High concentrations of vanadium cause very unusual coloration in hibonite (purple) and grossite (light violet) crystals in an exotic mineral assemblage from Sierra de Comechingones (Argentina). In the hibonite (CaAl12O19) structure vanadium ions, in various valence states (divalent, trivalent, and tetravalent), may be distributed over five crystallographic sites with coordinations corresponding to different polyhedra, namely, three unequal octahedra [M1 (D3d), M4 (C3ν), and M5 (Cs)], one M3 tetrahedron (C3ν), and one unusual fivefold-coordinated trigonal bipyramid M2 (D3h). Possible locations of vanadium ions in grossite (CaAl4O7) are limited to two crystallographically distinct sites (T1 and T2, both C1) in tetrahedral coordination. The combination of single-crystal X-ray diffraction and absorption spectroscopy techniques aided by chemical analyses has yielded details on the nature of the vanadium-induced color in both hibonite and grossite crystals. In hibonite, both M4 face-sharing octahedral and M2 trigonal bipyramid sites of the R-block are partially occupied by V3+. Strongly polarized bands recorded at relatively low energies in optical absorption spectra indicate that V2+ is located at the M4 octahedral site of the hibonite R-block. Chemical analyses coupled with an accurate determination of the electron densities at structural sites in hibonite suggest that the vanadium ions occupy about 10 and 5% of the M4 and M2 sites, respectively. For grossite, polarized optical absorption spectra reveal no indications of V2+; all observed absorption bands can be assigned to V3+ in tetrahedral coordination. Although not evident by the observed electron densities at the T sites of grossite (due to the low-V content), longer bond distances, and a higher degree of polyhedral distortion suggest that V3+ is located at the T2 site.

Vanadium-induced coloration in grossite (CaAl4O7) and hibonite (CaAl12O19) / M. Ardit, F. Cámara, U. Hålenius. - In: AMERICAN MINERALOGIST. - ISSN 0003-004X. - 106:4(2021 Apr 01), pp. 599-608. [10.2138/am-2020-7544]

Vanadium-induced coloration in grossite (CaAl4O7) and hibonite (CaAl12O19)

F. Cámara
Secondo
Investigation
;
2021

Abstract

High concentrations of vanadium cause very unusual coloration in hibonite (purple) and grossite (light violet) crystals in an exotic mineral assemblage from Sierra de Comechingones (Argentina). In the hibonite (CaAl12O19) structure vanadium ions, in various valence states (divalent, trivalent, and tetravalent), may be distributed over five crystallographic sites with coordinations corresponding to different polyhedra, namely, three unequal octahedra [M1 (D3d), M4 (C3ν), and M5 (Cs)], one M3 tetrahedron (C3ν), and one unusual fivefold-coordinated trigonal bipyramid M2 (D3h). Possible locations of vanadium ions in grossite (CaAl4O7) are limited to two crystallographically distinct sites (T1 and T2, both C1) in tetrahedral coordination. The combination of single-crystal X-ray diffraction and absorption spectroscopy techniques aided by chemical analyses has yielded details on the nature of the vanadium-induced color in both hibonite and grossite crystals. In hibonite, both M4 face-sharing octahedral and M2 trigonal bipyramid sites of the R-block are partially occupied by V3+. Strongly polarized bands recorded at relatively low energies in optical absorption spectra indicate that V2+ is located at the M4 octahedral site of the hibonite R-block. Chemical analyses coupled with an accurate determination of the electron densities at structural sites in hibonite suggest that the vanadium ions occupy about 10 and 5% of the M4 and M2 sites, respectively. For grossite, polarized optical absorption spectra reveal no indications of V2+; all observed absorption bands can be assigned to V3+ in tetrahedral coordination. Although not evident by the observed electron densities at the T sites of grossite (due to the low-V content), longer bond distances, and a higher degree of polyhedral distortion suggest that V3+ is located at the T2 site.
Calcium aluminates; hibonite; grossite; optical absorption spectroscopy; single-crystal X‑ray diffraction; vanadium
Settore GEO/06 - Mineralogia
1-apr-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Arditeetal2021AmMin106_599-608.pdf

accesso riservato

Descrizione: PDF editoriale
Tipologia: Publisher's version/PDF
Dimensione 2.69 MB
Formato Adobe PDF
2.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
AMINSUBMISSIONS_email_attachment_SMC_1595299729_1 FC.pdf

Open Access dal 02/04/2022

Descrizione: Accepted manuscript
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/835419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact