There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnormal respiratory sounds. Thanks to a recent challenge, a real-world dataset specifically designed to address the needs of the specific problem is available to the scientific community. Unlike previous works in the literature, the authors take advantage of information provided by several stethoscopes simultaneously, i.e. elaborating at the acoustic sensor network level. To this end, they employ two features sets extracted from different domains, i.e. spectral and wavelet. These are modelled by convolutional neural networks, hidden Markov models and Gaussian mixture models. Subsequently, a synergistic scheme is designed operating at the decision level of the best-performing classifier with respect to each stethoscope. Interestingly, such a scheme was able to boost the classification accuracy surpassing the current state of the art as it is able to identify respiratory sound patterns with a 66.7% accuracy.

A collaborative framework for automatic classification of respiratory sounds / S. Ntalampiras. - In: IET SIGNAL PROCESSING. - ISSN 1751-9675. - (2020). [Epub ahead of print] [10.1049/iet-spr.2019.0487]

A collaborative framework for automatic classification of respiratory sounds

S. Ntalampiras
2020

Abstract

There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnormal respiratory sounds. Thanks to a recent challenge, a real-world dataset specifically designed to address the needs of the specific problem is available to the scientific community. Unlike previous works in the literature, the authors take advantage of information provided by several stethoscopes simultaneously, i.e. elaborating at the acoustic sensor network level. To this end, they employ two features sets extracted from different domains, i.e. spectral and wavelet. These are modelled by convolutional neural networks, hidden Markov models and Gaussian mixture models. Subsequently, a synergistic scheme is designed operating at the decision level of the best-performing classifier with respect to each stethoscope. Interestingly, such a scheme was able to boost the classification accuracy surpassing the current state of the art as it is able to identify respiratory sound patterns with a 66.7% accuracy.
Settore INF/01 - Informatica
2020
21-feb-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
36 SPR-2019-0487-FINAL.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 960.85 kB
Formato Adobe PDF
960.85 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/724097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact