We report formate production via CO2 electroreduction at a Faradaic efficiency (FE) of 93% and a partial current density of 930 mA cm–2, an activity level of potential industrial interest based on prior techno-economic analyses. We devise a catalyst synthesized using InP colloidal quantum dots (CQDs): the capping ligand exchange introduces surface sulfur, and XPS reveals the generation, operando, of an active catalyst exhibiting sulfur-protected oxidized indium and indium metal. Surface indium metal sites adsorb and reduce CO2 molecules, while sulfur sites cleave water and provide protons. The abundance of exposed surface indium sites per quantum dot enables the high formate productivity achieved at low catalyst loadings. The high conductivity of the layer of nanoparticles under negative potential sustains the large current densities.

CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm-2 with InP Colloidal Quantum Dot Derived Catalysts / I. Grigioni, L.K. Sagar, Y.C. Li, G.L. Y. Yan, K. Bertens, R.K. Miao, X. Wang, J. Abed, D.H. Won, F.P. Garciá De Arquer, A.H. Ip, D. Sinton, E.H. Sargent. - In: ACS ENERGY LETTERS. - ISSN 2380-8195. - (2020 Dec 08). [10.1021/acsenergylett.0c02165]

CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm-2 with InP Colloidal Quantum Dot Derived Catalysts

I. Grigioni
Co-primo
;
2020

Abstract

We report formate production via CO2 electroreduction at a Faradaic efficiency (FE) of 93% and a partial current density of 930 mA cm–2, an activity level of potential industrial interest based on prior techno-economic analyses. We devise a catalyst synthesized using InP colloidal quantum dots (CQDs): the capping ligand exchange introduces surface sulfur, and XPS reveals the generation, operando, of an active catalyst exhibiting sulfur-protected oxidized indium and indium metal. Surface indium metal sites adsorb and reduce CO2 molecules, while sulfur sites cleave water and provide protons. The abundance of exposed surface indium sites per quantum dot enables the high formate productivity achieved at low catalyst loadings. The high conductivity of the layer of nanoparticles under negative potential sustains the large current densities.
Quantum dots, Electrical properties, Electrodes, Catalysts, Indium, carbon dioxide, carbon dioxide reduction
Settore CHIM/04 - Chimica Industriale
Settore ING-IND/09 - Sistemi per l'Energia e L'Ambiente
   Photoelectrochemical Solar Light Conversion into Fuels on Colloidal Quantum Dots Based Photoanodes (QuantumSolarFuels)
   QuantumSolarFuels
   EUROPEAN COMMISSION
   H2020
   846107
8-dic-2020
https://pubs.acs.org/doi/abs/10.1021/acsenergylett.0c02165
Article (author)
File in questo prodotto:
File Dimensione Formato  
MS_InP CO2RR.pdf

accesso aperto

Descrizione: Articolo principale nella versione finale inviata alla rivista e che è stata accettata
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 893.6 kB
Formato Adobe PDF
893.6 kB Adobe PDF Visualizza/Apri
SI_InP CO2RR.pdf

accesso aperto

Descrizione: Informazioni di supporto, versione finale inviata alla rivista e che è stata accettata
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/890636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 77
social impact