Repulsive soft-core atomic systems may undergo clustering if their density is high enough that core overlap is unavoidable. In one-dimensional bosonic quantum systems, it has been shown that this instability triggers a transition from a Luttinger liquid to various cluster Luttinger liquids. Here, we focus on the Luttinger liquid regime and theoretically study the evolution of key observables related to density fluctuations, which manifest a striking dependence on density. We tune the interaction so that the low-density regime corresponds to a Tonks-Girardeau gas and show that as the density is increased the system departs more and more from Tonks-Girardeau behavior, displaying a much larger compressibility as well as rotonic excitations that finally drive the clustering transition. We compare various theoretical approaches, which are accurate in different regimes. Using quantum Monte Carlo methods and analytic continuation as a benchmark, we investigate the regime of validity of the mean-field Bogoliubov and the real-time multiconfiguration time-dependent Hartree-Fock approaches. Part of the behavior that we describe should be observable in ultracold Rydberg-dressed gases, provided that system losses are prevented.

Evolution of static and dynamical density correlations of one-dimensional soft-core bosons from the Tonks-Girardeau limit to a clustering fluid / M. Teruzzi, C. Apostoli, D.E. Pini, D.E. Galli, G. Bertaina. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 104:5(2021 Nov 01), pp. 053301.053301-1-053301.053301-10. [10.1103/PhysRevA.104.053301]

Evolution of static and dynamical density correlations of one-dimensional soft-core bosons from the Tonks-Girardeau limit to a clustering fluid

C. Apostoli
Secondo
;
D.E. Pini;D.E. Galli
Penultimo
;
2021

Abstract

Repulsive soft-core atomic systems may undergo clustering if their density is high enough that core overlap is unavoidable. In one-dimensional bosonic quantum systems, it has been shown that this instability triggers a transition from a Luttinger liquid to various cluster Luttinger liquids. Here, we focus on the Luttinger liquid regime and theoretically study the evolution of key observables related to density fluctuations, which manifest a striking dependence on density. We tune the interaction so that the low-density regime corresponds to a Tonks-Girardeau gas and show that as the density is increased the system departs more and more from Tonks-Girardeau behavior, displaying a much larger compressibility as well as rotonic excitations that finally drive the clustering transition. We compare various theoretical approaches, which are accurate in different regimes. Using quantum Monte Carlo methods and analytic continuation as a benchmark, we investigate the regime of validity of the mean-field Bogoliubov and the real-time multiconfiguration time-dependent Hartree-Fock approaches. Part of the behavior that we describe should be observable in ultracold Rydberg-dressed gases, provided that system losses are prevented.
Settore FIS/03 - Fisica della Materia
   PIANO DI SOSTEGNO ALLA RICERCA 2015-2017 - LINEA 2 "DOTAZIONE ANNUALE PER ATTIVITA' ISTITUZIONALE"
   UNIVERSITA' DEGLI STUDI DI MILANO
1-nov-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhysRevA.104.053301_TG_1DSOFT.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/879496
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact