Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection, that could develop into an overt and potentially deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, our study, while providing a strong evidence for the immune-stimulating properties of Wolbachia, highlights the translational potential of AsaiaWSP in the areas of the immune-prophylaxis and therapy of leishmaniases, as well as of other diseases that could be subverted by M1 macrophage activation. Competing Interest Statement The authors have declared no competing interest.

Boosting innate immunity: Asaia bacteria expressing a protein from Wolbachia determine macrophage activation and killing of Leishmania / I. VAROTTO BOCCAZZI, S. Epis, I. Arnoldi, Y. Corbett, P. Gabrieli, M. Paroni, R. Nodari, N. Basilico, L. Sacchi, M. Gramiccia, L. Gradoni, V. Tranquillo, C. Bandi. - (2020 Jul 07). [10.1101/2020.06.22.164145]

Boosting innate immunity: Asaia bacteria expressing a protein from Wolbachia determine macrophage activation and killing of Leishmania

I. VAROTTO BOCCAZZI
Primo
;
S. Epis
Secondo
;
I. Arnoldi;Y. Corbett;P. Gabrieli;M. Paroni;R. Nodari;N. Basilico;C. Bandi
Ultimo
2020

Abstract

Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection, that could develop into an overt and potentially deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, our study, while providing a strong evidence for the immune-stimulating properties of Wolbachia, highlights the translational potential of AsaiaWSP in the areas of the immune-prophylaxis and therapy of leishmaniases, as well as of other diseases that could be subverted by M1 macrophage activation. Competing Interest Statement The authors have declared no competing interest.
symbionts, vaccine vehicles, filarial nematodes;
Settore VET/06 - Parassitologia e Malattie Parassitarie degli Animali
Settore BIO/19 - Microbiologia Generale
7-lug-2020
https://www.biorxiv.org/content/10.1101/2020.06.22.164145v2
File in questo prodotto:
File Dimensione Formato  
2020.06.22.164145v2.full.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/878402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact