Neural signals convey information through two different modalities: intensity and discharge pattern. The intensity code is based on the number of action potentials per unit time, which is then easily translated into neurotransmitter release. This kind of information may be assessed simply by counting the number of spikes or bursts over a time unit. However, the discharge pattern is a further, efficient means of neural information transfer. Rhythmic patterns (i.e. oscillations) can support highly structured, temporal codes based on correlation and synchronization. It is therefore clear that applying frequency domain analysis to sympathetic activity recorded in animals and humans may provide additional information about the neural control of the circulation. Over the last century, data obtained by the analysis of sympathetic activity in experimental animals, and recently also in humans, have provided fundamental contributions to our understanding of the physiological mechanisms involved in the neural control of circulation, as well as how these are altered in cardiovascular and non-cardiovascular diseases. The aim of this paper is to address some aspects related to the recording, analysis and interpretation of sympathetic activity in rats and humans, with special emphasis on analysis in the frequency domain.

Analysis of sympathetic neural discharge in rats and humans / N. Montano, R. Furlan, S. Guzzetti, R.M. McAllen, C. Julien. - In: PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A: MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES. - ISSN 1364-503X. - 367:1892(2009), pp. 1265-1282. [10.1098/rsta.2008.0285]

Analysis of sympathetic neural discharge in rats and humans

N. Montano
Primo
;
R. Furlan
Secondo
;
2009

Abstract

Neural signals convey information through two different modalities: intensity and discharge pattern. The intensity code is based on the number of action potentials per unit time, which is then easily translated into neurotransmitter release. This kind of information may be assessed simply by counting the number of spikes or bursts over a time unit. However, the discharge pattern is a further, efficient means of neural information transfer. Rhythmic patterns (i.e. oscillations) can support highly structured, temporal codes based on correlation and synchronization. It is therefore clear that applying frequency domain analysis to sympathetic activity recorded in animals and humans may provide additional information about the neural control of the circulation. Over the last century, data obtained by the analysis of sympathetic activity in experimental animals, and recently also in humans, have provided fundamental contributions to our understanding of the physiological mechanisms involved in the neural control of circulation, as well as how these are altered in cardiovascular and non-cardiovascular diseases. The aim of this paper is to address some aspects related to the recording, analysis and interpretation of sympathetic activity in rats and humans, with special emphasis on analysis in the frequency domain.
Autonomic nervous system; Baroreflex mechanisms; Central oscillators; Spectral analysis
Settore MED/09 - Medicina Interna
2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/71891
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact