Menisci play an essential role in shock absorption, joint stability, load resistance and its transmission thanks to their conformation. Adult menisci can be divided in three zones based on the vascularization: an avascular inner zone with no blood supply, a fully vascularized outer zone, and an intermediate zone. This organization, in addition to the incomplete knowledge about meniscal biology, composition, and gene expression, makes meniscal regeneration still one of the major challenges both in orthopedics and in tissue engineering. To overcome this issue, we aimed to investigate the role of hypoxia in the differentiation of the three anatomical areas of newborn piglet menisci (anterior horn (A), central body (C), and posterior horn (P)) and its effects on vascular factors. After sample collection, menisci were divided in A, C, P, and they were cultured in vitro under hypoxic (1% O2) and normoxic (21% O2) conditions at four different experimental time points (T0 = day of explant; T7 = day 7; T10 = day 10; T14 = day 14); samples were then evaluated through immune, histological, and molecular analyses, cell morpho-functional characteristics; with particular focus on matrix composition and expression of vascular factors. It was observed that hypoxia retained the initial phenotype of cells and induced extracellular matrix production resembling a mature tissue. Hypoxia also modulated the expression of angiogenic factors, especially in the early phase of the study. Thus, we observed that hypoxia contributes to the fibro-chondrogenic differentiation with the involvement of angiogenic factors, especially in the posterior horn, which corresponds to the predominant weight-bearing portion.

Testing hypoxia in pig meniscal culture : Biological role of the vascular-related factors in the differentiation and viability of neonatal meniscus / B. Canciani, V.R.H. Millar, M. Pallaoro, L. Aidos, F. Cirillo, L. Anastasia, G.M. Peretti, S.C. Modina, L. Mangiavini, A. Di Giancamillo. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 22:22(2021 Nov 18), pp. 12465.1-12465.16. [10.3390/ijms222212465]

Testing hypoxia in pig meniscal culture : Biological role of the vascular-related factors in the differentiation and viability of neonatal meniscus

B. Canciani
Primo
;
M. Pallaoro;F. Cirillo;L. Anastasia;G.M. Peretti;S.C. Modina;L. Mangiavini
Penultimo
;
A. Di Giancamillo
Ultimo
2021

Abstract

Menisci play an essential role in shock absorption, joint stability, load resistance and its transmission thanks to their conformation. Adult menisci can be divided in three zones based on the vascularization: an avascular inner zone with no blood supply, a fully vascularized outer zone, and an intermediate zone. This organization, in addition to the incomplete knowledge about meniscal biology, composition, and gene expression, makes meniscal regeneration still one of the major challenges both in orthopedics and in tissue engineering. To overcome this issue, we aimed to investigate the role of hypoxia in the differentiation of the three anatomical areas of newborn piglet menisci (anterior horn (A), central body (C), and posterior horn (P)) and its effects on vascular factors. After sample collection, menisci were divided in A, C, P, and they were cultured in vitro under hypoxic (1% O2) and normoxic (21% O2) conditions at four different experimental time points (T0 = day of explant; T7 = day 7; T10 = day 10; T14 = day 14); samples were then evaluated through immune, histological, and molecular analyses, cell morpho-functional characteristics; with particular focus on matrix composition and expression of vascular factors. It was observed that hypoxia retained the initial phenotype of cells and induced extracellular matrix production resembling a mature tissue. Hypoxia also modulated the expression of angiogenic factors, especially in the early phase of the study. Thus, we observed that hypoxia contributes to the fibro-chondrogenic differentiation with the involvement of angiogenic factors, especially in the posterior horn, which corresponds to the predominant weight-bearing portion.
differentiation; fibro-chondrocytes; HIF-1α; hypoxia; meniscus; pig
Settore VET/01 - Anatomia degli Animali Domestici
Settore MED/33 - Malattie Apparato Locomotore
Settore BIO/10 - Biochimica
Article (author)
File in questo prodotto:
File Dimensione Formato  
Canciani et al 2021 ijms-22-12465-v2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 10.15 MB
Formato Adobe PDF
10.15 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/885668
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact