Recently, bias-variance decomposition of error has been used as a tool to study the behavior of learning algorithms and to develop new ensemble methods well suited to the bias-variance characteristics of base learners. We propose methods and procedures, based on Domingo's unified bias-variance theory, to evaluate and quantitatively measure the bias-variance decomposition of error in ensembles of learning machines. We apply these methods to study and compare the bias-variance characteristics of single support vector machines (SVMs) and ensembles of SVMs based on resampling techniques, and their relationships with the cardinality of the training samples. In particular, we present an experimental bias-variance analysis of bagged and random aggregated ensembles of SVMs in order to verify their theoretical variance reduction properties. The experimental bias-variance analysis quantitatively characterizes the relationships between bagging and random aggregating, and explains the reasons why ensembles built on small subsamples of the data work with large databases. Our analysis also suggests new directions for research to improve on classical bagging.

An experimental bial-variance analysis of SVM ensembles based on resampling techniques / G. Valentini. - In: IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS. - ISSN 1083-4419. - 35:6(2005 Dec), pp. 1252-1271.

An experimental bial-variance analysis of SVM ensembles based on resampling techniques

G. Valentini
Primo
2005

Abstract

Recently, bias-variance decomposition of error has been used as a tool to study the behavior of learning algorithms and to develop new ensemble methods well suited to the bias-variance characteristics of base learners. We propose methods and procedures, based on Domingo's unified bias-variance theory, to evaluate and quantitatively measure the bias-variance decomposition of error in ensembles of learning machines. We apply these methods to study and compare the bias-variance characteristics of single support vector machines (SVMs) and ensembles of SVMs based on resampling techniques, and their relationships with the cardinality of the training samples. In particular, we present an experimental bias-variance analysis of bagged and random aggregated ensembles of SVMs in order to verify their theoretical variance reduction properties. The experimental bias-variance analysis quantitatively characterizes the relationships between bagging and random aggregating, and explains the reasons why ensembles built on small subsamples of the data work with large databases. Our analysis also suggests new directions for research to improve on classical bagging.
bagging ; bias-variance analysis ; ensemble of learning machines ; support vector machines
Settore INF/01 - Informatica
dic-2005
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/9358
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 48
social impact