Populations of large mammals have declined at alarming rates, especially in areas with intensified land use where species can only persist in small habitat fragments. To support conservation planning, we developed habitat suitability models for the Walia ibex (Capra walie), an endangered wild goat endemic to the Simen Mountains, Ethiopia. We calibrated several models that differ in statistical properties to estimate the spatial extent of suitable habitats of the Walia ibex in the Simen Mountains, as well as in other parts of the Ethiopian highlands to assess potentially suitable areas outside the current distribution range of the species. We further addressed the potential consequences of future climate change using a climate model with four emission scenarios. Model projections estimated the potential suitable habitat under current climate to 501–672 km2 in Simen and 6,251–7,732 km2 in other Ethiopian mountains. Under projected climate change by 2,080, the suitable habitat became larger in Simen but smaller in other parts of Ethiopia. The projected expansion in Simen is contrary to the general expectation of shrinking suitable habitats for high-elevation species under climate warming and may partly be due to the ruggedness of these particular mountains. The Walia ibex has a wide altitudinal range and is able to exploit very steep slopes, allowing it to track the expected vegetation shift to higher altitudes. However, this potential positive impact may not last long under continued climate warming, as the species will not have much more new space left to colonize. Our study indicates that the current distribution range can be substantially increased by reintroducing and/or translocating the species to other areas with suitable habitat. Indeed, to increase the viability and prospects for survival of this flagship species, we strongly recommend human-assisted reintroduction to other Ethiopian mountains. Emulating the successful reintroduction of the Alpine ibex that has spread from a single mountain in Italy to its historical ranges of the Alps in Europe might contribute to saving the Walia ibex from extinction.

Quest for New Space for Restricted Range Mammals : The Case of the Endangered Walia Ibex / B. Gebremedhin, D. Chala, O. Flagstad, A. Bekele, V. Bakkestuen, B. van Moorter, G.F. Ficetola, N.E. Zimmermann, C. Brochmann, N.C. Stenseth. - In: FRONTIERS IN ECOLOGY AND EVOLUTION. - ISSN 2296-701X. - 9(2021), pp. 611632.1-611632.12. [10.3389/fevo.2021.611632]

Quest for New Space for Restricted Range Mammals : The Case of the Endangered Walia Ibex

G.F. Ficetola;
2021

Abstract

Populations of large mammals have declined at alarming rates, especially in areas with intensified land use where species can only persist in small habitat fragments. To support conservation planning, we developed habitat suitability models for the Walia ibex (Capra walie), an endangered wild goat endemic to the Simen Mountains, Ethiopia. We calibrated several models that differ in statistical properties to estimate the spatial extent of suitable habitats of the Walia ibex in the Simen Mountains, as well as in other parts of the Ethiopian highlands to assess potentially suitable areas outside the current distribution range of the species. We further addressed the potential consequences of future climate change using a climate model with four emission scenarios. Model projections estimated the potential suitable habitat under current climate to 501–672 km2 in Simen and 6,251–7,732 km2 in other Ethiopian mountains. Under projected climate change by 2,080, the suitable habitat became larger in Simen but smaller in other parts of Ethiopia. The projected expansion in Simen is contrary to the general expectation of shrinking suitable habitats for high-elevation species under climate warming and may partly be due to the ruggedness of these particular mountains. The Walia ibex has a wide altitudinal range and is able to exploit very steep slopes, allowing it to track the expected vegetation shift to higher altitudes. However, this potential positive impact may not last long under continued climate warming, as the species will not have much more new space left to colonize. Our study indicates that the current distribution range can be substantially increased by reintroducing and/or translocating the species to other areas with suitable habitat. Indeed, to increase the viability and prospects for survival of this flagship species, we strongly recommend human-assisted reintroduction to other Ethiopian mountains. Emulating the successful reintroduction of the Alpine ibex that has spread from a single mountain in Italy to its historical ranges of the Alps in Europe might contribute to saving the Walia ibex from extinction.
connectivity; corridors; distribution range; endemic species; habitat loss; habitat suitability modeling; reintroduction; translocation
Settore BIO/05 - Zoologia
Settore BIO/07 - Ecologia
2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Gebremedhin et al_2021.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/890497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact