-observer smallest real

difference exceeding
measurement error of

recruitment using both
human and ML on low-dose

CT scans acquired at
5 and 15 cm H2O of PEEP

in ARDS.

ML lung segmentation
algorithm on CT scan to

compute alveolar recruitment
at 5 and 15 cm H2O of PEEP.

Human–machine and
human–human inter-observer

measurement errors were
similar, suggesting that ML

segmentation algorithms are
valid alternative to humans

for quantifying alveolar
recruitment on CT.
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Table 1. Cont.

Author, Year Study Design Aim Endpoints AI Model Results

Lopes, 2021 [16] multicenter retrospective
(study protocol) prediction of prognosis

To develop a ML based on
clinical, radiological and
epidemiological data to

predict the severity prognosis
(ICU admission, intubation)

in COVID-19.

A ML model receives a lung
CT as input and outputs the

stratification of lung
parenchyma, discerning
regions of the lungs with

different densities.

Study in progress

Puhr-Westerheide, 2022 [17] single center retrospective diagnosis

To compare AI-based
quantitative CT severity score
to SOFA score in predicting
in-hospital mortality at ICU

admission in COVID-19
ARDS patients.

AI-based lung injury
assessment on CT scan for the

diagnostic performance to
predict in-hospital mortality.

CT severity score was not
associated to in-hospital

mortality prediction, whereas
the SOFA score showed a

significant association.

Röhrich, 2021 [18] single center prospective prediction of prognosis

To develop a ML model for
the early ARDS prediction
from the first CT scan of

trauma patients
at hospital admission.

A ML model with
convolutional neural network

(radiomics) approach to
automatically delineate the
lung at lung CT to predict

future ARDS.

The ML model with
radiomics score resulted in a
higher AUC (0.79) compared
to injury severity score (0.66)
and abbreviated injury score

of the thorax (0.68) in
prediction of ARDS. The

radiomics score achieved a
sensitivity and a specificity of

0.80 and 0.76.

Sarkar, 2023 [19] single center retrospective diagnosis and prediction of
prognosis

To train and validate DL
models to quantify

pulmonary contusion as a
percentage of total lung
volume and assess the
relationship between

automated Lung Contusion
Index and relevant clinical

outcomes (ICU LoS and
mechanical ventilation time).

DL model for automated CT
scan segmentation to quantify
the percent lung involvement

indexed to total
lung volumes.

Automated Lung Contusion
Index was associated with
ARDS, longer ICU LoS and

longer mechanical ventilation
time. Automated Lung

Contusion Index and clinical
variables predicted ARDS

with an AUC of 0.70, while
automated Lung Contusion
Index alone predicted ARDS

with an AUC of 0.68.
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Table 1. Cont.

Author, Year Study Design Aim Endpoints AI Model Results

Wang, 2020 [20] retrospective study diagnosis

To explore the relationship
between the quantitative
analysis results and the

ARDS existence, using an
automatic quantitative

analysis model based on DL
segmentation model

in COVID-19.

DL model to provide an
automatic quantitative

analysis of infection regions
on lung CT to assess their

density and location.

The total volume and density
of the lung infectious regions

were not related to ARDS.
The proportion of lesion

density was associated with
increased risk of ARDS

in COVID-19.

Zhang, 2020 [21] single center retrospective diagnosis

To compare the performance
of the three DL models and
determine which model is

more diagnostic.

Three DL models (VGG,
Resnet and EfficientNet)
are used to classify LUS
images of pneumonia

according to different clinical
stages based on a self-made

image dataset.

EfficientNet showed to be the
best model providing the best
accuracy for 3 and 4 clinical

stages of pneumonia, with an
accuracy of 94.62% and

91.18%, respectively. The best
classification accuracy of

8 clinical features of
pneumonia at LUS images

was 82.75%.

Baloescu, 2020 [22] single center retrospective diagnosis

To test the DL algorithm to
quantify the assessment of B
lines in LUS images from a

database of patients
presenting at ED with

dyspnea or chest pain and to
compare the algorithm to

expert human interpretation.

A DL model is trained and
developed based on a dataset

of LUS clips to assess
presence/absence of B lines
and severity classification.

The accuracy in detecting B
lines was 94% with a kappa
of 0.88; the accuracy of the

severity assessment was 56%
with a kappa of 0.65.
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Table 1. Cont.

Author, Year Study Design Aim Endpoints AI Model Results

Born, 2021 [23] multicenter retrospective differential diagnosis

To compare different AI
models for the differential

diagnosis of COVID-19
pneumonia and

bacterial pneumonia.

Five AI models (VGG,
VGG-CAM, NASNetMobile,

VGG-segement,
Segment-Enc) are tested on a
dataset of LUS images and
videos of healthy controls
and patients affected by
COVID-19 and bacterial

pneumonia and compared in
terms of recall, precision,
specificity and F1 scores.

Two models (VGG and
VGG-CAMI) had an accuracy
of 88 ± 5% in distinguishing
COVID-19 pneumonia and

bacterial pneumonia.

Arntfield, 2021 [24] multicenter retrospective differential diagnosis

To compare the DL model
and the surveyed

LUS-competent physicians in
the ability of discriminating
pathological LUS imaging

A DL convolutional neural
network model is trained on
LUS images with B lines to

discriminate between
COVID-19 ARDS,

non-COVID ARDS and
hydrostatic pulmonary
edema and compared

with surveyed
LUS-competent physicians.

The DL model showed an
ability to discriminate

between COVID-19 ARDS
(AUC 1.0), non-COVID
ARDS (AUC 0.934) and

pulmonary edema (AUC 1.0)
better than physician ability
(AUCs 0.697, 0.704, 0.967).

Ebadi, 2021 [25] multicenter retrospective differential diagnosis

To compare the DL classifier
model against ground truth
classification provided by

expert radiologists
and clinicians.

A DL method based on the
Kinetics-I3D network.

classifies an entire LUS scan,
without the use of
pre-processing or a

frame-by-frame analysis, for
automatic detection of ARDS

features present in
pneumonia and COVID-19

patients (A lines, B lines,
consolidation and
pleural effusion).

The DL model showed an
accuracy of 90% and a

precision score of 95% with
the use of 5-fold
cross validation.

AI: artificial intelligence; ARDS: acute respiratory distress syndrome; AUC: area under the curve; CT: computed tomography; DL: deep learning; ECMO: extracorporeal membrane
oxygenation; ED: emergency department; ICU: intensive care unit; LoS: length of stay; LUS: lung ultrasound; ML: machine learning; PEEP: positive end-expiratory pressure; SOFA:
Sequential Organ Failure Assessment.
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4. Computed Tomography Scan

Lung CT scan has been used extensively for more than 20 years to improve our
understanding of the pathophysiology of ARDS. In particular, the quantitative analysis of
the ARDS lung CT scan has allowed the quantification of the amount of not aerated tissue,
poorly aerated tissue, well-aerated tissue, and over inflated tissue, advancing the concept
of the baby lung and of the lung as a “sponge model” [26]. This quantitative approach
has shown the redistribution of the densities in prone position and the change in the not
aerated tissue fraction at two airway pressures considered the gold standard for assessing
recruitment in ARDS. In this context, CT scan has represented a useful tool to decide the
better mechanical ventilation strategy [27]. Similarly, in the setting of chest trauma, the
quantification of parenchyma damage, at hospital admission by CT scan, can help predict
the evolution from the initial traumatic injuries to focal or diffuse alveolar hemorrhage
followed by pulmonary edema and interstitial alterations typical of ARDS [28].

Then, recently during the COVID-19 pandemic, CT scan has played a relevant role as
a screening tool due to its greater sensitivity for detecting early pneumonic changes. In fact,
although COVID-19 is typically confirmed by viral nucleic acid detection, lung CT scan has
been widely used to differentiate COVID-19 from other viral pneumoniae and to predict
the severity of pneumonia even in the early stage [29].

The application of AI on CT scan lung images has been recently implemented in
patients with COVID-19 disease to predict the evolution in ARDS, to stage and quantify
the disease, and predict the outcome.

Similarly, in non-COVID-19 ARDS, AI has the potential to give a profound contribu-
tion, considering its ability to automatically and efficiently analyze and segment acutely
injured lungs, to provide automated quantitative analysis, and to predict the development
of ARDS, the alveolar recruitment, and the relationship between the quantitative analysis
of lung tissue and specific outcomes.

4.1. Prediction of ARDS

The diagnosis and prediction of ARDS have been supported by various systems, tools,
and techniques, both before and after the AI revolution. Imaging techniques such as chest
radiography, CT, and LUS have played a critical role in the diagnosis and management
of ARDS [30,31]. These lung imaging modalities have been essential in assessing lung
aeration, predicting oxygenation response, and facilitating early diagnosis to prevent the
progression of lung injury [32]. In addition, biomarkers have been explored for their
potential in diagnosing ARDS and predicting its prognosis [33,34]. Recent advances in AI
have significantly changed the landscape of traditional imaging techniques, allowing for
more accurate and rapid analysis of medical imaging data for ARDS diagnosis and severity
prediction [35].

AI-based diagnostic models combining clinical data and CT scans have been devel-
oped, providing accurate and explainable ARDS diagnostic models for real-life scenar-
ios [36,37].

Recently, AI has facilitated the development of models to predict subsequent ARDS devel-
opment using features identified at initial presentation with COVID-19, addressing the need for
clinical decision support tools during the early stages of the COVID-19 pandemic [38,39].

In addition to COVID-19 pneumonia, blunt chest trauma is also currently associated
with parenchymal lung injury to various extents, which may increase the risk of developing
ARDS. Typically, the presence of an injury severity score (ISS) greater than 25 significantly
increases the risk of developing ARDS [18]. Moreover, it has previously been shown that
trauma patients with pulmonary contusions involving at least 20% of the total lung volume
have a significantly higher risk of developing ARDS [40]. Thus, the ability to assess early
information on lung CT that may be associated with the risk of developing ARDS could
allow for timely supportive therapy. Röhrich et al. developed a ML method for the early
prediction of ARDS based on CT in trauma patients at hospital admission. One hundred
and twenty-three patients were enrolled. The model consisted of a fully automated ML and
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radiomics-based approach that showed a higher accuracy compared to an established score
(ISS and abbreviated injury score of the thorax) to identify ARDS in trauma patients [18].
In this line, a rapid automated lung CT volumetry assessment of pulmonary contusions in
trauma patients showed a good accuracy in assessing the risk of ARDS, length of intensive
care stay, and time on mechanical ventilation [19].

4.2. Alveolar Recruitment

ARDS is characterized by widespread inflammation in the lung, leading to increased
permeability of the alveolar–capillary barrier, impairment of pulmonary mechanical proper-
ties, and impaired gas exchange. There is often a phenomenon known as alveolar collapse or
atelectasis, where some of the alveoli collapse and are not involved in gas exchange [41,42].

Mechanical ventilation itself can increase or cause lung damage known as ventilator-
induced lung injury (VILI). Therefore, the therapeutic goal of mechanical ventilation in
ARDS patients is not only to maintain “normal gas exchange” but also to protect the lung
from VILI [43–45].

Lung protective strategies include low tidal volumes and adequate levels of positive
end-expiratory pressure (PEEP) levels to keep the alveoli open and prevent them from
collapsing. However, too high or too low levels of PEEP can lead to damage due to
overdistension or cyclic collapse. Estimation of the percentage of lung that can be recruited
or re-opened by applying transient increases in airway pressure has been demonstrated to
be associated with the response to PEEP and prone position [27,46]. Thus, the quantification
of alveolar recruitment can help the clinician optimize the protective ventilation strategy to
avoid VILI.

The introduction of the lung CT quantitative analysis has allowed the assessment and
quantification of the aerated and not aerated lung regions and the possible changes due to
the mechanical ventilation and body position [6]. In particular, the application of the lung
CT quantitative analysis performed at two different levels of airway pressure is considered
the gold standard for the assessment of alveolar recruitment, because it can calculate the
difference of not aerated tissue [47–49].

However, since the mid-1980’s, the application of quantitative analysis was rarely
used in clinical practice because it requires the manual segmentation of the lung by the
physicians [48]. The assessment of lung recruitment can take up to 6–8 h with a certain
degree of error [15]. To improve the ability to assess lung recruitment, a visual anatomical
evaluation of recruitment has been proposed [48].

Moving from the successful application of DL to the segmentation process of CT
lung images in ARDS [50,51], using two CNNs architectures, the Seg-Net and the U-Net,
Herrmann et al. decided to implement the U-net to develop a DL algorithm to automatically
segment injured lungs affected by ARDS and to calculate lung recruitment by performing
two CT scans at 5 and 45 cmH2O of airway pressure [11].

Training was performed on 15 healthy subjects (1302 slices), 100 ARDS patients
(12,279 slices), and 20 COVID-19 patients (1817 slices): 80% of the patients were used
for training and 20% for testing. The authors found that automatic lung segmentation
performed by a properly trained neural network was reliable and closely matched the
results obtained by manual segmentation. In fact, the total lung volume measured by AI
and manual segmentation had a R2 of 0.99 and a bias of −9.8 mL (CI +56.0/−75.7 mL).
Although the model was not perfect, especially in the most damaged lung areas, which are
difficult to identify even for a trained radiologist, but which did not exceed 10% of the lung
parenchyma, the AI segmentation showed the same degree of inaccuracy as the manual
segmentation. In fact, for recruitability measured using manual and AI segmentation,
change in not aerated tissue fraction had a bias of +0.3% (CI +6.2/−5.5%) while −0.5%
(CI +2.3/−3.3%) was expressed for change in well-aerated tissue fraction.

Subsequently, Penarrubia et al. in a single center study assessed both intra- and
interobserver smallest real difference exceeding measurement error of recruitment using
both human and ML lung segmentation on CT scan [15]. Low-dose CT scans were acquired
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at 5 and 15 cm H2O of PEEP in 11 sedated and paralyzed ARDS patients and recruitment
was computed as the change in weight of the not aerated lung regions. The intra-observer
small real difference of recruitment was 3.5% of lung weight, while the human–human
interobserver smallest real difference of recruitment was slightly higher amounting to
5.7% of lung weight, as also was the human–machine smallest real difference. Human–
machine and human–human interobserver measurement errors were similar, suggesting
that ML segmentation algorithms are a valid alternative to humans for quantifying alveolar
recruitment on CT [15].

Furthermore, to overcome the difficulty in performing two CT scans at two different
airway pressures, Pennati et al. developed a ML algorithm to predict lung recruitment in
ARDS patients, starting from a single CT scan obtained at 5 cmH2O upon admission to the
intensive care unit (ICU) [2].

The authors demonstrated that in 221 retrospectively analyzed ARDS patients, the use
of four ML algorithms (logistic regression, support vector machine, random forest, XGboost)
based on a lung CT scan at 5 cmH2O were able to classify lung recruiter patients with
similar area under the curve (AUC) compared to a ML model based on the combination of
lung mechanics, gas exchange, and CT data [2].

The application of this ML algorithm with an automatic lung segmentation and
quantitative analysis could reduce the workload and ionizing radiation exposure of the
traditional method of assessing lung recruitability.

4.3. Outcome

Concerning the outcome, hospital mortality has decreased over the decades, but has
remained unchanged in recent years, despite advances in supportive care [52].

A small retrospective study of 42 patients with ARDS evaluated the relationship
between the volume of well-aerated lung regions, calculated automatically by software,
and outcome [9]. Total lung volumes and well-aerated lung regions were significantly
higher in survivors. Estimates of the total volumetry and the regions of interest were
obtained within three minutes with a very good reproducibility [9].

Several data have shown that lung volume and the amount of not aerated lung areas
in COVID-19 are associated with respiratory severity and outcome [53]. Typical lung CT
findings in COVID-19 patients include bilateral pulmonary ground-glass opacities and
opacities with rounded edges usually localized in the peripheral lung regions [6].

Using a DL method to calculate the description of the CT, two clusters typically associ-
ated with COVID-19 and two clusters associated with bacterial pneumonia were found [12].
The clusters containing diffuse ground-glass opacities in the central and peripheral lung
showed up to 91% accuracy in correctly classifying COVID-19 and pneumonia.

Liu et al. investigated the ability of quantitative lung CT analysis compared to tra-
ditional clinical biomarkers to predict progression to severe disease in the early stage of
COVID-19 patients [14]. A group of 134 patients with COVID-19 who underwent lung
CT scan and laboratory tests on day 0 and 4 were enrolled. All patients were followed
up for 28 days until the first occurrence of severe disease or otherwise. Three AI-derived
CT features were calculated according to Hounsfield units (−700/−500; −500/−200; and
−200/−60 HU). The CT features at day 0 and day 4 and their changes from day 0 to day
4 showed the best discriminative ability to predict patient progression to severe disease.
In this line, a retrospective study of COVID-19 patients used DL segmentation to assess
lung volume and density composition [20]. The number of lung regions with a density
between −549 and −450 of Hounsfield units was associated with an increased risk of ARDS.
Although the results were not published, Lopes et al. proposed a multicenter retrospective
longitudinal study to correlate the possible findings on lung CT in patients with COVID-19
infection and the course of the disease [16].

In COVID-19 patients, the use of the quantitative lung CT analysis at hospital admis-
sion, which calculates the volume of the affected lung as the sum of the poorly aerated
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and not aerated lung regions, predicted the need for oxygen support and intubation with
good accuracy [13].

Regarding hospital mortality in COVID-19 ARDS based on AI quantification of lung
involvement at hospital admission, the AI did not predict the outcome [17]. In contrast,
the Sequential Organ Failure Assessment (SOFA) score resulted in an AUC for hospital
mortality of 0.74 (95% CI 0.63–0.85), suggesting that other clinical parameters reflect the
overall disease severity [54,55].

In severe COVID-19 ARDS patients with hypoxemia refractory to the conventional
ventilation, veno-venous extracorporeal membrane oxygenation (ECMO) may be used to
improve the outcome. However, the potential improvement in outcome is higher when
ECMO support is applied in the early phase. Therefore, a possible early stratification
should be considered. The use of an AI-based quantification of lung involvement was able
to predict the need for ECMO with an acceptable AUC [0.83 (95% CI 0.73–0.94)] [10]. In
addition, combining the SOFA score with CT lung involvement at ICU admission improved
the AUC to 0.91 (95% CI 0.84–0.97) [10].

In summary, while the extent of lung involvement on imaging is an important con-
sideration in assessing the severity of ARDS, there is not a specific “critical amount” that
universally predicts outcome or guides the need for repeat imaging or ECMO use [10]. The
decision to use ECMO is multifactorial and is based on clinical judgment, including consid-
erations of the patient’s overall health, the underlying cause of ARDS, and the potential for
recovery. Similarly, the timing and need for repeat imaging are individualized based on the
clinical course of the patient and the judgment of the healthcare provider. In fact, the early
clinical course of the disease may be more predictive of the outcome than the assessment at
time of admission to the ICU [56].

5. Lung Ultrasound

LUS has been shown to be a useful tool in the assessment of numerous lung diseases
and, in recent years, has proven to be also effective in the emergency care setting to screen
patients with suspected COVID-19 pneumonia [57–59]. In fact, compared to traditional
imaging, LUS has many advantages: it is radiation-free, inexpensive, rapid, bedside feasible,
non-invasive, and lacks the laborious workflow of a CT scan. Considering all these features
and its good accuracy as compared with lung CT scan, LUS is commonly used in the ICU
to screen patients for ARDS [60–64]. Indeed, LUS has the potential to predict mortality in
ARDS patients with a high level of accuracy (AUC 0.85). These findings also exhibit a strong
correlation with the prognostic value derived from the invasively measured extravascular
lung water index. Furthermore, in this condition, LUS is able to assess the likelihood of
post-extubation distress after a successful spontaneous breathing trial, with an AUC of 0.86,
and is also able to assess regional and global lung aeration [64–67]. LUS images in ARDS are
characterized by the presence of a non-homogeneously distributed alveolar sonographic
interstitial syndrome characterized by the presence of vertical artifacts (including the so-
called “B lines” and the “white lung”), along with pleural thickening and consolidation
in dependent regions [68,69]. However, these features, especially the vertical artifacts, are
not specific for ARDS as they can be detected in many other pathological conditions (i.e.,
pulmonary edema, pneumonia, and pulmonary fibrosis). In addition, LUS interpretation
can be limited by operator confidence in image acquisition and interpretation, which can
lead to intra-reader variability and a limited inter-reader agreement [70,71].

To overcome these limitations and to curb operator-related variability, AI has recently
been employed in different medical areas to aid LUS image analysis and interpretation [14,72],
such as emergency and intensive care settings [3,73].

DL has the ability to directly process and gather intermediate and advanced features
obtained from raw data, such as ultrasound images, and then make intelligent decisions
based on the learned features. The absence of cognitive bias or the need for spatial pixel
connections allows DL to treat images as numerical sequences, enabling the evaluation
of quantitative patterns that could unveil insights beyond human interpretation thereby
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enhancing human diagnostic capability. According to the type of the skill requested
(i.e., classification, detection, and segmentation), there are mainly three types of DL ar-
chitecture: supervised deep networks or deep discriminative models, unsupervised deep
networks or deep generative models, and hybrid deep networks. Supervised deep net-
works are the most widely used in ultrasound imaging, the major methodology of interest
being the CNN [14,74,75].

Few studies are currently available regarding the use of DL in LUS for the evaluation
of ARDS in non-COVID-19 patients. During the recent COVID-19 pandemic, LUS disease-
specific patterns showed a higher sensitivity compared to chest X-ray in the identification
of COVID-19 pneumonia [76,77], making this disease model the predominant focus of
DL application. Indeed, the automated assessment enabled by DL ensures a prompt
diagnosis in situations where resources and trained personnel are scarce, ideally addressing
such challenges.

5.1. Prediction of ARDS Diagnosis

Two studies investigated the possibility of introducing DL modalities to discriminate
different stages of parenchymal changes secondary to pneumonia [21] by grading vertical
artifacts [22] of LUS.

Baloescu et al. designed a new custom DL that operated on dynamic ultrasound
data for automated assessment of sonographic lung B lines. The DL consisted of a CNN
developed using 2415 sub-clips of 12 frames each from 400 emergency department patients.
Each sub-clip was evaluated by two emergency physicians with expertise in LUS, using a
predeterminate ordinal scale from 0 (none) to 4 (severe). In addition, a binary classification
was performed pooling together as “normal” the images with score 0 or 1 and as “abnormal”
the images with score 2–4. The experts’ rating was used as ground truth and compared
with the interpretations given by the new DL model using 100 sub-clips not used during
the DL training. Considering the assessment of presence/absence of B lines, the new DL
model showed an overall accuracy of 94% with kappa of 0.88; however, for the severity
assessment, the overall accuracy was only 56% with kappa of 0.65, showing that the new
algorithm is better at distinguishing B lines but not their severity [22].

Zhang et al. investigated the feasibility of computer-assisted ultrasound diagnosis
using three CNN-based DL models—VGG, ResNet, and EfficientNet—for the detection
and classification of pneumonia based on a self-made LUS image dataset built on a total of
10,350 LUS images. Each image of the dataset was manually classified into eight clinical
features of pneumonia (0 = normal; 1 = B lines < 3; 2 = B lines > 3; 3 = area of merging B
line is less than half; 4 = area of merging B line is more than half; 5 = depth of pieces is
less than 1 cm; 6 = air bronchogram and depth of parenchymal hepatization is less than
3 cm; 7 = pleural effusion and depth of parenchymal hepatization is more than 3 cm). Since
for some of the features evaluated by Baloescu there were not enough images for training
and testing sets, several clinical features were manually grouped together into different
“classes” resulting in three different datasets: one including three classes (class 1: feature 0;
class 2: features 1–4; class 3: features 5–7), one including four classes (class 1: feature 0; class
2: features 1–4; class 3: features 5–6; class 4: feature 7), and the last one encompassing eight
classes, i.e., a class for each of the eight features. All of the three datasets were compared
across classification models and the EfficientNet showed to be the best model providing for
the three and four classes datasets an accuracy of 94.62% and 91.18%, respectively, whilst
the best classification accuracy of the eight classes dataset was only 82.75% [21].

5.2. Differential Diagnosis

AI has been applied to LUS imaging for its potential role in differentiating healthy sub-
jects from COVID-19 pneumonia and ARDS, hydrostatic pulmonary edema, and bacterial
pneumonia and ARDS.

Born et al. proposed another DL LUS model able to distinguish COVID-19 from
healthy subjects and bacterial pneumonia with a sensitivity of 0.90 ± 0.08 and a specificity
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of 0.96 ± 0.04. The model was developed using a dataset made by 261 recordings from
a total of 216 patients affected with COVID-19, bacterial pneumonia, non-COVID-19 viral
pneumonia, and healthy controls. Due to data availability, the three non-COVID-19 viral
pneumonia videos were excluded. Five DL models were then compared in terms of recall,
precision, specificity, and F1 scores. Overall, both VGG and VGG-CAM showed encourag-
ing results, achieving an accuracy of 88 ± 5% in the detection of COVID-19 pneumonia,
across a 5-fold cross-validation with 3234 frames [23]. Arntfield et al. developed another
CNN able to discriminate between similar appearing LUS images with pathological B
lines of three different origins (COVID-19 ARDS, non-COVID ARDS, and hydrostatic pul-
monary edema) using a total of 612 LUS videos from 243 patients (84 COVID-19 ARDS,
78 non-COVID-19 ARDS, and 81 hydrostatic pulmonary edema). To assess the CNN per-
formance, a subset of 10% of the total data was used, not previously used during the
training process. The evaluation made by CNN was then compared to the LUS inter-
pretation given by experienced physicians completing an online interpretation exercise.
The trained CNN performance on the independent dataset showed an ability to discrimi-
nate between COVID-19 (AUC 1.0), non-COVID-19 ARDS (AUC 0.934), and pulmonary
edema (AUC 1.0) pathologies. This was significantly better than the physicians’ ability
(AUCs 0.697, 0.704, and 0.967 for the COVID-19 ARDS, non-COVID-19 ARDS, and pul-
monary edema classes, respectively; p < 0.01), showing that a trained neural network is
able to detect subvisible features within LUS images [24].

Ebadi et al. proposed a fast and reliable DL model, specifically the Kinetics-I3D
network, using LUS scans to explore the possibility of detecting and differentiating ARDS
from pneumonia. Compared to other DL models, this trained model was able to classify an
entire LUS scan obtained at the point-of-care, eliminating the need for preprocessing or
analyzing frames individually, since the neural network could be retrained with new data
to adapt the model to the needs of specific LUS applications. The results obtained with the
new DL methods were benchmarked against ground truth assessed by expert radiologists
showing an accuracy of 90% and a precision score of 95%. Moreover, the proposed model
was very rapid as it was able to process the entire scan with a single forward pass into the
network, avoiding time-consuming frame-by-frame analysis [25].

5.3. Limitations of AI in LUS

To date, the application of DL in thoracic echography has been very limited as com-
pared to other imaging techniques. One of the reasons is the limited availability of orga-
nized LUS databases. In fact, to reach an optimal learning performance, a wide number of
labeled LUS images is needed. This requirement can be challenging as LUS is an evolving
technique, and currently, there are only a limited number of experts capable of providing a
suitable interpretation.

Indeed, to date, LUS training for ARDS has often been the prerogative of emergency
department and ICU staff, lacking the structured, shared, and formal reporting typical of
other radiologic tests such as lung CT, which may limit standardization and uniform infor-
mative input for DL. On the other hand, the majority of the radiology training programs
do not include education in LUS interpretation.

The prevalent issue arising from a deep model with limited training samples is
overfitting that can be addressed by two different approaches: model optimization and
transfer learning. Model optimization focuses on making the DL model itself to work
better with available data using different types of strategies (e.g., well-designed initializa-
tion/momentum strategies, efficient activation functions, dropout, and batch normalization,
stack/denoising), whereas transfer learning utilizes knowledge from one domain to en-
hance the performance in another domain with limited data.

Another limitation is that many of the shared LUS databases lack a complete interpreta-
tion of the thorax (since the evaluations are mostly performed with a focused approach) and
important information such as patient details and technical or setting data. Collecting these
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data should help differentiate similar LUS patterns that are only apparently non-disease
specific, such as those observed in patients with ARDS.

6. Conclusions

The application of ML technique to lung CT scan image processing can represent a
valid tool to provide a broader adoption of CT scan quantitative analysis in the clinical
practice of ARDS management, in particular the prediction of the alveolar recruitment
and patient outcomes. Similarly, the application of AI to LUS imaging may implement
clinician performance in distinguishing and interpreting similar LUS patterns deriving
from different pathological etiologies with the potential to provide an accurate diagnosis
(Figure 2). Indeed, there are several areas that could benefit from the application of AI
in this field, including diagnosis, assessment of severity, progression, and response to
treatment. However, AI is not ready for widespread use and models may not be as accurate
because progression to advanced respiratory failure is not as common and predictable.
In fact, part of the ML-based algorithms described in this review were based on image
datasets collected during the COVID-19 pandemic. Nonetheless, updated algorithms have
already been defined thanks to the ability to re-train those same algorithms with new
image datasets. In this sense, AI is an evolving technology and an ongoing process of
refinement and several biases should be overcome in the development of further models
to guarantee sufficient robustness and reproducibility to be competitive compared with
current standard methods and thus to support clinical judgment, starting from high quality
imaging datasets.
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Figure 2. Current potential areas of application for artificial intelligence applied to lung computed
tomography and lung ultrasound imaging in different stages of lung disease. Green upper box:
normal lung histology (drawing on the left), axial projection of a lung CT scan (image in the
middle), and a LUS scan showing normal pleural findings with repetitive physiological horizontal
artifacts (A lines), a typical sign indicating a normal aerated lung. Grey box in the middle: a lung
CT scan (upper image) and LUS scan (lower image) in a patient with acute lung injury. Note
the presence of vertical artifacts arising from the pleural line (B lines), indicating the presence of
a sonographic interstitial syndrome. Blue box at the bottom: overt ARDS (drawing on the left)
with alveolar–capillary damage, alveolar edema, cellular debris, neutrophilic migration (in violet),
activated macrophages (in yellow), fibroblast activation, and fibrin deposition (in green). The lung CT
scan (upper figure in the middle) and the LUS scan (lower figure in the middle) represent the typical
radiological findings in a representative patient with ARDS. Note the inhomogeneity of aerated and
not aerated parenchyma at the axial projection of the lung CT and the irregular pleural profile, with
areas of high lung density (white lung) interspersed by parenchymal subpleural infiltrates. The
two different imaging approaches carry different qualitative and quantitative information of the
same pathological pattern. AI: artificial intelligence; ARDS: acute respiratory distress syndrome;
CT: computed tomography; LUS: lung ultrasound.
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