A key problem in protoplanetary disc evolution is understanding the efficiency of dust radial drift. This process makes the observed dust disc sizes shrink on relatively short time-scales, implying that discs started much larger than what we see now. In this paper, we use an independent constraint, the gas radius (as probed by CO rotational emission), to test disc evolution models. In particular, we consider the ratio between the dust and gas radius, RCO/Rdust. We model the time evolution of protoplanetary discs under the influence of viscous evolution, grain growth, and radial drift. Then, using the radiative transfer code RADMC with approximate chemistry, we compute the dust and gas radii of the models and investigate how RCO/Rdust evolves. Our main finding is that, for a broad range of values of disc mass, initial radius, and viscosity, RCO/Rdust becomes large (>5) after only a short time (<1 Myr) due to radial drift. This is at odds with measurements in young star-forming regions such as Lupus, which find much smaller values, implying that dust radial drift is too efficient in these models. Substructures, commonly invoked to stop radial drift in large, bright discs, must then be present, although currently unresolved, in most discs

On the secular evolution of the ratio between gas and dust radii in protoplanetary discs / C. Toci, G. Rosotti, G. Lodato, L. Testi, L. Trapman. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 507:1(2021 Oct), pp. 818-833. [10.1093/mnras/stab2112]

On the secular evolution of the ratio between gas and dust radii in protoplanetary discs

C. Toci
Primo
;
G. Rosotti;G. Lodato;
2021

Abstract

A key problem in protoplanetary disc evolution is understanding the efficiency of dust radial drift. This process makes the observed dust disc sizes shrink on relatively short time-scales, implying that discs started much larger than what we see now. In this paper, we use an independent constraint, the gas radius (as probed by CO rotational emission), to test disc evolution models. In particular, we consider the ratio between the dust and gas radius, RCO/Rdust. We model the time evolution of protoplanetary discs under the influence of viscous evolution, grain growth, and radial drift. Then, using the radiative transfer code RADMC with approximate chemistry, we compute the dust and gas radii of the models and investigate how RCO/Rdust evolves. Our main finding is that, for a broad range of values of disc mass, initial radius, and viscosity, RCO/Rdust becomes large (>5) after only a short time (<1 Myr) due to radial drift. This is at odds with measurements in young star-forming regions such as Lupus, which find much smaller values, implying that dust radial drift is too efficient in these models. Substructures, commonly invoked to stop radial drift in large, bright discs, must then be present, although currently unresolved, in most discs
accretion; accretion discs - planets and satellites; formation - protoplanetary discs;
Settore FIS/05 - Astronomia e Astrofisica
   Dust and gas in planet forming discs (DUSTBUSTER)
   DUSTBUSTER
   EUROPEAN COMMISSION
   H2020
   823823
ott-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Toci2021_arXiv.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri
Toci2021.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.35 MB
Formato Adobe PDF
3.35 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/864447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact