Assessment of allergenic potential of chemicals is performed using animal models, such as the murine local lymph node assay, which does not distinguish between respiratory and contact allergens. Progress in understanding the mechanisms of skin sensitization, provides us with the opportunity to develop in vitro tests as an alternative to in vivo sensitization testing. The aim of the present study was to evaluate the possibility to use intracellular interleukin-18 (IL-18) production to assess in vitro the contact sensitization potential of low molecular weight chemicals. The human keratinocyte cell line NCTC2455 was used. Cells were exposed to contact allergens (cinnamaldehyde, dinitrochlorobenzene, glyoxal, isoeugenol, p-phenylediamine, resorcinol, tetramethylthiuram disulfide, 2-mercaptobenzothiazole, 4-nitrobenzylbromide), to proaptens (cinnamyl alcohol, eugenol), to respiratory allergens (diphenylmethane diisocyanate, trimellitic anhydride, ammonium hexachloroplatinate) and to irritants (sodium lauryl sulphate, salicylic acid, phenol). Cell associated IL-18 were evaluated 24 later. At not cytotoxic concentrations (cell viability higher of 75%, as assessed by MTT reduction assay), all contact sensitizers, including proaptens, induced a dose-related increase in IL-18, whereas both irritants and respiratory failed. Similar results were also obtained using primary human keratinocytes. Results were reproducible, and the method could be transferred to another laboratory, suggesting the potential use of the test in immunotoxicity testing strategies. Overall, results obtained indicated that cell-associated IL-18 may provide an in vitro tool for identification and discrimination of contact versus respiratory allergens and/or irritants

Use of IL-18 production in a human keratinocyte cell line to discriminate contact sensitizers from irritants and low molecular weight respiratory allergens / E. Corsini, M. Mitjans, V. Galbiati, L. Lucchi, C.L. Galli, M. Marinovich.. - In: TOXICOLOGY IN VITRO. - ISSN 0887-2333. - 23:5(2009 Aug), pp. 789-796.

Use of IL-18 production in a human keratinocyte cell line to discriminate contact sensitizers from irritants and low molecular weight respiratory allergens

E. Corsini;V. Galbiati;L. Lucchi;C.L. Galli;M. Marinovich.
2009

Abstract

Assessment of allergenic potential of chemicals is performed using animal models, such as the murine local lymph node assay, which does not distinguish between respiratory and contact allergens. Progress in understanding the mechanisms of skin sensitization, provides us with the opportunity to develop in vitro tests as an alternative to in vivo sensitization testing. The aim of the present study was to evaluate the possibility to use intracellular interleukin-18 (IL-18) production to assess in vitro the contact sensitization potential of low molecular weight chemicals. The human keratinocyte cell line NCTC2455 was used. Cells were exposed to contact allergens (cinnamaldehyde, dinitrochlorobenzene, glyoxal, isoeugenol, p-phenylediamine, resorcinol, tetramethylthiuram disulfide, 2-mercaptobenzothiazole, 4-nitrobenzylbromide), to proaptens (cinnamyl alcohol, eugenol), to respiratory allergens (diphenylmethane diisocyanate, trimellitic anhydride, ammonium hexachloroplatinate) and to irritants (sodium lauryl sulphate, salicylic acid, phenol). Cell associated IL-18 were evaluated 24 later. At not cytotoxic concentrations (cell viability higher of 75%, as assessed by MTT reduction assay), all contact sensitizers, including proaptens, induced a dose-related increase in IL-18, whereas both irritants and respiratory failed. Similar results were also obtained using primary human keratinocytes. Results were reproducible, and the method could be transferred to another laboratory, suggesting the potential use of the test in immunotoxicity testing strategies. Overall, results obtained indicated that cell-associated IL-18 may provide an in vitro tool for identification and discrimination of contact versus respiratory allergens and/or irritants
Respiratory allergy ; Contact dermatitis ; Keratinocytes ; Cytokines ; In vitro toxicology ; Alternative method
Settore BIO/14 - Farmacologia
ago-2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/72282
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 95
social impact