Cell phenotype can be reversed or modified with different methods, with advantages and limitations that are specific for each technique. Here we describe a new strategy that combines the use of chemical epigenetic erasing with mechanosensing-related cues, to generate mammalian pluripotent cells. Two main steps are required. In the first step, adult mature (terminally differentiated) cells are exposed to the epigenetic eraser 5-aza-cytidine to drive them into a pluripotent state. This part of the protocol was developed, based on the increasing understanding of the epigenetic mechanisms controlling cell fate and differentiation, and involves the use of the epigenetic modifier to erase cell differentiated state and then drive into a transient high plasticity window. In the second step, erased cells are encapsulated in polytetrafluoroethylene (PTFE) micro-bioreactors, also known as Liquid Marbles, to promote 3D cell rearrangement to extend and stably maintain the acquired high plasticity. PTFE is a non-reactive hydrophobic synthetic compound and its use permits the creation of a cellular microenvironment, which cannot be achieved in traditional 2D culture systems. This system encourages and boosts the maintenance of pluripotency though bio-mechanosensing-related cues. The technical procedures described here are simple strategies to allow for the induction and maintenance of a high plasticity state in adult somatic cells. The protocol allowed the derivation of high plasticity cells in all mammalian species tested. Since it does not involve the use of gene transfection and is free of viral vectors, it may represent a notable technological advance for translational medicine applications. Furthermore, the micro-bioreactor system provides a notable advancement in stem cell organoid technology by in vitro re-creating a specific micro-environment that allows for the long-term culture of high plasticity cells, namely as ESCs, iPSCs, epigenetically erased cells and MSCs.

A two-step strategy that combines epigenetic modification and biomechanical cues to generate mammalian pluripotent cells / G. Pennarossa, S. Ledda, S. Arcuri, F. Gandolfi, T. Brevini. - In: JOURNAL OF VISUALIZED EXPERIMENTS. - ISSN 1940-087X. - 2020:162(2020 Aug 29), pp. e61655.1-e61655.22. [10.3791/61655]

A two-step strategy that combines epigenetic modification and biomechanical cues to generate mammalian pluripotent cells

G. Pennarossa
Primo
;
S. Arcuri;F. Gandolfi;T. Brevini
Ultimo
2020

Abstract

Cell phenotype can be reversed or modified with different methods, with advantages and limitations that are specific for each technique. Here we describe a new strategy that combines the use of chemical epigenetic erasing with mechanosensing-related cues, to generate mammalian pluripotent cells. Two main steps are required. In the first step, adult mature (terminally differentiated) cells are exposed to the epigenetic eraser 5-aza-cytidine to drive them into a pluripotent state. This part of the protocol was developed, based on the increasing understanding of the epigenetic mechanisms controlling cell fate and differentiation, and involves the use of the epigenetic modifier to erase cell differentiated state and then drive into a transient high plasticity window. In the second step, erased cells are encapsulated in polytetrafluoroethylene (PTFE) micro-bioreactors, also known as Liquid Marbles, to promote 3D cell rearrangement to extend and stably maintain the acquired high plasticity. PTFE is a non-reactive hydrophobic synthetic compound and its use permits the creation of a cellular microenvironment, which cannot be achieved in traditional 2D culture systems. This system encourages and boosts the maintenance of pluripotency though bio-mechanosensing-related cues. The technical procedures described here are simple strategies to allow for the induction and maintenance of a high plasticity state in adult somatic cells. The protocol allowed the derivation of high plasticity cells in all mammalian species tested. Since it does not involve the use of gene transfection and is free of viral vectors, it may represent a notable technological advance for translational medicine applications. Furthermore, the micro-bioreactor system provides a notable advancement in stem cell organoid technology by in vitro re-creating a specific micro-environment that allows for the long-term culture of high plasticity cells, namely as ESCs, iPSCs, epigenetically erased cells and MSCs.
Settore VET/01 - Anatomia degli Animali Domestici
29-ago-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
61655_R1_REV_GPno highlighted.pdf

Open Access dal 30/08/2022

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 278.48 kB
Formato Adobe PDF
278.48 kB Adobe PDF Visualizza/Apri
Pennarossa et al., JoVE 2020.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/781264
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact